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ABSTRACT 
Compared to conventional interfaces, Virtual reality (VR) 
interfaces contain a richer variety and more complex types of 
objects, behaviors, interactions and communications. Therefore, 
designers of VR interfaces face significant conceptual and 
methodological challenges in: a) thinking comprehensively about 
the overall design of the VR interface; b) decomposing the design 
task into smaller, conceptually distinct, and easier tasks; and c) 
communicating the structure of the design to software developers. 
To help designers to deal with these challenges, we propose a 
Virtual Reality Interface Design (VRID) Model, and an associated 
VRID methodology. 

Categories and Subject Descriptors  
Realism-Virtual reality, Computing Methodologies 

General Terms 
Design, Theory 

Keywords: 
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methodology  

1. INTRODUCTION 
Virtual Reality (VR) is seen as a promising platform for 
development of new applications in many domains such as 
medicine, entertainment, science and business [1, 17, 29, 31]. 
Despite their potential advantages, however, we do not yet see 
widespread development and use of VR applications in practice. 
The lack of proliferation of VR applications can be attributed 
partly to the challenges of building VR applications [2, 8]. In 
particular, interfaces of VR applications are more complex and 
challenging to design compared to interfaces of conventional 
desktop based applications [7, 9]. VR interfaces exhibit distinctive 
visual, behavioral and interaction characteristics. 
Visual characteristics. While conventional interfaces mainly use 
2D graphical displays, VR interfaces use both 2D and 3D 

displays. A major goal of virtual environments is to provide users 
with realistic environments. In order to provide the sense of 
“being there,” VR interfaces heavily use 3D graphical displays. 
Design and implementation of 3D graphical displays are usually 
more difficult than 2D displays. 
Conventional interfaces typically contain only virtual, computer-
generated objects. VR interfaces, on the other hand, may contain 
both virtual and physical objects that coexist and exchange 
information with each other, as in the case of augmented reality 
systems. The need to properly align virtual and physical objects 
constitutes an additional challenge in VR interface design [3].  
Behavioral characteristics. In conventional interfaces, objects 
usually exhibit passive behaviors. In general, they have 
predetermined behaviors that are activated in response to user 
actions. Therefore, communication patterns among   objects  are 
usually deterministic. VR interfaces contain both real world-like 
objects and magical objects that exhibit autonomous behaviors. 
Unlike passive objects, autonomous objects can change their own 
states. They can communicate with each other and affect each 
other's behaviors and communication patterns. Therefore, 
designing object behaviors is more challenging in VR interfaces.  
Interaction characteristics. While conventional interfaces 
support mainly explicit style interactions, VR interfaces usually 
support both explicit and implicit style interactions [6, 23, 25]. 
Implicit style interactions allow more natural and easier to use 
human-computer interactions by allowing arm, hand, head, or eye 
movement based interactions. However, these implicit style 
interactions are more complex to design compared to explicit style 
interactions.  
Table 1 summarizes the differences between characteristics of 
conventional and VR interfaces. As the table indicates, VR 
interfaces contain a richer variety and more complex types of 
objects, object graphics, behaviors, interactions, and 
communications. These characteristics bring significant 
challenges to the design of VR interfaces. In the absence of a 
conceptual model and a methodology that provide guidance 
during VR interface design, designers will face significant 
challenges in a) thinking comprehensively about the VR interface 
characteristics reviewed above; b) in decomposing the overall 
design task into smaller, conceptually distinct, and easier tasks; 
and c) in communicating the design to software developers. In this 
paper, we propose the VRID (Virtual Reality Interface Design) 
model and methodology to provide conceptual and 
methodological guidance to designers in dealing with these 
challenges. 
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Table 1. Comparative characteristics of conventional and VR interfaces 
Characteristics Conventional interfaces VR interfaces 
Object graphics Mainly 2D Mainly 3D 
Object types Mainly virtual objects Both virtual and physical objects 
Object behaviors Mainly passive objects Both passive and active objects 
Communication patterns Mainly simple Mainly complex 
Human-computer interactions Mainly explicit Both explicit and implicit 

 

