Vivado Design Suite
Tutorial

High-Level Synthesis

UG871 (v 2014.1) May 6, 2014

This tutorial document has been validated for the following software versions: Vivado Design Suite 2014.1
and 2014.2.

& XILINX.

& XILINX.

The information disclosed to you hereunder (the “Materials”) isprovided solely forthe selection and use of Xilinx products. To the
maximum extentpermitted by applicable law: (1) Materialsare made available “AS I1S” and with all faults, Xilinx hereby DISCLAIMS
ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx
shall not be liable (whetherin contract ortort, including negligence, orunder any other theory of liability) forany lossor damage of
any kind or nature relatedto, arising under, orin connection with, the Materials (including your use of the Materials), including for
any direct, indirect, special, incidental, or consequential lossor damage (includinglossof data, profits, goodwill, or any type of loss
or damage suffered asa result of any action brought by a third party) even ifsuch damageorlosswas reasonably foreseeable or
Xilinx hadbeenadvised of the possibility of the same. Xilinx assumesno obligationto correct any errorscontained inthe Materials
or to notify you of updatesto the Materialsorto product specifications. You may not reproduce, modify, distribute, or publicly display
the Materialswithout prior written consent. Certain productsare subject to the termsand conditionsof the Limited Warrantieswhich
can be viewed at http://www.xilinx.com/warranty.htm; IP coresmay be subject to warranty and support termscontained ina license
issued to you by Xilinx. Xilinx productsare notdesigned orintended to be fail-safe orforuse in any application requiring fail-safe
performance; you assume sole risk and liability for use of Xilinx productsin Critical Applications
http://www.xilinx.com/warranty.htm#critapps.

©Copyright 2012-2014 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated
brandsincluded hereinare trademarksof Xilinxin the United Statesand other countries. All other trademarksare the property of
theirrespective owners.

Notice of Disclaimer

Revision History

The following table shows the revision history for this document.

Date Version Revision

05/06/2014 2014.1 New Release for Vivado Design Suite 2014.1.

l Send Feedback I

http://www.xilinx.com/warranty.htm
http://www.xilinx.com/warranty.htm%23critapps
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=2

& XILINX.

Table of Contents

ReVISION HISTOIYcciiiiiiiiiiiiiccnniin s ss s s s s s s s s s e s s e s e s s e s e s s s snssssses 2
Chapter1 Tutorial Description.........ccccoiiiiiiiiiiiiiiiiiieneeeneeeeererreee e 6
OVEIVIEW ..ottt e e s s a s s s e e e e e e e e e e s s s s s s aaaaab e e e e e eees 6
Software ReQUIr@MENTS..........cooiiiiiicrrrreee e senrre s e e e s e s s e s s s s sssmnnn s s e e e e esee s 7
Hardware ReqUIrEMENTSuuuiiiiiiiiiiiiiiiiiiiiiicrrccreeereeeseassssssssssssssssssssssssessssssnnnnnnnes 7
Locating the Tutorial Design Files...........cccoooiiiiiiiiiiiiiiiiiiiiiiccnneescsesreeeeeeaes 8
Preparing the Tutorial Design Files.............cccoooiiiiiiiiiiiiiiiiiiicreee e 8
Chapter 2 High-Level Synthesis Introductory Tutorial........................... 9
L0 =T T 9
Tutorial Design Description...........ccooiiiiiiiiiiinieeiiiiciirerere e 9
HLS Lab 1: Creating a High-Level Synthesis Project...........cccoccueeiiiiinnnieiiiiiiineecnnniinnneen. 10
HLS: Lab 2: Using the Tcl Command Interface..........ccccccevviiiiiiiiiiiiiiiiirerrrrece e 26
HLS: Lab 3: Using Solutions for Design Optimization............cccccceeviiiinieciiiiiineeecinniinneeee, 30
Chapter3 CValidation...........cceuuuiiiiiiiiiiiiiiiiiiiiirrccsnnnnee e eeeeeeeeeee 42
L0 Y= TN 42
Tutorial Design Description...........ccooiiiiiiiiiniieiiiirerrc e 42
Lab 1: C Validation and Debug.............cccccoiiiiiiiiiiiiiiiiiiiiiiiiiiinsnnnsssss e seseseeeeees 43
Lab 2: C Validation with ANSI C Arbitrary Precision Types...........cccovvvmmmmrrrerieciiiinniniinnn. 51
Lab 3: C Validation with C+ + Arbitrary Precision Types..........cccccceviinureeiiiiinneeecinniinnnen. 56
Chapter4 Interface Synthesis.........cccccooveiiimrriiiiiiiiiiiirree e, 61
L0 Y= TN 61
Tutorial Design Descriptionccooovveiiiiiiiiiiiiiiiic 61
Interface Synthesis Lab 1: Block-Level I/O protocols............ccccceeeeeiiiiiiiiiicinninnnnnneneeeeeennn, 62
Interface Synthesis Lab 2: Port I/0 protocols............ccceevuviiiiiiiiiriiiiniiineccinnecccnnae 70
Interface Synthesis Lab 3: Implementing Arrays as RTL Interfaces..........ccccceevvureerniinnns 75
Interface Synthesis Lab 4: Implementing AXI4 Interfaces.........ccccccceviiiiieiiiiiiinieecenincnnee 90
Chapter 5 Arbitrary Precision Types..........cccoovvviiinnnnnnnnnnnnenenneenennne. 100
High-Level Synthesis www.xilinx.com 3

UGS871 (v 2014.1) May 6, 2014

| Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=3

L0 R =Y VAT - N 100

Arbitrary Precision: Lab 1............cccoiiiiiiiiiiiiiinniininnsrrssnssrresss s 101
Arbitray Precision: Lab 2............ccooiiiiiiiiiiie e 106
Chapter 6 Design Analysis...........ccceviiiiiiiiiiiiiiiiiiiiieeeneeeee 112
L0 =T T 112
Tutorial Design Description...........cooviiiiiiiiiiieieiiiiii e 112
Lab 1: Design Optimization...........cccccovviiiiiiiiiiiiiiiciiiec e 113
Chapter 7 Design Optimization...........ccccooviiiiiiiiiinirenennnnninininnnnennnennn. 145
L0 Y= P 145
Tutorial Design Description..........ccoccvvuiiiiiiiiiiiiiiiii 146
Lab 1: Optimizing a Matrix Multiplier............cccooviiiiiiiiiiiiiiiiiiiis 146
Lab 2: C Code Optimized for I/O ACCESSES.........cccvvueerrrreeeiiiiiiiiieeessnnnnerereeeeessessssssssnsnns 165
L0007 Ted (1T T o P 167
Chapter 8 RTL Verification............ccccevviiiiiiiiiiiiiiiiiiiiineeeeeeeneee 168
OVEIVIEWcoiiiiiiiiiiiieeetete et s s s s s s s asas s s et e e e e s e s s se s s s s s ssnsnnnnnns 168
Tutorial Design Description..........cccciiiiiiiieiiiiiiiiiiiiiiiiin s 168
Lab 1: RTL Verification and the C test bench..............ccccccoeeiiiiiiiiiiiiiinii, 169
Lab 2: Viewing Trace Files in Vivado...........cccooevuiiiiiiiiiiiiiiiiniiiicccneeec e 176
Lab 3: Viewing Trace Files in ModelSim.............ooiiiiiiiiiiiiiiiiiiiiicinnnnnnnnnnnens 180
L0007 Tof (1T o 184
Chapter9 Using HLSIP in IP Integrator..........cccceevrrrvvveeennnccccciiinnnnnn, 185
L0 Y= P 185
Tutorial Design Description..........ccocoeuiiiiiiiiiiiiiiiiic 185
Lab 1: Integrate HLS IP with a Xilinx IP Block.............ccccurrrrmmiuiniiiiiiiiiiiiiniiniinnnnnecneeeees 186
(0o 4T [T o 210
Chapter 10 Using HLSIP in a Zynq Processor Design..........cccccccec..... 211
L0 =T T 211
Tutorial Design Description...........ccoviiiiiiiiiiiniiiiiiiii e 211
Lab 1: Implement Vivado HLS IP on a Zynq Device..........cccccovvumreiiiiiinnerecinniinneeccnnnnnns 212
Lab 2: Streaming data between the Zynq CPU and HLS Accelerator Blocks................... 236
Chapter11 Using HLS IP in System Generator for DSP...................... 259

High-Level Synthesis www.xilinx.com Send Feedback 4
UG871 (v2014.1) May 6, 2014 [—\/—]

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=4

L0 R =Y VAT - N 259

Tutorial Design Description..........ccccviiiiiiuiiiiiiiiniiiiii s 259
Lab 1: Package HLS IP for System Generator............cccccceeeiiiiiiiiiiiiiiiiininnnneneeenececnenenee 260
(oY 4T [T o 264

High-Level Synthesis www.xilinx.com Send Feedback 5
UG871 (v2014.1) May 6, 2014 [—\/—]

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=5

& XILINX.

Chapter 1 Tutorial Description

Overview

This Vivado® tutorial is a collection of smaller tutorials that explain and demonstrate all steps in
the process of transforming C, C++ and SystemC code to an RTL implementation using High-
Level Synthesis. TH: Sample Paste: Using The binding process. The tutorial shows how you create
an initial RTL implementation and then you transform it into both a low-area and high-
throughput implementation by using optimization directives without changing the C code.

High-Level Synthesis Introduction

This tutorial introduces Vivado High-Level Synthesis (HLS). You can learn the primary tasks for
performing High-Level Synthesis using both the Graphical User Interface (GUI) and Tcl
environments.

The tutorial shows how you create an initial RTL implementation and then you transform it into
both a low-area and high-throughput implementation by using optimization directives without
changing the C code.

C Validation

This tutorial reviews the aspects of a good C test bench and demonstrates the basic operations
of the Vivado High-Level Synthesis C debug environment. The tutorial also shows how to debug
arbitrary precision data types.

Interface Synthesis

The interface synthesis tutorial reviews all aspect of creating ports for the RTL design. You can
learn how to control block-level I/O port protocols and port 1/O protocols, how arrays in the C
function can be implemented as multiple ports and types of interface protocol (RAM, FIFO, AXI4
Stream), and how AXI4 bus interfaces are implemented.

The tutorial completes with a design example in which the I/O accesses and the logic are
optimized together to create an optimal implementation of the design.

Arbitrary Precision Types

The lab exercises in this tutorial contrast a C design written in native C types with the same
design written with Vivado High-Level Synthesis arbitrary precision types, showing how the
latter improves the quality of the hardware results without sacrificing accuracy.

Design Analysis

This tutorial uses a DCT function to explain the features of the interactive design analysis
features in Vivado High-Level Synthesis. The initial design takes you through a number of

High-Level Synthesis www.xilinx.com 6

UG871 (v2014.1) May 6, 2014
l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=6

& XILINX. Tutorial Description

analysis and optimization stages that highlight all the features of the analysis perspective and
provide the basis for a design optimization methodology.

Design Optimization

Using a matrix multiplier example, this tutorial reviews two-design optimization techniques. The
first lab explains how a design can be pipelined, contrasting the approach of pipelining the
loops versus pipelining the functions.

The tutorial shows you how to use the insights learned from analyzing to update the initial C
code and create a more optimal implementation of the design.

RTL Verification

This tutorial shows how you can use the RTL cosimulation feature to verify automatically the RTL
created by synthesis. The tutorial demonstrates the importance of the C test bench and shows
you how to use the output from RTL verification to view the waveform diagrams in the Vivado
and Mentor Graphics ModelSim simulators.

Using HLS IP in IP Integrator

This tutorial shows how RTL designs created by High-Level Synthesis are packaged as IP, added
to the Vivado IP Catalog, and used inside the Vivado Design Suite.

Using HLS IP in a Zynq Processor Design

In addition to using an HLS IP block in a Zynq®-7000 SoC design, this tutorial shows how the C
driver files created by High-Level Synthesis are incorporated into the software on the Zynq
Processing System (PS).

Using HLS IP in System Generator for DSP

This tutorial shows how RTL designs created by High-Level Synthesis can be packaged as IP and
used inside System Generator for DSP.

Software Requirements

This tutorial requires that the Vivado Design Suite 2014.1 release or later is installed.

Hardware Requirements

Xilinx recommends a minimum of 2 GB of RAM when using the Vivado tools.

High-Level Synthesis www.xilinx.com 7

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=7

& XILINX. Tutorial Description

Locating the Tutorial Design Files

As shown in Figure 1, designs for the tutorial exercises are available as a zipped archive on the
Xilinx Website, tutorial documentation page.

IMPORTANT: All the tutorial examples for Vivado High-Level Synthesis are available for

i} download at:
http://secure.xilinx.com/webreg/clickthrough.do?cid=356028&license =RefDesLicen
se&filename=ug871-vivado-high-level-sythesis-tutorial.zip

[) = @ T

| &] http://www.ilinx.com/support/documentatior O v B & X || &) vivado Design Suit...

rial: Programming and Debugging

rial: Logic Simulation

m

ers with a detailed introduction of the Vivado Simulation software

s this document helpful? Yes | No

Figure 1: High-Level Synthesis Tutorial Design Files

Preparing the Tutorial Design Files

Extract the zip file contents into any write-accessible location.

This tutorial assumes that you have placed the unzipped design files in the location
C:\Vivado HLS Tutorial.

IMPORTANT: If the Vivado_HLS Tutorial directory is unzipped to a different
location, or if it resides on Linux, adjust the pathnames to the location at which you have

placed the Vivado_HLS_Tutorial directory.

High-Level Synthesis www.xilinx.com
UG871 (v2014.1) May 6, 2014 l Send Feedback I

8

http://www.xilinx.com/
http://secure.xilinx.com/webreg/clickthrough.do?cid=356028&license=RefDesLicense&filename=ug871-vivado-high-level-sythesis-tutorial.zip
http://secure.xilinx.com/webreg/clickthrough.do?cid=356028&license=RefDesLicense&filename=ug871-vivado-high-level-sythesis-tutorial.zip
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=8

& XILINX.

Chapter 2 High-Level Synthesis Introductory Tutorial

Overview

This tutorial introduces Vivado® High-Level Synthesis (HLS). You can learn the primary tasks for
performing High-Level Synthesis using both the Graphical User Interface (GUI) and Tcl
environments.

The tutorial shows how use of optimization directives transforms an initial RTL implementation
into both a low-area and high-throughput implementation.

Lab 1

Explains how to:

e Set up a High-Level Synthesis (HLS) project

e Perform all major steps in the HLS design flow:
o Validate the C code
0 Create and synthesize a solution

o Verify the RTL and package theIP.

Lab 2

Demonstrates how to use the Tcl interface.

Lab 3

Shows you how to optimize the design using optimization directives. This lab creates multiple
versions of the RTL implementation and compares the different solutions.

Tutorial Design Description

To obtain the tutorial design file, refer to the section

High-Level Synthesis www.xilinx.com 9

UG871 (v2014.1) May 6, 2014
l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=9

& XILINX. High-Level Synthesis Introductory Tutorial

Obtaining the Tutorial Designs.

This tutorial uses the design files in the tutorial directory
Vivado_HLS Tutorial\Introduction.

The sample design used in this tutorial is a FIR filter. The hardware goals for this FIR design
project are:

e Create a version of this design with the highest throughput

The final design must process data supplied with an input valid signal and produce output data
accompanied by an output valid signal. The filter coefficients are to be stored externally to the
FIR design, in a single port RAM.

HLS Lab 1: Creating a High-Level Synthesis Project

Introduction

This lab shows how to create a High-Level Synthesis project, validate the C code, synthesize the
design to RTL, and verify the RTL.

IMPORTANT: The figures and commands in this tutorial assume the tutorial data
directory Vivado_HLS Tutorial files are unzipped and placed in the location
C:\Vivado HLS Tutorial.

Step 1: Creating a New Project
1. Open the Vivado® HLS Graphical User Interface (GUI):

0 On Windows systems, open Vivado HLS by double-clicking the Vivado HLS 2014.1
desktop icon.

0 On Linuxsystems, type vivado_hls at the command prompt.

Vivado HLS
2014.1

Figure 2: The Vivado HLS Desktop Icon

TIP: You can also open Vivado HLS using the Windows menu Start > All Programs >
Xilinx Design Tools > Vivado 2014.1 > Vivado HLS > Vivado HLS 2014.1.

High-Level Synthesis www.xilinx.com 10

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=10

& XILINX. High-Level Synthesis Introductory Tutorial

Vivado HLS opens with the Welcome Screen as shown in Figure 3. If any projects were
previously opened, they are shown in the Recent Project pane, otherwise this window is not

shown in the Welcome screen.

o Wivada HLS
File FEdit Project Solution Window Help

< |Vivado HLS Welcome Page &1

VIVADO" ... _ _
l High-Leval Synthesis
Quick Start Recent Projects
my_proj
= ChVivado_HLS\My_First_Project\my_proj
yars £
A =L
% /
Create New Project Open Progect Open Example Progect
Documentation
= § ¥
Tutorals User Guide Release Notes Guide

Figure 3: The Vivado Welcome Page

2. Inthe Welcome Page, select Create New Project to open the Project wizard.

3. Asshown in Figure 4:
a. Enterthe project name fir_prj.
b. Click Browse to navigate to the location of the labl directory.
c. Select the labl directory and click OK.
d. Click Next.

High-Level Synthesis www.xilinx.com

e e =5

=5

11

UG871 (v2014.1) May 6, 2014 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=11

& XILINX. High-Level Synthesis Introductory Tutorial

+ New Vivado HLS Project o= s
Project Configuration A ﬁ
7
Create Vivado HLS project of selected type
Project name: fir,prjl

Location: C\Vivado_HLS_Tutorial\Introduction\labl Browse.

Back Finish Cancel

Figure 4: Project Configuration

This information defines the name and location of the Vivado HLS project directory. In this case,
the project directory is Fir_prj and it resides in the 1abl folder.

4. Enter the following information to specify the C design files:
a. Specify Fir asthe top-level function.
b. Click Add Files.
c. Select Fir.c andclick Open.
d. Click Next.

High-Level Synthesis www.xilinx.com 12

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=12

& XILINX. High-Level Synthesis Introductory Tutorial

'+ | New Vivado HLS Project o [C S
Add/Remove Files EH-IEV
Add/remove C-based source files (design specification)

Top Function: fir

Design Files
MName CFLAGS Add Files...
=l fir.c)

Edit CFLAGS...

Remove

Figure 5: Project Design Files

High-Level Synthesis www.xilinx.com 13

UG871 (v2014.1) May 6, 2014 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=13

& XILINX. High-Level Synthesis Introductory Tutorial

IMPORTANT: In this lab there is only one C design file. When there are multiple C files to
be synthesized, you must add all of them to the project at this stage.

i} Any header files that exist in the local directory 1abl are automatically included in the
project. If the header resides in a different location, use the Edit CFLAGS button to add the
standard gcc/g+ + search path information (for example, -
I<path_to_header_file_dir>)

Figure 6 shows the input window for specifying the test bench files. The test bench and all files
used by the test bench (except header files) must be included. You can add files one at a time,
or select multiple files to add using the Ctrl and Shift keys.

+ |New Vivado HLS Project =N Eoh <™
Add/Remove Files ‘:I}"E;ﬁ
Add/remove C-based testbench files (design test)

TestBench Files

Name CFLAGS Add Files...
fir_test.c ;
Mew File...
outgold.dat —_—
Add Folder...

Edit CFLAGS...

Remove

< Back “ Mext = Finish Cancel

Figure 6: Test Bench Files

5. Click the Add Files button to include both test bench files: Fir_test.c and
out.gold.dat.

6. Click Next.

High-Level Synthesis www.xilinx.com 14

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=14

& XILINX. High-Level Synthesis Introductory Tutorial

Both C simulation (and RTL cosimulation) execute in sub-directories of the solution.

If you do not include all the files used by the test bench (for example, data files read by the test
bench, such as out.gold.dat), Cand RTL simulation might fail after synthesis due to an
inability to find the data files.

The Solution Configuration window (shown in Figure 7) specifies the technical specifications of
the first solution.

A project can have multiple solutions, each using a different target technology, package,
constraints, and/or synthesis directives.

+ | New Vivado HLS Project o [-E- s

Solution Configuration

Create Vivado HLS solution for selected technology

Solution Name: solutionl

Clock
Period: 10 Uncertainty:

Part Selection

Part: [Please select part] D

Figure 7: Solution Configuration

7. Accept the default solution name (solutionl), clock period (10 ns) and clock uncertainty
(defaults to 12.5% of the clock period, when left blank/undefined).

8. Click the part selection button u to open the part selection window.

9. Select Device xc7k160tfbg484-2 from the list of available devices. Select the following from
the dropdown filters to help refine the parts list:

High-Level Synthesis www.xilinx.com 15

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=15

& XILINX.

a. Product Category: General Purpose
b. Family: Kintex®-7
c. Sub-Family: Kintex-7
d. Package: fbg484
e. Speed Grade: -2
f. Temp Grade: All
10. Click OK.

High-Level Synthesis Introductory Tutorial

In the Solution Configuration dialog box (shown in Figure 7, above), the selected part name
now appears under the Part Selection heading.

11. Click Finish to open the Vivado HLS project, as shown in Figure 8.

i fVivado HLS - fir_prj (C\Vivado_HLS Tutorial\Introduction\lab1\fir_prj}

File Edit Project Solution Window Help
| of % | R8s e~ | A~ || ®
=2 Debug &!‘Analysis
[Explorer W =0
4 1 fir_prj
> i Includes

» = Source
- 0= Test Bench
a {= solution1
4 4 constraints

o directives.tcl
o scripttcl

Bl Console 2 9] Errors| & Warnings| ¥ Man Page
CDT Build Console [fir_prj]

1 item selected

[E=H Eol =

= 0OJ[8z Outli B~ @Dire| =0
An outline is not available.

L EEETT

e The project name appears on the top line of the Explorer window.

e A Vivado HLS project arranges data in a hierarchical form.

Figure 8: Vivado HLS Project

e The project holds information on the design source, test bench, and solutions.

e The solution holds information on the target technology, design directives, and results.

High-Level Synthesis www.xilinx.com
UG871 (v2014.1) May 6, 2014

16

l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=16

& XILINX. High-Level Synthesis Introductory Tutorial

e There can be multiple solutions within a project, and each solution is an implementation of
the same source code.

TIP: At any time, you can change project or solution settings using the corresponding
Project Settings and/or Solution Settings buttons in the toolbar.

Understanding the Graphical User Interface (GUI)

Before proceeding, review the regions in the Graphical User Interface (GUI) and their functions.
Figure 9 shows an overview of the regions, and each is described below.

4 Vivado HLS - fir_prj (C:\Vivado_HLS_Tutorial\Introduction\lab1\fir_prj) = o |
File Edit Project Solution Window Help Toolbar
3] = X|[HHE B Ssibhe Bo| w6
T T G : Buttons
BT Perspectives = O[5z Outli %\ @Dire| = O
- & fir_prj) . An outline is m;t available.
w! Includes
£ Source

= Test Bench
4 7= solution1

B el v | | &

4 # constraints
o directives.tcl

W script.tcl
Explorer Information Auxiliary
Pane Pane Pane

B Console 52 @] Errors| & Warnings| & Man Page & ¢ JEE&TO

Console
Pane

CDT Build Console [fir_prj]

1 item selected

Figure 9: Vivado HLS Graphical User Interface

Explorer Pane

Shows the project hierarchy. As you proceed through the validation, synthesis, verification,
and IP packaging steps, sub-folders with the results of each step are created automatically
inside the solution directory (named csim, syn, sim, and impl respectively).

When you create new solutions, they appear inside the project hierarchy alongside
solutionl.

High-Level Synthesis www.xilinx.com 17

UG871 (v2014.1) May 6, 2014 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=17

& XILINX. High-Level Synthesis Introductory Tutorial

Information Pane

Shows the contents of any files opened from the Explorer pane. When operations complete,
the report file opens automatically in this pane.

Auxiliary Pane

Cross-links with the Information pane. The information shown in this pane dynamically
adjusts, depending on the file open in the Information pane.

Console Pane

Shows the messages produced when Vivado HLS runs. Errors and warnings appear in
Console pane tabs.

Toolbar Buttons
You can perform the most common operations using the Toolbar buttons.

When you hold the cursor over the button, a popup dialog box opens, explaining the
function. Each button also has an associated menu item available from the pulldown menus.

Perspectives
The perspectives provide convenient ways to adjust the windows within the Vivado HLS GUI.
e Synthesis Perspective

The default perspective allows you to synthesize designs, run simulations, and package the
IP.

e Debug Perspective

Includes panes associated with debugging the C code. You can open the Debug Perspective

after the C code compiles (unless you use the Optimizing Compile mode as this disable
debug information).

e Analysis Perspective
Windows in this perspective are configured to support analysis of synthesis results. You can

use the Analysis Perspective only after synthesis completes.

Step 2: Validate the C Source Code

The first step in an HLS project is to confirm that the C code is correct. This process is called C
Validation or C Simulation.

In this project, the test bench compares the output data from the Fir function with known
good values.

1. Expand the Test Bench folder in the Explorer pane.
2. Double-click the file Fir_test.c to view it in the Information pane.

3. Inthe Auxiliary pane, select main() in the Outline tab to jump directly to the main()
function.

High-Level Synthesis www.xilinx.com 18

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=18

& XILINX. High-Level Synthesis Introductory Tutorial

Figure 10 shows the result of these actions

+ | Vivado HLS - fir_prj (CA\Vivado_HLS Tutorial\Introduction\lab1\fir_prj) o -@ e
File Edit Project Solution Window Help
il | 5Bl B o E aale - |~ & e | @
%5 Debug 6-? Analysis
[t5 Explorer 22 = O fir_testc 2 = B2z Qutline £3 . [Directive =g
& fir_prj @int LEHG () { B S IR
& Includes const int SAMPLES=608; o stdioh
= Source FILE “fp; 1 math.h
= Test Bench data_t signal, output; H firh
el fir_test.c coef t taps[N] = {@,-18,-9,23,56,63,56,23,-9,-10,0,}; © mainQ:int
out.gold.dat
= solutiont int i, ramp_up;
constraints signal = @;
W directives.tcl ramp_up = 1;
o scripttcl

fp=fopen("out.dat","w");
for (i=0;i<=SAMPLES;i++) {
if (ramp_up == 1)
signal = signal + 1;
else
signal = signal - 1;

1

// Execute the function with latest input
fir(&output,taps,signal);

if ((ramp_up == 1) && (signal >= 75))

mamn nn - O

m 3

Figure 10: Reviewing the Test Bench Code

The test bench file, Fir_test.c, contains the top-level C function main(), which in turn calls
the function to be synthesized (Fir). A useful characteristic of this test bench is that it is self-
checking:

e The test bench saves the output from the Fir function into the output file, out.dat.
e The output file is compared with the golden results, stored in file out.gold.dat.

e If the output matches the golden data, a message confirms that the results are correct, and
the return value of the test bench main() functionis set to O.

o If the output is different from the golden results, a message indicates this, and the return
value of main() is set to 1.

The Vivado HLS tool can reuse the C test bench to perform verification of the RTL.

If the test bench has the previously described self-checking characteristics, the RTL results are
automatically checked during RTL verification. Vivado HLS re-uses the test bench during RTL
verification and confirms the successful verification of the RTL if the test bench returns a value of
0.If any other value is returned by main(), including no return value, it indicates that the RTL
verification failed. There is no requirement to create an RTL test bench. This provides a robust
and productive verification methodology.

4. Click the Run C Simulation button, or use menu Project > Run C Simulation, to compile
and execute the C design.

5. Inthe CSimulation dialog box, click OK.

High-Level Synthesis www.xilinx.com 19

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=19

& XILINX. High-Level Synthesis Introductory Tutorial

The Console pane (Figure 11) confirms the simulation executed successfully.

El Console 9] Errors| & Warnings | %= Man Page % BE ‘=
Vivado HLS Console

Generating csim.exe
Comparing against output data

PASS: The output matches the golden output!

@I [SIM-1] CSim done with @ errors.
@I [LIC-101] Checked in feature [VIVADO HLS]

1 [m

Figure 11: Results of C Simulation

TIP: If the C simulation failed, select the Debug option in the C Simulation dialog box,
compile the design, and automatically switch to the Debug perspective. There you can use a
C debugger to fix any problems

The C Validation tutorial module provides more details on using the Debug environment.

The design is now ready for synthesis.

Step 3: High-Level Synthesis
In this step, you synthesize the C design into an RTL design and review the synthesis report

1. Click the Run C Synthesis toolbar button or use the menu Solution > Run C Synthesis.

When synthesis completes, the report file opens automatically. Because the synthesis report is
open in the Information pane, the Outline tab in the Auxiliary pane automatically updates to
reflect the report information.

2. Click Performance Estimate in the Outline tab (Figure 12).

3. Inthe Details section of the Performance Estimates, expand the Loop view.

High-Level Synthesis www.xilinx.com 20

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=20

& XILINX.

gl fir_csynth.rpt &

Performance Estimates

High-Level Synthesis Introductory Tutorial

-l Timing (ns)
-l Summary
Clock Target Estimated Uncertainty
default 10.00 843 1.25 =
- Latency (clock cycles)
-l Summary
Latency Interval
min max min max Type
78 78 79 79 none
= Detail
+ Instance
-l Loop
Latency Initiation Interval
Loop Name min max Iteration Latency achieved target Trip Count Pipelined
- Shift_Accum_Loop 77 77 7 - - 11 no

Figure 12: Performance Estimates

In the Performance Estimates pane, shown in Figure 12, you can see that the clock period is set

to 10 ns. Vivado HLS targets a
= 8.75ns in this example).

clock period of Clock Target minus Clock Uncertainty (10.00-1.25

The clock uncertainty ensures there is some timing margin available for the (at this stage)
unknown net delays due to place and routing.

The estimated clock period (worst-case delay) is 8.43 ns.

In the Summary section, you can see:

The design has a latency of 78-clock cycles: it takes 78 clocks to output the results.

The interval is 79 clock cycles: the next set of inputs is read after 79 clocks. This is one cycle

after the final output is written. This indicates the design is not pipelined. The next execution
of this function (or next transaction) can only start when the current transaction completes.

pipelining is performed.
The Details section shows:

There are no sub-blocks in
modules in the hierarchy.

The message “design is not pipelined” is also included under the pipelined type: no

this design. Expanding the Instance section shows no sub-

All the delay is due to the RTL logic synthesized from the loop named

Shift_Accum_Loop. This logic executes 11 times (Trip Count). Each execution requires 7

High-Level Synthesis
UG871 (v2014.1) May 6, 2014

21

l Send Feedback I

www.Xilinx.com

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=21

& XILINX. High-Level Synthesis Introductory Tutorial

4.

l¢| fir_test.c =l fir_csynth.rpt i3

5.

Utilization Estimates

clock cycles (Iteration Latency), for a total of 88 clock cycles, to execute all iterations of the
logic synthesized from this loop (Latency).

The total latency is one clock cycle greater than the loop latency. It requires one clock cycle
to enter and exit the loop (in this case, the design finishes when the loop finishes, so there is
no exit cycle).

In the Outline tab, click Utilization Estimate (Figure 13).

- Summary
Name BRAM_18K DSP48E FF LUT
Expression - - 0 44
FIFO - - - -
Instance - 4 0 0
Memory 0 - 64 59
Multiplexer - - - 105
Register - - 174 - L
Total 0 4 238 208 i
Available 650 600 202800 101400
Utilization (%) o} ~0 ~0 ~0
= Detail
-l Instance
Instance Module BRAM_18K DSP48E FF LUT
fir_mul_32s_325_32 3_U0 fir_mul_32s_325_32_3 0 4 0 0
Total 1 0 4 0 0

Figure 13: Utilization Estimates

In the Details section of the Utilization Estimates, expand the Instance view.

The design uses a single memory implemented as LUTRAM (since it contains less than 1024
elements), 4 DSP48s, and approximately200 flip-flops and LUTs. At this stage, the area numbers
are estimates.

RTL synthesis might be able to perform additional optimizations, and these figures might
change after RTL synthesis.

The number of DSP48s seems larger than expected for a FIR filter. This is because the data is
a Cinteger type, which is 32-bit. It requires more than 1 DSP48 to multiply 32-bit data
values.

The multiplier instance shown in the Instance view accounts for all the DSP48s.
The multiplier is a pipelined multiplier. It appears in the Instance section indicating it is a

sub-block. Standard combinational multipliers have no hierarchy. and listed in the
Expressions section (indicating a component at this level of hierarchy).

High-Level Synthesis www.xilinx.com 22

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=22

& XILINX. High-Level Synthesis Introductory Tutorial

In HLS: Lab 3: Using Solutions for Design Optimization, you optimize this design.
6. Inthe Outline tab, click Interface (Figure 14).

[¢ fir_test.c |2 fir_csynth.rpt i3 = B(g= Outl 2 ™ I Dire] =8

== General Information
Interface | Performance Estimates

= Summary B Timing (ns)

Dir Bits Protocol Source Object C Type I Latency (clock cycle:
ap_clk in 1 ap_ctrl_hs fir return value = ETI"ZBTIOH Estimates
;) =R
ap_rst in 1 ap_ctrl_hs fir = return value - DUTTBW

El Detall
ap_start in 1 ap_ctrl_hs fir return value
p- p-ctrl- = Interface
ap_done out 1 ap_ctrl_hs fir return value —
E Summary
ap_idle out 1 ap_ctrl_hs fir return value
ap_ready out 1 ap_ctrl_hs fir return value
y out 32 ap_vid y pointer
y_ap_vid out 1 ap_vid Y pointer
c_address0 out 4 ap_memory c array
c_cel out 1 ap_memory c array =
cq0 in 32 ap_memory c array
X in 32 ap_none X scalar

< [3 < [3

Figure 14: Interface Report

The Interface section shows the ports and 1/O protocols created by interface synthesis:

e The design has a clock and reset port (ap_clk and ap_reset). These are associated with
the Source Object Fir: the design itself.

e There are additional ports associated with the design as Source Object. Synthesis has

automatically added some block level control ports: ap_start, ap_done, ap_idle
and ap_ready.

e The Interface Synthesis tutorial provides more information about these ports.

e The function outputy is now a 32-bit data port with an associated output valid signal
indicator y_ap_vld.

e Function input argument c (an array) has been implemented as a block RAM interface with a
4-bit output address port, an output CE port and a 32-bit input data port.

e Finally, input argument X is simply implemented as a data port with no 1/O protocol
(ap_none).