2. RELATED WORK 
In this section, we briefly review relevant previous work to assess 
whether the existing interface design models and 
methodologies address the distinctive needs of VR 
interfaces. 
A well-known user interface design model is the Four Level 
approach developed by Foley and colleagues [11]. This model 
describes the user interface as a medium that provides dialogue 
between the user and the computer. The four levels of the model 
are organized based on the meaning and the form of the dialogue 
between the user and the computer. The levels focus mostly on 
specifications of user interactions using explicit commands. This 
approach works well for command language and GUI (graphical 
user interface) style interfaces. But it is not sufficient to meet VR 
interface needs such as implicit interactions, object dynamism, 
and physical objects. Communication among objects is not 
sufficiently addressed either. 
Another relevant user interface design model is the Command 
Language Grammar  (CLG) developed by Moran [24]. It provides 
designers a model to describe and design command language 
interfaces. As in Foley’s model, CLG divides the interface design 
into levels. But specifications of the levels are more formal and 
detailed in CLG. Although CLG works well in command 
language interfaces, its applicability to VR interfaces is limited. 
Object dynamism, interactions using implicit commands, physical 
objects, and communication patterns among objects are out of the 
scope of this model. 
A third related interface design model is Shneiderman’s Object-
Action Interface (OAI) model [27]. It is developed particularly for 
design of GUI style interfaces. In order to meet the needs of GUI 
style interfaces, the OAI model emphasizes the importance of 
visual representations of objects and their actions. This model 
focuses on explicit command style interactions using direct 
manipulations, and keeps the amount of syntax small in 
interaction specifications. However, OAI does not address the 
distinctive characteristics of VR interfaces such as object 
dynamism, implicit style interactions, physical objects, and 
communication patterns among objects. 

Another possibility for designers is to use general-purpose design 
models and methodologies such as object oriented design model 
and methodology and Object Modeling Technique (OMT), which 
are proposed for software development [5, 26]. However, these 
models and methodologies do not provide conceptual guidance for 
addressing specific challenges of VR interface design such as 
implicit style interactions. 

Table 2 summarizes our assessment as to whether the existing 
interface design models and methodologies meet the distinctive 
needs of VR interfaces. As the table indicates, none of the four 
design models and methodologies that we reviewed adequately 
meets the distinctive needs of the VR interfaces. 
Despite the lack of design models and methodologies that 
comprehensively  address  the  needs  of  VR  interfaces,  there  is  

 
Table 2. Characteristics of existing design models and 
methodologies  
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No No Minimal No 

CLG  No No No No 
OAI  Yes No No No 

OO  No Yes Yes No 

significant amount of relevant work in the VR field, which can be 
used as building blocks in developing such models and 
methodologies. The scope and complexity of VR interfaces have 
prompted ongoing efforts in the VR field to develop design 
languages, frameworks and other tools that can support the design 
of VR interfaces. These frameworks, languages and tools provide 
solutions for individual characteristics  and  requirements of  VR 
interfaces such as the behavioral aspects, interaction aspects or a 
particular issue within these domains.  

Table 3 provides a summary of the previous work addressing 
behavioral and interaction characteristics of VR interfaces.  Once 
the designer figures out how to conceptualize the interface and 
how to decompose the overall design task into smaller 
components such as behaviors, interactions, communications, 
graphics, etc., she or he can draw on previous studies which may 
provide help in dealing with design challenges within individual 
components. However, in the absence of higher level conceptual 
guidance, it is difficult for designers to decompose a complex VR 
interface into smaller, conceptually distinct components. 
Therefore, there is need for design models and methodologies that 
provide conceptual and methodological guidance to designers at a 
higher level of abstraction. We propose the VRID model and 
methodology to address this need. 

3. COMPONENTS OF A VIRTUAL 
REALITY SYSTEM 
Before introducing the VRID model, it is important to clarify 
what we mean by a VR interface. As depicted in Figure 1, we 
conceptualize a VR system in terms of three major components: 
application, interface, and dialog control, inspired by the Seeheim 
user interface system architecture [14] and the Model View 
Controller architecture [20].  
The application component is the VR application itself, which 
contains features, rules and knowledge defining the logic of the 
application. The interface component is the front-end through 
which users and other external entities exchange information with  



Table 3. Previous research on behavioral and interaction characteristics of VR interfaces 
 Frameworks and models Languages Others 
Behavioral Cremer, Kearney et al. 1995 [10], 

Blumberg and Galyean 1995 [4], Tu and 
Terzopoulos 1994 [35] 
Gobbetti and Balaguer 1993 [13] 
 

Green and Halliday 1996 
[15], Steed and Slater 1996 
[32] 
 

Behavioral library: Stansfield, Shawver et al. 
1995 [30] 
 

Interaction Kessler 1999 [19], Lewis, Koved et al. 
1991 [21], Gobbetti and Balaguer 1993 
[13], Bowman 1999 [7] 
 
 

Jacob, Deligiannidis et al. 
1999 [18], Smith and Duke 
1999 [28] 
 

Interaction techniques: Bowman and Hodges 
1997 [6],  Liang and Green 1993 [22],  
Poupyrev, Billinghurst et al. 1996 [25], 
Stoakley, Conway et al. 1995 [33], Tanriverdi 
and Jacob 2000 [34], Wloka and Greenfield 
1995 [36] 
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Figure 1. Components of a VR system 

and manipulate the system. The interface consists of data and 
objects. Data refers to inputs received from users (or other 
external entities) whereas objects refer to entities in the interface 
that have well defined roles and identities. Dialog control enables 
communication between the application and the interface. Due to 
conceptual separation, internal details of application and interface 
components are transparent to each other. This feature allows 
designers to work on the two components independently.  

We propose the VRID model and methodology only for the 
design of the interface component. Design of other VR system 
components is beyond the scope of this paper. 

4. THE VRID MODEL 
Building on our review and synthesis of the previous work on VR 
interface design, we identify object graphics, object behaviors, 
object interactions and object communications as the key 
constructs that designers should think about in designing VR 
interfaces. Therefore, we organize the VRID model around a 
multi-component object architecture that is depicted in Figure 2. 
Graphics, behavior, interaction and communicator components are 
included to conceptually distinguish and address the distinctive 
characteristics of VR interfaces. The mediator component is 
included to coordinate communications among the other four 
components of an object. These five components serve as the key 
constructs of our design model. Next, we will explain each of 
these components. 
The graphics component is for specifying graphical 
representations of interface objects. It covers specification of all 
graphical models that are needed for computer-generated 
appearance and animations of the objects. We include the graphics 
component in the model in order to address the distinctive visual 
characteristics of VR interfaces. Since VR interface objects 
exhibit more complex behaviors and these behaviors need to be 
represented by more complex visual displays, it is important to 
associate object behaviors with object graphics at a high level of 
abstraction.  

In general, responsibility for the design of visual aspects of VR 
interfaces lies  with  graphics  designers  rather than VR interface  
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Figure 2. Multi -component object architecture used in the 
VRID model 

designers. That is why we treat the graphics component as a black 
box, and focus only on its outcomes, i.e., graphical models. We 
aim to provide guidance to VR interface designers in specifying 
graphical models associated with interface objects and their 
behaviors. By doing so, we seek to facilitate communications 
between graphics designers and VR interface designers so that 
graphical representations and animations generated by graphics 
designers are compatible with behaviors specified by interface 
designers.  
The behavior component is for specifying various types of 
object behaviors. In order to help designers to understand and 
simplify complex object behaviors, we categorize object 
behaviors into two groups: physical behaviors and magical 
behaviors. Physical behavior refers to those changes in an 
object’s state that are observable in the real world. Magical 
behavior refers to those changes in an object’s state, which are 
rarely seen, or not seen at all in the real world. Consider a virtual 
basketball exhibiting the following behaviors: it falls; it bounces 
off; it changes its color when touched by a different player; and it 
displays player statistics (e.g., ball possession, scores, etc.). Here, 
the falling and bouncing off behaviors are physical behaviors 
because these behaviors have counterparts in the physical world. 
However, “changing color” or “displaying player statistics” are 
magical behaviors because a real world basketball does not 
exhibit these behaviors.  
Breaking down complex behaviors into simple physical and 
magical behaviors serve two purposes. First, it allows designers to 
generate a library of behaviors, which can be reused in creating 
new behaviors. Second, physical and magical distinction enables 
designers to assess the level of detail required in communicating 
design specifications to software developers unambiguously. 
Physical behaviors are relatively easy to describe and 
communicate. Since they have counterparts in the real world, 
software developers can easily relate to physical behaviors. 
Hence, interface designers may not need to describe all details of 
physical behaviors. Magical behaviors, on the other hand, are 
either rarely seen or not seen at all in the real world. Therefore, 



software developers may have difficulty in visualizing the magical 
behaviors. Interface designers may need to specify magical 
behaviors in more detail to avoid any misunderstandings in the 
later stages of development.  