Later in this tutorial, HLS: Lab 3: Using Solutions for Design Optimization explains how to
optimize the I/O protocol for port x.

Step 4: RTL Verification
High-Level Synthesis can re-use the C test bench to verify the RTL using simulation.

1. Click the Run C/RTL Cosimulation toolbar button or use the menu Solution > Run C/RTL
Cosimulation.

2. Click OKin the C/RTL Co-simulation dialog box to execute the RTL simulation.

High-Level Synthesis www.xilinx.com 23

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=23

& XILINX. High-Level Synthesis Introductory Tutorial

The default option for RTL Co-simulation is to perform the simulation using the Vivado

simulator and Verilog RTL. To perform the verification using a different simulator, VHDL or

SystemC RTL use the options in the C/RTL Co-simulation dialog box.

When RTL co-simulation completes, the report opens automatically in the Information pane,

and the Console displays the message shown in Figure 15. This is the same message
produced at the end of C simulation.

0 The Ctest bench generates input vectors for the RTL design.

0 The RTL design is simulated.

0 The output vectors from the RTL are applied back into the C test bench and the
results-checking in the test bench verify whether or not the results are correct.

El Console i3 - 9] Errors| & Warnings| & Man Page % b =
Vivado HLS Console

@I [SIM-316] Starting C post checking ...

Comparing against output data

PASS: The output matches the golden outputl‘

@T [SIM-10@8] *** C/RTL co-simulation finished: PASS ***
@T [LIC-101] Checked in feature [VIVADO HLS]

Figure 15: RTL Verification Results

The RTL Verification tutorial (page 168) provides additional information.

Step 5: IP Creation

The final step in the High-Level Synthesis flow is to package the design as an IP block for use
with other tools in the Xilinx Design Suite.

1. Click the Export RTL toolbar button or use the menu Solution > Export RTL.
2. Ensure the Format Selection dropdown menu shows IP Catalog.
3. Click OK.

4 |m

The IP packager creates a package for the Vivado IP Catalog. (Other options available from

the drop-down menu allow you to create IP packages for System Generator for DSP, a
Synthesized Checkpoint format for Vivado or a Pcore for Xilinx Platform Studio.)

4. Expand Solutionl in the Explorer.
5. Expand the impl folder created by the Export RTL command.

6. Expand the ip folder and find the IP packaged as a zip file, ready for adding to the Vivado IP

Catalog (Figure 16).

High-Level Synthesis www.xilinx.com

UG871 (v2014.1) May 6, 2014 l Send Feedback I

24

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=24

& XILINX. High-Level Synthesis Introductory Tutorial

[Explorer &2 = 0
4 = impl -
4 = ip

|2 autoimpllog
2 auxiliaryxml
|2 componentxml
|=l pack.bat
W run_ippack.tcl
|= vivado jou
|2 vivadolog
(=l xilinx_com_hls_fir 1 0.zip
= bd

. 4 constraints

> = doc

: = example

» = hdl

¢ = misc
= subcore

: = xgui

4 (= verilog

W extraction.tcl
ard fir_mul_32s_325_32 3w
|=I fir_shift_reg_ram.dat

1

arit fir_shift_reg.v
rrit firy
=l firxdc
= impl.bat
|5 projectxpr
W run_vivado.tcl
W settings.tcl
¢ = project.data
» & vhdl
» = 5im
> = syn v

Figure 16: RTL Verification Results

Also note, in Figure 16, that if you expand the Verilog or VHDL folders inside the impl folder,
there is a Vivado project ready for opening in the Vivado Design Suite.

RECOMMENDED: In this Vivado project, the HLS design is the top-level This project

O provides an additional means of analyzing the design. The recommended approach is to
add the IP package to the Vivado IP catalog, and add it as IP to the design that uses the
HLS design.

Note: There is no project file created for devices synthesized by ISE (6 series or earlier devices).

At this stage, leave the Vivado HLS GUI open. You will return to this in the next lab exercise.

High-Level Synthesis www.xilinx.com 25

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=25

& XILINX. High-Level Synthesis Introductory Tutorial

HLS: Lab 2: Using the Tcl Command Interface

Introduction

This lab exercise shows how to create a Tcl command file based on an existing Vivado HLS
project and use the Tcl interface.

Step 1: Create a Tcl file
1. Open the Vivado HLS Command Prompt.

2. OnWindows, use Start > All Programs > Xilinx Design Tools > Vivado 2014.1 > Vivado
HLS > Vivado HLS 2014.1 Command Prompt (Figure 17).

3. OnLinux, open a new shell.

B Vivado HLS 2014.1 Command Prompt = - S

== Uivado HLS Command Prompt
== Auailable commands:
=z vivado_hls,apcc,gcc, g+t make

Microsoft Windows [Uersion 6.1.7601]
Copyright (c) 2009 Microsoft Corporation. All rights reserved.

C:\Xilinx\Uivado_HLS\2014.1>

Figure 17: The Vivado HLS Command Prompt

When you create a Vivado HLS project, Tcl files are automatically saved in the project hierarchy.
In the GUI still open from Lab 1, a review of the project shows two Tcl files in the project
hierarchy (Figure 18).

4. Inthe GUI, still open from Lab 1, expand the Constraints folder in solutionl and double-click
the file script.tcl to view it in the Information pane.

High-Level Synthesis www.xilinx.com 26

UG871 (v2014.1) May 6, 2014 | Send Feedback |

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=26

& XILINX.

P9 Explorer
& fir_prj
i Includes
= Source
g firc
= Test Bench
L& fir_test.c
= outgold.dat
= solution1
& constraints
W directives.tcl
& scriptitcl
= ¢sim
= impl
(= sim
= syn

w = B|[g fir_test.c

[i*]

el fir csynth.rpt

High-Level Synthesis Introductory Tutorial

< seript.tel i3

This file is generated automatically by Vivado HLS.

3 ## Please DO NOT edit it.

[V, =N

= W0 0~

Copyright (C) 2014 Xilinx Inc. All rights reserved.
S H S

open_project fir_prj
set_top fir
add_files fir.c

add files -tb fir test.c
add_files -tb out.gold.dat
open_solution "solutionl”
set_part {xc7k160tfbg484-2}

create_clock -period

source "./fir_prj/solutionl/directives.tcl”

csim_design
csynth_design

cosim_design -trace level none -rtl verilog -tool auto

10 -name default

export_design -format ip_catalog

4

Figure 18: The Vivado HLS Project Tcl Files

m

e Thefile script.tcl contains the Tcl commands to create a project with the files specified
during the project setup and run synthesis.

e Thefile directives.tcl contains any optimizations applied to the design. No

optimization directives were used in Lab 1 so this file is empty.

In this lab exercise, you use the script.tcl from Lab 1 to create a Tcl file for the Lab 2 project.

5. Close the Vivado HLS GUI from Lab 1. This is project no longer needed.

6. Inthe Vivado HLS Command Prompt, use the following commands (also shown in Figure 19)
to create a new Tdl file for Lab 2.

a. Change directory to the Introduction tutorial directory

C:\Vivado_HLS Tutorial\Introduction.

b. Usethe command cp labl\fir_prj\solutionl\script.tcl

lab2\run_hls._tcl to copy the existing Tcl file to Lab 2. (The Windows command

prompt supports auto-completion using the Tab key: press the tab key repeatedly to see
new selections).

c. Usethe commandcd lab2 to change into the lab2 directory.

High-Level Synthesis
UG871 (v2014.1) May 6, 2014

www.Xilinx.com

l Send Feedback I

27

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=27

& XILINX. High-Level Synthesis Introductory Tutorial

C:\>cd Uivado_HLS_Tutoriali\Introduction

C:\Vivado_HLS_Tutorial\Introduction>cp labi1\fir_prj\solutionliscript.tcl lab2\ru
n_hls.tcl

C:\Vivado_HLS_Tutorial\Introduction>cd lab2

C:\Uivado_HLS_Tutorial:Introduction\labz>

Figure 19: Copying the Lab 1 Tcl file to Lab 2

d. Using any text editor, perform the following edits to the file run_hls.tcl in the lab2
directory. The final edits are shown in Figure 20.

i. Add a —reset option to the open_project command. Because you typically

run Tcl files repeatedly on the same project, it is best to overwrite any existing
project information.

ii. Add a-reset option to the open_solution command. This removes any
existing solution information when the Tcl file is re-run on the same solution.

ii. Delete the source command. If a previous project contains any directives you
wish to re-use, you can copy the directives.tcl file from that project to a
local path, or you can copy the directives directly into this file.

iv. Add the exit command.

v. Save thefile.

High-Level Synthesis www.xilinx.com 28

UG871 (v2014.1) May 6, 2014 | Send Feedback |

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=28

& XILINX. High-Level Synthesis Introductory Tutorial

run_hls.tcl x

i 10 [=hn) 300 40 50 &0 70 a0
T T Y Y S Y S I Y Y N Y e e Y 1 I Y e Y) N Y Y N e e T Y T e T T Y o N |

1 h###

2 ## This file i= generated automatically by Vivado HLS.
Please DO NOT edit it.
4 #% Copyright (C) 2014 Xilinx Inc. 211 rights reserved.

5 FHHE A A A AR AR FF T FHFH

Reset the project with the —-reset option
¢ open_project —reset fir prj

5 set top fir

10 add files fir.c

11 add files -tb fir_test.c

12 add files -tb out.geold.dat

14 # Reset the =solution with the -reset option
15 open solution -reset "sclutionl”

16 set part {xcTkleOtfbg484-2}

1 create_clock —period 10

12 ¥ Remowve the link to any existing dir

20 4fsource "./fir prij/solutionl/directiv

22 csim design
23 csynth design
24 cosim_design —trace_level none

25 export_design -format ip_catalog

2 # Exit Vivado HLS
28 exit

Figure 20: Updated run_hls.tdl file for Lab 2

You can run the Vivado HLS in batch mode using this Tcl file.
e. Inthe Vivado HLS Command Prompt window, type vivado_hls —f run_hls_tcl.

Vivado HLS executes all the steps covered in labl. When finished, the results are available inside
the project directory fir_prj.

e The synthesis report is available in Fir_prj\solutionl\syn\report.

e The simulation results are available in Fir_prj\solution\sim\report.

e The output package is available in Fir_prj\solutionl\impl\ip.

e The final output RTL is available in Fir_prj\solutionl\impl and then Verilog or VHDL.

CAUTION! When copying the RTL results from a Vivado HLS project, you must use the
RTL from the impl directory.

& For designs using floating-point operators or AX14 interfaces, the RTL files in the syn
directory are only the output from synthesis. Additional processing is performed by Vivado
HLS during export_design before you can use this RTL in other design tools.

High-Level Synthesis www.xilinx.com 29

UG871 (v2014.1) May 6, 2014 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=29

& XILINX. High-Level Synthesis Introductory Tutorial

HLS: Lab 3: Using Solutions for Design Optimization

Introduction

This lab exercise uses the design from Lab 1 and optimizes it.

Step 1: Creating a New Project
1. Open the Vivado HLS Command Prompt.

a. On Windows, use Start > All Programs > Xilinx Design Tools > Vivado 2014.1 >
Vivado HLS > Vivado HLS 2014.1 Command Prompt

b. On Linux, open a new shell.
2. Changeto the Lab 3 directory: cd C:\Vivado_HLS Tutorial\lntroduction\lab3.
3. Inthe command prompt window, type: vivado_hls —f run_hls.tcl
This sets up the project.

4. Inthe command prompt window, type vivado_hls —p Fir_prj to open the project in
the Vivado HLS GUL

Vivado HLS opens, as shown in Figure 21, with the synthesis for solutionl already complete.

+ |Vivado HLS - fir_prj (C:\Vivado_HLS_Tuterial\Introduction\lab3\fir_prj) = Eoh
File Edit Project Solution Window Help
< EERET B @%@ ol M@ d-Fe|®
% Debug S‘f‘ Analysis
5 Explorer w7 O£ fir_csynth.rpt & = 552 Qutlin &2 . ¥ Direct| = 8
& fir_prj =

Synthesis Report for ‘fir’

vl Includes

< Source General Information oo
= Test Bench El Timing (ns)
¥= solution1 Date: Thu Apr 03 13:40:10 2014 B Latency (clock cycles)
& constraints Version: 2014.1 (Build 878572 on Mon Mar 31 17:39:16 PM 2014) 4 [E] Utilization Estimates
A directives.tcl Project: fir_prj = Summary
4 scripttcl Solution: solutionl B Detail
& csim Product family: kintex7 kintex7_fpvé 4 [Interface
& build Target device: xc7k160tfbg484-2 I Summary
& report
& impl Performance Estimates

4 [Z Performance Estimates

1

=ip
& verilog
& vhdl

= Timing (ns)
= Summary

Clock Target Estimated Uncertainty h
4 11 3

(= sim
= autowrap
= report B Console & @] Errors| & Warnings
& tv CDT Build Console [fir_prj]
= verilog
& wrapc
(= wrapc_pc
= syn
= report
& systemc
= verilog
(= vhd|

Figure 21: Introduction Lab 3 Initial Solution

High-Level Synthesis www.xilinx.com 30

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=30

& XILINX. High-Level Synthesis Introductory Tutorial

As stated earlier, the design goals for this design are:

e Create a version of this design with the highest throughput

e The final design should be able to process data supplied with an input valid signal.
e Produce output data accompanied by an output valid signal.

o The filter coefficients are to be stored externally to the FIR design, in a single port RAM.

Step 2: Optimize the I/0 Interfaces

Because the design specification includes I/O protocols, the first optimization you perform
creates the correct I/O protocol and ports. The type of I/O protocol you select might affect what
design optimizations are possible. If there is an I/O protocol requirement, you should set the I/O
protocol as early as possible in the design cycle.

You reviewed the I/O protocol for this design in Lab 1 (Figure 14), and you can review the
synthesis report again by navigating to the report folder inside the solutionl\syn folder. The
[/O requirements are:

e Port C must have a single port RAM access.
e Port X must have an input data valid signal.
e Port Y must have an output data valid signal.

Port c already is a single-port RAM access. However, if you do not explicitly specify the RAM
access type, High-Level Synthesis might use a dual-port interface. HLS takes this action if doing
so creates a design with a higher throughput. If a single-port is required, you should explicitly
add to the design the I/O protocol requirement to use a single-port RAM.

Input port x is by default a simple 32-bit data port. You can implement it as an input data port
with an associated data valid signal by specifying the I/O protocol ap_vld.

Output port Y already has an associated output valid signal. This is the default for pointer
arguments. You do not have to specify an explicit port protocol for this port, since the default
implementation is what is required, but if it is a requirement, it is a good practice to specify it.

To preserve the existing results, create a new solution, solution2.
1. Click the New Solution toolbar button to create a new solution.

2. Leave the default solution name as solution2. Do not change any of the technology or
clock settings.

3. Click Finish.

This creates solution2 and set it as the default solution - confirm that solution2 is
highlighted in bold in the Explorer pane, indicating that it is the current active solution.

To add optimization directives to define the desired I/O interfaces to the solution, perform
the following steps.

4. Inthe Explorer pane, expand the Source container (as shown in Figure 22).

High-Level Synthesis www.xilinx.com 31

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=31

& XILINX. High-Level Synthesis Introductory Tutorial

5. Double-click fir.c to open thefile in the Information pane.

6. Activate the Directives tab in the Auxiliary pane and select the top-level function Fir to
jump to the top of the Fir function in the source code view (Figure 22).

s Vivado HLS - fir_prj (C:\Vivado_HLS TutorialIntroduction\lab3\fir_prj) == Eal ==
File Edit Project Solution Window Help
Vet BE X EE B c@bE®laale- |~ &8 ar | @
%5 Debug [+ | Synthesis |5 Analysis
[25 Explorer 2 & = O finel = 0|8 Outl [Dire 2 =0
& fir_prj A3ALL TIMES. A o
[Includes i =[1 shift_reg
Y D T =
=5 .
ou_rce A6 #include "fir.h" vy
Lel fir.c A7 Jc
= Test Bench void E (@ %
£3 solutionl data_t *y, % Shift_Accum_Loop
= solution2 coef_t c[N],
constraints data_t x
@ directives.tcl)1
o scriptid static data_t shift_reg[N]; 3
acc_t acc;
int i;
acc=0;

Shift_Accum_Loop: for (i=N-1;i»>=8;i--) { &
q I 3

Figure 22: Opening the Directives Tab

The Directives tab, shown on the right side of Figure 22, lists all of the objects in the design that
can be optimized. In the Directives tab, you can add optimization directives to the design. You
can view the Directives tab only when the source code is open in the Information pane.

Apply the optimization directives to the design.

7. Inthe Directive tab, select the c argument/port (green dot).

8. Right-click and select Insert Directives.

9. Implement the single-port RAM interface by performing the following:
a. Select RESOURCE from the Directive drop-down menu.
b. Click the core box.
c. Select RAM_1P_BRAM, as shown in Figure 23.

The steps above specify that array ¢ be implemented using a single-port block RAM resource.
Because array c is in the function argument list, and hence is outside the function., a set of data

ports are automatically created to access a single-port block RAM outside the RTL
implementation.

Because 1/O protocols are unlikely to change, you can add these optimization directives to the
source code as pragmas to ensure that the correct I/O protocols are embedded in the design.

10. In the Destination section of the Directives Editor, select Source File.

11. To apply the directive, click OK.

High-Level Synthesis www.xilinx.com 32

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=32

& XILINX. High-Level Synthesis Introductory Tutorial

£ Debug [+ | Synthesis | Anatysis
Explorer i E¢ Outline |24 Dirsctive
& fir_pr)
& Includes

¢

Pl ooty ||+ vivadie HLS core setectio. > |-ioh urim] I“I |
] an A1 shult reg
5 solutionl Type = Shift_fccum_Loop

Mub% [functional_unit]
Directive: | RESOURCE)

¥ directivas.tel
o scriptic

RAM_1P_BRAM

ROM_2P {storage)
ROM_2P_BRAM [51
ROM_2P_LUTRAM

Help Cancel oK oK Cancel

B comsale T 2 Ervges| & Warnings
COT Build Console [fir_pr]

Figure 23: Adding a Resource Directive

TIP: If you wish to change the destination of any directive, double-click on the directive in
the Directives tab and modify the destination.

12. Next, specify port x to have an associated valid signal/port.
a. Inthe Directive tab, select input port x (green dot).
b. Right-click and select Insert Directives.
c. Select Interface from the Directive Editor drop-down menu.
d. Select Source File from the Destination section of the dialog box
e. Select ap_vld as the mode.
f. Click OK to apply the directive.
13. Finally, explicitly specify porty to have an associated valid signal/port.

L

In the Directive tab, select input port y (green dot).

o

Right-click and select Insert Directives.
Select Source File from the Destination section of the dialog box
d. Select Interface from the Directive drop-down menu.

e. Select ap_vld for the mode.

High-Level Synthesis www.xilinx.com 33

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=33

& XILINX.

f. Click OKto apply the directive

High-Level Synthesis Introductory Tutorial

When complete, verify that the source code and the Directive tab are as shown in Figure 24 .
Right-click on any incorrect directive to modify it.

[¢] *irc &2

46 #include "fir.h"

a7

48 void fir (

49 data_t *vy,

58 coef_t c[N],

51 data t x

52) {

53 #pragma HLS INTERFACE ap vld port=y
54 #pragma HLS INTERFACE ap_vld port=x

56

static data_t shift_reg[N];
acc_t acc;

int i;

acc=0;

4 1

55 #pragma HLS RESOURCE variable=c core=RAM 1P BRAM

Shift_Accum_Loop: for (i=N-1;i>=0;i--) {

= 8|2 Qutline [% Directive 2

n ® fir

=[1 shift_reg
4y

@ c

e

' Shift_Accum_Loop

1l

=

»

HLS INTERFACE ap_vid port=y

HLS RESOURCE variable=c core=RAM_1P_BRAM

HLS INTERFACE ap_vid port=x

Figure 24: 1/0 Directives for solution2

14. Click the Run C Synthesis toolbar button to synthesize the design.

15. When prompted, click Yes to save the contents of the C source file. Adding the directives as

pragmas modified the source code.

When synthesis completes, the report file opens automatically.

16. Click the Outline tab to view the Interface results, or simply scroll down to the bottom of the

report file.

Figure 25 shows the ports now have the correct I/O protocols.

High-Level Synthesis
UG871 (v2014.1) May 6, 2014

www.Xilinx.com

| Send Feedback I

34

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=34

& XILINX. High-Level Synthesis Introductory Tutorial

[¢ firc |20 fir_csynth.rpt i3 =8

Dir Bits Protocol Source Object CType

ap_clk in 1 ap_ctrl_hs fir return value
ap_rst in 1 ap_ctrl_hs fir return value
ap_start in 1 ap_ctrl_hs fir return value
ap_done out 1 ap_ctrl_hs fir = return value
ap_idle out 1 ap_ctrl_hs fir return value
ap_ready out 1 ap_ctrl_hs fir return value
v out 32 ap_vid Y pointer
y_ap_vid out 1 ap_vid Y pointer
c_address0 out 4 ap_memory C array
c_cel out 1 ap_memory C array |
c_ql in 32 ap_memory C array i
X in 32 ap_vid X scalar
¥x_ap_vid in 1 ap_vid X scalar
Pl i 3

Figure 25: 1/0 Protocols for solution2

Step 3: Analyze the Results

Before optimizing the design, it is important to understand the current design. It was shown in
Lab 1 how the synthesis report can be used to understand the implementation, however, the
Analysis perspective provides greater detail in an inter-active manner.

While still in solution2, and as shown in Figure 26:

1. Click the Analysis perspective button.

2. Click the Shift_ Accum_Loop in the Performance window to expand it.

e The red-dotted line in Figure 26 is used shortly in an explanation; it is not part of the view.

e The tutorial Design Analysis provides a more complete understanding of the Analysis
perspective, but the following explains what is required to create the smallest and fastest
RTL design from this source code.

e The left column of the Performance pane view shows the operations in this module of the
RTL hierarchy.

e The top row lists the control states in the design. Control states are the internal states High-
Level Synthesis uses to schedule operations into clock cycles. There is a close correlation

between the control states and the final states in the RTL Finite State Machine (FSM), but
there is no one-to-one mapping.

High-Level Synthesis www.xilinx.com 35

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=35

& XILINX. High-Level Synthesis Introductory Tutorial

. | Vivade HLS - fir_prj (C:\Vivado_HLS_TutoriahIntroduction\lab3\fir_prj) el & =
File Edit Project Solution Window Help
= =

Debug [+] Synthesis 4o Analysis |
£ Module Hierarchy

£7 Performance Profile Resource Profile

TR

! =& Performance - fir i
BRAM DSP FF LUT Latency Interval Pipeline type
s fir 0 4 271 241 78 79 none

Current Module : fir

Operation\Cantrol S co | ci1 (oril [ioicy ca | cs ca | cz |
X read(read) -
=Shift Accum Loop
acc (phi mux)
i(phi mux)
tmp 1 (icmp)
tmp 2 (+)
data (read)
node 36 (write)
node 33(write)
e fir 78 79 o 10 c load (read)
@ Shift_Accum_Loop no 77 - 7 11 11 il(+) =
12 datal (phi mux)
13 | tmp 6(*)
14 acc 1(+) I
15 node 48 (write) e e

CONOUEWNR

Pipelined Latency Initiation Interval lteration Latency Trip count

1
|
I
1
1
|
1
|
1
|
1
-

Performance | Resource

Figure 26: Solution2 Analysis Perspective: Performance

The explanation presented here follows the path of the dotted red line in Figure 26. Some of the
objects here correlate directly with the C source code. Right-click the object to cross-reference
with the C code.

The design starts in the first state with a read operation on port x.

In the next state, it starts to execute the logic created by the for-loop Shift_Accum_Loop.
Loops are shown in yellow, and you can expand or collapse them. Holding the cursor over
the yellow loop body in this view shows the loop details: 8 cycles, 11 iterations for a total
latency of 88.

In the first state, the loop iteration counter is checked: addition, comparison, and a potential
loop exit.

There is a two-cycle memory read operation on the block RAM synthesized from array data
(one cycle to generate the address, one cycle to read the data).

There are memory reads on the c port.
A multiplication operations each takes 3 cycles to complete.
The for-loop is executed 11 times.

At the end of the final iteration, the loop exits in state c1 and the write to port y occurs.

You can also use the Analysis perspective to analyze the resources used in the design.

3. Click the Resource view, as shown in Figure 27.

4. Expand all the resource groups (also shown in Figure 27).

High-Level Synthesis www.xilinx.com 36

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=36

& XILINX.

= Resource - fir i

Current Module : fir

|[Resource\Control Sten

High-Level Synthesis Introductory Tutorial

2§ 1 [o [Y [

| ca | s |l c6 | ¢z |

1 HI/0 Ports
c
X
y
- Instances
fir mul 32s 32...
-Memory Ports
shift reg
c
10 =FExpressions
1l tmp 1 fu 1495
12 tmp 2 fu 159
13 acc phi fu 105
14 i phi fu 118
15 i1 fu 178
16 datal phi fu 129
2, acc 1 fu 189

Performance |Resource)

CoOoONOTUBSA WN

read
write
write write
read
iemp
=
phi_mux
phi _mux

phi_mux

Figure 27: Solution2 Analysis Perspective: Resource

Figure 27 shows:

e The reads on the ports x and y. Port c is reported in the memory section because this is also

a memory port.

e There are two multipliers being used in this design.

e There is a read and write operation on the memory shift_reg.

e None of the other resources are being shared because there is only one instance of each
operation on each row or clock cycle.

With the insight gained through analysis, you can proceed to optimize the design.

Before concluding the analysis, it is worth commenting on the multi-cycle multiplication
operations, which require multiple DSP48s to implement. The source code uses an iInt data-

type. This is a 32-bit data-type that results in large multipliers. A DSP48 multiplier is 18-bit and it
requires multiple DSP48s to implement a multiplication for data widths greater than 18-bit.

The tutorial Arbitrary Precision Types shows how you can create designs with more suitable
data types for hardware. Use of arbitrary precision types allows you to define data types of any
arbitrary bit size.(more than the standard C/C+ + 8-, 16-, 32- or 64-bit types).

Step 4: Optimize for the Highest Throughput (lowest interval)

The two issues that limit the throughput in this design are:

High-Level Synthesis

UGS871 (v 2014.1) May 6, 2014

www.Xilinx.com

37

l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=37

& XILINX. High-Level Synthesis Introductory Tutorial

The For loop. By default loops are kept rolled: one copy of the loop body is synthesized and
re-used for each iteration. This ensures each iteration of the loop is executed sequentially.
You can unroll the for loop to allow all operations to occur in parallel.

The block RAM used for shift_reg. Because the variable shift_reg is an array in the C
source code, it is implemented as a block RAM by default. However, this prevents its

implementation as a shift-register. You should therefore partition this block RAM into
individual registers.

Begin by creating a new solution.

1.

2
3.
4

Click the New Solution button.
Leave the solution name as solution3.
Click Finish to create the new solution.

In the Project menu, select Close Inactive Solution Tabs to close any existing tabs from
previous solutions.

The following steps, summarized in Figure 28 explain how to unroll the loop.

@

[2 fire 2 = O|(8& Outline [Directive & =0
coef_t c[N], i 4 o fir
data_t x Vivado HLS Directive Editor @y
. Type % HLS INTERFACE ap_vid port=y
static data_t Directive: |UNROLL M -
acc_t acc; % HLS RESOURCE variable=c core=RAM_1P_BRAM
data_t data; Destination @ x
int i; (7 Source File %% HLS INTERFACE ap_vid port=x
(@) Directive File +[1 shift_req
acc=0; %' Shift_Accum_Loop
Shift_Accum_Lod Options B)

5.

MNP OOUWSNSOWUMEWNRE WS W EWNRE

< | 1l I »

if (i==0] P .
| skip exit check:
shifiHia O
GELE)| factor (optional):
} else { :
W region: =

data

1

[Help l ’ Cancel] [OK

1]

Figure 28: Unrolling FOR Loop

In the Directive tab, select loop Shift_ Accum_Loop. (Reminder: the source code must be
open in the Information pane to see any code objects in the Directive tab).

Right-click and select Insert Directives.
From the Directive drop-down menu, select Unroll.
Leave the Destination as the Directive File.

When optimizing a design, you must often perform multiple iterations of optimizations to
determine what the final optimization should be. By adding the optimizations to the
directive file, you can ensure they are not automatically carried forward to the next solution.

High-Level Synthesis www.xilinx.com 38

UG871 (v2014.1) May 6, 2014 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=38

& XILINX. High-Level Synthesis Introductory Tutorial

Storing the optimizations in the solution directive file allows different solutions to have
different optimizations. Had you added the optimizations as pragmas in the code, they
would be automatically carried forward to new solutions, and you would have to modify the
code to go back and re-run a previous solution.

Leave the other options in the Directives window unchecked and blank to ensure that the
loop is fully unrolled.

8. Click OKto apply the directive.
9. Apply the directive to partition the array into individual elements.
a) Inthe Directive tab, select array shift_reg.
b) Right-click and select Insert Directives.
c) Select Array_Partition from the Directive drop-down menu.
d) Specify the type as complete.
e) Select OKto apply the directive.
With the directives embedded in the code from solution2 and the two new directives just

added, the directive pane for solution4 appears as shown in Figure 29.

o= Qutline | Directive &2 =8

2 fir
#[1 shift_reg
% HLS ARRAY_PARTITION variable=shift_reg complete dim=1
sy
HLS INTERFACE ap_vld register port=y
?c
HLS RESOURCE variable=c core=RAM_1P_BRAM
P x
HLS INTERFACE ap_vld port=x
% Shift_Accum_Loop
% HLS UNROLL

Figure 29: Solution4 Directives

In Figure 29, notice the directives applied in solution2 as pragmas have a different annotation

(#HLS) than those just applied and saved to the directive file (%HLS). You can view the newly
added directives in the Tdl file.

10. In the Explorer pane, expand the Constraint folder in Solution3 as shown in Figure 30.

11. Double-click the solution4 directives.tcl file to open itin the Information pane.

High-Level Synthesis www.xilinx.com 39

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=39

& XILINX. High-Level Synthesis Introductory Tutorial

(25 Explarer & T 0|[[&firc [directives.tel i3 =g
= fir_prj 1 Iﬁ### -
il Includes 2 ## This file is gengr“a"ced automatically by Vivado HLS.
S Source 3 ## Please DO NOT edit it.
= B i 4 ## Copyright (C) 2013 Xilinx Inc. All rights reserved.
firc 5 AR R R R R R R R R A AR AR
= Test Bench 6 set_directive_unroll "fir/Shift_Accum Loop"
3 solutionl 7 set_directive_array_partition -type complete -dim 1 "fir" shift_reg
3 solution2 8

= solution3
constraints
W directives.tcl
W script.tcl

Figure 30: Solution4 Directives.tcl File

12. Click the Synthesis toolbar button to synthesize the design.
When synthesis completes, the synthesis report automatically opens.
13. Compare the results of the different solutions.
14. Click the Compare Reports toolbar button.

Alternatively, use Project > Compare Reports.
15. Add solutionl, solution2, and solution3 tothe comparison.
16. Click OK.

Figure 31 shows the comparison of the reports. solution3 has the smallest initiation interval
and can process data much faster. As the interval is only 16, it starts to process a new set of
inputs every 16 clock cycles.

High-Level Synthesis www.xilinx.com 40

UG871 (v2014.1) May 6, 2014 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=40

& XILINX. High-Level Synthesis Introductory Tutorial

£F compare reports 3 =0

Performance Estimates

=l Timing (ns)
Clock solutionl solution2 solution3
default Target 10.00 10.00 10.00
Estimated 843 843 843

-1 Latency (clock cycles)

solutionl solution2 solution3

Latency min 78 78 15
max 78 78 15

Interval min 79 79 16 L
max 79 79 16 [

Utilization Estimates

solutionl solution? solution3

BRAM_18K 0O 0 0
DSP48E 4 4 44
FF 238 271 965
LUT 208 241 236

Figure 31: Solution Comparisons

It is possible to perform additional optimizations on this design. For example, you could use
Pipelining to further improve the throughput and lower the interval. The tutorial Design
Optimization provides details on using pipelining to improve the interval.

As mentioned earlier, you could modify the code itself to use arbitrary precision types. For
example, if the data types are not required to be 32-bit int types, you could use bit-accurate
types (for example, 6-bit, 14-bit or 22-bit types), provided that they satisfy the required
accuracy. For more details on using arbitrary precision type see the tutorial Arbitrary Precision
Types.

Conclusion

In this tutorial, you learned how to:

e Create a Vivado High-Level Synthesis project in the GUI and Tcl environments.
e Execute the major steps in the HLS design flow.

e Createand usea Tdl file to run Vivado HLS.

e Create new solutions, add optimization directives, and compare the results of different
solutions.

High-Level Synthesis www.xilinx.com 41

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=41

& XILINX.