Objects may exhibit composite behaviors that consist of a series 
of simple physical and magical behaviors. For example, running 
behavior of an athlete can be considered as a composite behavior 
consisting of simple physical behaviors such as leg and arm 
movements. By conceptually distinguishing between “simple” and 
"composite behaviors," we aim to help designers to decompose 
complex behaviors into smaller, conceptually distinct parts; and to 
increase the reusability of the resulting software code. Designers 
can combine simple behaviors in different ways and sequences to 
generate new composite behaviors. Breaking down a complex 
behavior into simpler behaviors also increases clarity of 
communication between designers and software developers since 
it is easier to visualize a series of simpler behaviors. 
We devote specific attention to the design of object behaviors 
because defining object behaviors has typically been a challenge 
in VR [15]. Most virtual environments remain visually rich, but 
behaviorally impoverished [10]. Previous work on behavioral 
characteristics of VR interfaces does not provide high level 
guidance for decomposing complex behaviors into simpler 
behaviors. By proposing physical-magical and simple-composite 
categories, we aim to help designers to decompose complex 
behaviors into simpler, easier to design components, which can 
also be reused in creating new behaviors. 

The interaction component is used to specify where inputs of 
the VR system come from and how they change object behaviors. 
The interaction component receives the input, interprets its 
meaning, decides on the implication of the input for object 
behavior, and communicates with behavioral components to make 
the desired change in the object behavior. VR interfaces need to 
support implicit style interactions, which require monitoring and 
interpretation of inputs such as hand, arm, head and eye 
movements. Each of these interaction types presents a particular 
design challenge. Therefore, unlike previous work, which usually 
merge the design of interactions and behaviors, we make a 
conceptual distinction between interactions and their implications 
for object behaviors. This distinction allows designers to focus on 
the challenges of interactions in the interaction component, and on 
the challenges of behaviors in the behavior component. It also 
increases reusability of resulting interactions and behaviors since 
interactions and behaviors are de-coupled from each other. 

The mediator component is for specifying control and 
coordination mechanisms for communications among other 
components of the object. The goals are to avoid conflicts in 
object behaviors, and to enable loose coupling among 
components. To achieve these goals, we propose the mediator 
component by adapting the concept of “mediator design pattern” 
suggested by Gamma and colleagues [12]. The mediator controls 
and coordinates all communications within the object. When a 
component needs to communicate with another component, it 
sends its message to the mediator rather than sending it directly to 
the destination. This component enables designers to identify, in 
advance, which communication requests might lead to conflicts in 
object behaviors, and to specify how the requests can be managed 
to avoid the conflicts. Since a component only needs to know 
about itself and the mediator rather than having to know about all 
components with which it might communicate, the mediator 
component also ensures loose coupling between components. 

High level specifications of graphics, 
behaviors, interactions, internal and external 
communications for  each object

Identifying data 
elements

Low level specifications of graphics, 
behaviors, interactions, internal and external 
communications for each object
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Figure 3. VRID Methodology 

The communication component is for external 
communications of the object with other objects, data elements, or 
with the application component. In this component, designers 
need to specify sources of communication inflows into the object, 
destinations of communications outflows from the object, and the 
message passing mechanisms between them such as the 
synchronous, asynchronous, balking, or timeout mechanisms 
discussed by Booch [5]. Previous work on object behaviors 
discusses message-passing mechanisms among objects during low 
level specifications of behaviors. The difference in our approach 
is that we start analyzing the communication needs of objects at a 
higher level of abstraction, and that we make a distinction 
between internal and external communications of objects. By 
using two separate components for specification of internal and 
external communications mechanisms of objects, we help 
designers to decompose the complexity associated with design of 
communications into smaller, conceptually distinct components, 
which are easier to analyze, design, code, and maintain. 
In summary, the VRID model synthesizes previous work on VR 
interface design and proposes a comprehensive set of modeling 
structures in the form of a multi-component object architecture, 
which helps designers to see clearly which issues and decisions 
are involved in VR interface design, and why. 