Chapter 3 C Validation

Overview

Validation of the C algorithm is an important part of the High-Level Synthesis (HLS) process. The
time spent ensuring the C algorithm is performing the correct operation and creating a C test
bench, which confirms the results are correct, reduces the time spent analyzing designs which
are incorrect "by design” and ensures the RTL verification can be performed automatically.

This tutorial consists of three lab exercises.

e Labl:Review the aspects of a good C test bench, the basic operations for C validation and
the C debugger.

e Lab2:Validate and debug a C design using arbitrary precision C types.
e Lab3:Validate and debug a design using arbitrary precision C+ + types.

Tutorial Design Description

You can download the tutorial design file from the Xilinx website. See the information in
Obtaining the Tutorial Designs.

This tutorial uses the design files in the tutorial directory Vivado_HLS_Tutorial\C_Validation.

The sample design used in this tutorial is a Hamming Window FIR. There are three versions of
this design:

e Using native C data types.
e Using ANSI C arbitrary precision data types.
e Using C++ arbitrary precision data types.

This tutorial explains the operation and methodology for C validation using High-Level
Synthesis. There are no design goals for this tutorial.

High-Level Synthesis www.xilinx.com 42

UG871 (v2014.1) May 6, 2014
l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=42

& XILINX. C Validation

Lab 1: C Validation and Debug

Overview

This exercise reviews the aspects of a good C test bench and explains the basic operations of the
High-Level Synthesis C debug environment.

IMPORTANT: The figures and commands in this tutorial assume the tutorial data
directory Vivado_HLS_Tutorial is unzipped and placed in the location
ﬁ C:\Vivado_HLS Tutorial
If the tutorial data directory is unzipped to a different location, or on Linux systems, adjust
the few pathnames referenced, to the location you have chosen to place the
Vivado_HLS_Tutorial directory.

Step 1: Create and Open the Project
1. Open the Vivado HLS Command Prompt.

a. On Windows use Start > All Programs > Xilinx Design Tools > Vivado 2014.1 >
Vivado HLS > Vivado HLS 2014.1 Command Prompt (Figure 32).

b. On Linux, open a new shell.

Bl Vivado 2014.1 Tcl Shell
g Vivado 2014.1
@ Xilinx Microprocessor Debugger 2014.1
g Xilinx SDK 2014.1
System Generator
Vivado HLS
Bl Vivado HLS 2014.1 Command Promg
7] vivado HLS 2014.1

Figure 32: Vivado HLS Command Prompt

2. Using the command prompt window (Figure 33), change the directory to the C Validation
tutorial, labl.

3. Execute the Tdl script to setup the Vivado HLS project, using the command
vivado_hls —f run_hls.tcl as shown in Figure 33.

C:\Vivado_HLS_Tutorial>cd C_Ualidation

C:\Vivado_HLS_Tutorial:C_Ualidation>cd lab1

1 |

C:\Uivado_HLS_TutorialyC_Ualidation\lab1l>vivado_hls -f run_hls.tcl

Figure 33: Setup the Tutorial Project

High-Level Synthesis www.xilinx.com 43

UG871 (v2014.1) May 6, 2014 | Send Feedback |

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=43

i: X".'NX C Validation

4. When Vivado HLS completes, open the project in the Vivado HLS GUI using the command
vivado_hls -p hamming_window_prj as shown in Figure 34.

@I [APCC-3] Tmp directory is apcc_db +
@I [APCC-1] APCC is done.
@I [LIC-101] Checked in feature [HLS]
Generating csim.exe
Running DUT...done.
Testing DUT results

xxx Test Passed xxx
@I [SIM-1] CSim done with O errors.
@I [LIC-181] Checked in feature [HLS]

1 |1

C:\Uivado_HLS_Tutorial\C_Ualidation\labh1>vivado_hls -p hamming_window_prj

Figure 34: Initial Project for C Validation Lab 1

High-Level Synthesis www.xilinx.com 44

UG871 (v2014.1) May 6, 2014 | Send Feedback |

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=44

& XILINX. C Validation

Step 2: Review Test Bench and Run C Simulation

1. Open the C test bench for review by double-clicking hamming_window.c in the Test Bench
folder (Figure 35).

&5 Explorer &2 w = B[[£) hamming_window_test.c &3 =0
4 & hamming_window_prj 73 // Check the results returned by DUT against expected va *
> w Includes 74 fp=fopen("result.dat","w");
» = Source 75 printf("Testing DUT results");
4 = Test Bench 76 for (i = @; i < WINDOW_LEN; i++) {
- - 77 fprintf(fp, "%d %d \n", hw_result[i],sw _result[i])};
[¢] hamming_window_test.c ' ’ . 4 — . 22— 3
4+ v= solution1 o- - 78 if (hw_result[i] != sw_result[i]) {
i 79 err_cnt++;
“ % c?nstralnts 80 check_dots = @;
o directives.cl 81 printf("\n!!! ERROR at i = %4d - expected: %l@d\tg
& scripticl 82 i, sw_result[i], hw_result[i]);
4 = csim 33 } else { // indicate progress on console
. & build 84 if (check_dots == @)
. & report 85 printf("\n");

86 printf(".");

87 if (++check_dots == 64)
88 check_dots = @;

89 }

9@ }

1 fclose(fp);

printf("\n");

// Print final status message
if (err_cnt) {

printf("!!! TEST FAILED - %d errors detected !!!\n",
} else

printf("*** Test Passed ***\n");

1

MDD WD WD WD WD WD WD WD D
(Y= =T T o R W, R S W]

100 // Only return @ on success

101 return err_cnt;

102 } -
« 1l »

Figure 35: C Test Bench for C Validation Lab 1

A review of the test bench source code shows the following good practices:

The test bench:

o0 Creates a set of expected results that confirm the function is correct.
0 Stores theresultsin array sw_result.

e The Design Under Test (DUT) is called to generate results, which are stored in array
hw_result. Because the synthesized functions use the hw_result array, it is this array that
holds the RTL-generated results later in the design flow.

e The actual and expected results are compared. If the comparison fails, the value of variable
err_cnt is set to a non-zero value.

e The test bench issues a message to the console if the comparison failed, but more
importantly returns the results of the comparison. If the return value is zero the test bench
validates the results are good.

High-Level Synthesis www.xilinx.com 45

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=45

& XILINX.

C Validation
This process of checking the results and returning a value of zero if they are correct automates
RTL verification.

You can execute the C code and test bench to confirm that the code is working as expected.

2. Click the Run C Simulation toolbar button to open the C Simulation Dialog box, shown in
Figure 36.

-

+ | C Simulation Dialog R

C Simulation

bl

Options
[Debug
[Build Only

[C] Clean Build

[] Optimizing Compile

Input Arguments

0K l l Cancel

Figure 36: Run C Simulation Dialog box

3. Select OKto run the C simulation.

As shown in Figure 37, the following actions occur when C simulation executes:

e The simulation output is shown in the Console window.

e Any print statements in the C code are echoed in the Console window. This example shows
the simulation passed correctly.

High-Level Synthesis www.xilinx.com 46

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=46

& XILINX.

C Validation

The C simulation executes in the solution sub-directory csim. You can find any output from

the C simulation in the build folder, which is the location at which you can see the output file
result._dat written by the fprintf command highlighted in Figure 37.

Because the C simulation is not executed in the project directory, you must add any data files to
the project as C test bench files (so they can be copied to the csim/build directory when the
simulation runs). Such files would include, for example, input data read by the test bench.

I Explorer 2 7 8

=% hamming_window_prj 77
@l Includes 78

£ Source 79
20

= Test Bench

[¢ hamming_window_test.c
= solutiont

81

[¢ hamming_window _test.c 2

=]

fprintf(fp, "%d %d \n", hw_result[i],sw result[i]);*
if (hw_result[i] != sw_result[i]) {
err_cnt++;
check_dots = @;
printf("\n!!! ERROR at i = %4d - expected: %1@d\
i, sw result[i], hw_result[i]);
} else { // indicate progress on console

8

& constraints 84 if (check_dots == @)
4 directives.tcl 85 printf("\n");
@ script.cl 86 printf(".");
= csim 87 if (++check_dots == 64)
& build 22 , check_dots = @;
E apcclog % 1}
csim.exe 91 feclose(fp);
csim.mk 92 printf("\n");
= Makefile.rules 93
E result.dat 94 // Print final status message =
] ; a5 if (err_cnt
“ rl-m_5|m.tc| 96 érin?F("f!? TEST FAILED - %d errors detected !!l!\n"
= sim.bat 97 } else
& apcc_db a8 printf("*** Test Passed ***\n"); -
= obj 4| n b
= report

El Console &2

@] Errors| & Warnings

<terminated > hamming_window_prj.Debug [C/C++ Application] C\Vivado_HLS Tutorial\
Testing DUT results

*#** Tegt Passed ***

4

Figure 37:

Step 3: Run the C Debugger

C Simulation Results

A Cdebugger is included as part of High-Level Synthesis.

1. Click the Run C Simulation toolbar button to open the C Simulation Dialog box.

2. Select the Debug option as shown in Figure 38.

3. Click OK to run the simulation.

High-Level Synthesis
UG871 (v2014.1) May 6, 2014

www.Xilinx.com

| Send Feedback I

47

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=47

& XILINX.

C Validation

'+ € Simulation Dialog @

C Simulation

Options
Debug

[Build Only
] Clean Build

Optimizing Compile

Input Arguments

0K l [Cancel

Figure 38: C Simulation Dialog Box

High-Level Synthesis

www.Xilinx.com
UG871 (v2014.1) May 6, 2014

48

| Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=48

& XILINX. C Validation

The Debug option compiles the C code and then opens the Debug environment, as shown in
Figure 39. Before proceeding, note the following:

¢ Highlighted at the top-left in Figure 39, you can see that the perspective has changed from
Synthesis to Debug. Click the perspective buttons to return to the synthesis environment at
any time.

e By default, the code compiles in debug mode. The Debug option automatically opens the
debug perspective at time 0, ready for debug to begin. To compile the code without debug
information, select the Optimizing Compile option in the C Simulation dialog box.

) ;Vivada HLS - hamming_window_prj (C\Vivado_HLS_Tutorial\C_Validation\labl\hamming_window_prj) |_ = h (=]
File Edit Project |Solution| Run Window Help
S ———————— | o | ©)

]#Debua + | Synthesis &4 Analysis

CEDIY Eigaaiac, — #|2 @ « = | o 7 = 0| t=Variables & % Breakpoints| #1 Registers| =4 Modules =8
[€] hamming_window_prj.Debug [C/C++ Application] < B e
i® C:\Vivado_HLS_Tutorial\C_Validation\labl\hamming_window_prj\solutit | Name Type Value -
i Thread [1] 0 (Suspended : Breakpoint) ®)= argc int 1 -
= main() at hamming_window_test.c:54 0x40139d » argv char ** 0x5619a0
»i gdb = test_data in_data_t [256] 0x28fd0c il
4 L]} 3
4 1] 4 }
[& hamming_window_test.c % S O|EEQutine AWM o %~ =0
58 { - U stdioh
51 in_data_t test_data[WINDOW_LEN]; U hamming_window.h
52 gui_gata_t hw_result[WINDOW_LEN], sw_result[WINDOW_LEN]; o main(int, char[])
53 int 1;
54 unsigned err_cnt = @, check_dots = @;
55 EILE *p;
57 for (i = 8; i < WINDOW_LEN; i++) {
58 // Generate a test pattern for input to DUT
test_data[i] = (in_data_t)((32767.0 * (double)((i % 16) - 8) / 8.0) + 0.
60 // Calculate the coefficient value for this index

in_data_t coeff_val = (in_data_t)(WIN_COEFF_SCALE * (®.54 - -
Pl 11} »

El Console i3 . ¥ Tasks| [2. Problems| 3 Executables|] Memory = x i E & =08

hamming_window_prj.Debug [C/C++ Application] csim.exe

Figure 39: The HLS Debug Perspective

You can use the Step Into button (Figure 40) to step through the code line-by-line.

i 51 BN S 2 =[]

Figure 40: The Debug Step Into Button

4. Expand the Variables window to see the sw_results array.

High-Level Synthesis www.xilinx.com 49

UG871 (v2014.1) May 6, 2014 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=49

& XILINX. C Validation

5. Expand the sw_results array to the view shown in Figure 41.

6. Click the Step Into button (or key F5) repeatedly until you see the values being updated in
the Variables window.

%5 Debug & . [t5 Explorer O [S | i = O[ed=Variables 2 % Breakpoints| ¥ Registers| =i Modules =
hamming_window_prj.Debug [C/C++ Application] =t B | i et ™
1% C\Vivado_HLS_Tutorial\C_Validation\labl\hamming_window_prj\soluti{ Name Type Value -
of? Thread [1] O (Suspended : Step) (# test_data in_data_t [256] 0x28fd0c 3
= main(at hamming_window_test.c:57 0x4014a9 = hw_result out_data_t [256] 0x28f90¢
»d gdb = sw_result out_data_t [256] 0x28f50c
= sw_result[0] out_data_t -42923460
69= sw_result[1] out_data_t -37643710
0= sw_result[2] out_data_t -32413106
)= sw_result[3] out_data_t -27256218
©9= sw_result[4] out_data_t 2684268 .
¥z cwr racul#IR] ot Adata + MNNTRITRIT
4 111 3
« o I " K)
[hamming_window_test.c &2 = 0|8 Outline &2 R e g~ 70

- = stdio.h
= hamming_window.h
e mainfint, char*[]} : int

for (i = ©; i < WINDOW_LEN; i++) {
// Generate a test pattern for input to DUT
test data[i] = (in_data t)((32767.8 * (double)((i % 16) - 8) / 8.8) + @.
// Calculate the coefficient value for this index
in data t coeff val = (in data t)(WIN COEFF SCALE * (@.54 -

. A AA ¥ ,raefd) B % M DT ¥ 5/ (danhladAWTHDOW T EM - 13%3%%Y -
4 (L} 2

m

Figure 41: Analysis of C Variables

In this manner, you can analyze the C code and debug it if the behavior is incorrect.

For more detailed analysis, to the right of the Step Into button are the Step Over (F6), Step
Return (F7) and the Resume (F8) buttons.

7. Scroll toline 69 in the source code window.
8. Double-click in the left margin to create a breakpoint (blue dot), as shown in Figure 42.

9. Activate the Breakpoints tab, also shown in Figure 42, to confirm there is a breakpoint set at

line 69.

10. Click the Resume button (highlighted in Figure 42) or the F8 key to execute up to the
breakpoint.

High-Level Synthesis www.xilinx.com 50

UG871 (v2014.1) May 6, 2014 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=50

& XILINX. C Validation

%% Debug &3 . [Explorer @ | 2@ o 5 [i» ¥ 7 O] Variablesy % Breakpoints &2] i Registers| =\ Modules =B
+ [€] hamming_window_prj.Debug [C/C++ Application] KRR | BESRT
« i® C:\Vivado_HLS_Tutorial\C_Validation\labl\hamming_window_prj\soluti¢| #|.,e hamming window_test.c [line: 69]

4 o Thread [1] 0 (Suspended : Breakpoint)
= main() at hamming_window_test.c:69 0x4014c1
»i gdb

No details to display for the current selection.
4 1 13
[¢ hamming_window_test.c 2 . _[€] _mingw_CRTStartup() at ./mingw/crt1.c:250 0x4010bb = 0|8 Outline 2 B R e ¥ Y=0O

/] er prom S i
// 1nteger promotion 1SSues - 0 stdio.h

; sw_result[i] = (out_data_t)test_data[i] * (out_data_t)coeff_val; B R

® main(int, char*[]) : int
// Call the DUT
printf("Running DUT...");
hamming_window(hw_result, test_data);
printf("done.\n");

|11

// Check the results returned by DUT against expected values
4 fp=Ffopen("result.dat","w");

75 printf("Testing DUT results");

. P S P D .

L L1 b

Figure 42: Using Breakpoints

11. Click the Step Into button (or key F5) multiple times to step into the hamming_window
function.

12. Click the Step Return button (or key F7) to return to the main function.
13. Click the red Terminate button to end the debug session.

The Terminate button becomes the Run C Simulation button. You can restart the debug
session from within the Debug perspective.

14. Exit the Vivado HLS GUI and return to the command prompt.

Lab 2: C Validation with ANSI C Arbitrary Precision
Types

Introduction

This exercise uses a design with arbitrary precision C types. You will review and debug the
design in the GUL

Step 1: Create and Open the Project

1. From the Vivado HLS command prompt used in Lab 1, change to the lab2 directory, as
shown in Figure 43.

2. To create a new Vivado HLS project, type vivado_hls —F run_hls._tcl.

High-Level Synthesis www.xilinx.com 51

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=51

& XILINX. C Validation

Build 878572 on Mon Mar 31 17:39:16 PH 2014 e
Copyright (C) 2814 Xilinx Inc. All rights reserved.

@I [HLS-10] Running 'C:/Xilinx/Uivado_HLS/2014.1/bin/unurapped/winé4.o/vivado_hl
s.exe’

for user ‘duncanm’ on host ‘xsjduncanm38’' (Windows NT_amdé4 version
6.1) on Thu Apr B3 14:12:06 -B700 2014

in directory 'C:/Vivado_HLS_Tutorial/C_Ualidation/labl’
@I [HLS-18] Bringing up Uivado HLS GUI

C:\Vivado_HLS_Tutorial:C_Ualidation\labl>cd ..

C:\Uivado_HLS_TutorialyC_Ualidation>cd lab2

4 |1

C:\Uivado_HLS_TutorialyC_Ualidation\lab2>vivado_hls -f run_hls.tcl

Figure 43: Setup for Interface Synthesis Lab 2

3. To open the Vivado HLS GUI project, type vivado_hls —p hamming_window_prj .

4. Open the Source folder in the explorer pane and double-click hamming_window.c to
open the code, as shown in Figure 44.

[Explorer i3 " = B[g hamming_window.c &2 =g
4 5 hamming_window_prj 45 #include "hamming window.h™ // Provides default WINDOW LEN if no =+
@ Includes 46 . o L)
4 S Source 47 // Translation module function prototypes:
n - - 48 static void hamming_rom_init(in_data_t rom_array[]);
l¢l hamming_window.c 49
#= Test Bench 50 // Function definitions:
4 = solutiont 51void hamming_window(out data t outdata[WINDOW_LEN], in_data t in
4 @ constraints 52{ =
4 directivesicl 53 static in_data_t window_coeff[WINDOW_LEN]; i
W script.tcl E';‘L unsigned 1;
= am 56 // In order to ensure that 'window coeff' is inferred and pro
57 // initialized as a ROM, it is recommended that the arrya ini .
o 4 = I - I = = : S S rf

Figure 44: C Code for C Validation Lab 2

5. Hold down the Ctrl key and click hamming_window.h on line 45 to open this header file.
6. Scroll down to view the type definitions (Figure 45).

High-Level Synthesis www.xilinx.com 52

UG871 (v2014.1) May 6, 2014 | Send Feedback |

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=52

& XILINX. C Validation

[hamming_window.c | hamming_window.h &3 =g

68 // scaled integer, which may be interpreted as a signed fixed po *
69 // with WIN COEFF_FRACBITS bits after the binary point.

78

71/ /typedef intle t in_data_t;

72 f/typedef int32 t out_data_t;

73 #include "ap cint.h"

74 typedef intl6 in_data_ t;

75 typedef int32 out_data_t;

76

77void hamming_window(out data t outdatal[], in_data_t indata[]);

78 B

79 #endif // HAMMING WINDOW H not defined B

80 7
< I P

Figure 45: Type Definitions for C Validation Lab 2

In this lab, the design is the same as Lab 1, however, the types have been updated from the
standard C data types (intl6_t and int32_t) to the arbitrary precision types provided by
Vivado High-Level Synthesis and defined in header file ap_cint.h.

More details for using arbitrary precision types are discussed in the tutorial Arbitrary Precision
Types. An example of using arbitrary precision types would be to change this file to use 12-bit
input data types: standard C types only support data widths on 8-bit boundaries.

This exercise demonstrates how such types can be debugged.

Step 2: Run the C Debugger
1. Click the Run C Simulation toolbar button to open the C Simulation Dialog box.
2. Select the Debug option.
3. Click OK to run the simulation.
The warning and error message shown in Figure 46 appears.

You cannot debug the arbitrary precision types used for ANSI C designs in the debug
environment.

IMPORTANT! When working with arbitrary precision types you can use the Vivado HLS

ﬁ debug environment only with C++ or SystemC. When using arbitrary precision types with
ANSI C,the debug environment cannot be used. With ANSI C, you must instead use
printf or fprintf statements for debugging.

High-Level Synthesis www.xilinx.com 53

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=53

& XILINX.

‘ Message Dialog

Vivado HLS C Simulation could not complete...
Please check the error and warning messages:
- There are 2 errors

4 LI

& Console 22 €] Errors| & Warnings
Vivado HLS Console

F

C Validation
1 mathh
M_PI

WINDOW_LEN =
WIN_COEFF_FF
WIN_COEFF_S(

o ap_cinth
® in_data_t:intl[|
T out_data_t:ini
11 hammmina wsine
<« [2
ki =—0

Compiling C:/Vivado HLS Tutorial/C Validation/lab2/hamming window test.c in debug mode «
@E [SIM-34] 'apcc' is required to include the header file. Do not select 'Debug' in GUI a

@E [SIM-1] CSim file generation failed: compilation error(s).
@I [LIC-101] Checked in feature [VIVADO HLS]

4| 1

Figure 46: C Simulation Dialog Box

4. Expand the Test Bench folder in the Explorer pane.

5. Double-click the file hamming_window_test.c.

il

1|

6. Scroll toline 78 and remove the comments in front of the printf statement (as shown in

Figure 47).

[Explorer &2 & = O][[& hamming_window.c l¢l *hamming_window_test.c %
= hamming_window_prj
¥ Includes

= Source fp=Ffopen("result.dat","w");

printf("Testing DUT results");
for (1 = @; 1 < WINDOW LEN; i++) {
fprintf(fp, "%d %d \n", hw_result[i],sw_result[i]);

@ hamming_window.c
= Test Bench
[€ hamming_window_test.c
= solution1 if (hw_result[i] != sw_result[i]) {
err_cnt++;
check_dots = 8;

& constraints
i directives.tcl

m'_scnpttcl i, sw_result[i], hw_result[i]);
& csim } else { // indicate progress on console

& build if (check_dots == @)

= report printf("\n");

printf(".");
Figure 47: Enable Printing of the Results

7. Save the file.

open the C Simulation Dialog box.
9. Ensure the Debug option is not selected.
10. Click OK to run the simulation.

The results appear in the console window (Figure 48).

High-Level Synthesis www.xilinx.com
UG871 (v2014.1) May 6, 2014

// Check the results returned by DUT against expected values

printf("\n!!! ERROR at i = %4d - expected: %1@d\tgot: %106d",

brintf(“DUT results: Sample=%d, DUT=%d, Expected=%d\n", i, hw_result[i],sw result[i]);

[Lm

Click the Run C Simulation toolbar button or the menu Project > Run C simulation to

54

| Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=54

& XILINX. C Validation

El Console &2 - @] Errors| & Warnings X xppEeE—0O0
<terminated > hamming_window_prj.Debug [C/C++ Application] CA\Vivado_HLS_Tutorial\C_Validation\lab2\hamming_win
.DUT results: Sample=252, DUT=21807184, Expected=21807184 -

.DUT results: Sample=253, DUT=27011801, Expected=27011801
.DUT results: Sample=254, DUT=32266975, Expected=32266975
.DUT results: Sample=255, DUT=37559818, Expected=37559010

¥%% Tect Passed ***

[

Figure 48: C Validation Lab 2 Results

11. Exit the Vivado HLS GUI and return to the command prompt.

High-Level Synthesis www.xilinx.com 55

UG871 (v2014.1) May 6, 2014 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=55

& XILINX.

Lab 3: C Validation with C++ Arbitrary Precision Types

Overview

This exercise uses a design with arbitrary precision C++ types. You will review and debug the
design in the GUL

Step 1: Create and Open the Project

1. From the Vivado HLS command prompt used in Lab 2, change to the 1ab3 directory.

2. Create a new Vivado HLS project by typing vivado_hls —F run_hls._tcl.

3. Open the Vivado HLS GUI project by typing vivado_hls —p hamming_window_prj.

4. Open the Source folder in the explorer pane and double-click hamming_window.cpp to

open the code, as shown in Figure 49.

[Explorer 3 @ = B[[& hamming_window.cpp =
4 122 hamming_window_prj 45 #include "hamming_window.h" // Provides default WINDOW_LEM if 1=
> i Includes 46))
4 E Source 47 // Translation module function prototypes:
- - - 48 static void hamming_rom_init(in_data_t rom_array[]);
[hamming_window.cpp 19
= Test E%E”Ch 58 // Function definitions:
4 = solution 51void hamming_window(out data_t outdata[WINDOW_LEM], in_data_t :
4 @ constraints 524 C
4 directives.tcl 53 static in_data_t window_coeff[WINDOW_LEN]; T
W script.tcl 2::' unsigned 1;
> = csim - L
56 // In order to ensure that 'window_coeff' is inferred and pi
57 // initialized as a ROM, it is recommended that the arrya i1 _
cCo Id b down 2w o cedkh Lovennd e aandh Tl Fowndt bt mmiiinna L

4 (LI »

Figure 49: C++ Code for C Validation Lab 3

5. Hold down the Ctrl key down and click hamming_window.h on line 45 to open this header

file.

High-Level Synthesis www.xilinx.com
UG871 (v2014.1) May 6, 2014

l Send Feedback I

56

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=56

& XILINX. C Validation

6. Scroll down to view the type definitions (Figure 50).

[£) hamming_window.cpp (@ hamming_window.h & =0

78 // This function applies an Hamming window function to the "ini=«
71// returning the windowed data in ‘'outdata'. The coefficients
72 // scaled integer, which may be interpreted as a signed fixed

73 // with WIN_COEFF_FRACBITS bits after the binary point.

74

75 //typedef intl6_t in_data_t;

76 [/ /typedef int32_t out_data_t;

77 #include “"ap_int.h"

78 typedef ap_int<l6> in_data_t;

79 typedef ap_int<32> out_data_t;

80 I
81void hamming_window(out_data_t outdata[], in_data_t indata[])}; E|
82

O M am s S F VI ARMMTEL, 1ITRICWME 1] mmde Am LS~

4 | 1] | P

-

Figure 50: Type Definitions for C Validation Lab 3

Note: In this lab, the design is thesameas in Lab 1 and Lab 2, with one exception. The design is
now C++ and the types have been updated to use the C++ arbitrary precision types,
ap_int<#N>, provided by Vivado HLS and defined in header file ap_int_h.

High-Level Synthesis www.xilinx.com 57

UG871 (v2014.1) May 6, 2014 l Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=57

& XILINX. C Validation

Step 2: Run the C Debugger
1. Click the Run C Simulation toolbar button to open the C Simulation Dialog box.
2. Select the Debug option.
3. Click OK.
The debug environment opens.
4. Select the hamming_window.cpp code tab.
Set a breakpoint at line 61 as shown in Figure 51.

6. Click the Resume button (or key F8) to execute the code up to the breakpoint.

#5 Debug 2 [Explorer Db RER [i% =© ¥ = O|[t4= Variables % Breakpoints 32 “_i} Registers| =i Modules =g
&1 hamming_window_prj.Debug [C/C++ Application] R RPN | BEG T

e CA\Vivado_HLS_Tutorial\C_Validation\lab3\hamming_window_prj\solutit ,,@; hamming_window.cpp [line: 61]
o Thread [1] 0 (Suspended : Breakpoint)
= main() at hamming_window_test.cop:50 0x4013a2
»l gdb

MNo details to display for the current selection.

4 1 S

[2 hamming_window.cpp & . ‘W hamming_window.h = B[5 outline 2 AR e ¥=0
ey ;’,'r J.IIJLJ.C!J.J.%\:‘\J d> d RUTT, fL J.b'\CLUIIHII\:‘HuCu Liiac 'LII\:‘ dar’l’yda J.I'IJ.LJGJ.J.LCILJUII ot .J hammin WIndOWIh
58 // be done in a sub-function with global (wrt this source file) scope. . i 9 -)
59 hamming_rom_init(window_coeff); ++° hamming_rom_init(in_data_t[]) : voic
® hamming_window(out_data_t[], in_c

for (1 = @; i < WINDOW_LEN; i++) { ® £ hamming_rom_init(in_data_t[]) : voic
#pragma AP pipeline

outdata[i] = (out_data_t)window_coeff[i] * (out_data_t)indata[i];

}

[=}
2 @

// This initialization function will be optimized away during high level
// sythesis (HLS), resulting in the underlying memory being inferred as a ROM ~
] I 3] I »

Go = 1 B LU Rk
- e
1

onoh OV Oy O O On Oy O

Figure 51: Debug Environment for C Validation Lab 3

7. Click the Step Into button (or the F5 key) twice to see the view in Figure 52.

The variables in the design are now C+ + arbitrary precision types. These types are defined in
header file ap_int.h. When the debugger encounters these types, it follows the definition
into the header file.

As you continue stepping through the code, you have the opportunity to observe in greater
detail how the results for arbitrary precision types are calculated.

High-Level Synthesis www.xilinx.com 58

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=58

& XILINX. C Validation

[hamming_window.cpp [® hamming_window.h | ap_inth &2 =0
50 INLINE ap_int(const volatile ap int<_AP_W2> &op):Base((const ap private< A =

52 template<int _AP_W2> =
53 INLINE ap_int(const ap_int<_AP_W2> &op):Base((const ap_private<_AP_W2,true

55 template<int _AP_W2>
56 INLINE ap_int(const ap_uint<_AP_W2> &op):Base((const ap_private<_AP_W2,fal
7

58 template<int _AP_W2>
59 INLIMNE ap_int(const volatile ap uint<_AP_W2> &op):Base((const ap private<_

60

61 template<int _AP_W2, bool _AP_52>

62 INLINE ap_int{const ap range ref<_AP_W2, _AP_S52>& ref):Base(ref) {} -
4 | 1 | b

Figure 52: Arbitrary Precision Header File

A more productive methodology is to exit the ap_int_h header file and return to view the
results.

8. Click the Step Return button (or the F7 key) to return to the calling function.
9. Select the Variables tab.

10. Expand the outdata variable, as shown in Figure 53 to see the value of the variable shown
in the VAL parameter.

3 Debug 2 5 Explorer i M| 2 @ @ = | i+ +0 T T O)|e-Variables £3 . ®s Breakpoints| i} Registers| =i Modules =08
hamming_window_prj.Debug [C/C++ Application] <t B § i
% C:\Vivado_HLS_Tutorial\C_Validation\lab3\hamming_window_prj\solutit | Name Type Value =
o* Thread [1] 0 (Suspended : Step) 4 % outdata out_data_t* Ox28f4d8
= hamming_window() at hamming_window.cpp:63 0x4017fa 4 (® ap_private<32, tr ap_private<32, true, true... 1.}
= main() at hamming_window_test.cpp:69 0x401587 - mask const uint64_t =
»d gdb 9= not_mask const uint64_t
3= sign_bit_mask const uint64_t
= VAL ap_private<32, true, true... -42923460
. ®» indata in_data_t * 0x28fcd8 =
L 11l b
< | 1 r]«)
[¢ hamming_window.cpp & - i ap_inth |l ap_privateh [¢ hamming_window_test. |1 = O[5 Outline AW e~ 70

S ANniLldallseu d> d DU, 1L 1S PELUINIENUEU LildL e ar'i'yd Lnlivigiisacivn
// be done in a sub-function with global (wrt this source file) scope.
hamming_rom_init(window_coeff);

- = hamming_window.h
++% hamming_rom_init(in_data_t[]) : voic
e hamming_window(out_data_t[], in_c
for (1 = @; i < WINDOW_LEN; i++) { ® £ hamming_rom_init(in_data_t[]) : voic
#pragma AP pipeline
outdata[i] = (out_data_t)window_coeff[i] * (out_data_t)indata[i];
¥ -

< | 1 » 1 1 »

m

Figure 53: Arbitrary Precision Variables
Arbitrary precision types are a powerful means to create high-performance, bit-accurate
hardware designs. However, in a debug environment, your productivity can be reduced by

High-Level Synthesis www.xilinx.com 59

UG871 (v2014.1) May 6, 2014 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=59

& XILINX. C Validation

stepping through the header file definitions. Use breakpoints and the step return feature to skip
over the low-level calculations and view the value of variables in the Variables tab.

Conclusion

In this tutorial, you learned:

e The importance of the C test bench in the simulation process.

e How to use the C debug environment, set breakpoints and step through the code.

e How todebug C and C++ arbitrary precision types.

High-Level Synthesis www.xilinx.com 60

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=60

& XILINX.

Chapter 4 Interface Synthesis

Overview

Interface synthesis is the process of adding RTL ports to the C design. In addition to adding the
physical ports to the RTL design, interface synthesis includes an associated I/O protocol,

allowing the data transfer through the port to be synchronized automatically and optimally with
the internal logic.

This tutorial consists of four lab exercises that cover the primary features and capabilities of
interface synthesis.

e Lab1:Review the function return and block-level protocols.
e Lab 2:Understand the default I/O protocol for ports and learn how to select an I/O protocol.
e Lab 3:Review how array ports are implemented and can be partitioned.

e Lab4: Create an optimized implementation of the design and add AXI4 interfaces.

Tutorial Design Description

Download tutorial design file from the Xilinx website. Refer to the information in Obtaining the
Tutorial Designs.

This tutorial uses the design files in the tutorial directory
Vivado_HLS Tutorial\Interface_Synthesis.

About the Labs

e The sample design used in the first two labs in this tutorial is a simple one, which helps the
focus to remain on the interfaces.

e The final two lab exercises use a multi-channel accumulator.
e This tutorial explains how to implement I/O ports and protocols using High-Level Synthesis.

e Inlab 4, you create an optimal implementation of the design used in Lab3.