5. THE VRID METHODOLOGY 
To systematically apply the VRID model in VR interface design, 
we propose the VRID methodology. We conceptualize design of a 
VR interface as an iterative process in which requirements for the 
interface are translated into design specifications that can be 
implemented by software developers. We divide the design 
process into high-level and low-level design phases as depicted in 
Figure 3. In the high-level design phase, the goal is to specify a 
design solution, at a high-level of abstraction, using the multi 
component object architecture as a conceptual guidance. The 
input of the high-level design phase is a functional description of 
the VR interface. The output is a high-level representation of data 
elements and objects in the interface. Graphical models, 
behaviors, interactions, and internal and external communication 
characteristics of interface objects are identified and defined at a 
high level of abstraction. This output becomes the input of the 
low-level design phase. In the low-level design phase, the goal is 
to provide fine-grained details of the high-level representations, 
and to provide procedural details as to how they will be formally 
represented. The outcome of low-level design is a set of design 
specifications, which are represented in formal, implementation-
oriented terminology, and ready to be implemented by software 
developers. We take a top -down approach to the design process 
by going from high-level abstractions to lower level details. 
However, this is not a linear process. It requires iterations between 
the  high-level   and   low-level   design  phases,   and   reciprocal 



Table 4. Description of the virtual surgery system 

Consider an augmented reality system developed for 
training surgeons. It includes a virtual patient body and a 
physical biopsy needle. The surgeon wears a head-mounted 
display, and uses the needle to interact with the patient. A 
Polhemus is attached to the needle to communicate 3D 
coordinates of the needle to the VR system. Coordinate data 
is used to interpret actions of the surgeon. Abdominal area 
of the body is open, and organs, nerves, vessels, and muscles 
are visible. When the surgeon punctures an organ with the 
needle, it starts bleeding. The surgeon can see status of 
operation by prodding the organ. When prodded, the organ 
enlarges, and shows the status of surrounding nerves, 
vessels, and muscles by  highlighting each of them with a 
unique color.  

refinements at both levels of abstraction until a conceptually 
sound and practically implementable design emerges.  

In the following sections, we explain step-by-step details of each 
phase of the VRID methodology. We use an example, which runs 
throughout the paper, to illustrate how the VRID model and 
methodology are applied in developing a VR interface design. The 
example, which is described in Table 4, is a hypothet ical virtual 
surgery system inspired by and adapted from the descriptions 
given in prior studies [29, 31].  

5.1 High-level (HL) design phase 
High-level design phase consists of three major steps: 

?? HL1. Identifying data elements 
?? HL2. Identifying objects 
?? HL3. Modeling the objects 

o HL3.1. Graphics 
o HL3.2. Behaviors 
o HL3.3. Interactions 
o HL3.4. Internal communications (mediator) 
o HL3.5. External communications 

5.1.1 HL1: Identifying data elements 
The role of data elements is to enable communication between VR 
interface and entities that are external to the VR system. The goal 
of the first step is to identify data inflows coming into the VR 
interface. The interface can receive data from three sources: a) 
users, b) physical devices; and c) other VR systems. Designer 
should analyze the description of the VR interface to identify the 
data inflows. In the virtual surgery example, the only data element 
is the 3D coordinates of the needle communicated to the interface 
by the Polhemus. Identification of data elements is a relatively 
simple design task, which does not require deliberations at 
different levels of abstraction. We include this task in the high-
level design phase in order to enable designers to understand and 
define data inputs of the VR interface early in the design process. 

5.1.2 HL2: Identifying objects 
In this step, the goal is to identify objects that have well defined 
roles and identities in the interface. This step involves: a) 
identifying potential objects mentioned in the interface 
description; b) deciding on legitimate objects; and c) 
distinguishing between virtual and physical objects. In parts (a) 
and (b), designers can use the object-oriented analysis and design 
guidelines provided for identification of potential objects and 
selection of legitimate objects [5, 26]. In part (c), virtual objects 
are those entities that need to be modeled and generated by the 

computer. Physical objects are physical entities that interact with 
the VR system. Physical objects may or may not require 
modeling. If they are capable of coexisting and exchanging data 
with the VR interface, they do not require modeling. For example, 
the biopsy needle in our virtual surgery example is capable of 
sending data to the VR interface through the Polhemus. Hence, it 
should be identified as a physical object. Physical objects that 
exhibit magical behaviors need to be identified and modeled as 
virtual objects. For example, a biopsy needle, which is capable of 
melting down and disappearing when the surgeon makes a wrong 
move, is exhibiting a magical behavior. This behavior is only 
possible through computer generation since no physical biopsy 
needle is capable of exhibiting this behavior. Therefore, such 
objects should be modeled as virtual objects. 

In the virtual surgery example, potential objects are biopsy needle, 
patient body, organs, nerves, vessels, and muscles. In parts (a) and 
(b), the biopsy needle and the patient body can be identified as 
legitimate objects using the general guidelines of object-oriented 
analysis and design. The patient body is an aggregate object 
comprising of organ, nerve, vessel, and muscle components. In 
part (c), the needle can be identified as a physical object because 
it is capable of coexisting and exchanging data with the VR 
interface. The patient body should be identified as a virtual object 
because it exhibits magical behaviors such as highlighting nerves, 
vessels, and muscles with unique colors. 

5.1.3 HL3: Modeling the objects 
In the reminder of the design, we are no longer concerned with 
entities that are identified as physical objects because they do not 
require modeling, and their inputs to the VR system had already 
been identified as data elements in HL1. Therefore, the goal in 
this step is to model the virtual objects identified in HL2. 
Modeling of virtual objects involves specification of: a) graphical 
models; b) behaviors; c) interactions; d) internal communication 
characteristics; and e) external communication characteristics of 
the objects. Designers should analyze the interface description and 
use the VRID model to specify characteristics of each virtual 
object, as described below. 

HL3.1: Graphics  
In this step, the goal is to specify a high-level description of 
graphics needs of virtual objects. Designers should describe what 
kinds of graphical representations are needed for each object, and 
its parts, if any. Since representing objects graphically is a 
creative task, this step aims to provide flexibility to graphical 
designers by focusing only on general, high-level descriptions of 
graphical needs. 
In our example, we should describe graphics needs of the patient 
body, organs, nerves, vessels, and muscles in enough detail for 
graphics designers to understand the context of the graphical 
modeling needs. We should mention that we need graphical model 
of an adult human body, which lies on its back on the operation 
table. Gender is arbitrary. Abdominal part of the body should be 
open, and show the organs in the area, and the nerves, vessels, and 
muscles that weave the organs. Boundaries of organs, nerves, 
vessels, and muscles must be distinguishable when highlighted. 

HL3.2: Behaviors 
The goals of this step are to identify behaviors exhibited by 
objects; classify them into simple physical, simple magical, or 
composite behavior categories; and to describe them in enough 
detail for designers to visualize the behaviors. This step involves 
the following activities: a) identify behaviors from the description; 
b) classify the behaviors into simple and composite categories; c) 



classify simple behaviors into physical and magical behavior 
categories; and d) for composite behaviors, specify sequences in 
which simple behaviors are to be combined for producing the 
composite behaviors. 

In our example, behaviors exhibited by the patient body are: 1) 
bleeding; 2) enlarging; 3) highlighting nerves, vessels, and 
muscles with unique colors; and 4) showing the status of 
operation. Bleeding can be specified as a simple behavior or as a 
composite behavior obtained by combining simple behaviors of 
increasing the amount, color intensity, and viscosity of blood. 
This design decision should be based on reusability considerations 
and providing clear communications with software developers. 
We classify bleeding as composite behavior to reuse its 
components in generating different behaviors of blood such as 
coagulating. Similarly, to prevent communication problems with 
software developers and help software developers to visualize 
what we mean by “showing the status of operation,” we classify 
showing the status of operation as composite behavior that 
consists of enlarging and highlighting behaviors. Enlarging organ 
and highlighting nerves, vessels, and muscles are simple 
behaviors. Components of bleeding behavior are physical 
behaviors because there is nothing magic about them and they can 
be observed in real world. Enlarging organ and highlighting 
nerves, vessels, and muscles with unique colors are magical 
behaviors because they have no counterpart in the real world.  
The next task is to specify sequences in which simple behaviors 
are to be combined for producing the composite behaviors. The 
description indicates that enlarging and highlighting behaviors 
should be superimposed and exhibited simultaneously. Similarly, 
components of the bleeding behavior are exhibited 
simultaneously. 