High-Level Synthesis www.xilinx.com 61

UG871 (v2014.1) May 6, 2014
l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=61

& XILINX. Interface Synthesis

Interface Synthesis Lab 1: Block-Level I/O protocols

Overview

This lab explains what block-level I/O protocols are and to control them.

IMPORTANT: The figures and commands in this tutorial assume the tutorial data
directory Vivado_HLS_Tutorial is unzipped and placed in the location
ﬁ C:\Vivado_HLS Tutorial
If the tutorial data directory (s unzipped to a different location, or on Linux systems, adjust
the few pathnames referenced, to the location you have chosento place the
Vivado_HLS_Tutorial directory.

Step 1: Create and Open the Project
1. Open the Vivado HLS Command Prompt.

a. On Windows use Start > All Programs > Xilinx Design Tools > Vivado 2014.1 >
Vivado HLS > Vivado HLS 2014.1 Command Prompt (Figure 54).

b. InLinux, open a new shell.

Bl Vivado 2014.1 Tcl Shell
g Vivado 2014.1
Xilinx Microprocessor Debugger 2014.1
g Xilinx SDK 2014.1
System Generator
Vivado HLS
Bl Vivado HLS 2014.1 Command Promg
7] vivado HLS 2014.1

Figure 54: Vivado HLS Command Prompt

High-Level Synthesis www.xilinx.com 62

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=62

£ XILINX. Interface Synthesis

2. Using the command prompt window (Figure 55), change directory to the Interface Synthesis
tutorial, lab1.

3. Execute the Tcl script to setup the Vivado HLS project, using the command vivado_hls —f
run_hls.tcl, as shown in Figure 55.

:\Uivado_HLS_Tutorial>cd Interface_Synthesis

:\Uivado_HLS_Tutorial\Interface_Synthesis>cd labl

1 1111

:\Uivado_HLS_Tutorial\Interface_3Synthesis\labl>vivado_hls -f run_hls.tcl

Figure 55: Setup the Tutorial Project

4. When Vivado HLS completes, open the project in the Vivado HLS GUI using the command
vivado_hls —-p adders_prj, as shown in Figure 56.

@I [LIC-101] Checked in feature [HLS] -
Generating csim.exe
10+20+30=60
20+30+40=90
30+40+50=120
40+50+60=150
50+60+70=180

@I [SIM-1] CSim done with @ errors.
@I [LIC-101] Checked in feature [HLS]

1 (1

C:\Uivado_HLS_Tutorial\Interface_Synthesis\labl>vivado_hls -p adders_prj

Figure 56: Initial Project for Interface Synthesis Lab 1

Step 2: Create and Review the Default Block-Level 1/0 Protocol

1. Double-click adders.c in the Source folder to pen the source code for review (Figure 57).

This example uses a simple design to focus on the I/O implementation (and not the logic in
the design). The important points to take from this code are:

o Directives in the form of pragmas have been added to the source code to prevent

any I/O protocol being synthesized for any of the data ports (inA, inB and inC). I/O
port protocols are reviewed in the next lab exercise.

0 This function returns a value and this is the only output from the function. As seen in
later exercises, not all functions return a value. The port created for the function
return is discussed in this lab exercise.

High-Level Synthesis www.xilinx.com 63

UG871 (v2014.1) May 6, 2014 | Send Feedback |

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=63

& XILINX. Interface Synthesis

(25 Explorer &2 v = O|[[< adders.c &3 =8
=5 adders_prj 48 int adders(int inl, int in2, int in3) { -
i Includes 49
= Source o0
- 51// Prevent I0 protocols on all input ports
[¢ adders.c

52 #pragma HLS INTERFACE ap none port=in3
53 #pragma HLS INTERFACE ap_none port=in2
54 #pragma HLS INTERFACE ap none port=inl

= Test Bench
= solution1

& constraints 55
4 directives.tcl || 56
W script.tcl >7 int sum;
= csim o8
] 59 sum = inl + in2 + in3;
= build 50
o)
= report 61 return sum; 3
62
621 N
64 i
< 1 3

Figure 57: C Code for Interface Synthesis Lab 1

2. Execute the Run C Synthesis command using the dedicated toolbar button or the Solution
menu.

When synthesis completes, the synthesis report opens automatically.

3. To review the RTL interfaces scroll to the Interface summary at the end of the synthesis
report.

The Interface summary and Outline tab are shown in Figure 58.

[¢] adders.c =] adders_csynth.rpt = = O[5 Qutline & . [Directive @~ — 0
- £ General Information

2 Performance Estimates
Timing (ns)
Latency (clock cycles)

- Summary
RTLPorts Dir Bits Protocol Source Object C Type

ap_clk in 1 ap_ctrl_hs adders return value & Utilization Estimates
ap_rst in 1 ap_ctrl_hs adders return value B Summary
ap_start in 1 ap_ctrl_hs adders return value Detail

ap_done out 1 ap_ctrl_hs adders return value i Interface

ap_idle out 1 ap_ctrl_hs adders return value &5 Summary
ap_ready out 1 ap_ctrl_hs adders return value

ap_return out 32 ap_ctrl_hs adders return value

inl in 32 ap_none inl scalar L

in2 in 32 ap_none in2 scalar [

in3 in 32 ap_none in3 scalar i

Figure 58: Interface Summary

There are three types of ports to review:

e The design takes more than one clock cycle to complete, so a clock and reset have been
added to the design: ap_clk and ap_rst. Both are single-bit inputs.

High-Level Synthesis www.xilinx.com 64

UG871 (v2014.1) May 6, 2014 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=64

& XILINX.

Interface Synthesis

e A block-level 1/O protocol has been added to control the RTL design: ports ap_start,
ap_done, ap_idle and ap_ready. These ports will be discussed shortly.

e The design has four data ports.

0 Input ports Inl, In2, and In3 are 32-bit inputs and have the 1/O protocol ap_none
(as specified by the directives in Figure 58).

0 The design also has a 32-bit output port for the function return, ap_return.

The block-level 1/0

protocol allows the RTL design to be controlled by via additional ports

independently of the data I/O ports. This I/O protocol is associated with the function itself, not
with any of the data ports. The default block-level I/O protocol is called ap_ctrl_hs. Figure

58 shows this protocol is associated with the function return value (this is true even if the
function has no return value specified in the code)..

Table 1 summarizes the behavior of the signals for block-level I/O protocol ap_ctrl_hs.

Note: The explanation here uses the term “transaction”. In the context of high-level synthesis, a
transaction is equivalent to one execution of the C function (or the equivalent operation in the
synthesized RTL design).

Exercise

Description

ap_start

This signal controls the block execution and must be asserted to logic 1 for the
design to begin operation.

It should be held at logic 1 until the associated output handshake ap_readyis
asserted. When ap_ready goes high, the decision can be made on whether to
keep ap_start asserted and perform another transactionor set ap_start to logic 0
and allow the design to halt at the end of the current transaction.

If ap_startis asserted low before ap_readyis high, the design might not have read
all input ports and might stall operation on the next input read.

ap_ready

This output signal indicates when the design is ready for new inputs.

The ap_ready signal is set to logic 1 when the design is readyto accept new
inputs, indicating that all input reads for this transaction have been completed.

If the design has no pipelined operations, new reads are not performed until the
next transaction starts.

This signal is used to make a decision on when to apply new values to the inputs
ports and whether to start a new transaction should using the ap_start input
signal.

If the ap_start signalis not asserted high, this signal goes low when the design
completes all operations in the current transaction.

ap_done

This signal indicates when the design has completed all operations in the current
transaction.

A logic 1 on this output indicates the design has completed all operations in this

High-Level Synthesis

www.Xilinx.com 65

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=65

& XILINX. Interface Synthesis

Exercise Description

transaction. Because this is the end of the transaction, alogic 1 on this signal also
indicates the data on the ap_return port is valid.

Not all functions have a function return argument and hence not all RTL designs
have an ap_return port.

ap_idle This signal indicates if the design is operating or idle (no operation).

The idle state is indicated by logic 1 on this output port. This signal is asserted low
once the design starts operating.

This signal is asserted high when the design completes operation and no further
operations are performed.

Table 1: Block Level I/O protocol ap_ctrl_hs

You can observe the behavior of these signals by viewing the trace file produced by RTL
cosimulation. This is discussed in the tutorial RTL Verification, but Figure 59 shows the
waveforms for the current synthesis results.

& adders.wcfg* x O x

L]

bl

IS 1k ap_ready

4| % ap_return[31:0]

i 1 ap_idle

Al

Figure 59: RTL Waveforms for Block Protocol Signals

The waveforms in Figure 56 show the behavior of the block-level I/O signals.

e The design does not start operation until ap_start is set to logic 1.

High-Level Synthesis www.xilinx.com 66

UG871 (v2014.1) May 6, 2014 | Send Feedback |

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=66

& XILINX. Interface Synthesis

e The design indicates it is no longer idle by setting port ap_idle low.

e Five transactions are shown. The first three input values (10, 20 and 30) are applied to input
ports In1, In2 and In3 respectively.

e Outputsignalap_ready goes high to indicate the design is ready for new inputs on the
next clock.

e Output signal ap_done indicates when the design is finished and that the value on output
port ap_return is valid (the first output value, 60, is the sum of all three inputs).

e Because ap_start is held high, the next transaction starts on the next clock cycle.

Note: In RTL Cosimulation, all design and port input control signals are always enabled. For
example, in Figure 59 signal ap_start is always high.

In the 2" transaction, notice on port ap_return, the first output has the value 70. The result on
this port is not valid until the ap_done signal is asserted high.

Step 3: Modify the Block-Level 1/0 protocol

The default block-level I/O protocol is the ap_ctrl_hs protocol (the Control Handshake
protocol). In this step, you create a new solution and modify this protocol.

1. Select New Solution from the toolbar or Project menu to create a new solution.
2. Leaveall settings in the new solution dialog box at their default setting and click Finish.

3. Select the C source code tab in the Information pane (or re-open the C source code if it was
closed).

4. Activate the Directives tab and select the top-level function, as shown in Figure 60.

l¢ adders.c &2 = O | 8= Outline (i Directive &3 =0
A6 #include "adders.h" - 4|® adders
e e % inl
ji int JEEE(nt inl, int in2, int in3) # HLS INTERFACE ap_none port=inl
Sé 2 in2
51// Prevent I0 protocols on all input ports # HLS INTERFACE ap_none port=in2
52 #pragma HLS INTERFACE ap_none port=in3 2 in3
53 #pragma HLS INTERFACE ap_none port=in2 # HLS INTERFACE ap_none port=in3
54 #pragma HLS INTERFACE ap_none port=inl
55
56
57 int sum;
58
59 sum = inl + in2 + in3;
60 =
61 return sum;
62
63}
64 7
4 1l b
Figure 60: Top-level Function Selected
High-Level Synthesis www.xilinx.com 67

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=67

& XILINX. Interface Synthesis

Because the block-level I/O protocols are associated with the function, you must specify
them by selecting the top-level function.

5. Inthe Directives tab, mouse over the top-level function adders, right-click, and select
Insert Directives.

The Directives Editor dialog box opens.

Figure 61 shows this dialog box with the drop-down menu for the interface mode activated.

Vivado HLS Directive Editor
Type
Directive: |INTERFACE -
Destination
(") Source File
(@) Directive File
Options
mode (optional): lap_ctrl_none v]
register:
_
depth (optional): ap_ctrl_hs
ap_ctrl_chain
s_axilite
metadata (optional):
Help] l Cancel] l OK

Figure 61: Directive Dialog box for ap_ctrl_none

The drop-down menu shows there are three options for the block-level interface protocol:
e ap_ctrl_none: No block-level 1/0 control protocol.
e ap_ctrl_hs: The block-level I/O control handshake protocol we have reviewed.

e ap_ctrl_chain: The block-level I/O protocol for control chaining. This I/O protocol is primarily
used for chaining pipelined blocks together.

e s_axilite: May be applied in addition to ap_ctrl_hs orap_ctrl_chain toimplement the
block-level IO protocol as an AXI Slave Lite interface in place of separate discrete IO ports.

High-Level Synthesis www.xilinx.com 68

UG871 (v2014.1) May 6, 2014 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=68

& XILINX. Interface Synthesis

The block-level I0 protocol ap_ctrl_chain is not covered in this tutorial. This protocol is similar to
ap_ctrl_hs protocol but with an additional input signal, ap_continue, which must be high
when ap_done is asserted for the next transaction to proceed. This allows downstream blocks

to apply back-pressure on the system and halt further processing when they are unable to
continue accepting new data.

6. Inthe Destination section of the Directives Editor dialog box, select Source File.

By default, directives are placed in the directives.tcl file. In this example, the directive
is placed in the source file with the the existing I/O directives.

7. From the drop-down menu, select ap_ctrl_none.
8. Click OK.

The source file now has a new directive, highlighted in both the source code and directives tab
in Figure 62.

The new directive shows the associated function argument/port called return. All interface
directives are attached to a function argument. For block-level I/O protocols, the return

argument is used to specify the block-level interface. This is true even if the function has no
return argument in the source code.

[¢ *adders.c &2 = O|[8= Outline |4 Directive 3 =0

A6 #include "adders.h” - 4 @ adders
A7

. # HLS INTERFACE ap_ctrl_none port=return
48 int adders(int inl, int in2, int in3) {

ilsl#pragma HLS INTERFACE ap ctrl none port=retur 2 inl

50 # HLS INTERFACE ap_none port=inl
51 2 in2

52 // Prevent I0 protocols on all input ports # HLS INTERFACE ap_none port=in2
53 #pragma HLS INTERFACE ap_none port=in3 2 in2

54 #pragma HLS INTERFACE ap_none port=in2 # HLS INTERFACE ap_none port=in3
55 #pragma HLS INTERFACE ap_none port=inl
56

58 int sum;

m

= I

sum = inl + in2 + in3;

return sum;

ohoOh Oh o O

Faod B

I 3

Figure 62: Block-Level Interface Directive ap_ctrl_none

9. Click the Run C Synthesis toolbar button or use the menu Solution > Run C Synthesis to
synthesize the design.

Adding the directive to the source file modified the source file. Figure 62 shows the source
file name as *adders.c. The asterisk indicates that the file is modified but not saved.

10. Click Yes to accept the changes to the source file.

When the report opens, the Interface summary appears, as shown in Figure 63.

High-Level Synthesis www.xilinx.com 69

UG871 (v2014.1) May 6, 2014 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=69

& XILINX.

Interface Synthesis

=l adders _csynth.rpt i3 =5

-l Summary

RTLPorts Dir Bits Protacol Source Object C Type

ap_clk in 1 ap_ctri_none adders return value

ap_rst in 1 ap_ctrl_none adders return value

ap_return out 32 ap_ctrl_none adders return value

inl in 32 ap_none inl scalar

in2 in 32 ap_none in2 scalar =
in3 in 32 ap_none in3 scalar

Figure 63: Interface summary for ap_ctrl_none

When the interface protocol ap_ctrl_none is used, no block-level I/O protocols are added to
the design. The only ports are those for the clock, reset and the data ports.

Note that without the ap_done signal, the consumer block that accepts data from the
ap_return port now has no indication when the data is valid.

In addition, the RTL cosimulation feature requires a block-level I/O protocol to sequence the test
bench and RTL design for cosimulation automatically. Any attempt to use RTL cosimulation
results in the following error message and RTL cosimulation with halt:
@E [SIM-345] Cosim only supports the following "ap ctrl_none® designs: (1)
combinational designs; (2) pipelined design with task interval of 1; (3)

designs with array streaming or hls_stream ports.
@E [SIM-4] *** C/RTL co-simulation finished: FAIL ***

Exit the Vivado HLS GUI and return to the command prompt.

Interface Synthesis Lab 2: Port 1/O protocols

Overview

This exercise explains how to specify port1/O protocols..

Step 1: Create and Open the Project

1. From the Vivado HLS command prompt used in Lab 1, change to the lab2 directory as
shown in Figure 64.

2. Typevivado_hls —F run_hls_tcl to create a new Vivado HLS project.

www.Xilinx.com 70

l Send Feedback I

High-Level Synthesis
UG871 (v2014.1) May 6, 2014

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=70

& XILINX. Interface Synthesis

C:\Vivado_HLS_Tutorial\Interface_Synthesis\labl>cd ..

C:\Vivado_HLS_Tutorial\Interface_Synthesis>cd lab2

1

C:\Uivado_HLS_Tutorial\Interface_Synthesis\lab2>vivado_hls -f run_hls.tcl

Figure 64: Setup for Interface Synthesis Lab 2

3. Typevivado_hls —p adders_io_prj to open the Vivado HLS GUI project.

4. Open the source code as shown in Figure 65.

[t5 Explorer ¢ = 0| [¢ adders_io.c &3 =0
. & adders_io_prj T T T ey B
& Includes 46 #include "adders_io.h"

47
18 void adders_io(int inl, int in2, int *in_outl) {
19

« = Source
\c| adders_io.c

f= Test Bench 50 *in outl = inl + in2 + *in outl;
' ¢= solutiont 51
1 constraints 52
o directives.tcl 53 %
& ; 54
o scripttcl - |
' = csim - i
& build 57
= report 58

Figure 65: C Code for Interface Synthesis Lab 2

The source code for this exercise is similar to the simple code used in Lab 1. For similar reasons,
it helps focus on the interface behavior and not the core logic.

This time, the code does not have a function return, but instead passes the output of the
function through the pointer argument *in_outl. This also provides the opportunity to
explore the interface options for bi-directional (input and output) ports.

The types of I/O protocol that you can add to C function arguments by interface synthesis
depends on the argument type. These options are fully described in the Vivado High-Level
Synthesis User Guide (UG902).

The pointer argument in this example is both an input and output to the function. In the RTL
design, this argument is implemented as separate input and output ports.

High-Level Synthesis www.xilinx.com 71

UG871 (v2014.1) May 6, 2014 | Send Feedback |

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=71

& XILINX.

Interface Synthesis

For the code shown in Figure 65, the possible options for each function argument are described

in Table 2.

Function Argument

1/0 protocol Options

Inl and In2

These are pass-by-value argumentsthat can be implemented with the
following 1/O Protocols:

ap_none: No /O protocol. This is the default for inputs.

ap_stable: No I/0 protocol.

ap_ack: Implemented with an associated output acknowledge port.
ap_vld: Implemented with an associated input valid port.

ap_hs: Implemented with both input valid and output acknowledge
ports.

in_outl

This is a pass-by-reference output that can be implemented with the
following 1/0O protocols:

ap_none: No /O protocol. This is the default for inputs.
ap_stable: No I/0 protocol.
ap_ack: Implemented with an associated input acknowledge port.

ap_vld: Implemented with an associated output valid port. This is
the default for outputs.

ap_ovld: Implemented with an associated output valid port (no
valid port for the input part of any inout ports).

ap_hs: Implemented with both input valid port and output
acknowledge ports.

ap_fifo: A FIFO interface with associated output write and input
FIFO full ports.

ap_bus: A Vivado HLS bus interface protocol.

Table 2: Port Level I/O Protocol Options for Lab 2

Note: The port directives applied in Lab 1 were not actually necessary because ap_none is the
default I/0 protocol for these C arguments. The directives were provided to avoid addressing any
1/0 port protocol behavior in that exercise, default behavior or not.

In this exercise, you implement a selection of I/O protocols.

High-Level Synthesis

UGS871 (v 2014.1) May 6, 2014

www.Xilinx.com 72

l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=72

& XILINX.

Step 2: Specify the I/0 Protocol for Ports

1. Ensurethat you can see the C source code in the Information pane.

Interface Synthesis

2. Activate the Directives tab and select input argumentinl, as shown in Figure 66.

l¢ adders_io.c &

7
Svoid adders_io(, int in2, int *in_outl) {
(s]

2} *in_outl = inl + in2 + *in_outl;

Figure 66: Adding Port I/O Protocols

Right-click and select Insert Directives.

=8

o= Outline | L4 Directive &2

4 @ adders_io
2 inl
2 in2
2 in_outl

When the Directives Editor opens leave the directives drop-down menu as INTERFACE.

a. Leavethe destination at the default value. This time, the directives are stored in the

directives._tcl file.

b. Select ap_vld from the mode drop-down menu
c. Click OK.

5. Select argument in2 and add an interface directive to specify thel/O protocol ap_ack.

6. Select argument in_outl and add an interface directive to specify the /O protocol ap_hs.

High-Level Synthesis www.xilinx.com
UG871 (v2014.1) May 6, 2014

l Send Feedback I

73

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=73

& XILINX.

Interface Synthesis

7. Inthe Explorer pane, expand the Constraints folder and double-click the directives.tcl
file to open it, as shown in Figure 67.

[Explorer &2 w = O|/[d adders_io.c | directives.tel &2 =8

= adders_io_prj
) Includes
= Source
[¢] adders_io.c
= Test Bench
= solution1
constraints
i directives.tcl
W script.tcl
= csim
= build
= report

[N R S VURY Ny

8. Synthesize the design.

et is file is generated automatica
Please DO NOT edit it.
Copyright (C) 2814 Xilinx Inc. All rights reserved.

lvado

y Dy

set_directive_interface -mode ap_vld "adders_io"™ inl
set directive interface -mode ap ack "adders io" in2
set_directive_interface -mode ap_hs "adders_io" in_outl

Figure 67: Directives for Lab 2

9. Review the Interface summary when the report file opens (Figure 68).

l¢ adders_io.c o directives.tel |2 adders_io_csynth.rpt 2 =

ap_clk

ap_rst

ap_start

ap_done

ap_idle

ap_ready

inl

inl_ap_vid

in2

in2_ap_ack
in_outl_i
in_outl_i_ap_vid
in_outl_i_ap_ack
in_outl_o
in_outl_o_ap_vid
in_outl_o_ap_ack

Dir Bits Protocol Source Object C Type

in 1 ap_ctrl_hs adders_io return value
in 1 ap_ctrl_hs adders_io return value
in 1 ap_ctrl_hs adders_io return value
out 1 ap_ctrl_hs adders_io return value
out 1 ap_ctrl_hs adders_io return value
out 1 ap_ctrl_hs adders_io return value
in 32 ap_vid inl scalar
in 1 ap_vid inl scalar
in 32 ap_ack in2 scalar
out 1 ap_ack in2 scalar
in 32 ap_hs in_outl pointer
in 1 ap_hs in_outl pointer
out 1 ap_hs in_outl pointer E
out 32 ap_hs in_outl pointer
out 1 ap_hs in_outl pointer
in 1 ap_hs in_outl pointer

Figure 68: Interface summary for Lab 2

e The design has a clock and reset.

e The default block-level I/O protocol signals are present.

e Portinlis implemented with a data port and an associated input valid signal.

High-Level Synthesis

www.Xilinx.com 74

UG871 (v2014.1) May 6, 2014 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=74

& XILINX. Interface Synthesis

The data on portinl is only read when port inl1_ap_vld is active high.
Port in2 is implemented with a data port and an associated output acknowledge signal.
Port in2_ap_ack will be active high when data port in2 is read.

The Inout_i identifies the input part of argument inoutl. This has associated input valid
port inoutl_i_ap vIld and output acknowledge port inoutl_i_ap ack.

The output part of argument inoutl is identified as inout_o. This has associated output valid
port inoutl_o_ap_vld and input acknowledge port inoutl_o_ap_ack.

10. Exit the Vivado HLS GUI and return to the command prompt.

Interface Synthesis Lab 3: Implementing Arrays as RTL
Interfaces

Introduction

This exercise shows how array arguments on functions you can implement as a number of
different types of RTL port.

Step 1: Create and Open the Project

1.

From the Vivado HLS command prompt window used in the previous lab, change to the
lab3 directory.

Create a new Vivado HLS project by typing vivado_hls —f run_hls.tcl
Open the Vivado HLS GUI project by typing vivado_hls —p array_io_prj

High-Level Synthesis www.xilinx.com 75

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=75

& XILINX. Interface Synthesis

4. Open the source code as shown in Figure 69.

This design has an input array and an output array. The comments in the C source explain
how the data in the input array is ordered as channels and how the channels are
accumulated. To understand the design, you can also review the test bench and the input
and output data in file result.golden.dat.

[t5 Explorer £ o = O |4 amay.io.c &3 =g
& array_io_prj 46 #include "array_io.h" -
[Includes 47
S Source 48 // The data comes in organized in a single array.
= B - 49 /f - The first sample for the first channel (CHAN)
array_loc 58 // - Then the first sample for the 2nd channel etc.
&aTestsench 51// The channels are accumulated independently
= solutiont 52// E.g. For 8 channels
constraints 53// Array Order : ® 1 2 3 4 5 6 7 8 9 10 etc. 16 etc...
“ directives.tcl 54 // Sample Order: AQ B@ (0 D@ EO F@ GO HO Al Bl Cc2 etc. A2 etc...
¥ scriptid 55// Output Order: A@ B@ C& DO E@ FB GO HO AP+Al BO+B1 (0+C2 etc. AB+AL+A2 etc...
; 56
cmnw_ 57void array_io (dout_t d_o[N], din_t d_i[N]) {
& build 58 int i, rem;
= report 59
60 // Store accumulated data

static dacc_t acc[CHANNELS];

0L =

63 // Accumulate each channel

64 For_Loop: for (i=0;i<N;i++) {

65 rem=1i%CHANMELS ;

66 acc[rem] = acc[rem] + d_i[i];

67 d_o[i] = acc[rem];

68 }

59} i
4 }

Figure 69: C Code for Interface Synthesis Lab 3

Step 2: Synthesize Array Function Arguments to RAM ports
In this step, you review how array ports are synthesized to RAM ports.
1. Synthesize the design and review the Interface summary when the report opens (Figure 70).

The interface summary shows how array arguments in the C source are by default
synthesized into RTL RAM ports.

0 The design has a clock, reset and the default block-level I/O protocol ap_ctrl_hs
(noted on the clock in the report).

The d_o argument has been synthesized to a RAM port (I/O protocol ap_memory).
A data port (d_o_d0).
An address port (d_o_address0).

o O O O

Control ports for chip-enable (d_o_ce0) and a write-enable port (do_we0).

o

The d_i argument has been synthesized to a similar RAM interface, but has an input
data port (d_i_q0) and no write-enable port because this interface only reads data.

High-Level Synthesis www.xilinx.com 76

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=76

& XILINX. Interface Synthesis

In both cases, the data port is the width of the data values in the C source (16-bit integers in
this case) and the width of the address port has been automatically sized match to the
number of addresses that must be accessed (5-bit for 32 addresses).

=l array_io_csynth.rpt &3 =0
- Summary
Dir Bits Protocol Source Object CType
ap_clk in 1 ap_ctrl_hs array_io return value
ap_rst in 1 ap_ctrl_hs array_io return value
ap_start in 1 ap_ctrl_hs array_io return value
ap_done out 1 ap_ctrl_hs array_io return value
ap_idle out 1 ap_ctrl_hs array_io return value
ap_ready out 1 ap_ctrl_hs array_io return value
d_o_address0 out 5 ap_memary do array
d o celd out 1 ap_memaory do array
d_o_wel out 1 ap_memaory do array
d o do out 16 ap_memory do array
d_i_address(out 5 ap_memary d_i array 3
d_i_cel out 1 ap_memaory di array
d_i_qg0 in 16 ap_memory d_i array
4 i 3

Figure 70: Interface Summary for Initial Lab 3 design

Synthesizing array arguments to RAM ports is the default. You can control how these ports are
implemented using a number of other options. The remaining steps in Lab 3 demonstrate these
options:

e Using a single-port or dual-port RAM interface.
e Using FIFO interfaces.

e Partitioning into discrete port.

High-Level Synthesis www.xilinx.com 77

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=77

& XILINX. Interface Synthesis

Step 3: Using Dual-port RAM and FIFO interfaces

High-Level Synthesis lets you specify a RAM interface a single-port or dual-port. If you do not
make such a selection, Vivado HLS automatically analyzes the design and selects the number of
ports to maximize the data rate.

Step 2 used a single-port RAM interface because the for-loop in the source code (Figure 69) is
by default left rolled: each iteration of the loop is executed in turn:

e Read the input port.

e Read the accumulated result from the internal RAM.

e Sum the accumulated and new data and write into the internal RAM.
e Write the result to the output port.

e Repeat for the next iteration of the loop.

This ensures only a single input read and output write is ever required. Even if multiple input and
outputs are made available, the internal logic cannot take advantage of any additional ports.

Note: If you specify a dual-port RAM and Vivado HLS can determine only a single port is required,
(t uses a single-port and over-ride the dual-port specification.

In this design, if you want to implement an array argument using multiple RTL ports, the first
thing you must do is unroll the for-loop and allow all internal operations to happen in parallel,
otherwise there is no benefit in multiple ports: the rolled for-loop ensure only one data sample
can be read (or written) at a time.

1. Select New Solution from the toolbar or Project menu to create a new solution.
2. Accept the defaults, and click Finish.

3. Ensure the C source code is visible in the Information pane.

4

In the Directives tab, select the for-loop, For_Loop, and right-click to open the Directives
Editor dialog box.

a. Inthe Directives Editor dialog box activate the Directives drop-down menu at the top
and select UNROLL.

High-Level Synthesis www.xilinx.com 78

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=78

& XILINX. Interface Synthesis

b. With the Directives Editor as shown in Figure 71, click OK.

Vivado HLS Directive Editor

Type
Directive: |UNROLL -

Destination
() Source File
(@) Directive File

Options
skip exit check:]

factor (optional):

region: (]

Help] l Cancel] l OK

Figure 71: Directives Editor to Unroll For_Loop

High-Level Synthesis www.xilinx.com 79

UG871 (v2014.1) May 6, 2014 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=79

& XILINX.

Interface Synthesis

Next, specify a dual-port RAM for input reads. The Resource directive indicates the type of RAM

connected to an interface.

5. Inthe Directives tab, select portd_i and right-click to open the Directives Editor dialog box.

a. Inthe Directives Editor activate the Directives drop-down menu at the top and select

RESOURCE.

b. Click the core options box and select RAM_2P_BRAM.

c. Verify that the settings in the Directives Editor dialog box are as shown in Figure 72 and

click OK.

Type

core (required):

Vivado HLS Directive Editor

Directive: | RESOURCE

Destination
(") Source File

(@) Directive File

Options

variable (required): d_i

RAM_2P_BRAM

port map (optional):

metadata (optional):

Help I l Cancel I l

OK

Figure 72: Directives Editor for Specifying a Dual-port RAM

High-Level Synthesis
UG871 (v2014.1) May 6, 2014

www.Xilinx.com

l Send Feedback I

80

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=80

& XILINX. Interface Synthesis

Implement the output port using a FIFO interface.

6. Inthe Directives tab, select port d_o and right-click to open the Directives Editor dialog
box.

a. Inthe Directives Editor, leave the directive as Interface.
b. From the Mode drop-down menu, select ap_fifo.
c. Click OK.

The Directive tab shows the directives now applied to the design (Figure 73).

B8 Outline [Directive i3 =

4@ array_io

4 do

9 HLS INTERFACE ap_fifo port=d_o

@ d_i

% HLS RESOURCE variable=d_i core=RAM_2P_BRAM
=1 acc

4 5" For_Loop
% HLS UNROLL

Figure 73: Directives Summary for Lab 2 Solution2

7. Synthesize the design.

High-Level Synthesis www.xilinx.com 81

UG871 (v2014.1) May 6, 2014 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=81

& XILINX. Interface Synthesis

When the report opens in the Information pane, the Interface summary is as shown in Figure 74.

e The design has the standard clock, reset and block-level I/O ports.

e Array argument d_o has been implemented as a FIFO interface with a 16-bit data port
(d_o_din) and associated output write (d_o_write) and input FIFO full (d_o_full_n) ports.

e Argument d_i has been implemented as a dual-port RAM interface.

el array_io_csynth.rpt i3 =0
Interface i
- Summary
RTL Ports Dir Bits Protocol Source Object C Type

ap_clk in 1 ap_ctri_hs array_io return value
ap_rst in 1 ap_ctri_hs array_io return value
ap_start in 1 ap_ctri_hs array_io return value
ap_done out 1 ap_ctri_hs array_io return value
ap_idle out 1 ap_ctri_hs array_io return value
ap_ready out 1 ap_ctri_hs array_io return value
d_o_din out 16 ap_fifo do pointer
d_o_full_n in 1 ap_fifo do pointer
d_o_write out 1 ap_fifo do pointer
d_I_address0 out 5 ap_memory di array
d i_cel out 1 ap_memory di array

d_i_qg0 in 16 ap_memory di array =
d_I_addressl out 5 ap_memory di array
dicel out 1 ap_memory di array
diql in 16 ap_memory di array

Figure 74: Directives Editor Specifying Block RAM Interface

By using a dual-port RAM interface, this design can accept input data at twice the rate of the

previous design. However, by using a single-port FIFO interface on the output the output data
rate is the same as before.

High-Level Synthesis www.xilinx.com 82

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=82

& XILINX. Interface Synthesis

Step 4: Partitioned RAM and FIFO Array interfaces

In this step, you learn how to partition an array interface into any arbitrary number of ports.

1.

2
3.
4

Select New Solution from the toolbar or the Project menu and create a new solution.
Accept the defaults, and click Finish. This includes copying existing directives from solution2.
Ensure the C source code is visible in the Information pane.

In the directives tab, select d_o and right-click to open the Directives Editor dialog box.

a. Inthe Directives Editor dialog box activate the Directives drop-down menu at the top
and select ARRAY_PARTITION.

b. Activate the type drop-down menu and select block to partition the array into blocks.
¢. Inthe Factor dialog box, enter the value 4.

d. With the Directives Editor as shown in Figure 75, click OK.