HL3.3: Interactions 
The goal in this step is to specify where inputs of interface objects 
come from and how they change object behaviors. This step 
involves: a) identifying interaction requests to objects; b) 
identifying behavioral changes caused by these requests and 
which behavioral components will be notified for these changes 
In our example, user interacts with the patient body using the 
needle. The interaction component should be able to process the 
3D coordinates of the needle and interpret their meaning to decide 
whether the surgeon is prodding or puncturing (since this is a 
hypothetical example, we do not specify in detail how coordinates 
are to be processed and interpreted). If the surgeon is prodding, 
the implication for the behavior of the patient body is to show the 
status of operation. The interaction component should 
communicate with the composite behavior component to initiate 
the "showing the status of operation" behavior. If the surgeon is 
puncturing, the implication for the behavior of the patient body is 
bleeding. The interaction component should communicate with 
the composite behavior component to initiate the bleeding 
behavior. 

HL3.4: Internal communications (mediator) 
In this step, the goal is to specify control and coordination needs 
for internal communications among the components of objects in 
order to avoid potential conflicts in object behavior. This 
involves: a) examining all communication requests and behavioral 
changes that are caused by these requests; b) identifying 
communications requests that may cause the potential conflicts; 
and c) deciding how to prioritize, sequence, hold or deny the 
communications requests to avoid the potential conflicts. 

In our example, behaviors of the patient body are: 1) bleeding; 2) 
enlarging; 3) highlighting nerves, vessels, and muscles with 
unique colors; and 4) showing status of operation. If 
communication requests for bleeding and showing status of 
operation arrive simultaneously, the patient may enter into an 
unstable state between bleeding and showing status of operation 
behaviors. This conflict can be avoided by prioritizing, holding, or 
denying the communication requests. Here, we give higher 
priority to showing status of operation to avoid the conflict.  

HL3.5: External communications 
In this step, the goal is to specify control and coordination needs 
for external communications of the objects. This involves a) 
identifying communication inflows into the object, and their 
sources; b) communications outflows from the object, and their 
destinations; and c) describing time and buffering semantics of 
external communications of the object. 

In our example, communication inflows into the patient body are 
3D coordinates coming from the needle. There are no 
communications outflows. Although it is not specified in the 
description, for illustrative purposes, we assume that a 
communication between the needle and patient body starts when 
the needle initiates an operation (e.g., prodding, puncturing), and 
the patient body is ready to display the associated behavior with 
that operation. If the patient body is busy, the needle will wait for 
a specified amount of time. If the patient body is still not ready 
after a certain amount of time, the needle will abort the 
communication request. 

5.2 Low-level (LL) design phase 
Output of the high-level design becomes the input to the low-level 
design, which repeats the five modeling steps at a lower level 
abstraction to generate fine-grained details of the high-level 
design specifications: 

?? LL1. Graphics 
?? LL2. Behaviors 
?? LL3. Interactions 
?? LL4. Internal communications (mediator) 
?? LL5. External communications 

5.2.1 LL1: Graphics 
Low-level design of graphics aims to associate graphical models 
and behaviors of objects. The outcome of this step should enable 
graphical designer to understand how object behaviors can be 
animated. This step involves matching the graphical models 
specified in HL3.1 with behaviors specified in HL3.2.  
In our example, graphical models were specified for patient body 
and its parts (organs, nerves, vessels, and muscles in the 
abdominal area) in HL3.1. Associated behaviors specified in 
HL3.2 were bleeding, enlarging, highlighting, and showing the 
status of operation. Using the description, we need to associate 
graphical models of organs with all four behaviors; and the 
graphical models of nerves, vessels, and muscles with the 
bleeding and highlighting behaviors. 