Vivado HLS Directive Editor

Type
Directive: | ARRAY_PARTITION -

Destination
Source File
@) Directive File

Options

variable (required): do

type (optional): block -
factor (optional): 4

dimension (optional): 1

Help ‘ | Cancel ‘ l OK

Figure 75: Directives Editor for Partitioning Array d_o

Now, partition the input array into two blocks (not four).

High-Level Synthesis www.xilinx.com 83

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=83

& XILINX. Interface Synthesis

5.

In the Directives tab, select d_i and repeat the previous step, but this time partition the port
with a factor of 2.

The directives tab shows the directives now applied to the design (Figure 76 76).

5= Outline | Directive &3 « > =0

4 @ array_io
4 do
9 HLS ARRAY_PARTITION partition variable=d_o block factor=4 dim=
% HLS INTERFACE ap_fifo port=d_o
@ di
% HLS ARRAY_PARTITION variable=d_i block factor=2 dim=1
% HLS RESOURCE variable=d_i core=RAM_2P_BRAM
=1 acc
4% For_Loop
% HLS UNROLL
[1 P

Figure 76: Directives Summary for Lab 2 Solution3

6. Synthesize the design.

When the report opens in the Information pane, the Interface summary is as shown in Figure 77.

The design has the standard clock, reset and block-level I/O ports.
Array argument d_o has been implemented as a four separate FIFO interfaces.

Argument d_i has been implemented as a two separate RAM interfaces, each of which uses a
dual-port interface. (If you see 4 separate RAM interfaces, confirm a partition factor for d_i is
2 and not 4).

High-Level Synthesis www.xilinx.com 84

UG871 (v2014.1) May 6, 2014 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=84

& XILINX. Interface Synthesis

£l array_io_csynth.rpt i2 =0
Interface i
- Summary
RTL Ports Dir Bits Protocol Source Object C Type

ap_clk in 1 ap_ctrl_hs array_io return value
ap_rst in 1 ap_ctrl_hs array_io return value
ap_start in 1 ap_ctrl_hs array_io return value
ap_done out 1 ap_ctrl_hs array_io return value
ap_idle out 1 ap_ctrl_hs array_io return value
ap_ready out 1 ap_ctrl_hs array_io return value
d_o_0_din out 16 ap_fifo dol pointer
d_o_0_full_n in 1 ap_fifo do0 pointer
d_o_0_write out 1 ap_fifo dol pointer
d_o_1_din out 16 ap_fifo dol pointer
d_o_ 1 full_n in 1 ap_fifo dol pointer
d_o_1_write out 1 ap_fifo dol pointer
d_o_2 din out 16 ap_fifo do?2 pointer
d_o_2_full_n in 1 ap_fifo d_o?2 pointer
d_o_2_write out 1 ap_fifo do?2 pointer
d_o_3_din out 16 ap_fifo do3 pointer
d_o_3_full_n in 1 ap_fifo do3 pointer
d_o_3_write out 1 ap_fifo do3 pointer
d_i_0_address0 out 4 ap_memory d.il array
d_i_0_celd out 1 ap_memory di0 array
d_i_0 g0 in 16 ap_memory d.il array
d_i_0_address1 out 4 ap_memory di0 array

d_i_0_cel out 1 ap_memory dio array =
di0aql in 16 ap_memory di0 array
d_i_1_address0 out 4 ap_memory dil array
d_i_1_cel out 1 ap_memory d_i_l array
d_i_1 g0 in 16 ap_memory dil array
d_i_1_addressl out 4 ap_memory d_i_l array
d.i_l_cel out 1 ap_memory d.il array
dilal in 16 ap_memory d_i_l array

Figure 77: Interface Report for Partitioned Interfaces

If input port d_i was partitioned into four, only a single-port RAM interface would be required
for each port. Because the output port can only output four values at once, there would be no
benefit in reading 8 inputs at once.

The final step in this tutorial on arrays is to partition the arrays completely.

High-Level Synthesis www.xilinx.com 85

UG871 (v2014.1) May 6, 2014 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=85

& XILINX. Interface Synthesis

Step 5: Fully Partitioned Array interfaces

This step shows you how to partition an array interface into individual ports.

1. Select New Solution from the toolbar and create a new solution.

2. Click Finish and accept the defaults. This includes copying existing directives from solution3.
3. Ensure the C source code is visible in the Information pane.
4. Inthe Directive tab, select the existing partition directive for d_o as shown in Figure 78.
5. Right-click and select Modify Directive.
&= Outline | L4 Directive &3 =0
4 @ array_io

2 do

% HIS ARRAY PARTITION variable=d_o complete factor=4 dim=1

op & Modify Directive do

2| ® Remove Directive ’:

9 HLS ARRAY_PARTITION partition variable=d_i complete dim=1
% HLS RESOURCE variable=d_i core=RAM_2P_BRAM
=1 acc
4 %' For_Loop
% HLS UNROLL

Figure 78: Modifying the Directive for d_o

6. Inthe Directives Editor dialog box:
a. Activate the Type drop-down menu and modify the partitioning style to Complete.

b. Inthe Factor dialog box, the you can remove the value 4 or leave it as-is. The factor is
ignored for this type of partitioning.

High-Level Synthesis www.xilinx.com 86

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=86

& XILINX. Interface Synthesis

¢. With the Directives Editor as shown in Figure 79, click OK.

Vivado HLS Directive Editor

Type
Directive: | ARRAY_PARTITION -

Destination
(") Source File
(@) Directive File

Options
variable (required): do

type (optional): complete v

factor (optional):

dimension (optional): 1

Help l [Cancel l [0K

Figure 79: Directives Editor for Partitioning Array d_o

7. Inthe Directives tab, select d_i and repeat the previous step to completely partition the d_i
array.

Optionally, you can delete the directive on d_i specifying the resource.If the array is partitioned
into individual elements, the Resource directive, which specifies a RAM resource, is ignored.

High-Level Synthesis www.xilinx.com 87

UG871 (v2014.1) May 6, 2014 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=87

& XILINX. Interface Synthesis

The Directives tab shows the directives now applied to the design (Figure 80).

8% Qutline | 4 Directive &3 = H

4|92 array_io
2 do
% HLS ARRAY_PARTITION variable=d_o complete dim=1
% HLS INTERFACE ap_fifo port=d_o
@ di
% HLS ARRAY_PARTITION partition variable=d_i complete dim=1
% HLS RESOURCE variable=d_i core=RAM_2P_BRAM
=1 acc
4 ' For_Loop
% HLS UNROLL

Figure 80: Directives Summary for Lab 2 Solution3

8. Synthesize the design.

9. When the report opens in the Information pane, review the interface summary. Note the
following:

e The design has the standard clock, reset and block-level I/O ports.
e Array argument d_o has been implemented as a 32 separate FIFO interfaces.

e Argument d_i has been implemented as a 32 separate scalar port. Because the default
interface for input scalars in no I/O protocol, they have the I/O protocol ap_none.

Although this tutorial has focused exclusively on the I/O interfaces, at this point it is worth
examining the differences in performance across all four solutions.

10. Select Compare Reports from the toolbar or the Project menu to open a comparison of the
solutions.

High-Level Synthesis www.xilinx.com 88

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=88

& XILINX. Interface Synthesis

11. In the Solution Selection dialog box, add each of the four solutions to the Selected Solutions
pane (Figure 81 81).

12. Click OK.
; éSqution Selection Dialog @
Solution Selection
Please select the solutions you want to compare
Available solutions: Selected solutions:
solutionl
Add> > solution2
T solution3
solutiond
OK] l Cancel

Figure 81: Compare All Solutions for Lab 3

When the solutions comparison report opens (Figure 82), it shows that solution4, using a unique
port for each array element, is much faster than the previous solutions. The intemallogic can
access the data as soonas it is required. (There is no performance bottleneck due to port accesses.)

£F compare reports &2 =B
Performance Estimates -
= Timing (ns)
Clock solutionl solution2 solution3 solutiond
default Target 4.00 4.00 4.00 4.00
Estimated 2.39 345 345 345

1

-l Latency (clock cycles)

solutionl solution? solution3 solutiond

Latency min 129 33 11 2
max 129 33 11 2
Interval min 130 34 12 3
max 130 34 12 3

Figure 82: Performance Comparisons for All Lab 3 Solutions

High-Level Synthesis www.xilinx.com 89

UG871 (v2014.1) May 6, 2014 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=89

& XILINX. Interface Synthesis

Scroll further down the comparison report (Figure 83) and note that solutions with more I/O
ports (solutions 2, 3 and 4), allowing more parallel processing, also use considerably more
resources.

£F compare reports &2 =B

Utilization Estimates

solutionl solution? solution3 solutiond

BRAM_18K O 0 0 0

DSP48E 0 0 0 0

FF 184 1238 1220 1154 =
LUT 96 1261 1185 1025

Figure 83: Resource Comparisons for All Lab 3 Solutions

In the next exercise, you implement this same design with an optimum balance between the
ports and resources. In addition to this more optimal implementation, the next exercise shows
how to add AXI4 interfaces to the design.

13. Exit the Vivado HLS GUI and return to the command prompt.

Interface Synthesis Lab 4: Implementing AXI4 Interfaces

Introduction

This exercise explains how to specify AX14 bus interfaces for the I/O ports. In addition to adding
AX14 interfaces this exercise also shows how to create an optimal design by using interface and
logic directives together.

Step 1: Create and Open the Project

1. From the Vivado HLS command prompt window used in the previous lab, change to the
lab4 directory.

2. Create a new Vivado HLS project by typing vivado_hls —f run_hls.tcl
Open the Vivado HLS GUI project by typing vivado_hls —p axi_interface_prj

4. Open the source code as shown in Figure 84.

High-Level Synthesis www.xilinx.com 90

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=90

& XILINX. Interface Synthesis

l¢| axi_interfaces.c &2 =8
46 #include "axi_interfaces.h" -
A7
48 // The data comes in organized in a single array.
49 /f - The first sample for the first channel (CHAN)
58 // - Then the first sample for the 2nd channel etc.
51// The channels are accumulated independently
52// E.g. For 8 channels:
53// Array Order : @ 1 2 3 4 5 6 7 8 9 1@ etc. 16 etc...
54/ Sample Order: A® BB CO D@ E@ FO G@ H® Al Bl c2 etc. A2 etc...

55// Output Order: A® B@ CO D@ E@ F@ GO H@ AB+Al BO+B1l CO+C2 etc. AG+AL+A2 etc...
56

57void axi_interfaces (dout t d o[N], din_t d i[N]) {

58 int i, rem;

L
o

// Store accumulated data
static dacc_t acc[CHANNELS];

]

1

// Accumulate each channel
For_Loop: for (i=0;i<N;i++) {
rem=i%CHANMELS ;
acc[rem] = acc[rem] + d_i[i];
d_o[i] = acc[rem];

Rt O T e T i T O s T T o T O o T o T
[V T '« RS [o R R = W 6

=
'l

Figure 84: Source code for Lab 4

This design uses similar source C code as Lab 3: with the design renamed to axi_interfaces.

Step 2: Create an Optimized Design with AXI4 Stream Interfaces

In the optimal performance implementation of this design, the data for each channel would be
processed in parallel, with dedicated hardware for each channel.

The key to understanding how best to perform this optimization is to recognize that the
channels in the input and output arrays lend themselves to cyclic partitioning. Cyclic partitioning

is fully explained in the Vivado HLS User Guide (UG902, but basically means each array element
is, in turn, sorted into a different partition.

In this exercise, you specify the array arguments to be implemented as AXI4 Stream interfaces. If
the arrays are partitioned into channels, you can stream the samples for each channel through
the design in parallel.

Finally, if the 1/O ports are configured to supply and consume individual streams of channel
data, partial unrolling of the for-loop can ensure dedicated hardware processes each channel.

First, partition the arrays:
1. Ensurethe C source code is visible in the Information pane.

2. Inthe Directives tab, select d_o and right-click to open the Directives Editor dialog box.

High-Level Synthesis www.xilinx.com 91

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=91

& XILINX. Interface Synthesis

Select the Directives drop-down menu at the top and select ARRAY_PARTITION.
b. Click the Type drop-down menu to specify cyclic partitioning.

c. Inthe Factor dialog box, enter the value 8, to create eight separate partitions. (This
results in eight ports.)

d. With the Directives Editor dialog box filled in as shown in Figure 85, click OK.

Vivado HLS Directive Editor

Type
Directive: | ARRAY_PARTITION -

Destination
Source File
@) Directive File

Options
variable (required): do

type (optional): cyclic -

factor (optional): 8

dimension (optional): 1

Help | ‘ Cancel | [0K

Figure 85: Directives Editor for Cyclic Partitioning

3. Inthe Directives tab, select d_o again and right-click to open the Directives Editor dialog
box.

a. Activate the Directives drop-down menu at the top and select INTERFACE.
b. Click the Mode drop-down menu to specify an axis interface.
c. Click OK.
4. Inthe Directives tab, select d_i and repeat steps 2 and 3 above.
a. Apply cyclic partitioning with a factor of 8.

b. Apply an axis interface.

High-Level Synthesis www.xilinx.com 92

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=92

& XILINX. Interface Synthesis

a.

Next, partially unroll and pipeline the for-loop:

In the Directives tab, select For_Loop and right-click to open the Directives Editor
dialog box.

Activate the Directives drop-down menu at the top and select UNROLL.

i. Select a factor of 8 to partially unroll the for-loop. This is equivalent to re-writing
the C code to execute eight copies of the loop-body in each iteration of the loop
(where the new loop only executes for four iterations in total, not 32).

ii. Click OK.

In the Directives tab, select For_Loop again and right-click to open the Directives Editor
dialog box.

i. Activate the Directives drop-down menu at the top and select PIPELINE.
ii. Leavethe Interval blank and let it default to 1.
ii. Select enable loop rewinding.

iv. Click OK.

When the top-level of the design is a loop, you can use the pipeline rewind option. This
informs Vivado HLS that when implemented in RTL, this loop runs continuously (with no end
of function and function re-start cycles).

After performing the above steps, the Directives tab should be as shown in Figure 86. Be
sure to check all options are correctly applied. If not, double-click the directive to re-open
the Directives Editor.

o= Outline | ¥ Directive & =8

@ axi_interfaces
4 do
% HLS INTERFACE axis port=d_o
% HLS ARRAY_PARTITION partition variable=d_o cyclic factor=8 dim=1
@ di
% HLS INTERFACE axis port=d_i
% HLS ARRAY_PARTITION partition variable=d_i cyclic factor=8 dim=1
=[1 acc
%' For_Loop
% HLS UMROLL factor=38
% HLS PIPELINE rewind

Figure 86: Directives tab for Lab 4 Solutionl

6. Synthesize the design.

High-Level Synthesis www.xilinx.com 93

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=93

& XILINX. Interface Synthesis

When the report opens in the information pane, confirm both d_i and d_o are implemented
as eight separate AXI4 Stream ports.

In the performance section of the design, confirm that the for-loop processes one sample
every clock cycle (Interval 1) with a latency of 3, and that the design has less area than
solutions 2, 3, or 4 in Lab 3 (Figure 83).

Cyclic partitioning of the array interfaces and partial for-loop unrolling has allowed
implementation of this C code as eight separate channels in the hardware.

Step 3: Implementing an AXI4-Lite Interfaces

In this exercise, you group block-level I/O protocol ports into a single AXI4 Lite interface, which
allows these block-level control signals to be controlled and accessed from a CPU.

1.

2
3.
4

Select New Solution from the toolbar or the Project menu to create and new solution.
Accept the defaults and click Finish. This includes copying existing directives from solutionl.
Ensure the C source code is visible in the Information pane.

In the Directives tab, select the top-level function axi_interfaces and right-click to open the
Directives Editor dialog box.

a. Activate the Directives drop-down menu at the top and select INTERFACE.

b. Activate the mode drop-down menu and select s_axilite. This specifies the ports
associated with the function return (the block-level I/O ports) are implemented as an
AXI4Lite interface. Since the default mode for the function return is ap_hs, there is
requirement to specify this I/O protocol.

c. Click OK.

The Directives tab appears, as shown in Figure 87.

o= Outline |4 Directive &3 « ="

% HLS INTERFACE s_axilite port=return
2 do
% HLS INTERFACE axis port=d_o
% HLS ARRAY_PARTITION partition variable=d_o cyclic factor=8 dim=1
@ di
% HLS INTERFACE axis port=d_i
% HLS ARRAY_PARTITION partition variable=d_i cyclic factor=8 dim=1
%1 acc
4 ' For_Loop
% HLS UNROLL factor=8
% HLS PIPELINE rewind

Figure 87: Directives for Specifying AXI4 Interfaces

High-Level Synthesis www.xilinx.com 94

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=94

& XILINX. Interface Synthesis

5. Synthesize the design.

When the report opens, only the RTL ports for the AXI4 Slave Lite interface appear in the
Interface summary.

6. Select Export RTL from the toolbar or the Solution menu, to create an IP package.

7. Leave the Format Selection as IP Catalog and click OK.

High-Level Synthesis www.xilinx.com 95

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=95

& XILINX.

Interface Synthesis

You can see theIP package in the solution2/impl folder (Figure 88). Because you used

the Vivado IP Catalog format, the package is in the ip folder.

[Explorer 2 = 8
4 25 axi_interfaces_prj
ki Includes
= Source
= Test Bench
£3 solutionl
4 Y= solution2
& constraints
4 = impl
4= ip
= autoimpl.log
auxiliary.xml
componentxml
=l packbat
& run_ippack.tcl
=l vivado.jou
= vivado.log
= xilinx_com_hls_axi_interfaces_1_0.zip
&= bd
& constraints
= doc
4 |[= drivers
4 = axi_interfaces v1 0
= data
4 (= srC
L& Makefile
[€ xaxi_interfaces hw.h
[€ xaxi_interfaces_linux.c
[£ xaxi_interfaces sinit.c
[€ xaxi_interfaces.c
[£ xaxi_interfaces.h
= example
= hdl
= misc
= subcore
= xgui
= verilog
= vhdl
= syn

Figure 88: IP Package with AXI4 Interfaces

High-Level Synthesis www.xilinx.com
UG871 (v2014.1) May 6, 2014

96

| Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=96

& XILINX. Interface Synthesis

The ip folder includes the drivers subfolder, as shown in Figure 88.

When you add an AX14-Lite interface to the design, the IP packaging process also creates
software driver files to enable an external block, typically a CPU, to control this block (start it,
stop it, set port values, review the interrupt status).

8. Double-click the xaxi_interfaces_hw.h file to open it in the Information pane.

High-Level Synthesis www.xilinx.com 97

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=97

& XILINX. Interface Synthesis

This shows the addresses to access and control the block-level interface signals For example,
setting control register 0x0 bit O to the value 1 will enable the ap_start port, or alternatively,
setting bit 7 will enable the auto-restart and a the design will re-start automatically at the
end of each transaction.

The remaining C driver files are used to integrate control of the AXI4 Slave Lite interface into
the code running on a CPU or microcontroller and are included in the packaged IP.

wril axi_interfaces_top.v i =0
_l(f ————————————— - -
2// File generated by Vivado(TM) HLS - High-Level Synthesis from C, C++ and SystemC
3// Version: 2013.3
4// Copyright (C) 2013 Xilinx Inc. All rights reserved.
57/

m

8 timescale 1 ns / 1 ps

9module axi interfaces top (
10s_axi AXTALiteS_ AWADDR,
11s_axi AXTALiteS AWVALID,
12s_axi AXTALiteS AWREADY,
13s_axi AXTALiteS WDATA,
145 _axi AXTALiteS WSTRB,
155 _axi AXT4LiteS WVALID,
165_axi_AXI4LiteS_WREADY,
17 s_axi_AXIALiteS_BRESP,
18s_axi_ AXIALiteS_BVALID,
19s_axi AXIALiteS BREADY,
20's_axi AXI4LiteS ARADDR,
215 _axi AXI4LiteS ARVALID,
22 5_axi AXT4LiteS ARREADY,
23 s_axi AXT4LiteS RDATA,
245 _axi AXT4LiteS RRESP,
25s_axi_ AXI4LiteS_RVALID,
26 s_axi_AXI4LiteS_RREADY,
27 interrupt,
28 aresetn,
29 aclk, -

F [

Figure 89: IP HDL with AXI4 Interfaces

High-Level Synthesis www.xilinx.com 98

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=98

& XILINX.

[Explorer &2
4 = axi_interfaces_prj
s ! Includes
> £ Source
> = Test Bench
+ [3 solutionl
a = solution2
- @ constraints
4 = impl
4 [=ip
|2 autoimpl.log
[l auxiliaryxml
|51 componentxml
|2 packbat
W run_ippack.tcl
|5 vivadojou
[=l vivado.log
|2l xilinx_com_hls_axi_interfaces 1_0.zip
= bd
> 4 constraints
» = doc
= drivers
4 (= axi_interfaces_v1_0
- = data
4 (= src
Le Makefile
[€ xaxi_interfaces_hw.h
[€ xaxi_interfaces_linux.c
[€ xaxi_interfaces_sinit.c
[€ xaxi_interfaces.c
[€ xaxi_interfaces.h
> = example
: (= hdl
+ = misc

S

(= subcore

Conclusion

In this tutorial, you learned:

& = O|[[H xaxi_interfaces_hw.h 2

Interface Synthesis

1//

2// File generated by Vivado(TM) HLS - High-Level Synthesis from C, C++ and SystemC

3// Version: 2014.1
4// Copyright (C) 2014 Xilinx Inc. All rights reserved.

5/1

6//

7

8// AXILites

9// 6x@ : Control signals

10// bit @ - ap_start (Read/Write/COH)

11// bit 1 - ap_done (Read/COR)

12 // bit 2 - ap_idle (Read)

13 // bit 3 - ap_ready (Read)

14 // bit 7 - auto_restart (Read/Write)

15// others - reserved

16 // x4 : Global Interrupt Enable Register

17// bit @ - Global Interrupt Enable (Read/Write)
18// others - reserved

19// 6x8 : IP Interrupt Enable Register (Read/Write)
20// bit @ - Channel @ (ap_done)

21// bit 1 - Channel 1 (ap_ready)

22// others - reserved

23// @xc : IP Interrupt Status Register (Read/TOW)
2471/ bit @ - Channel @ (ap_done)

25// bit 1 - Channel 1 (ap_ready)

26// others - reserved

27// (SC = Self Clear, COR = Clear on Read, TOW = Toggle on Write, COH = Clear on Handshake)
28

29 #define XAXI_INTERFACES_AXILITES_ADDR_AP_CTRL ©0x@
30 #define XAXI_INTERFACES_AXILITES_ADDR_GIE Ox4
31 #define XAXI_INTERFACES_AXILITES_ADDR_IER Ox8
32 #define XAXI_INTERFACES_AXILITES_ADDR_ISR @xc
33

34

Figure 90: IP Software Driver Files

e What block-level I/O protocols are and how to control them.

¢ How to specify and apply port-level I/O protocols.

e How to specify array ports as RAM and FIFO interfaces.

e How to partition RAM and FIFO interfaces into sub-ports.

e How touse both I/O directives and optimization directives to create an optimal design with

AXI4 interfaces.

High-Level Synthesis
UG871 (v2014.1) May 6, 2014

www.Xilinx.com

| Send Feedback l

99

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=99

& XILINX.

Chapter 5 Arbitrary Precision Types

Overview

C/C++ provided data types are fixed to 8-bit boundaries:

e char (8-bit)

e short (16-bit)

e int (32-bit)

e long long (64-bit)

e float (32-bit)

e double (64-bit)

e Exact width integer types such as int16_t (16-bit) and int32_t (32-bit)

When creating hardware, it is often the case that more accurate bit-widths are required.
Consider, for example,a case in which the input to a filter is 12-bit and the accumulation of the
results only requires a maximum range of 27 bits. Using standard C data types for hardware
design results in unnecessary hardware costs. Operations can use more LUTs and registers than
needed for the required accuracy, and delays might even exceed the clock cycle, requiring more
cycles to compute the result.

Vivado High-Level Synthesis (HLS) provides a number of bit-accurate or arbitrary precision data-
types, allowing you to model variables using any (arbitrary) width.

This tutorial consists of a two lab exercises:

e Labl - Synthesize a design using floating-point types and review the results. The design uses
standard C+ + floating-point types.

e Lab2 -Synthesize the same function used in Lab 1 using arbitrary precision fixed-types
highlighting the benefits in accuracy and results. This exercise shows how this same design

can be converted to the Vivado HLS ap_fixed types, retaining the required accuracy but
creating a more optimal hardware implementation

Tutorial Design Description

Download the tutorial design file from the Xilinx website. See the information in

High-Level Synthesis www.xilinx.com 100

UG871 (v2014.1) May 6, 2014
l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=100

& XILINX. Arbitrary Precision Types

Obtaining the Tutorial Designs. This tutorial uses the design files in the tutorial directory
Vivado_HLS_Tutorial\Arbitary_Precision.

Arbitrary Precision: Lab 1

Arbitrary Precision Lab 1: Review a Design using Standard C/C+ + types

In this lab, you synthesize a design using standard C types. You use this design as a reference for
the design using arbitrary precision types, which is the basis for Lab 2.

IMPORTANT: The figures and commands in this tutorial assume the tutorial data
directory Vivado_HLS_Tutorial is unzipped and placed in the location

ﬁ C:\Vivado_HLS Tutorial
If the tutorial data directory (s unzipped to a different location, or on Linux systems, adjust
the few pathnames referenced, to the location you have chosen to place the
Vivado_HLS_Tutorial directory.

Step 1: Create and Open the Project
1. Open the Vivado HLS Command Prompt.

a. On Windows use Start > All Programs > Xilinx Design Tools > Vivado 2014.1 >
Vivado HLS > Vivado HLS 2014.1 Command Prompt (Figure 91).

b. On Linux, open a new shell.

Bl Vivado 2014.1 Tcl Shell
g Vivado 20141
@ Xilink Microprocessor Debugger 2014.1
e Cilinx SDK 2014.1
System Generator
Vivado HLS
Bl Vvivado HLS 2014.1 Command Promg
7| vivado HLS 2014.1

Figure 91: Vivado HLS Command Prompt

High-Level Synthesis www.xilinx.com 101

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=101

& XILINX.

Arbitrary Precision Types

2. Inthe command prompt window (Figure 92), change the directory to the Arbitrary Precision
tutorial, lab1.

3. Execute the Tdl script to setup the Vivado HLS project, using the command as shown in
Figure 92

vivado _hls —F run _hls.tc

C:\Uivado_HLS_ Tutorial\Arbitrar

Figure 92: Setup the Tutorial Project

C:\Wivado_HLS_Tutorial>cd Arbitrary_Precision

C:\Vivado_HLS_Tutorial\Arbitrary_Precision>cd labil

vivado_hls —p window_fn_prj as shown in Figure 93.

P
24
25
26
27
28
29
30
31

H- H- H- H- H- H: - . -

hu_result
hw_result
hw_result
hw_result
hw_result
hw_result
hw_result
hu_result
hw_result

Test Passed
RI [SIM-1] CSim done with 0 errors.
@I [LIC-181] Checked in feature [HLS]

38.24289
32.00000
25.75711
19. 75413
14.22175
9.37258
5.39297
2.43585
0.61487

sW_result
sW_result
sW_result
sW_result
sW_result
sW_result
sW_result
sW_result
sW_result

38.24289
32.00000
25.75711
19. 75413
14 22175
9.37258
5.39297
2.43585
0.61487

_Precision\labl>vivado_hls -f run_hls.tcl

When Vivado HLS completes, open the project in the Vivado HLS GUI using the command

1 (1

1 |11

C:\Uivado_HLS_Tutorial:Arbitrary_Precision\labl>vivado_hls -p window_fn_prj

Figure 93: Initial Project for Arbitrary Precision Lab 1

Step 2: Review Test Bench and Run C Simulation

1. Open the Source folder in the explorer pane and double-click window_fn_top.cpp to
open the code as shown in Figure 94.

www.Xilinx.com 102

| Send Feedback I

High-Level Synthesis
UG871 (v2014.1) May 6, 2014

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=102

& XILINX. Arbitrary Precision Types

[Explorer &2 w7 B [¢ window_fn_top.cpp & =0
4 =% window_fn_prj 45 #include "window_fn_top.h" // Provides typedefs and params i
- ki Includes 46
4 Z Source 47 // Include the entire xhls_window_fn namespace so that scope re
& window_fn_top.cpp 48 // i.e. prepending xhls window fn:: to everything -- is not ne
- 49 using namespace xhls window fn;
- fim Test Bench 50
4 & solutiont 51 //Vivado HLS fequiPes a top-level function definition that wraj
4 & constraints 52// instantiations and method calls to be synthesized as well a:
W directives.tcl 53// the top-level I/0 (function arguments) into/out of the meth:
W scripticl 54void window_fn_top(I
4 = csim 55 win_fn_out_t outdata[WIN_LEN], ‘E
. & build 56 win_fn_in_t indata[WIN_LEN])
- = report A

58 // Instantiate a window_fn object - types and params define:_
rn R [R . r_ . . P s . Jy r _—— -

B . —
< | 1 | 3

Figure 94: C Code for C Validation Lab 3

2. Hold down the Control key and click the window_fn_top.h on line 45 to open this header
file.

3. Scroll down to view the type definitions (Figure 95).

[¢] window_fn_top.cpp T window_fn_top.h i3 =0
S5d// Test parameters pil
51 #define FLOAT_DATA // Used to select error tolerance in test pi
52 #define WIN_TYPE xhls_window_fn::HANN
53 #define WIN_LEN 32
54
55 // Define floating point types for input, output and window cos
56 typedef float win_fn_in_t;

57 typedef float win_fn_out_t;

58 typedef float win_fn_coef t;

59

68 // Top level function prototype - wraps all object, method and
61void window_fn_top{win_fn_out t outdata[WIN_LEN], win_fn_in t | |
62 F‘
63 #endif // WINDOW FN_TOP H_ P
64 o

4 | 1] | P

11

Figure 95: Type Definitions for C Validation Lab 3

This design uses standard C/C+ + floating-point types for all data operations. Vivado High-Level
Synthesis can synthesize floating-point types directly into hardware, provided the operations are
standard arithmetic operations (+, -, *, % etc.).

When using math functions from math.h or cmath.h, refer to the Vivado HLS User Guide (ug902)
for details on which math functions are supported for synthesis.

4. Click the Run C Simulation toolbar button to open the C Simulation Dialog box

5. Accept the default setting (no options selected) and click OK.

High-Level Synthesis www.xilinx.com 103

UG871 (v2014.1) May 6, 2014 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=103

& XILINX. Arbitrary Precision Types

The Console pane shows that the design simulates with the expected results.

Step 3: Synthesize the Design and Review Results
1. Click the Run C Synthesis toolbar button to synthesize the design to RTL.

When synthesis completes, the synthesis report opens automatically. Figure 96 shows the
synthesis report.

=l window_fn_top_csynth.rpt 2 =g

EPerfnrmance Estimates -
-1 Timing (ns)
= Summary

Clock Target Estimated Uncertainty
default 5.00 3.75 0.63
-1 Latency (clock cycles)

- Summary

Latency Interval

111

min max min max Type
257 257 258 258 none

=l Detail
+ Instance

+ Loop

Utilization Estimates

- Summary
MName BRAM_18K DSP48E FF LUT
Expression - - i} 12
FIFO - - - -
Instance - 3 151 325
Memory 1 - - -
Multiplexer - - - 6
Register - - 118 -
ShiftMemory - - - -

Total 1 3 269 343 -
] 1 P

Figure 96: Synthesis Report for Floating Point Design

Instances in the top-level design account for most of the area used.

2. Scroll down the report and expand the Instances in the Details section of the Area Estimates
(Figure 97).

High-Level Synthesis www.xilinx.com 104

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=104

& XILINX. Arbitrary Precision Types

Detail L
=||| & Instance [
Instance Module BRAM_18K DSP48E FF LuT
window_fn_top_fmul_32ns_32ns_32_5_max_dsp_Ul window_fn_top_fmul_32ns_32ns_32_5_max_dsp 0 3 151 325
Total 1 0 3 151 325
+ Memory B
FIFO

+ Shift register
+ Expression

+ Multiplexer

+ Register

Figure 97: Area Details for Floating Point Design

The details show this is a floating-point multiplier (fmul). Floating-point operations are costly in
terms of area and clock cycles. The Analysis perspective (Figure 98) shows this operator is also
responsible for most of the clock cycles (five of the eight states it takes to execute the logic
created by loop winfn).

More details on using the Analysis perspective are available in the tutorial Design Analysis. For
the purposes of understanding this design, two of the operations in the first state are two-cycle

read-from-memory operations, and the operation in the final state is a write-to-memory
operation.

| Vivado HLS - window_fn_prj (C:\Vivado_HLS_Tutorial\Arbitrary_Precision\labl\window_fn_prj) =N ECE =
File Edit Project Solution Window Help
B d@ve Ble|®
%% Debug s ,Synthesil
¥ Module Hierarchy = 0 [d window_fn_top.cpp @ window_fn_classh | = Performance - window 3 . ™ =0)
BRAM DSP FF LU1
= Current Module : window fn top
© window_fn_top 1 3 269 351
Operation\Control S | co L cl c2 | c3 || c4 | c5 | cé6 | c7 | c8 |
[-]winfn_loop =
[exitcond (1cmp
< i » i_l &3] =
£7 Performance || Resource Pr &2 =8 coeff tab loa
BRAM DSp 4 indata load(r
® window fntop 1 3 = | tmp 1i(fmul)]
43 /O Ports(2) node ~Ufwrite
fs Instances(l) 0 3 =
&8 Memories(1) 1 ¥ | >l
< LLL} 3 _Performance Resource Sharing
Figure 98: Performance Details for Floating Point Design
3. Exit the Vivado HLS GUI and return to the command prompt.
High-Level Synthesis www.xilinx.com 105

UG871 (v2014.1) May 6, 2014 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=105

& XILINX. Arbitrary Precision Types

Arbitray Precision: Lab 2

Review a Design using Arbitrary Precision types

Introduction

This lab exercise uses the same design as Lab 1, however, the data types are now arbitrary
precision types. You first review the design and then examine the synthesis results.

Step 1: Create and Simulate the Project

1. From the Vivado HLS command prompt used in Lab 1, change to the lab2 directory as
shown in Figure 99.

2. Create a new Vivado HLS project by typing vivado_hls —f run_hls.tcl

M| »

:\Vivado_HLS_Tutorial>ed Arbitrary_Precision\labil

:\Uivado_HLS_Tutorial\Arbitrary_Precision\labl>cd ..

:\Vivado_HLS_Tutorial\Arbitrary_Precision>cd lah2

:\Uivado_HLS_Tutorial\Arbitrary_Precision\lab2>vivado_hls -f run_hls.tcl

Figure 99: Setup for Interface Synthesis Lab 2

3. Open the Vivado HLS GUI project by typing vivado_hls —p window_fn_pr;j.

High-Level Synthesis www.xilinx.com 106

UG871 (v2014.1) May 6, 2014 | Send Feedback |

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=106

& XILINX. Arbitrary Precision Types

4. Open the Source folder in the explorer pane and double-click window_fn_top.cpp to open
the code as shown in Figure 100.

5 Explorer 52 v = O|[[2 window_fn_top.cpp & =0
bcwindowifniprj 44K<K<x<x<x<x<x<x<x<x<x<x<x<x<x<x<x<x<x<x<x<x=<x=<K=<2<xxxxxxxxxxxxxxx“““x‘xA
&l Includes 45 #include "window_fn_top.h"™ // Provides typedefs and params
= Source 46
T T e 47 // Include the entire xhls window fn namespace so that scope resolution --
it Test B h7 - 48 // i.e. prepending xhls_window_fn:: to everything -- is not necessary
=l 1S _en(49 using namespace xhls_window_fn;
= solution 5@
@ constraints 51 //Vivado HLS requires a top-level function definition that wraps all obje
o directives.tcl 52 // instantiations and method calls to be synthesized as well as mapping
' scripttcl 53 // the top-level I/0 (function arguments) into/out of the methods/functio
& csim 54veoid window_fn_top(=
& build 55 win_fn_out_t outdata[WIN_LEN],
56 win fn_in t indata[WIN_LEN]) b
= report 574

58 // Instantiate a window_fn object - types and params defined in header -
< | 11 »

Figure 100: C Code for Arbitrary Precision Lab 2

5. Hold the Control key down and click window_fn_top.h on line 45 to open this header file.

6. Scroll down to view the type definitions (Figure 101).

[¢] window_fn_top.cpp T window_fn_top.h &2 =0

54 // Types and top-level function prototype -
55 #include <ap_int.h>

56 // Define widths of fixed point fields

57 #define W_IN 8

58 #define IW_IN &

59 #define W _OUT 24

650 #define IW_OUT 8

1 #define W_COEF 18

#define IW COEF 2

// Define fixed point types for input, output and coefficients

5typedef ap_fixed<W_IN,IW_IN> win_fn_in_t;

typedef ap fixed<W OUT,IW OUT> win_fn_out t;

typedef ap fixed<W COEF,IW COEF>» win_fn_coef t; b

N I R WU

il

B =] o

Lo T T T T R W i

P - .~ - . P a -

L 3

]

o

Figure 101: Type Definitions for Arbitrary Precision Lab 2

This header file, window_fn_top.h, is the only file that is different from Lab 1. The data types
have been changed to ap_fixed point types, which are similar to float and double types in that
they support integer and fractional bit representations. These data types are defined in the
header file ap_Ffixed.h. The definitions in the header file define sizes of the data types:

e The first term defines the total word length.
e The Second term defines the number of integer bits.

e The number of fractional bits is therefore the first term minus the second.

High-Level Synthesis www.xilinx.com 107

UG871 (v2014.1) May 6, 2014 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=107

& XILINX. Arbitrary Precision Types

When you revise C code to use arbitrary precision types instead of standard C types,one of the
most common changes you must make is to reduce the size of the data types. In this case, you
change the design to use 8-bit, 24-bit, and 18-bit words instead of 32-bit float types. This results
in smaller operators, reduced area, and fewer clock cycles to complete.

Similar optimizations help when you change more common C types such as int, short, and char.

For example, changing a data type that only needs to be 18-bit from int (32-bit) ensures that
only a single DSP48 is required to perform any multiplications.

In both cases, you must confirm that the design still performs the correct operation and that it
does so with the required accuracy. The benefit of the arbitrary precision types provided with
Vivado High-Level Synthesis is that you can simulate the updated C code to confirm its function
and accuracy.

7. Open the Test Bench folder in the Explorer pane and double-click
window_fn_top_test.cpp to open the code.

8. Scroll down to see the view shown in Figure 102.

5 Explorer 2 4 = O [¢ window_fn_top.cpp T window_fn_top.h .¢ window_fn_test.cpp &2 =8

~J

J
~

=% window_fn_prj window_fn_top(hw result, testdata); -

& Includes o :
// Check results

-
co

= Source

=

i 9 cout << "Checking results against a tolerance of " << ABS_ERR_THRESH << endl;
g window_fn_top.cpp 30 cout << fixed << setprecision(5);
f= Test Bench 31 for (unsigned i = @; i < WIN_LEN; i++) {
lel window_fn_test.cpp 82 float abs_err = float(hw_result[i]) - sw_result[i];
= solutioni 23 #if WINDOW_FN_DEBUG
constraints 84 cout << "1 =" << 1 << "\thw_result = " << hw_result[i];
4 directivestcl 85 cout << "\t sw_result = " << sw_result[i] << endl;
@ scripttcl SGftendif
T 87 if (fabs(abs_err) > ABS_ERR_THRESH) {
= csim 38 cout << "Error threshold exceeded: i = " << i;
= build 89 cout << " Expected: " << sw_result[i];
= report 90 cout << " Got: " << hw_result[i];
91 cout << " Delta: " << abs_err << endl; B
92 err_cnt++;
93 }
94}
95

cout << endl; -

Figure 102: Test Bench for Arbitrary Precision Lab 2

The test bench for this design contains code to check the accuracy of the results. The expected
results are still generated using float types. The result checking verifies that the results are within
a specified range of accuracy (in this case, within 0.001 of the expected result).

This allows the updated design to be validated quickly and efficiently in C, with fast compile and
run times.

9. Click the Run C Simulation toolbar button to open the C Simulation Dialog box
10. Accept the default setting (no options selected) and click OK.

The Console pane shows the results of the C simulation. With the updated data types, the results
are no longer identical to the expected results. However, they are within tolerance.

High-Level Synthesis www.xilinx.com 108

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=108

& XILINX.

E Console 2

= 24
= 25
= 26
= 27
28
= 29
= 30
= 31

(ST = R = T = TR = T O T
1}

hw_result = 32 sw_result = 32.00000

hw_result = 25.757
hw_result = 19.754
hw_result = 14.222
hw_result = 9.3721
hw_result = 5.3926
hw_result = 2.4355
hw_result = 8.61426

Test Passed

@] Errors| & Warnings

sw_result

sw_result =

sw_result

sw_result =
sw_result =

sw_result

sw_result =

Arbitrary Precision Ty

pes

REEEE O
<terminated> window_fn_prj.Debug [C/C++ Application] C\Vivado_HLS_Tutorial\Arbitrary_Precision\lab2\window_fn_prj\solution1\csim\build

25.75711
19.75413
14.22175
9.37258
5.39297
2.43585
0.61487

Figure 103: C Simulation Results for Fixed Point Types

Step 2: Synthesize the Design and Review Results
1. Click the Run C Synthesis toolbar button to synthesize the design to RTL.

-~

m

When synthesis completes, the synthesis report opens automatically. Figure 104 shows the
synthesis report.

High-Level Synthesis

UGS871 (v 2014.1) May 6, 2014

www.Xilinx.com

l Send Feedback I

109

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=109

& XILINX. Arbitrary Precision Types

=l window fn_top_csynth.rpt i3 =0
Performance Estimates
-l Timing (ns)
= Summary
Clock Target Estimated Uncertainty
default 5.00 349 0.63
- Latency (clock cycles)

= Summary

Latency Interval

m

min max min max Type
193 193 194 194 none

-1 Detail

+ Instance

+ Loop —

Utilization Estimates

- Summary
Name BRAM_18K DSP48E FF LUT

Expression - - 0 12

FIFO - - - -

Instance - 1 0 i}

Memary 1 - - -

Multiplexer - - - 6

Register - - 70 -

ShiftMemary - - - -

Total 1 1 70 18 -

Figure 104: Synthesis Report for Fixed Point Design

Note that through use of arbitrary precision types, you have reduced both the latency and the
area (by 25% and 60% respectively), and the operations in the RTL hardware are no larger than
necessary.

2. Scroll down the report to the Interface summary (Figure 105).

Figure 105 shows the data ports are now 8-bit and 24-bit.

High-Level Synthesis www.xilinx.com 110

UG871 (v2014.1) May 6, 2014 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=110

& XILINX. Arbitrary Precision Types

el window _fn_top csynth.rpt &3 =0
Interface ‘
- Summary
RTL Ports Dir Bits Protocol Source Object C Type
ap_clk in 1 ap_ctrl_hs window_fn_top return value
ap_rst in 1 ap_ctrl_hs window_fn_top return value
ap_start in 1 ap_ctrl_hs window_fn_top return value
ap_done out 1 ap_ctrl_hs window_fn_top return value
ap_idle out 1 ap_ctrl_hs window_fn_top return value
ap_ready out 1 ap_ctrl_hs window_fn_top return value
outdata V_address0 out 5 ap_memary outdata V array
outdata_V_cel out 1 ap_memaory outdata_V array
outdata_V_wel out 1 ap_memaory outdata V array
outdata_V_d0 out 24 ap_memory outdata_V array B
indata_V_address0 out 5 ap_memary indata_V array N
indata_V_cel out 1 ap_memaory indata_V array
indata_V_qg0 in 8 ap_memaory indata_V array
e i d ¢

Figure 105: Fixed Point Interface Summary

3. Exit the Vivado HLS GUI and return to the command prompt.

Conclusion
In this tutorial, you learned:

e How to update the existing standard C types to Vivado High-Level Synthesis arbitrary
precision types.

e The advantages in terms of hardware performance and area of using bit-accurate data-
types.

High-Level Synthesis www.xilinx.com 111

UG871 (v2014.1) May 6, 2014 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=111

& XILINX.

Chapter 6 Design Analysis

Overview

The general design methodology for creating an RTL implementation from C, C++ or SystemC
includes the following tasks:

e Synthesizing the design.
e Reviewing the results of the initial implementation.
e Applying optimization directives to improve performance.

You can repeat the steps above until the required performance is achieved. Subsequently, you
can revisit the design to improve area.

A key part of this process is the analysis of the results. This tutorial explains how to use the

reports and the GUI Analysis perspective to analyze the design and determine which
optimizations to apply.

This tutorial consists of a single lab exercise that:

e Demonstrates the HLS interactive analysis feature

e Takes you through one design from the initial implementation through six steps and
multiple optimizations to produce the final optimized design

As demonstrated throughout the tutorial, performing these steps in a single project gives you
the ability to compare the different solutions easily.

Lab1l

Synthesize and analyze a DCT design. Use the insights from the design analysis to apply
optimizations and judge the effectiveness of the optimization.

Tutorial Design Description

You can download the tutorial design file from the Xilinx Website. Refer to the information in
Obtaining the Tutorial Designs.

This tutorial uses the design files in the tutorial directory
Vivado_HLS_Tutorial\Design_Analysis.

High-Level Synthesis www.xilinx.com 112

UG871 (v2014.1) May 6, 2014
l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=112

& XILINX. Design Analysis

The sample designs used in the lab exercise is a 2-D DCT function. To highlight the design
analysis feature, your goal is to have this design operate with an interval of 100 or less. The
design should be able to process a new set of input data at least every 100 clock cycles.

Lab 1: Design Optimization

This exercise explains the basic operations of the GUI Analysis perspective and how you can use
it to drive design optimization.

IMPORTANT: The figures and commands in this tutorial assume the tutorial data

directory Vivado_HLS_Tutorial s unzipped and placed in the location
ﬁ C:\Vivado HLS Tutorial

If the tutorial data directory is unzipped to a different location, or if it is on a Linux

system, adjust the few pathnames referenced to the location at which you placed the

Vivado_HLS_Tutorial directory.

Step 1: Create and Open the Project
1. Open the Vivado HLS Command Prompt.

a. On Windows click Start > All Programs > Xilinx Design Tools > Vivado 2014.1 >
Vivado HLS > Vivado HLS 2014.1 Command Prompt (Figure 106).

b. On Linux, open a new shell.

Bl Vivado 2014.1 Tcl Shell
g Vivado 20141
@ Xilink Microprocessor Debugger 2014.1
e Cilinx SDK 2014.1
System Generator
Vivado HLS
Bl Vvivado HLS 2014.1 Command Promg
7| vivado HLS 2014.1

Figure 106: Vivado HLS Command Prompt

2. Using the command prompt window (Figure 107), change the directory to the Design
Analysis tutorial, labl.

3. Execute the Tcl script to setup the Vivado HLS project, using the command vivado_hls —f
run_hls.tcl, as shown in Figure 107.

High-Level Synthesis www.xilinx.com 113

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=113

& XILINX. Design Analysis

C:\Vivado_HLS_Tutorial\Arbitrary_Precision>cd ..

C:\Uivado_HLS_Tutorial>cd Design_Analysis

C:\Vivado_HLS_Tutorial\Design_Analysis>cd labl

C:\Uivado_HLS_Tutorial\Design_Analysis\labl>vivado_hls -f run_hls.tcl

Figure 107: Setup the Design Analysis Tutorial Project

4. When Vivado HLS completes, open the project in the Vivado HLS GUI using the command
vivado_hls —p dct_prj as shown in Figure 108.

RI [HLS-10] Cleaning up the solution database.

BI [HLS-10] Setting target device to 'xcTk160tfbgid4-1"

BRI [SYN-201] Setting up clock ‘default’ with a period of 8&ns.
Compiling ../../../../dct_test.cpp in debug mode
Compiling ../../../../det . cpp in debug mode
Generating csim.exe

Test passed !

RI [SIM-1] CSim done with © errors.

RI [LIC-101] Checked in feature [HLS]

C:\Uivado_HLS_Tutorial‘\Design_Analysis\labl>vivado_hls -

Figure 108: Open Design Analysis Project for Lab 1

Step 2: Review the source Code and Create the Initial Design
1. Double-click the file dct.cpp in the Source folder to open the source code for review. .

This example uses a DCT function. Figure 109 shows an overview of this code.

High-Level Synthesis www.xilinx.com 114

UG871 (v2014.1) May 6, 2014 | Send Feedback |

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=114

& XILINX.

Design Analysis

Hierarcny Loops Latatiow

Figure 109: Overview of the DCT design

e The left side of Figure 109 shows the code hierarchy.
0 Top-level function dct has three sub-functions: read_data, dct_2d and write_data.
0 Function dct_2d has a single sub-function dct_1d.

e The center of Figure 109 shows loops inside each of the functions.

e The right side of Figure 109 shows the how the data is processed through the functions and
loops.

0 The read_data function executes, and the data is processed through loop
RD_Loop_Row, which has a sub-loop RD_Loop_Col.

0 After the read_data function completes, function dct_2d executes.

o Infunction dct_2d, Row_DCT_Loop processes the data. Row_DCT_Loop has two
nested loops inside it: DCT_output_loop and DCT_inner_loop.

o DCT_inner_loop calls function dct_1d.
And so on, until the function write_data processes the data.

2. Click the Run C Synthesis toolbar button to synthesize the design to RTL.

High-Level Synthesis www.xilinx.com 115

UG871 (v2014.1) May 6, 2014 l Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=115

& XILINX. Design Analysis

Step 3: Review the performance using the Synthesis Report

When synthesis completes, the synthesis report opens automatically. Figure 110 shows the
performance section of the report.

=l dct_csynth.rpt 3 =l
Performance Estimates

=1 Timing (ns)

= Summary

Clock Target Estimated Uncertainty
default 8.00 579 1.00

-1 Latency (clock cycles)

1

=l Summary
Latency Interval
min max min max Type
3959 3959 3960 3960 none
= Detail

-l Instance
Latency Interval
Instance Maodule min max min max Type
grp_dct_2d_fu_152 dct_2d 3668 3668 3668 3668 none

= Loop
Latency Initiation Interval
Loop Name min max [eration Latency achieved target Trip Count Pipelined
- RD_Loop_Row 144 144 18 - - 8 no
+ RD_Loop_Col 16 16 2 - - 8 no
- WR_Loop_Row 144 144 18 - - 8 no
+ WR_Loop_Cal 16 16 2 - - 8 no

Figure 110: Report for initial DCT Design

Figure 110 highlights the following information.
e The clock frequency of 8 ns has been met.
e The top-level design takes 3959 clock cycles to write all the outputs.

e You can apply new inputs after 3960 clock cycles. This is one clock cycle after the output
data has been written. This immediately reveals that the design is not pipelined, but this fact
is also noted in the report: type is set to none and not pipelined.

e The top level has a single instance, which has a latency and initiation interval of 3668.
0 This block also has no pipelining and accounts for most of the clock cycles.

¢ Notice that the functions read_data and write_data are not noted here as instances of the
top level.

High-Level Synthesis www.xilinx.com 116

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=116

& XILINX. Design Analysis

0 Figure 111 shows that, during synthesis, these blocks were automatically inlined (the
hierarchy was removed).

0 High-level synthesis might automatically inline small functions to improve the quality
of results (QoR). You can prevent this by adding the Inline directive with the -off
option the function.

El Consale &3 . €] Errors| & Warnings EwpA =70
Vivado HLS Console
E‘UJ_ LHLJ_J.UJ JLUI'Llllg CLOUT LransiurmacIons ... Ll

@I [HLS-18] Checking synthesizability ...

[XFORM-602] Inlining function ‘read data' into 'dct' (dct.cpp:128) automatically.
[XFORM-6082] Inlining function 'write data' into 'dct' (dct.cpp:133) automatically.
BI [HLS-111] Elapsed time: 7.476 seconds; current memory usage: 70.6 MB.

@I [HLS-18] Starting hardware synthesis ...

@I [HLs-18] Synthesizing "dct' ... -
< | 1 »

Figure 111: Automatic Inlining for Functions

e The loops in the read_data and write_data functions are therefore implemented at the top
level and are reported as loops in the top-level function (Figure 110).

e Each loop has alatency of 144 clock cycles. (Because the loops are not pipelined, thereis no
initiation interval.)

e Using RD_Loop_Row as an example, you can see why the loop latency is 144.

0 Sub-loop RD_Loop_Col has a latency of 2 cycles for each iteration of the loop
(iteration latency) and a tripcount of 8: 2 x 8 = 16 clock cycles total latency for the
loop.

0 From RD_Loop_Row, it takes 1 clock to enter loop RD_Loop_Coland 1 clock cycle to
return to RD_Loop_Row. The iteration latency for RD_Loop_Row is therefore (1 + 16
+1) 18 clock cycles.

0 RD_Loop_Row has a tripcount of 8 so the total loop latency is 8 x 18 = 144 clock
cycles.

e The total latency for the dct block is therefore:
0 144 clocks for RD_Loop_Row.
0 Plus 3668 clock cycles for dct_2d.
0 Plus 144 clock cycles for WR_Loop_Row.
0 Plusa clock cycle to enter each block.

To review the details of the instantiated sub-blocks dct_2d and dct_1d, open their respective
reports from the syn/reports folder under solutionl in the Explorer pane.

You can also use the design analysis perspective to review these details in a more interactive
manner.

High-Level Synthesis www.xilinx.com 117

UG871 (v2014.1) May 6, 2014 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=117

& XILINX. Design Analysis

Step 4: Review the Performance using the Analysis Perspective

Invoke the Analysis perspective any time after synthesis completes.

1. Click the Analysis perspective button (Figure 112) to begin interactive design analysis.

i é‘v’ivado HLS - dct_prj (CA\Vivado_HLS_Tutorial\Design_An:
File Edit Project Solution Window Help
B oAvE B @

%% Debug [| Synthesis

Figure 112: Opening the Analysis perspective

The Analysis perspective consists of five panes, each of which is highlighted in Figure 113. You
use all of these in the tutorial. The module and loops hierarchies are shown expanded (by
default, they are shown collapsed).

i SViuadc HLS - dct_prj (C:\Vivado_HLS_Tutorial\Design_Analysis\labl\dct_prj) == (=) ‘@
File | Edit Project Solution Window Help

B id~& b | ®
%5 Debug [Synthesis |&~ Analysis
*-| Module Hierarchy | ~ O |& Schedule Viewer - dct i =B

BRAM DSP FF LUT Latency Interval Pipeline type
Y nelige vy Current Module : dect
® dct 6 1 182 334 3959 3960 none
e dct.2d 4 1 128 248 3668 3669 none Operation\Control Sj[€0 [c1 j[€2 [3 |[¢ [<5]
® dctld 1 E 55 104 209 210 none [+]RD_Loop Row =

det_2d(function)
[+]WR Loop Row

lEF' Performance Profile 'I l | Resource Profile ' =8

Pipelined Latency Initiation Interval Iteration Late.. Trip count

® dct - 3959 3960 - -
e RD_Loop Row no 144 - 18 8
 RD_Loop_Col no 16 - 2 8]
e WR_Loop_Row no 144 - 18 8
WR_Loop_Col no 16 - 2 8

Ph|
PerformancefResource Sharini

|

Figure 113: Overview of the Analysis perspective

Use the Module Hierarchy pane to navigate through the hierarchy. The Module Hierarchy pane
shows both the performance and area information for the entire design. The Performance Profile
pane shows the performance details for this level of hierarchy. The information in these two
panes is similar to the information you reviewed earlier in the report (for the top-level dct block).

The Performance view is also shown (on the right side of Figure 113). This view shows how the
operations in this particular block are scheduled into clock cycles.

e The left column lists the resources.

High-Level Synthesis www.xilinx.com 118

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=118

& XILINX. Design Analysis

0 Sub-blocks are green.
0 Operations resulting from loops in the source code are yellow.
o Standard operations are purple.

¢ Notice that the dct has three main resources:

0 A loop called RD_Loop_Row. The plus symbol (+) indicates that the loop has
hierarchy and that you can expand the loop to view it.

0 A sub-block called dct_2d.
0 A loop called WR_Loop_Row.

The top row lists the control states in the design. Control states are the internal states High-
Level Synthesis uses to schedule operations into clock cycles. There is a close correlation
between the control states and the final states in the RTL Finite State Machine (FSM), but there is
no one-to-one mapping.

2. Click loop RD_Loop_Row and sub-loop RD_Loop_Col to fully expand the loop hierarchy
(Figure 114).

= Performance - dect i =0

Current Module : dct

loneration\Control S| co | c1 | 2 | c3 | ca | cs |

ZRD Loop Row
exitcondl i(icmp)
r(+)

-IRD Loop Col
exitcond i (icmp)
c(+)
tmp 5 i(+)
input load (read)
p addrl (+)
node 41 (write)

dct 2d(function)

12-21 +WR Loop Row

CROooNOUAWNR

Performance | Resource

Figure 114: Expanded View of RD_Loop_Row

From this, you can see that in the first state (C1) of the RD_Loop_Row, the loop exit condition
is checked and an add operation performed. This addition is likely the counter for the loop
iterations, and we can confirm this.

3. Select the adder in state C1, right-click and select C source code (Figure 115).

High-Level Synthesis www.xilinx.com 119

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=119

& XILINX. Design Analysis

This opens the C source code to highlight which operation in the C source created this
adder. From the details on screen (also shown in Figure 115), you can determine it is indeed
the loop counter.It is the only addition on this line, and the variable is named “r".

& Performance - dct % = O [g C Source &2 =0

current Module : det File: C\Vivado HLS Tutorial\Design_Analysis\labldct

100 intr, c; =
| Oneration\Contral 5| _co_| | c2 1l c3 | ca | cs |||
1 - RD Loop Row 102RD _Loop Row:
2 exitcondl i(icmp) 103 for (r=0;r<DCT SIZE; r++){
r(+) e 1 104RD_Loop_Col:
4 FRD Loop Col Celofenice | 105 for (c = 0; ¢ < DCT_SIZE; c++)
5 exitcond i(icmp) Goto Verilog | 106 buf[r][c] = input{r * DCT_SIZE + c];
6 c(+) Goto VHDL | 107 }
7 tmp 5 i(+) T 108}
8 input load(read) 109
Q p addrl(+) 110 void write_data(short buf[DCT_SIZE][DC1
10 node 41 (write) 1114 C
11 dct 2d(function) 112 intr, ¢; i
12-21 F{WR Loop Row 113

114 WR_Loop_Row
115 for (r =0, r <« DCT_SIZE; r++) { -

4 1
Performance Resource b

Figure 115: C Source Code View

In the next state of loop RD_Loop_Row (state C2), loop RD_Loop_Col starts to execute..

4. Click on any of the operations in the RD_Loop_Col to see the source code highlighting
update.

This should help confirm your understanding of how the operations in the C source code are
implemented in the RTL.

0 The loop exit condition is checked.
0 This is an adder for loop count variable “c”.

0 A readfrom a RAM performed (one cycle to generate the address, one cycle to read
the data).

0 A write operation is performed to a RAM.

Loops in the Performance view mean that the design iterates around these states multiple
times. The number of iterations is noted as the loop tripcount and shown in the Performance
Profile.

To improve performance, these loops should be pipelined. You can review the rest of the
design for other performance optimization opportunities.

5. Click on the X in the C Source pane tab to close this window.

6. Inthe Module Hierarchy pane, click the function dct_2d to navigate into the view for this
function (Figure 116).

High-Level Synthesis www.xilinx.com 120

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=120

& XILINX.

+ Wivado HLS - det_prj (CAVivado_HLS_Tutorial\Design_Analysis\labl\det_pri)
File Edit Project Solution Window Heip
B d-File®
% Debug | Synthesis [Gar Analysis |
rl Module Hierarchy
BRAM DSP FF LUT Latency Interval Pipeline type

® dct B 1 183 331 3959 3960 none
& dot 2d 4 1 135 247 3668 3668 none
® det. 1 1 82 107 209 209 none

£7 Performance Prafile Rescurce Profile

Pipelined Latency Initiation Interval Rteration Latency Trip count

® det2d - 3668 3668 4
& Row _DCT_Leop no 1688 211
» Ypose_Row_Outer_Loop no 144 . 18
& Col DCT _Loop no 1688 211
= Xpose_Col_Outer_Loop no 144 - 13

oo Da oo

Design Analysis

| & Performance - det 2d
Current Module : dct > det 2d
|__onemtion\GontrolSten | co | 1 | g2 | ca | ca | ¢5 | ca |
1 Row DCT Loop
2 axitcond? (icmp)
3 id4(+)

4 det 1d(function)
5-14 FXpose Row outer Loop
15 ECol DCT Loop

16 exitcondd (icmp)
17 i 5(+)
18 det 1d{function)

19-28 G¥Xpose Col Cuter Loop

Performance | Resource

Figure 116: DCT_2D Performance View

Again, you can see a number of loops (shown in yellow in Figure 116). Loops ensure the design

will have small area but the design will take multiple iterative states to complete: each iteration
of the loop will complete before the next iteration starts.

You can pipeline the loops to improve the performance. The details in the Performance Profile
show that most of the latency is caused by loops Row_DCT_Loop and Col_DCT_Loop.

7. Click loops Row_DCT_Loop and Col_DCT_Loop in the performance viewer to fully expand

them, as shown in Figure 117.

Expanding these loops in Performance view shows both loops call function dct_1d. Unless
this function itself is pipelined, there is no benefit in pipelining the loop. TheModule
Hierarchy shows the interval for dct_1dis 210 clock cycles, which means it can only accept a

new input every 210 clock cycles.

8. Inthe Module Hierarchy, click function dct_1d to navigate into the view for this

function.

9. Expand the loops in the Performance Profile and Performance view to see the view

shown in Figure 117.

High-Level Synthesis
UG871 (v2014.1) May 6, 2014

www.Xilinx.com 121

l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=121

& XILINX. Design Analysis

s |Vivado HLS - dct_prj (CA\Vivado_HLS_Tutorial\Design_Analysis\lab1\dct_prj) EI@
File Edit Project Solution Window Help
B A E|e®
%5 Debug [+ | Synthesis
£ Module Hierarchy ~ O |/& Performance - dct_1d 2 -8

BRAM DSP FF LUT Latency Interval Pipeline type current Module : dot > det 2d > det 1d

@ dct 6 1 183 331 3959 3960 none
o dct2d 4 1 135 247 3668 3668 none | Oneration\Control s | co | c1 | 2 | c3 | ca |
o detld 1 1 & 107 209 209 none 1 Eme Al wERlEEa),
2 tmp 1 read(read)
3 EDCT Quter Loop
4 exitcondl (icmp)
5 k 1(+)
6 IDCT Inner Loop
7 exitcond (icmp)
8 n 1(+)
(o] dct coeff tab...
10 dct coeff tab...
11 p addrl(+)
12 src load (read)
13 tmp 8 (*)
£F Performance Profile %3 . |- Resource Profile =8 14 tmp 5(+)
T B X - 15 tmp 2 (+)
; . Pipelined Latency Initiation Interval Iteration Latency Trip count 16 D addr3(+)
4o d[t,ldE - 209 209 - - 17 node 57 (write)
4 o DCT_Outer_Loop no 208 - 26 8
e DCT Inner_Loop no 24 - 3 8

Performance | Resource

Figure 117: DCT_1D Performance View

In Figure 117 you can see a series of nested loops which can be pipelined.
You can choose to do one of the following:

e You can pipeline the function and then pipeline the loop that calls it. (Because the function is
pipelined, the loop can take advantage of using a pipelined part.)

e You can pipeline the loops within this function and simply make this function execute faster.

Pipelining the function unrolls all the loops within it, and thus greatly increases the area. If the
objective is to get the highest possible performance with no regard for area, this may be the
best optimization to perform.

You can find more details on pipelining loops and functions in the tutorial Design Optimization.
For this case, the approach is to optimize the loops and keep the area at a minimum.

10. Click the Synthesis perspective button to return to the main synthesis view.

High-Level Synthesis www.xilinx.com 122

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=122

& XILINX. Design Analysis

i éVivado HLS - dct_prj (C\Vivado_HLS_Tutorial\Design_An
File | Edit Project Solution Window Help
3| of B | R o@las

% Debug & Analysis

Figure 118: Re-Opening the Synthesis Perspective

= 8

Step 5: Apply Loop Pipelining & Review for Loop Optimization

In this step, you create a new solution and add pipelining directives to the loops.

When pipelining nested loops, it is generally best to pipeline the inner-most loop. Typically,
High-Level Synthesis can generally flatten the loop nest automatically (allowing the outer loop

to simply feed the inner loop). For more information on why it is better to perform certain loop
optimizations rather than others, refer to the tutorial “Design Optimization”.

1.

Select the New Solution toolbar button or use the menu Project > New Solution to create
a new solution.

Click Finish and accept the defaults.

Ensure that you can see the C source code in the Information pane.

In the Directives tab, add a pipeline directive to loop DCT_Inner_Loop in function dct_1d.
a. Right-click DCT_Inner_Loop in the Directives pane and select Insert Directive

b. Inthe Directives Editor dialog box activate the Directives drop-down menu at the top
and select PIPELINE.

c. Click OK and select the default maximum pipeline rate (II=1)
Repeat step 4 for the following loops:

a. Infunction dct_2d loop Xpose Row_Inner_Loop

b. Infunction dct_2d loop Xpose_Col_Inner_Loop

¢. Infunction read_data loop RD_Loop_Col

d. Infunction write_data loop WR_Loop_Col

The Directive pane shows the following (highlighted) optimization directives applied.

High-Level Synthesis www.xilinx.com 123

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=123

& XILINX. Design Analysis

o= Outline [Directive & = B8

a4 @ dct 1d 5

=[1 dct_coeff_table

4% DCT Outer Loop
4" DCT_Inner_Loop
% HLS PIPELINE

a4 © dct_2d
=[] row_outbuf
=1 col_outbuf
#[1 col_inbuf
%" Row_DCT_Loop
%" Xpose_Row_Outer_Loop

111

ad Xpose_Row_Inner_Loop
% HLS PIPELINE

%" Col_DCT_Loop

%" Xpose_Col_Outer_Loop

ad Xpose_Col_Inner_Loop
% HLS PIPELINE
a4 @ read_data
4% RD_Loop_Row
4 %" RD_Loop_Col
% HLS PIPELINE
a4 @ write_data
4% WR_Loop_Row
4 %" WR_Loop_Col
% HLS PIPELINE
4 ® dct -

Figure 119: Optimization Directives for DCT Loop Pipelines

6. Click the Run C Synthesis toolbar button to synthesize the design to RTL.

7. When synthesis completes, use the Compare Reports toolbar button or the menu Project >
Compare Reports to compare solutions 1 and 2.

Figure 120 shows the results of comparing solutionl and solution2. Pipelining the loops has
improved the latency of the design with an almost 50% reduction in solution2.

High-Level Synthesis www.xilinx.com 124

UG871 (v2014.1) May 6, 2014 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=124

& XILINX. Design Analysis

£7 compare reports i3 =B

Performance Estimates

= Timing (ns)
Clock solutionl solution2
default Target 8.00 8.00
Estimated 5.79 5.80

m

-1 Latency (clock cycles)

solutionl solution?