5.2.2 LL2: Behaviors 
In low-level design of behaviors, the goal is to formalize fine-
grained procedural details of behaviors that have been specified in 
HL3.2. Formal representation of behaviors requires use of 
constructs of a selected design language. In our example, we use 
PMIW, the user interface description language that we had 
originally  developed  for  specifying  interactions[18], but  is also 
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Figure 4. PMIW representation of bleeding behavior 

suitable for specifying behaviors. PMIW representation requires: 
a) identification of discrete and continuous components of 
behaviors; b) use of data flow diagrams to represent continuous 
behaviors; and c) use of statecharts [16] and state transition 
diagrams to represent discrete behaviors. For illustration purposes, 
we depict in Figure 4 formal representation of continuous and 
discrete parts of the bleeding behavior using PMIW. 

5.2.3 LL3: Interactions 
Like low-level design of behaviors, low-level design of 
interactions aims to formalize fine-grained aspects of the 
interactions that have been specified in HL3.3. Formal 
representation of interactions also requires selection of a design 
language. PMIW is well suited for this purpose, although 
designers may choose any other suitable design language. 
Activities outlined for formal representation of behaviors are 
repeated in this step, this time for representing interactions. For 
illustration purposes, we depict in Figure 5 a formal representation 
of the puncturing interaction using PMIW. 

5.2.4 LL4: Internal communications (mediator) 
In low-level design of internal communications, the goal is to 
specify scheduling mechanisms for managing the communication 
requests identified in HL3.4 as giving rise to conflicting object 
behaviors. As in the previous steps of the low level phase, 
designers are free to choose appropriate scheduling mechanisms. 
In our example, to resolve conflicts between bleeding and 
showing the status of operation behaviors, we prefer to use 
priority scheduling mechanisms that are similar to the ones used 
in operating systems.  

5.2.5 LL5: External communications 
Low-level design of external communications aims to specify the 
message passing mechanisms that control and coordinate external 
communications of the objects. Designers can select from the 
synchronous, asynchronous, timeout, and bulking message 
passing mechanisms discussed by Booch [5]. In our example, the 
communication needs between the patient body and the biopsy 
needle, which had been specified in HL3.5, can be modeled with 
the timeout mechanism. 
This step concludes a complete pass of the phases of the VRID 
methodology. In applying the VRID methodology, we started with 
the English description of the VR system. Then, we followed the 
steps of the VRID methodology and applied the conceptual 
framework of the VRID model to decompose the overall design 
task into simpler, easier to design components. Each component 
represents a nicely encapsulated, conceptually distinct part of the 
interface. Designers should iterate between steps of the high and 
low level design phases to refine the specifications until they are 
convinced that conceptually sound and implementable 
specifications are produced. 
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Figure 5. PMIW representation of puncturing interaction  

6. DISCUSSIONS AND CONCLUSIONS 
In this paper, we identified a gap in the VR literature, namely, the 
lack of high-level design models and methodologies for design 
and development of VR interfaces. By proposing the VRID model 
and methodology as one possible approach, we have taken an 
initial step towards addressing this gap.  
The VRID model allows designers to think comprehensively 
about various types of human-computer interactions, objects, 
behaviors, and communications that need to be supported by VR 
interfaces. It enables designers to decompose the overall design 
task into smaller, conceptually distinct, and easier to design tasks. 
It provides a common framework and vocabulary, which can 
enhance communication and collaboration among users, designers 
and software developers involved in development of VR 
interfaces. The model may also be useful in implementation and  
maintenance stages of the life cycle of a VR interface since it 
isolates details of components, and makes changes in one 
component transparent to other components.  
The VRID methodology contributes to practice by guiding 
designers in the application of the VRID model to the VR 
interface design process. The methodology formalizes the process 
of VR interface design into two phases, which represent different 
levels of abstraction, and breaks down the phases into a discrete 
number of steps. High-level design phase helps designers to 
conceptually design the interface without having to use 
implementation specific terminology. Low-level design phase 
guides designers in representing design specifications in formal, 
implementation oriented terminology. The VRID offers flexibility 
in selection of languages, tools or mechanisms for specifying fine-
grained details of the interface.  
We evaluated the VRID model and methodology by applying 
them in designing various types and complexities of VR 
interfaces, which we identified from the literature or created for 
test purposes, including the virtual surgery example presented 
here. We have also just completed an experimental user study, 
which assessed validity, usability, and usefulness of the VRID 
model and the methodology. Findings provide empirical support 
for the validity of the VRID model and methodology. These 
findings are reported in a separate paper, which is currently under 
review. 
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