Latency min 3959 1978
max 3959 1978
Interval min 3960 1979
max 3960 1979

Figure 120: DCT Solutionl and Solution2 Comparison

Next, you once again open the Analysis perspective, analyze the results, and determine whether
or not there are more opportunities to for optimization.

8. Click the Analysis perspective button to begin interactive design analysis.

When the Analysis perspective opens, you can see that the majority of the latency is still due
to block dct_2d. Before proceeding to analyze further, you can review how the loops at this
level have been optimized.

The Performance Profile (Figure 121) shows that the latency of both loops has been reduced
from 144 clock cycles in solutionl to only 65 clock cycles.

£7 Performance Profile & . | Resource Profile =0

Pipelined Latency Initiation Interval Iteration Latency Trip count

a o dct - 1978 1979
® RD_Loop_Row_RD_Loop_Col yes b4 1 2 64
® WR_Loop_Row_WR_Loop_Col yes 64 1 2 64

Figure 121: DCT Solution2 Performance of top-level Loops

Pipelining loops transforms the latency from

Latency = iteration latency * (tripcount * interval)
to

Latency = iteration latency + (tripcount * interval)

HLS also made this possible by automatically performing loop flattening (there is no longer any
loop hierarchy). You can see this by reviewing the Console pane, or log file, for solution2. Figure
122 shows the loops that have been automatically optimized.

High-Level Synthesis www.xilinx.com 125

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=125

& XILINX. Design Analysis

|E Console i3 . €] Errors| & Warnings| Sy
Vivado HLS Console
€= P TrTo TT=y SrmmmImg o TTI==TIT =T TIT YTTITSFETIT ST ISEIIIIIIOZC

[XFORM-682] Inlining function 'write data' into 'dct' (dct.cpp:94) automatically.
[XFORM-541] Flattening a loop nest 'RD_Loop Row' (dct.cpp:59) in function ‘'dct’.
[XFORM-541] Flattening a loop nest 'WR Loop Row' (dct.cpp:71) in function

[XFORM-541] Flattening a loop nest 'Xpose Row Quter lLoop® (dct.cpp:37) in function ‘dct 2d°.

[XFORM-541] Flattening a loop nest 'Xpose Col Outer Loop' (dct.cpp:48) in function 'dct 2d'.
[HLS-111] Elapsed time: 12.191 seconds; current memory usage: 30.6 MB.

@I [HLS-1@] Starting hardware synthesis ...
@T THIS<_1A1 Sunthocizing "drt'

[4] I | »

Figure 122: DCT Solution2 Loop Flattening

9. Inthe Module Hierarchy, click function dct_2d to navigate into the view for this
function.

In the Performance Profile you can see that the latency of all the loops has been
substantially reduced (Row_DCT_Loop and Col_DCT_loop have been approximately halved
from the earlier report in Figure 116). However, the majority of the latency is still due to
these two loops, each of which calls the dct_1b block.

10. In the Module Hierarchy, click function dct_1d to navigate into the view for this
function.

The Performance Profile (Figure 123) shows the loop latencies have been reduced, but there
is still a loop hierarchy here. (There is still loop DCT_Outer_Loop, shown in Figure 123, so no
loop flattening occured).

E£° Performance Profile 2 . | . Resource Profile} =0

Pipelined Latency Initiation Interval Iteration Latency Trip count

4 o dct_1d - 105 106 - -
4 o DCT_Outer_Loop no 104 - 13 8
@ DCT_Inner_Loop yes 10 1 3 8

Figure 123: DCT Solution2 Performance of dct_1d Loops

Viewing these loops in Performance view shows why this loop was not optimized further.

11. In the Performance view, click loops DCT_Outer_Loop and DCT_Inner_Loop to view the loop
hierarchy (Figure 124).

12. Select thewrite operation in state C5.

13. Right-click and select Goto Source.

High-Level Synthesis www.xilinx.com 126

UG871 (v2014.1) May 6, 2014 l Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=126

& XILINX. Design Analysis

Figure 124 shows that this loop was not flattened because additional operations outside of
DCT_Inner_Loop, at the level of DCT_Outer_Loop, prevented loop flattening. One of the
operations that prevented loop flattening is highlighted in Figure 124, below.

= Performance - dct_1d =2 = 0| [C Source £3 =0

Current Module : dct > det 2d > det 1d File: C\Vivado HLS Tutorial\Design_Analysis\labl\dct.cpp

55 .

| Oneration\Control S...| co | ¢1 | ¢2 | 3 | ca | | || s6DCT_Outer_Loop:
1 tmp 11 read(read) 57 for (k =0, k < DCT_SIZE, k++) {
2 tmp 1 read(read) 58 DCT_Inner_Loop
3 HDCT Outer Loop 59 for(n = 0, tmp = 0, n < DCT_SIZE; n++) {
4 exitcondl (icmp) 60 int coeff = (int)dct_coeff_table[k][n];
5 k 1(+) 61 tmp += sre[n] * coeff;

6-14 HDCT Inner Loop 62 }
15 tmp 2(+) 53 dst[k] = DESCALE(tmp, CONST_BITS);
16 p addr3 (+) 64}
node 60 (write) s

66 I

67 void dct_2d(dct_data_t in_block[DCT_SIZE][DCT_SIZI

68 det_data_t out_block[DCT_SIZE][DCT_SIZE])

694

70 dct_data_t row_outbuf[DCT_SIZE][DCT_SIZE];

71 dct_data_t col_outbuf[DCT_SIZE][DCT_SIZE], col_ir

72 unsigned |, |;

73

74 // DCT rows

75 Row_DCT_Loop

76 for(i=0; 1< DCT_SIZE; i++) {

77 dct 1d(in_blocklil. row outbufTil): -
4

I
Performance | Resource D

Figure 124: DCT Solution2 dct_1d Performance View

The write to the array cannot be flattened into the inner loop. To achieve an interval of 1 on DCT
Outer Loop you will need to pipeline the output loop - there is no benefit in simply pipelining
the inner loop itself.

You should pipeline the outer loop instead. This causes the inner loop to be completely
unrolled. An increase in area results, but you are still far from the throughput goal of 100 and
not yet ready to pipeline the entire function (and see an even greater area increase, as the outer
loop is also completely unrolled).

14. Click the Synthesis perspective button to return to the main synthesis view.

Step 6: Apply Loop Optimization and Review for Bottlenecks

1. Select the New Solution toolbar button or use the menu Project > New Solution to create
a new solution.

2. Click Finish and accept the defaults to create solution3.

3. Ensure the C source code is visible in the Information pane.

4. Inthe Directives tab
a. Infunction dct_1d, select the pipeline directive on loop DCT_Inner_Loop.
b. Right-Click and select Remove Directive.

c. Still in function dct_1d, select loop DCT_Outer_Loop.

High-Level Synthesis www.xilinx.com 127

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=127

& XILINX. Design Analysis

d. Right-click and select Insert Directive.

e. Inthe Directives Editor dialog box activate the Directives drop-down menu at the top
and select PIPELINE.

f. Click OK and select the default maximum pipeline rate (II=1).
The Directive pane should show the following (highlighted) optimization directives applied.

2= Outline |24 Directive &3 =8

4 @ dct_1d -
#[1 dct_coeff_table
4 %' DCT_Outer_Loop
% HLS PIPELINE
% DCT_Inner_Loop
4 @ dct 2d
*[1 row_outbuf
#[1 col_outbuf
*[1 col_inbuf
%' Row_DCT Loop
4 %' Xpose_Row_Outer_Loop
ay Xpose_Row_Inner_Loop
% HLS PIPELINE
%' Col_DCT_Loop
4 %' Xpose_Col_Outer_Loop
4 " Xpose_Col_Inner_Loop
% HLS PIPELINE
4 9 read_data
4 ' RD_Loop_Row
4 &' RD_Loop_Col
% HLS PIPELINE
4 @ write_data
%" WR_Loop_Row
4 5" WR_Loop_Col
% HLS PIPELINE
4 9 dct 57

11

h

Figure 125: Updated Optimization Directives for DCT Loop Pipelines

5. Click the Run C Synthesis toolbar button to synthesize the design to RTL.

6. When synthesis completes, click the Compare Reports toolbar button to compare solutions
2 and 3.

Figure 126 shows the results of comparing solution2 and solution3. Pipelining the outer-
loop has in fact resulted in an increase to the performance and the area.

The significant latency benefit is achieved because multiple loops in the design call the
dct_1d function multiple times. Saving latency in this block is multiplied because this
function is used inside many loops.

High-Level Synthesis www.xilinx.com 128

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=128

& XILINX. Design Analysis

£F compare reports &2 =0

Performance Estimates

=l Timing (ns)
Clock solution2 solution3
default Target 8.00 8.00
Estimated 5.80 5.90

-l Latency (clock cycles)

solution2 solution3

Latency min 1978 890
max 1978 890
Interval min 1979 891
max 19879 891

m

Utilization Estimates

solutionZ2 solution3

BRAM_18K 6 13
DSP48E 1 3
FF 241 543
LUT 451 469

Export the report(.html) using the Export Wizard
Figure 126: DCT Solution2 and Solution3 Comparison

Now that all the loops are pipelined, it is worthwhile to review the design to see if there are
performance-limiting "bottlenecks.” Bottlenecks are limitations in the flow of data that can
prevent the logic blocks from working at their maximum data rate.

Such limitations in the data flow can come from a number of sources, for example, I/O ports and

arrays implemented as block RAM. In both cases, the finite number of ports (on the I/O or block
RAM) limits the rate at which data can be read or written.

Another source of bottlenecks is data dependencies in the original source code. In some cases,
these data dependencies are inherent in how the algorithm operates, as when a calculation
cannot be performed until an earlier calculation has completed. Sometimes, however, the use of
an optimization directive or a minor change to the C code can remove them.

The first task is to identify such issues in the RTL design. There are a number of approaches you
can take:

e Start with the largest latency of interval in the Module Hierarchy report and navigate down
the hierarchy to find the source of any large latency or interval.

e Click the Resource Profile to examine I/O and memory usage.

High-Level Synthesis www.xilinx.com 129

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=129

& XILINX. Design Analysis

e Use the power of the graphical viewer and look for patterns in the Performance view which
indicate a limitation in data flow.

In this case, you will use the latter approach. You can use the Analysis perspective to identify
such places in the design quickly.

7. Click the Analysis perspective button to begin interactive design analysis.
8. Inthe Module Hierarchy, ensure module dct is selected.

9. Inthe Performance view, expand the first loop in the design as shown in Figure 127,
RD_Loop_Row_RD_Loop_Col (these loops were flattened and the name is now a
concatenation of both loops).

This loop is implemented in two states. The red arrow in Figure 127 shows the path from the
start of the loop to the end of the loop: the arrow is almost vertical (everything happens in two
clock cycles) and this loop is well implemented in terms of latency.

0

&' Performance - dct 2 -

Current Module : dct

Oneration\Control S...
-IRD Loop Row RD ...
indvar flatten...
r i(phi mux)
c i(phi mux)
exitcond flatt...
indvar flatten...
exitcond i (icmp)
c 1 mid2(select)
r(+)
r 1 mid2(select)
tmp 5 i(+)
input load (read)
c(+)
p addrl (+)
node 47 (write)
16 @ dct 2d(function)
1... ®WR Loop Row WR ...

%

hDRARREBOONO VA WN -
P e — —
- . - - - S S S - ..

Performance Resource

Figure 127: Analysis of DCT RD_Loop_Row

10. In the Performance view, expand the WR_Loop_Row and perform similar analysis. It is
similarly well optimized for latency.

11. Double-click function dct_2d and navigate into thedct_2d function.

You can use same analysis process down through the hierarchy. If you perform this analysis
you will discover that all the function blocks and loops have a similar optimal (few cycles)
implementation, until the dct_1d block is examined.

High-Level Synthesis www.xilinx.com 130

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=130

& XILINX.

Design Analysis

12. In the Performance view, double-click function dct_1d and navigate into the dct_1d

function.

13. Expand the DCT_Outer_Loop to see the view shown in Figure 128.

Figure 128 shows a very different view from the earlier loop schedules (which had only a few
cycles of latency). The schedule shows a long drift from input to output (as shown by the red

arrow).

= Performance - det_1d '

Current Module :

dct > det 2d > det 1d

v [e [e e ol [o [L o il [o7 i o |

| Oneration\Control

1 tmp 11 read(read)
2 tmp 1 read(read)
3 EDCT Outer Loop
4 k(phi mux)
5 exitcondl (icmp)
6 k 1(+)
7 src load(read)
8 dct coeff tab...
] src load 7 (read)
10 p addr (+)
11 dct coeff tab...
12 dct coeff tab...
13 src load 1(read)
14 src load 2(read)
15 tmp 8(*)
i6 dct coeff tab...
17 dct coeff tab...
18 src load 3(read)
19 dct coeff tab...
20 src load 4 (read)
21 dct coeff tab...
22 dct coeff tab...
23 tmp 8 7 (%)
24 tmp7 (+)
29 tmp 8 1(*)
26 tmp 8 3(*)
27 src load 5(read)
28 src load 6(read)
29 tmp 8 2(*)
30 tmp 8 5(¥*)
31 tmp2 (+)
32 tmp 8 4 (*)

133 tmp 8 &(%)
34 tmp3 (+)
35 tmpé (+)
36 tmp5 (+)
3, tmpd4 (+)
38 tmpl (+)
39 tmp 2(+)
40 node 114 (write)

Performance | Resource

Figure 128: Analysis of dct_1d RD_Loop_Row

There are typically two things that cause this type of schedule: data dependencies in the source
code and limitations due to I/O or block RAM. You will now examine the resources sharing in

this block.

14. In the Performance view, click the Resource tab at the bottom of the window.

High-Level Synthesis www.xilinx.com

UGS871 (v 2014.1) May 6, 2014

131

| Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=131

& XILINX. Design Analysis

15. Expand the Memory Ports, as shown in Figure 129.

= Resource - det_1d 2 =8

Current Module : dct > det 2d > det 1d

|Resource\Control Sten] co | ¢c1 | 2 | c3 | ca | s | c6 | ¢z | c8 |
1 -I/0 Ports
2 src
3 dst
4 tmp 1 read
5 tmp 11 read
6 S Instances
7 grp fu 432 &
8 grp fu 478 o
9 grp fu 504 =
10 FMemory Ports
11 src read read read read
12 dct coeff table 7 read
13 src read read read read
14 dct coeff table 1 read
15 dct coeff table 0 read
16 dct coeff table 3 read
IS dct coeff table 5 read
18 dct coeff table 2 read
19 dct coeff table 4 read
20 dct coeff table 6 read

21 dst write
22-38 PExXpressions

Performance | Resource

Figure 129: Resource Sharing of Memory Ports in dct_1d

The Resource Sharing view shows how the resources in the design are used in different control
states.

The rows list the resources in the design. In Figure 129, the memory resources are expanded.

The columns show the control states in which the resource is used. If a resource is active in
multiple states, the resource is being re-used in different clock cycles.

Figure 129 shows the memory accesses on BRAM src are being used to the maximum in every
clock cycle. (At most, a block RAM can be dual-port and both ports are being used). This is a
good indication the design may be bandwidth-limited by the memory resource. To determine if
this really is the case, you can examine further.

16. Select one of the read operations for the src block RAM.

17. Right-click and select Goto Source to see the view shown in Figure 130.

High-Level Synthesis www.xilinx.com 132

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=132

& XILINX. Design Analysis

= Resource -det_1d 1[5 € Source

CUEEaTE T PR TN A o L e File: CAVivado_HLS_ Tuterial\Design_Analysis\labl\det.cpp

55
|Resource\ControlSten] co 1= 2 | c3 | ca | o5 | ca | c7 | ca || 36DCT Outer Loop
1 I/0 Ports 51 for (k=0 k<DCT_SIZE, k++){
2 are S8DCT_Inner_Loop
3 dst 58 for{n = 0, tmp = 0; n < DCT_SIZE; n++) {
4 tmp 1 read 60 int coefl = (int)dct_coefll_tabdelk]n],
5 tmp 11 read 61 tmp += srcin] * cosll,
& =Instances 62]
T grp fu 432 * 63 dstlk] = DESCALE(tmp, CONST_BITS),
8 grp fu 478 - 5}
] grp fu 504 = 65)
10 EMemory Ports 66
i1 srec cead sead cead read 67 void del_2d{dcl_data_t in_block[DCT_SIZE|JDCT_SIZE]
12 ict coeff table 7 smad 68 det_dala_t out_block[DCT_SIZE)[DCT_SIZE])
= | reod ETTCREETTT read 681
14 read 70 det_data | row_outbul[DCT_SIZEJDCT_SIZE],
15 Eead 71 dcl_data_t col_outbuf[DCT_SIZE)[DCT_SIZE], col_inbuf]DCT_SIZE][DCT_SIZE],
16 zead 72 unsigned i, j;
17 read 73
18 read 74 DCT rows
19 read 75 Row_DCT_Loop
20 read T6 for(i=0, i< DCT_SIZE; i++) {
21 write 77 det_1d{in_blocki], row_outbuf[i]);
22-38 "Expressions 7}

Performance | Resource

Figure 130: Memory resource src and Source Code

Figure 130 shows this read on the src variable is from the read operation inside loop
DCT_Inner_Loop. This loop was automatically unrolled when DCT_Outer_Loop was
pipelined and all operations in this loop can occur in parallel (if data dependencies allow).

The eight reads are being forced to occur over multiple cycles because the array src is
implemented as a block RAM in the RTL and a block RAM can only allow two reads (maximum)
in any one clock cycle. In Figure 130, the read operations take 2 clocks cycles: a cycle to
generate the address for the block RAM and a cycle to read the data. Only the launch (address
generation cycle) is shown because it overlaps with the operation in the next clock cycle.

You can optimize the block RAM accesses using optimization directives to partition the block
RAM. The array that function dct_1d accesses is defined as an input argument to the function
and therefore resides outside this block.

e The input array to the first instance of dct_1d is buf_2d_in in function dct.
e The input array to the second instance of dct_1d is col_inbuf in function dct_2d.

In both cases, the arrays are 2-dimensional of size DCT_SIZE by DCT_SIZE (8x8). By default, this
results in a single block RAM with 64 elements. Because the arrays are configured in the code in
the form of Row by Column, we can partition the 2" dimension and create eight separate Block
RAMs: one for each row, allowing the row data to be accessed in parallel.

18. Click the Synthesis perspective button to return to the main synthesis view.

Step 7: Partition Block RAMs and Analyze Concurrency

1. Select the New Solution toolbar button or use the menu Project > New Solution to create
a new solution, solution4.

2. Click Finish and accept the defaults to create solution4.
3. Ensurethe C source code is visible in the Information pane.

4. 1Inthe Directives tab:

High-Level Synthesis www.xilinx.com 133

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=133

& XILINX.

In function dct, select array buf 2d_in.

b. Right-click and select Insert Directive.

Design Analysis

c. Inthe Directives Editor dialog box, activate the Directives drop-down menu at the top
and select ARRAY_PARTITION.

d. Leavethe type as Complete.

e. Change the dimension setting to 2 to partition the array along the 2™ dimension.

f. Click OK.

5. Repeat this process for array col_inbuf in function dct_2d.

The Directive pane displays optimization directives, as shown in Figure 131 (the two new
directives are highlighted).

High-Level Synthesis

8% Qutline |4 Directive &2

@ dct_1d
#[1 dct_coeff_table
%" DCT_Outer_Loop
9% HLS PIPELINE
%' DCT_Inner_Loop
@ dct_2d
#[1 row_outbuf
#[1 col_outbuf
1 col_inbuf
% HLS ARRAY_PARTITION variable=col_inbuf complete dim=2
%" Row_DCT_Loop
% Xpose_Row_Outer_Loop
A Xpose_Row_Inner_Loop
9 HLS PIPELINE
% Col_DCT_Loop
%" Xpose_Col_Outer_Loop
%" Xpose_Col_Inner_Loop
% HLS PIPELINE
@ read_data
%" RD_Loop_Row
¥ RD_Loop_Col
9% HLS PIPELINE
@ write_data
%" WR_Loop_Row
% WR_Loop_Col
% HLS PIPELINE
@ dct
=[1 buf_2d_in
% HLS ARRAY_PARTITION variable=buf_2d_in complete dim=2
=1 buf_2d_out
2 input
2 output

Figure 131: Optimization Directives for Array Partitioning

www.Xilinx.com

UGS871 (v 2014.1) May 6, 2014

| Send Feedback I

134

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=134

& XILINX. Design Analysis

6. Click the Click the Run C Synthesis toolbar button to synthesize the design to RTL.

7. When synthesis completes, use the Compare Reports toolbar button to compare solutions
3 and 4.

Figure 132 shows the results of comparing solution3 and solution4. Improving access to the

data in the src block RAM in the dct_1d block has improved the overall performance because
the dct_1d block executes frequently.

£F compare reports &2 =8

Performance Estimates

=l Timing (ns)
Clock solutiond solutiond
default Target 8.00 8.00
Estimated 5.90 5.83

m

-l Latency (clock cycles)

solution3 solutiond

Latency min 890 524
max 880 524
Interval min 891 525
max 891 525

Figure 132: DCT Solution3 and Solution4 Comparison

You can review the impact of the partitioning directive on the device resource.

8. Click the Analysis perspective button to begin interactive design analysis.

9. Inthe Module Hierarchy, ensure module dct is selected.

10. Select the Resource Profile in the lower-left by selecting the Resource Profile tab.

11. Expand the Memories and Expressions see the view in Figure 133.

High-Level Synthesis www.xilinx.com 135

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=135

& XILINX. Design Analysis

¥ Module Hierarchy = O
BRAM DSP FF LUT Latency Interval Pipeline type
@ dct 11 8 1037 914 524 525 none
® dct 2d 10 3 721 584 389 389 none
® read_data 0] 27 58 66 66 none
&7 Performance Profile [| . Resource Profile &2 =B
BRAM DSP FF LUT BitsPO Bits P1 Bits P2 Banks/Depth
@ dct 11 3 1037 914
g2 IO Ports(2) 32
fs Instances(2) 10 8 748 642
= Memories(9) 1 256 176 144 9
4 buf 2d_out U 1 0 0 16 1
4 buf_2d_in_6_U 0 32 22 16 1
4 buf 2d_in_1_U 0 32 22 16 1
4 buf_2d_in_0_U 0 32 22 16 1
4 buf 2d_in_3_U 0 32 22 16 1
4 buf_2d_in_4_U 0 32 22 16 1
4 buf 2d_in_2_U 0 32 22 16 1
4 buf_2d_in_7_U 0 32 22 16 1
4 buf 2d_in_5_U 0 32 22 16 1
Y. Expressions(9) 0 0 0 47 42 35 8
asiet Registers(11) 33 33
m FIFO(0) 0 0 0 0 0
i} Multiplexers(13) 0 0 49 49 0

Figure 133 DCT Resource Profile

The Resource Profile shows the resources being using at the current level of hierarchy (the block
selected in the Module Hierarchy pane). Figure 133 shows:

e This block has two I/O ports.
e Most of the area is due to instances (sub-blocks) within this block.

e There are nine memories, eight of which are the partitioned buf_2d_in block RAM. Since they
are less than 1024 bits they are automatically implemented as LUTRAM.

e Most of the logic (expressions) at this level of hierarchy is due to adders, with some due to
comparators and selectors.

The important point from the previous optimization is that you can see there are now additional
memories due to the array partitioning optimization.

You still have a goal to ensure that the design can accept a new set of samples every 100 clock
cycles. Figure 132, however, shows that you can only accept new data every 525 clocks. This is
much better than the original, pre-optimized design (approx. 3700 clock cycles), but further
optimization is required.

High-Level Synthesis www.xilinx.com 136

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=136

& XILINX. Design Analysis

Up to this point, you have focused on improving the latency and interval of each of the
individual loops and functions in the design. You must now apply the dataflow optimization,
which enables the individual loops and functions to execute in parallel, thus improving the
overall design interval.

12. Click the Synthesis perspective button to return to the main synthesis view.

Step 8: Partition Block RAMs and Apply Dataflow optimization

1. Select the New Solution toolbar button or use the menu Project > New Solution to create
a new solution, solution5.

2. Click Finish and accept the defaults to create solution5.
3. Ensure the C source code is visible in the Information pane.
4. Inthe Directives tab
Select the top-level function dct.
b. Right-click and select Insert Directive.

c. Inthe Directives Editor dialog box activate the Directives drop-down menu and select
DATAFLOW.

d. Click OK.

The Directive pane now displays the following optimization directives (the new directive is
highlighted).

High-Level Synthesis www.xilinx.com 137

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=137

& XILINX. Design Analysis

g Outline |4 Directive &3 =0
4 @ dct_1d
#[1 dct_coeff_table
4 %' DCT_Outer_Loop
% HLS PIPELINE
% DCT_Inner_Loop
4 @ dct 2d
«[1 row_outbuf
#[1 col_outbuf

«1 col_inbuf

% HLS ARRAY_PARTITION partition variable=col_inbuf complete dim=2
%" Row_DCT_Loop

%' Xpose Row_Outer_Loop

[

al Xpose_Row_Inner_Loop
% HLS PIPELINE

%" Col_DCT_Loop

%' Xpose_Col_Outer Loop

[

4 ' ¥pose_Col_Inner_Loop
% HLS PIPELINE
read_data
%" RD_Loop_Row
4 %" RD_Loop_Col
% HLS PIPELINE
4 @ write_data
%" WR_Loop_Row
4 %" WR_Loop_Col
% HLS PIPELINE

b
L]

[

[

4 @ dct
% HLS DATAFLOW
*[1 buf_2d_in
% HLS ARRAY_PARTITION partition variable=buf_2d_in complete dim=2
#[1 buf_2d_out
Input
@ output

Figure 134: Dataflow Optimization for the DCT design

5. Click the Click the Run C Synthesis toolbar button to synthesize the design to RTL.

6. When synthesis completes, use the Compare Reports toolbar button or the menu Project >
Compare Reports to compare solutions 4 and 5.

Figure 135 shows the results of comparing solution4 and solution5, and you can see the
interval has improved. The design takes 525 clocks cycles to produce the outputs but can
now accept new inputs every 390 clocks.

High-Level Synthesis www.xilinx.com 138

UG871 (v2014.1) May 6, 2014 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=138

& XILINX. Design Analysis

£F compare reports 3

Performance Estimates

=l Timing (ns)
Clock solutiond solution5
default Target 8.00 8.00
Estimated 5.83 5.83 =

-1 Latency (clock cycles)

solutiond solution5

Latency min 524 523
max 524 523
Interval min 525 390
max 525 390

Figure 135: DCT Solution4 and Solution5 Comparison

This is still greater than the 100 cycles required, so you must analyze the current performance.
7. Click the Analysis perspective button to begin interactive design analysis.

8. Inthe Module Hierarchy, you can see dct_2d accounts for most of the interval. Ensure
module dct_2d is selected to see the view in Figure 136.

#5 Module Hierarchy =8
BRAM DSP FF LUT Latency Interval Pipeline type
® dct 12 8 1304 1064 523 390 dataflow
® read_data O 0 28 59 66 66 none
® dct 2d 10 8 722 585 389 389 none
e dct_1d 8 8 394 86 14 14 none
® write_data 0 0 31 67 515) 66 none
£ Performance Profile 2 |- Resource Profile =0

Pipelined Latency Initiation Interval [Iteration Latency Trip count

@ dct_2d - 389 389 - -
@ Row_DCT_Loop no 128 - 16 8
@ Xpose_Row_Outer_Loop_Xpose_Row_Inner_Loop yes 64 1 2 64
® Col_DCT_Loop no 128 - 16 8
e Xpose_Col_Outer_Loop_Xpose_Col_Inner_Loop yes 64 1 2 a4

Figure 136: DCT Analysis View after Dataflow Optimization

Here, you can see two things:

e The interval of the dct block is less than the sum of the individual latencies (for read_data,
dct_2d and write_data). This means the blocks are operating in parallel.

High-Level Synthesis www.xilinx.com 139

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=139

& XILINX. Design Analysis

e The interval of dct is the same as the interval for sub-block dct_2d. The dct_2d block is
therefore the limiting factor.

Because the dct_2d block is selected in the Module Hierarchy, the Performance Profile shows the
details for this block. Figure 136 shows the interval is the same as the latency, so none of these
blocks operate in parallel.

One way to have the blocks in dct_2d operate in parallel would be to pipeline the entire
function. This, however, would unroll all the loops, which can sometimes lead to a large area
increase. An alternative is use dataflow optimization on function dct_2d.

Another alternative is to use a less obvious technique: raise these loops up to the top-level of
hierarchy, where they will be included in the dataflow optimization already applied to the top-
level. This can be achieved by using an optimization directive to remove the dct_2d hierarchy:
inline the dct_2d function.

Before performing this optimization, review the area increase caused by using dataflow
optimization.

9. Inthe Module Hierarchy, ensure module dct is selected.

10. Activate the Resource Profile view.

11. Expand the memories to see the view in Figure 137.

£F Performance Profile || . Resource Profile &3 =g
BRAiv‘I DSP FF LUT BitsP0O BitsP1 Bits P2 Banks/Depth
4 ® dct 12 8 1304 1064
63 [/O Ports(2) 32
e Instances(3) 10 8 781 711
a B8 Memories(9) 2 512 352 144 18
+ buf 2d_in_6_ U 0 (i 44 16 2
¢ buf 2d_in_1 U 0 64 44 16 2
4+ buf 2d_in. 0 U 0 (i 44 16 2
+ buf 2d_in_3. U 0 64 44 16 2
+ buf 2d_in.4 U 0 (i 44 16 2
+ buf 2d_in_.2 U 0 64 44 16 2
+ buf 2d_in_7_ U 0 (i 44 16 2
+ buf 2d_in_5.U 0 64 44 16 2
+ buf 2d_out U 2 0 i} 16 2
Y. Expressions(1) 0 0 0 1 1 1 0
st Registers(11) 11 11
w FIFO(O) 0 0 0 0
[@ Multiplexers(0) 0 0 0 0

Figure 137: DCT Resource Profile

As compared with Figure 133, you can see there are now twice as many memories at this level
of hierarchy (the number of banks, flip-flops and LUTs has doubled). Each memory has been

High-Level Synthesis www.xilinx.com 140

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=140

& XILINX. Design Analysis

transformed into a Ping-Pong buffer to support dataflow. In this case, no “new"” memories were
added; the existing memories were converted into dataflow Ping-Pong memory channels. This
doubled the number.

12. Click the Synthesis perspective button to return to the main synthesis view.

Step 9: Optimize the Hierarchy for Dataflow
1. Select the New Solution toolbar button to create a new solution, solution6.
2. Click Finish and accept the defaults to create solutioné.
3. Ensurethe C source code is visible in the Information pane.
4. Inthe Directives tab:
a. Select function dct_2d.
b. Right-click and select Insert Directive .

c. Inthe Directives Editor dialog box activate the Directives drop-down menu at the top
and select INLINE.

d. Click OK.

The Directive pane now shows the following optimization directives (the new directive is
highlighted).

High-Level Synthesis www.xilinx.com 141

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=141

& XILINX.

o= Qutline | Directive &3

Design Analysis

1 @ dct_1d

%1 dct_coeff_table

%' DCT_Outer_Loop
% HLS PIPELINE
4" DCT Inner_Loop

dct_2d

% HLS INLINE

*[1 row_outbuf

#[1 col_outbuf
«1 col_inbuf

%" Row_DCT_Loop
%' Xpose Row_Outer_Loop

% HLS PIPELINE
%" Col_DCT_Loop
%' Xpose_Col_Outer Loop

+ ' Xpose_Col_Inner_Loop
% HLS PIPELINE
read_data
%' RD_Loop_Row
%" RD_Loop_Col
% HLS PIPELINE
write_data
%" WR_Loop_Row
+ %" WR_Loop_Col
% HLS PIPELINE

o

dct
% HLS DATAFLOW
=1 buf_2d_in

#[1 buf_2d_out
Input
@ output

% HLS ARRAY_PARTITION partition variable=col_inbuf complete dim=2

R Xpose_Row_Inner_Loop

% HLS ARRAY_PARTITION partition variable=buf_2d_in complete dim=2

Figure 138: Dataflow Optimization for the DCT design

5. Click the Run C Synthesis toolbar button to synthesizes the design to RTL.

6. When synthesis completes, use the Compare Reports toolbar button or the menu Project >
Compare Reports to compare solutions 5 and 6.

Figure 139 shows the results of comparing solution5 and solution6. You can see the interval

has improved substantially.

High-Level Synthesis
UG871 (v2014.1) May 6, 2014

142

| Send Feedback I

www.Xilinx.com

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=142

& XILINX. Design Analysis

£F compare reports &2 =B

Performance Estimates

=l Timing (ns)
Clock solution> solutionf
default Target 8.00 8.00
Estimated 5.83 5.80

1

-l Latency (clock cycles)

solutiond solutiond

Latency min 523 409
max 523 409

Interval min 390 71
max 390 71

Figure 139: DCT Solution5 and Solution6 Comparison

The interval is now below the 100 clock target. This design can accept a new set of input data
every 71 clock cycles.

You can also see the details (1) in the synthesis report, which opens automatically after synthesis
completes and (2) in the Analysis perspective, as shown in Figure 140.

¥ Module Hierarchy = O
BRAM DSP FF LUT Latency Interval Pipeline type
® dct 22 16 2096 1218 409 71 dataflow
® read _data 0 0 28 59 66 b6 none
@ dct_Loop_Row_DCT_Loop_proc 8 8 467 128 70 70 none
@ dct_Loop_Xpose_Row_Outer_Loop_proc 0 0 28 b6l 66 b6 none
@ dct_Loop_Col_DCT_Loop_proc 8 8 467 128 70 70 none
@ dct_Loop_Xpose_Col_Outer_Loop_proc 0 0 29 69 66 b6 none
® write_data]] 31 67 66 66 none
Figure 140: DCT Solution6 Module Hierarchy
High-Level Synthesis www.xilinx.com 143

UG871 (v2014.1) May 6, 2014 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=143

& XILINX. Design Analysis

Conclusion

In this tutorial, you learned:

e How to analyze a design using the analysis perspective.

e How to cross-link operations in the views with the C code.
e How to apply and judge optimizations.

e A methodology for taking the initial design results and creating an implementation which
satisfies the design goals.

High-Level Synthesis www.xilinx.com 144

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=144

& XILINX.

Chapter 7 Design Optimization

Overview

A crucial part of creating high quality RTL designs using High-Level Synthesis is having the
ability to apply optimizations to the C code. High-Level Synthesis always tries to minimize the
latency of loops and functions.To achieve this, within the loops and functions, it tries to execute

as many operations as possible in parallel. At the level of functions, High-Level Synthesis always
tries to execute functions in parallel.

In addition to these automatic optimizations, directives are used to:

e Execute multiple tasks in parallel, for example, multiple executions of the same function or
multiple iterations of the same loop. This is pipelining.

e Restructure the physical implementation of arrays (block RAMs), functions, loops and ports
to improve the availability of data and help data flow through the design faster.

e Provide information on data dependencies, or lack of them, allowing more optimizations to
be performed.

The final optimization technique is to modify the C source code to remove unintended
dependencies in the code that may limit the performance of the hardware.

This tutorial consists of two lab exercises.. You perform the analysis in these lab exercises using
the Analysis perspective. A prerequisite for this tutorial is completion of the Design Analysis
tutorial.

Labl

Contrast the uses of loop and function pipelining to create a design that can process one
sample per clock. This lab includes examples that give you the opportunity to analyze the two
most common causes for designs failing to meet performance requirements: loop dependencies
and data flow limitations or bottlenecks.

Lab2

This lab shows how modifications to the code from Lab 1 can help overcome some performance
limitations inherent, but unintended, in the code.

High-Level Synthesis www.xilinx.com 145

UG871 (v2014.1) May 6, 2014
l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=145

& XILINX. Design Optimization

Tutorial Design Description

You can download the tutorial design file from the Xilinx Website. Refer to the information in
Obtaining the Tutorial Designs.

For this tutorial you use the designfilesin the tutorial directory
Vivado_HLS Tutorial\Design_Optimization.

The sample design you use in the lab exercise is a matrix multiplier function. The design goal is

to process a new sample every clock period and implement the interfaces as streaming data
interfaces.

Lab 1: Optimizing a Matrix Multiplier

This exercise uses a matrix multiplier design to show how you can fully optimize a design heavily

based on loops. The design goal is to read one sample per clock cycle using a FIFO interface,
while minimizing the area.

The analysis includes a comparison of a methodology that optimizes at the loop level with one
that optimizes at the function level.

IMPORTANT: The figures and commands in this tutorial assume the tutorial data directory
Vivado HLS_Tutorial is unzipped and placed in the location C:\Vivado_HLS_Tutorial

If the tutorial data directory (s unzipped to a different location, or on Linux systems, adjust
the few pathnames referenced, to the location you have chosen to place the
Vivado_HLS_Tutorial directory.

Step 1: Create and Open the Project
1. Open the Vivado HLS Command Prompt.

a. On Windows use Start > All Programs > Xilinx Design Tools > Vivado 2014.1 >
Vivado HLS > Vivado HLS 2014.1 Command Prompt (Figure 141).

b. On Linux, open a new shell.

Bl Vivado 2014.1 Tcl Shell
g Vivado 2014.1
Xilinx Microprocessor Debugger 2014.1
g Xilinx SDK 2014.1
System Generator
Vivado HLS
Bl Vivado HLS 2014.1 Command Promg
7] vivado HLS 2014.1

Figure 141: Vivado HLS Command Prompt

High-Level Synthesis www.xilinx.com 146

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=146

& XILINX. Design Optimization

2. Using the command prompt window (Figure 142), change directory to the RTL Verification
tutorial, lab1.

3. Execute the Tcl script to set up the Vivado HLS project, using the command vivado_hls —f
run_hls.tcl, as shown in Figure 142.

C:\Wivado_HLS_Tutorial>cd Design_Optimization

C:\Vivado_HLS_Tutorial\Design_Optimization>cd labil

1 (11

C:\Wivado_HLS_Tutorial\Design_Optimization\lab1l>vivado_hls -f run_hls.tcl

Figure 142: Setup the Design Optimization Tutorial Project

4. When Vivado HLS completes, open the project in the Vivado HLS GUI using the command
vivado_hls —p matrixmul_prj, as shown in Figure 143.

@I [HLS-10] Creating and opening solution 'C:/Uivado_HLS_Tutorial/Design_Optimizjg

ation/labl/matrixmul _prj/solutionl’.

@I [HLS-10] Cleaning up the solution database.

BI [HLS-10] Setting target device to 'xcTk168tfbg484-1'

@I [$YN-201] Setting up clock ‘default’ with a period of 13.3333ns.
Compiling ../../../../matrixmul_test.cpp in debug mode
Compiling ../../../../matrixmul.cpp in debug mode
Generating csim.exe

Test passes.

BI [SIM-1] CSim done with 8 errors.

@I [LIC-101] Checked in feature [HLS]

i (1

C:\Vivado_HLS_Tutoriali\Design_Optimization\labl>vuivado_hls -p matrixmul_prj

Figure 143: Open Design Optimization Project for Lab 1

5. Expand the Sources folder in the Explorer pane and double-click matrixmul.cpp to view the
source code (Figure 144).

Scroll down the file to see that the source code has two input arrays, a and b, and output array
res. Hold the mouse over the macros (as shown in Figure 144) to see that each is three-by-three
for a total of nine elements.

High-Level Synthesis www.xilinx.com 147

UG871 (v2014.1) May 6, 2014 | Send Feedback |

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=147

& XILINX.

Design Optimization

[ty Explorer & = O|([¢ matrixmulepp &2 =8
=25 matrixmul_prj 46 #include "matrixmul.h" -
w Includes 47
= Source 48 void matrixmul(
= B matrixmul.cpp 49 mat_a_t a[MAT A ROWS][MAT A _COLS],
o Test Bt 50 mat_b_t b[MAT_B_ROWS][j\acro Expansion
=l lest benc 51 result t res[MAT_A_ROW;)
= solutiont 52 {
- Press 'F2' for focus
constraints 53 // Iterate over the rows oT e HTC[I[.[I‘!CLr[IIqX
% directives.tcl 54 Row: for(int 1 = @; 1 < MAT_A ROWS; i++) { i
& scripttcl 55 // Iterate over the columns of the B matrix T
. 56 Col: for(int j = @; j < MAT_B_COLS; j++) {
= csim - Lo
) 57 res[1][]i] = @;
& build 58 // Do the inner nroduct of a row of A and col of R T
= report 1 1 8

Figure 144: Source Code for the Matrix Multiplier

Step 2: Synthesize and Analyze the Design

1. Click the Click the Run C Synthesis toolbar button to synthesize the design to RTL.

When synthesis completes, the synthesis report opens (Figure 145), and the Performance

estimates appears:

e The intervalis 80 clock cycles. Because there are nine elements in each input array, the
design takes approximately nine cycles per input read.

e The intervalis one cycle longer than the latency, so there is no parallelism in the hardware at

this point.

e The latency/interval is due to nested loops.

0 The inner loop called Product:

— Has a latency of 2 clock cycles

— Has 6 clock cycles total for all iterations.

0 The Col loop:

— Itrequires 1 clock to enter loop Product and 1 clock to exit

— It takes 8 clock cycles for each iteration (1+6+1)

— Has 24 cycles for all iterations to complete.

0 The top-level loop has a latency of 26 clock cycles per iteration, for a total of 78 clock
cycles for all iterations of the loop.

High-Level Synthesis

www.Xilinx.com 148

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=148

& XILINX. Design Optimization

2l matrixmul_csynth.rpt 2 =5
Performance Estimates

-1 Timing {(ns)

- Summary

Clock Target Estimated Uncertainty
default 1333 8.18 167

m

-1 Latency (clock cycles)
- Summary
Latency Interval

min max min max Type
79 79 80 80 none

=1 Detail
+ Instance
-l Loop

Latency Initiation Interval

Loop Name min max [Iteration Latency achieved target Trip Count Pipelined

- Row 78 78 26 - - 3 no
+ Col 24 24 8 - - 3 no
++ Product 5] 6 2 - - 3 no

Figure 145: Synthesis Report for the Matrix Multiplier

You can do one of two things to improve the initiation interval: Pipeline the loops or pipeline
the entire function. You begin by pipelining the loops and then compare those results to
pipelining the entire function.

When pipelining loops, the initiation interval of the loops is the important metric to monitor. As
seen in this exercise, even when the design reaches the stage at which the loop can process a
sample every clock cycle, theinitiation interval of the function is still reported as the time it takes
for the loops contained within the function to finish processing all data for the function,

Step 3: Pipeline the Product Loop

1. Select the New Solution toolbar button or use the menu Project > New Solution to create
a new solution, solution2.

2. Click Finish and accept the defaults to create solution2.
3. Ensure the C source code is visible in the Information pane.

When pipelining nested loops, you realize the greatest benefit by pipelining the inner-most
loop, which processes a sample of data. High-Level Synthesis automatically applies loop
flattening, collapsing the nested loops, removing the loop transitions (essentially creating a
single loop with more iterations but overall fewer clock cycles).

High-Level Synthesis www.xilinx.com 149

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=149

& XILINX. Design Optimization

4. Inthe Directives tab:
a. Select loop Product.
b. Right-click and select Insert Directive.

¢. Inthe Directives Editor dialog box, activate the Directives drop-down menu at the top
and select PIPELINE.

d. Click OK. With the default options, an initiation interval (II) of 1 (one new loop iteration
per clock) will be the default.

The Directive pane should show the following optimization directives. (The new directive is
highlighted.)

o= Outline [Directive & =8

4 @ matrixmul

9 a

b

J res

4% Row
4% Col
2 %" Product
% HLS PIPELINE

Figure 146: Initial Pipeline Directive

5. Click the Click the Run C Synthesis toolbar button to synthesize the design to RTL.

During synthesis, the information reported in the Console pane shows loop flattening was
performed on loop Row and that the default initiation internal target of 1 could not be
achieved on loop Product due to a dependency.

@1 [XFORM-541] Flattening a loop nest "Row™ (matrixmul.cpp:54) in function
"matrixmul =.

@1 [SCHED-61] Pipelining loop "“Product-.

@W [SCHED-68] Unable to enforce a carried dependency constraint (Il = 1,
distance = 1) between “store” operation (matrixmul .cpp:60) of variable
"tmp_8" on array “res" and "load" operation ("res load”, matrixmul .cpp:60)
on array °“res”.

@1 [SCHED-61] Pipelining result: Target 11: 1, Final 11: 2, Depth: 2.

High-Level Synthesis www.xilinx.com 150

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=150

& XILINX. Design Optimization

The synthesis report (Figure 147) shows that although the Product loop is pipelined with an
interval of 2, the interval of top-level loop is not pipelined.

=l matrixmul_csynth.rpt =5
Performance Estimates i

-1 Timing (ns)

= Summary

Clock Target Estimated Uncertainty
default 13.33 10.57 167

m

-1 Latency (clock cycles)

- Summary
Latency Interval
min max min max Type
82 82 83 83 none
= Detail

+ Instance

Latency Initiation Interval
Loop Mame min max Iteration Latency achieved target Trip Count Pipelined
- Row_Col 81 81 9 - - 9 no
+ Product 6 6 2 2 1 3 yes

Figure 147: Matrixmul Initial Pipeline Report

The reason the top-level loop is not pipelined is that loop flattening only occurred on loop Row.
There was no loop flattening of loop Col into the Product loop. To understand why loop
flattening was unable to flatten all nested loops, use the Analysis perspective.

6.
7.
8.
9.

Open the Analysis perspective.
In the Performance View, expand loops Row_Col and Product.
Select thewrite operation in state Cl.

Right-click and select Goto Source to see the view in Figure 148.

The write operation in state C1 is due to the code that sets res to zero before the Product loop.
Because res is a top-level function argument, it is a write to a port in the RTL: This operation
must happen before the operations in loop Product are executed. Because it is not an internal
operation but has an impact on the I/O behavior, this operation cannot be moved or optimized.
This prevents the Product loop from being flattened into the Row_Col loop.

High-Level Synthesis www.xilinx.com 151

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=151

& XILINX. Design Optimization

= Performance - matrixmul 2 = O || [€ Source £3 =g

Current Module : matrismul File: C:\Vivado_HLS_Tutorial\Design_Optimization\labl\matrixmul.cpp

39 subject only to applicable laws and regulations governing limitatii «

| Oneration\Control S| co | | c2 | c3 ||| 40liability.
1 HRow Col 41
2 indvar flatten... 42THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RET/
3 i(phi mux) 43 ALL TIMES
yil Jj (phi mux) 44
5 exitcond flatt... 45
6 indvar flatten... 46 #include "matrixmul.h"
7 exitcondl (icmp) a7
8 j mid2 (select) 48 void matrixmul(
9 i s(4) 49 mat_a_t a[MAT_A_ROWS][MAT_A_COLS],
10 | i mid2(select) 50 mat_b_t b[MAT_B_ROWS][MAT_B_COLS],
11 p addr7(-) 51 result_t res[MAT_A_ROWS][MAT_B_COLS])
12 | p addr8(+) 52{

node 35(write) w 53 // lterate over the rows of the A matrix

14 EProduct 54 Row: for(inti=0; i < MAT_A_ROWS; i++) {
15 k(phi mux) 55 /f Iterate over the columns of the B matrix
16 exitcond (icmp) 56 Caol: for(intj = 0; j < MAT_B_COLS; j++) {
17 k 1(+) 57 res[i]j] = 0;
18 p addrl (+) 58 // Do the inner product of a row of A and col of B
19 a load(read) 59 Product” for(int k = 0; k < MAT_B_ROWS; k++) {
20 p addr3(-) 60 res[illj] += alillk] = bIKI[l: |
21 P addrd (+) 61 T
23 b load(read) 62 1
23 res load(read) 63 1}
24 tmp 7 (*) 64
25 tmp 8 (+) 65}
26 node 68 (write) 66
27 1 1(#) 67 g

4
Performance | Resource 1 b

Figure 148: Matrixmul Initial Performance View

More importantly, it is worth addressing why only an II of 2 was possible for the Product loop.

The message SCHED-68 tells you:

@W [SCHED-68] Unable to enforce a carried dependency constraint (Il = 1,
distance = 1) between “store” operation (matrixmul .cpp:60) of variable
"tmp_8" on array “res" and "load" operation ("res load”, matrixmul .cpp:60)
on array "res".

e Theissue is a carried dependency. This is a dependency between an operation in one
iteration of aloop and an operation in a different iteration of the same loop. For example, an
operation when k=1 and when k=2 (where k is the loop index).

e The first operation is a store (memory read operation) on array res on line 60.
e The second operation is a load (memory write operation) on array res on line 60.

From Figure 148 you can see line 60 is a read from array res (due to the + = operator) and a

write to array res. An array is mapped into a block RAM by default and the details in the
Performance View can show why this conflict occurred.

The Performance view shows in which states the operations are scheduled. Figure 149 shows a
number of copies of the schedule for the Product loop to highlight how this issue can be
understood. The operations on the res array, a two-cycle read and write, are highlighted.

High-Level Synthesis www.xilinx.com 152

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=152

& XILINX. Design Optimization

In the successful schedule, the next iteration of the Product loop appears as shown below. In this
schedule, the initiation interval (II)=2 and the loop operations re-start every two cycles. There is
no conflict between any block RAM accesses. (None of the highlighted cells overlap across
iterations.)

The unsuccessful schedule shows why the loop cannot be pipelined with an II=1.1In this case, the
next iteration would need to start after 1 clock cycle. The write to the block RAM in the first
iteration is still occurring when the second iteration tries to apply an address for a read
operation. These addresses are different. Both cannot be applied to the block RAM at the same
time.

Successful Unsuccessful
Schedule Schedule

. -l Product
First Loop exitcond (icmp)

lteration (k=0) k 1(+)

addrl (+)
load (read)
addr3 (-)
addrd (+)
load (read)
tmp 7(¥)

res load (read) R]

oo 'div o

tmp 8 (+)

node 68 (write) “

A UiGE)

- Product — —
Second Loop exitcond (icmp)

lteration (k=1) x 1(+) [1=2 [1=1
addrl (+)

load (read)

addr3 (-)

addrd (+)

load(read)

tmp 7 (*)

I

1
res load(read) _ —
" _—

oo o g

tmp 8 (+)
node 68 (write)
5 A(F)

Figure 149: Carried Dependency Analysis

You cannot pipeline the Product loop with an initiation interval of 1. The next lab exercise shows
how re-writing the code can remove this limitation (any technique that does not write back to
the same array/block RAM). In this lab exercise you optimize the code asiit is.

The next step is to pipeline the loop above, the Col loop. This automatically unrolls the Product

loop and creates more operators and hence more hardware resources, but it ensures there is no
dependency between different iterations of the Product loop.

10. Return to the Synthesis perspective.

High-Level Synthesis www.xilinx.com 153

UG871 (v2014.1) May 6, 2014 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=153

& XILINX. Design Optimization

Step 4: Pipeline the Col Loop

1.
2.

Select the New Solution toolbar button to create a new solution, solution3.

Because solution2 already has a directive added, use the drop-down menu to select
solutionl as the source for existing directives and constraints (solutionl has none).

Click Finish and accept the default solution name, solution3.

Open the C source code matrixmul.cpp to makeit visible in the Information pane.
In the Directives tab:

a. Select loop Col.

b. Right-click and select Insert Directive

c. Inthe Directives Editor dialog box activate the Directives drop-down menu at the top
and select PIPELINE.

d. Click OK. With the default options, an initiation interval (II) of 1 (one new loop iteration
per clock) becomes the default.

The Directive pane, shown below, displays the following optimization directives (the new
directive is highlighted).

o= Qutline | Directive &3 =8

2 matrixmul
@ a
@b
? res
4 % Row
4% Col
% HLS PIPELINE
% Product

Figure 150: Col Pipeline Directive

6. Click the Click the Run C Synthesis toolbar button to synthesize the design to RTL.
During synthesis, the information reported in the Console pane shows that loop Product was
unrolled, loop flattening was performed on loop Row, and the default initiation internal
target of 1 could not be achieved on loop Row_Col due resource limitations on the memory
for array a.
@1 [XFORM-502] Unrolling all sub-loops inside loop "Col*
(matrixmul .cpp:56) in function "matrixmul® for pipelining.
@1 [XFORM-501] Unrolling loop “Product®™ (matrixmul.cpp:59) in function
"matrixmul® completely.
@1 [XFORM-541] Flattening a loop nest "Row" (matrixmul.cpp:54) in function
"matrixmul " .

High-Level Synthesis www.xilinx.com 154

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=154

& XILINX. Design Optimization

@I -[SCHED—61] Pipelining loop "Row_Col*.

@W [SCHED-69] Unable to schedulle "load®™ operation ("a load 17,

matrixmul.cpp:60) on array "a" due to limited memory ports.

@1 [SCHED-61] Pipelining result: Target Il: 1, Final 11: 2, Depth: 4.
Reviewing the synthesis report shows, as noted above, that the interval for loop Row_Colis only
two: the target is to process one sample every cycle. Once again, you can use the Analysis
perspective to highlight why the initiation target was not achieved.

7. Open the Analysis perspective.
8. Inthe Performance View, expand the Row_Col loop

The operations on array a (mentioned in the SCHED-69 message above) are highlighted in
Figure 151. There are three read operations on array a. Two operations start in state C1 and a
third read operation starts in state C2.

Arrays are implemented as block RAMs and arrays which are arguments to the function are
implemented as block RAM ports. In both cases a block RAM can only have a maximum of two
ports (for dual-port block RAM). By accessing array a through a single block RAM interface,
there are not enough ports to be able to read all three values in one clock cycle.

High-Level Synthesis www.xilinx.com 155

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=155

& XILINX.

Another way to view this resource limitation is to use to the Resource pane.

= Performance - matrixmul &3

Design Optimization

Current Module : matrixmul
| Oneration\Control S__| co_ |
1 ERow Col
2 indvar flatten...
3 i(phi mux)
4 J (phi mux)
5 exitcond flatt...
6 indvar flatten...
7 exitcond (icmp)
8 J mid2 (select)
9 i s5(+)
10 i mid2 (select)
11 p addr(-)
12 p addrd (+)
a load 1(read)
14 p addr3 (+)
15 b load 1(read)
16 p addrl (+)
a load 2(read)
18 p addr9 (+)
19 b load 2(read)
20 p addr2 (+)
a load(read)
22 b load(read)

23 tmp 7 1(*)

24 tmp 7 2 (*)

25 tmpl (+)

26 J 1(+)

27 tmp 7 (*)

28 tmp 8 2(+)

29 node 74 (write)

Performance | Resource

Figure 151: Matrixmul Pipeline Col Performance View

9. Click the Resource tab.

10. Expand the memories to see the view shown in Figure 152.

In Figure 152 the 2-cycle read operations in state C1 overlap with those starting in state C2 and
so only a single cycle is visible: however, it is clear that this resource is used in multiple states.

In looking at this view, it is clear that even when the issue with port a is resolved, the same issue
occurs with port b: it also has to perform 3 reads.

High-Level Synthesis can only report one schedule error or warning at a time, because, as soon
as the first issue occurs, the actions to create an achievable schedule invalidates any other
infeasible schedules.

High-Level Synthesis
UG871 (v2014.1) May 6, 2014

www.Xilinx.com

| Send Feedback I

156

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=156

& XILINX. Design Optimization

= Resource - matrixmul 2 =0

Current Module : matrixmul

|R99mlrt@\(‘.nnt’ml Stenl CO | C1 | c? | c3 |
1-4 HI/0 Ports
5 - Memory Ports

6 a read read

7 b read read

8 a read

o} b read

10 res write
11-32 HExpressions

Performance | Resource

Figure 152: Matrixmul Pipeline Col Resource Sharing View

High-Level Synthesis allows arrays to be partitioned, mapped together and re-shaped. These
techniques allow the access to array to be modified without changing the source code.

11. Return to the Synthesis perspective.

Step 5: Reshape the Arrays

1. Select the New Solution toolbar button or use the menu Project > New Solution to create
a new solution, solution4.

2. Click Finish and accept the default solution name solution4.

Because the loop index for the Product loop is k, both arrays should be partitioned along their
respective k dimension: the design needs to access more than two values of k in each clock
cycle.

For array a, this is dimension 2 because its access patternsis a[i][k]; for array b, this is
dimension 1 because its access patternis b[k][]]-

Partitioning these arrays creates k arrays - in this case, k number ports. Alternatively, we can use
re-shape instead of partition allowing one wide array (port) to be created instead of k ports.

After this transformation, the data in the block RAM outside this block must be reshaped in an
identical manner: if this process is not done by HLS, the data must be arranged as:

e Forarray a: i elements, each of width data_word_size times k.

e Forarray b: j elements, each of width data_word_size times k.

Open the C source code matrixmul .cpp to make it visible in the Information pane.
4. Inthe Directives tab
a. Select variablea.

b. Right-click and select Insert Directive.

High-Level Synthesis www.xilinx.com 157

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=157

& XILINX.

Design Optimization
c. Inthe Directives Editor dialog box activate the Directives drop-down menu at the top

and select ARRAY_RESHAPE.

d. Set the dimension to 2.
e. Click OK.

5. Repeat this process for variable b, but set the dimension to 1.

The Directive pane should show the following optimization directives.

8% Qutline | 4 Directive &3 =5

2 matrixmul
@ a
% HLS ARRAY_RESHAPE reshape variable=a complete dim=2
@b
% HLS ARRAY_RESHAPE reshape variable=b complete dim=1
@ res
% Row
7 Col
% HLS PIPELINE
% Product

Figure 153: Array Reshape Directive

6. Click the Run C Synthesis toolbar button to synthesize the design to RTL.

The synthesis report shows the top-level loop Row_Col is now processing data at 1 sample per
clock period (Figure 154).

High-Level Synthesis www.xilinx.com 158

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=158

& XILINX.

2 matrixmul_csynth.rpt i3

EPerfnrmance Estimates

- Timing (ns)
= Summary
Clock Target Estimated Uncertainty
default 13.33 1113 1.67
- Latency (clock cycles)
= Summary
Latency Interval
min max min max Type
12 12 13 13 none
- Detail
+ Instance
- Loop
Latency
Loop Mame min max Iteration Latency
- Row_Caol 10 10 3

Initiation Interval
achieved target Trip Count
1 1 9

Figure 154: Optimized Loop Processing report

e The top-level module takes 12 clock cycles to complete.

e The Row_Col loop outputs a sample after 3 cycles (iteration latency).

e Itthenreads 1 sample every cycle (Initiation Interval).

e After 9 iterations/samples (Trip count) it completes all samples.

e 3+9 =12 clock cycles

Design Optimization

m

Pipelined

yes

The function can then complete and return to start to process the next set of data.

Now, change the block RAM interfaces to FIFO interfaces to allow for streaming data.

Step 6: Apply FIFO Interfaces

> W

In the Directives tab

a. Select variablea.

b. Right-click and select Insert Directive.

High-Level Synthesis

Select the New Solution toolbar button to create a new solution.

Click Finish and accept the default solution name, solution5.

www.Xilinx.com

Open the C source code matrixmul .cpp to makeit visible in the Information pane.

159

UGS871 (v 2014.1) May 6, 2014

l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=159

& XILINX. Design Optimization

c. Inthe Directives Editor dialog box activate the Directives drop-down menu at the top
and select INTERFACE.

d. Click the mode drop-down menu to select ap_fifo.
e. Click OK.

5. Repeat this process for variables b and variable res.

The Directive pane displays the following optimization directives. (The new directives are
highlighted).

8% Qutline | 4 Directive &3 =5

4 @ matrixmul
2 3
% HLS ARRAY_RESHAPE reshape variable=a complete dim=2
% HLS INTERFACE ap_fifo port=a
@ b
% HLS INTERFACE ap_fifo port=b
% HLS ARRAY_RESHAPE reshape variable=b complete dim=1
@ res
% HLS INTERFACE ap_fifo port=res
4 %' Row
Z Col

Figure 155: Matrixmul FIFO Directives

6. Click the Run C Synthesis toolbar button to synthesizes the design to RTL.

Figure 156 shows the Console display after synthesis runs.

El Console &2 . €] Errors| & Warnings vl =~ 0O
Vivado HLS Console
@I [HLS-18] Opening project 'C:/Vivado HLS_Tutorial/Design_Optimization/labl/matrixmul prj’. -

@I [HLS-18] Adding design file 'matrixmul.cpp’ to the project.

@I [HLS-1@] Adding test bench file 'matrixmul_test.cpp' to the project.

@I [HLS-1@] Opening solution 'C:/Vivado HLS_Tutorial/Design_Optimization/labl/matrixmul pr3j/solution5’
@I [SYN-201] Setting up clock with a period of 13.3333ns.

@I [HLS-1@] Setting target device to 'xc7kl16@8tfbgd84-1'

@I [HLS-1@] Importing test bench file 'matrixmul test.cpp’ ...

@I [HLS-1@] Analyzing design file 'matrixmul.cpp’ ...

@I [HLS-1@] Validating synthesis directives ...

@I [HLS-1@] Checking synthesizability ...

@E [SYNCHK-91] Port 'res' (matrixmul.cpp:51) of function 'matrixmul’ cannot be set to a FIFO as it has
@I [SYNCHK-10] 1 error(s), @ warning(s).

m

q 11 4
Figure 156: FIFO Synthesis Warning

From the code shown in Figure 157, array res performs writes in the following sequence

(MAT_B_COLS = MAT_B_ROWS = 3):

High-Level Synthesis www.xilinx.com 160

UG871 (v2014.1) May 6, 2014 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=160

& XILINX. Design Optimization

e Write to [0][0] on line57.

e Then awrite to [0][0] on line 60.

e Then awrite to [0][0] on line 60.

e Then awrite to [0][0] on line 60.

e Write to [0][1] on line 57 (after index J increments).
e Then awrite to [0][1] on line 60.

o FEtc

Four consecutive writes to address [0][0] does not constitute a streaming access pattern; this is
random access.

l¢| matrixmul.cpp &2 =8
{ F
// Iterate over the rows of the A matrix
Row: for(int i = @; i < MAT_A ROWS; i++) {
// Iterate over the columns of the B matrix
Col: for(int j = @; j < MAT_B COLS; j++) {
res[i][]] = @;
// Do the inner product of a row of A and col of B
Product: for(int k = 8; k < MAT B ROWS; k++) {
res[1][j] += a[i][k] * b[k][]i];
¥

4 I »

Figure 157: Matrixmul Code

Examining the code in Figure 157 reveals that there are similar issues reading arrays a and b. It is
impossible to use a FIFO interface for data access with the code as written. To use a FIFO
interface, the optimization directives available in Vivado High-Level Synthesis are inadequate

because the code currently enforces a certain order of reads and writes. Further optimization
requires a re-write of the code, which you accomplish in Lab 2.

Before modifying the code, however, it is worth pipelining the function instead of the loops to
contrast the difference in the two approaches.

Step 7: Pipeline the Function

1. Select the New Solution toolbar button to create a new solution, solution6.

ﬁ IMPORTANT: In this step, copy the directives from solution4 as this solution does not
have FIFO interfaces specified.

High-Level Synthesis www.xilinx.com 161

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=161

& XILINX. Design Optimization

2. Select solution4 from both the drop down menus in the Options section. The Solution
Wizard appears as shown in Figure 158.

-

+ | Solution Wizard o || = 5]

Solution Configuration

Create Vivado HLS solution for selected technology

Solution Name: solutiong

Clock
Period: 75MHz Uncertainty:

Part Selection

Part: Xc7k160tfbgd84-1 D
Options

Copy existing directives from solution: solutiond -

Copy existing custom constraints from solution: solutiond -

Finish l l Cancel

Figure 158: New Solution Based on Solution4 Directives

3. Click Finish and accept the default solution name, solution®6.
4. Open the Csource code matrixmul .cpp to make it visible in the Information pane.
5. Inthe Directives tab:
a. Select the pipeline directive on loop Col.
b. Right-click and select Remove Directive.
Select the top-level function matrixmul.

d. Right-click and select Insert Directive.

High-Level Synthesis www.xilinx.com 162

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=162

& XILINX. Design Optimization

e. Inthe Directives Editor dialog box activate the Directives drop-down menu at the top
and select PIPELINE.

f. Click OK.
The Directives tab should appear as Figure 159.

B8 Outline [Directive i3 =5

a4 @ matrixmul
% HLS PIPELINE
J a
% HLS ARRAY_RESHAPE reshape variable=a complete dim=2
b
% HLS ARRAY_RESHAPE reshape variable=b complete dim=1
@ res
4% Row
% Col

Figure 159: Directives for Solution6

6. Click the Run C Synthesis toolbar button to synthesize the design to RTL.
7. Click the Compare Reports toolbar button.

a. Add solution4.

b. Add solution6.

c. Click OK.

The comparison of solutions 4 and 6 is shown in Figure 160.

High-Level Synthesis www.xilinx.com 163

UG871 (v2014.1) May 6, 2014 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=163

& XILINX. Design Optimization

£F compare reports &2 =0

Performance Estimates

= Timing (ns)
Clock solutiond solutiond
default Target 13.33 13.33
Estimated 11.13 11.13

-l Latency (clock cycles)

solutiond solutionf

Latency min 12 6
max 12 6

Interval min 13 5 =
max 13 5

Utilization Estimates

solutiond solutiond

BRAM_18K O 0
DSP48E 3 27
FF 35 517
LuT 37 44

Figure 160: Loop versus Function Pipelining

The design now completes in fewer clocks and can start a new transaction every 5 clock cycles.
However, the area and resources have increased substantially because all the loops in the design
were unrolled.

@I [XFORM-502] Unrolling all loops for pipelining in function 'matrixmul’
(matrixmul.cpp:51).

@I [XFORM-501] Unrolling loop 'Row' (matrixmul.cpp:54) in function 'matrixmul’
completely.

@I [XFORM-501] Unrolling loop 'Col' (matrixmul.cpp:56) in function 'matrixmul’
completely.

@I [XFORM-501] Unrolling loop 'Product' (matrixmul.cpp:59) in function
'matrixmul’ completely.

Pipelining loops allows the loops to remain rolled, thus providing a good means of controlling
the area. When pipelining a function, all loops contained in the function are unrolled, which is a
requirement for pipelining. The pipelined function design can process a new set of 9 samples
every 5 clock cycles. This exceeds the requirement of 1 sample per second because the default
behavior of High-Level Synthesis is to produce a design with the highest performance.

The pipelined function results in the best performance. However, if it exceeds the required
performance, it might take multiple additional directives to slow the design down. Pipelining
loops gives you an easy way to control resources, with the option of partially unrolling the
design to meet performance.

High-Level Synthesis www.xilinx.com 164

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=164

& XILINX. Design Optimization

Lab 2: C Code Optimized for 1/O Accesses

In Lab 1, you were unable to use streaming interfaces. The nature of the C code, which specified
multiple accesses to the same addresses, prevented streaming interfaces being applied.

e Ina streaming interface, the values must be accessed in sequential order.

e Inthe code, the accesses were also port accesses, which High-Level Synthesis is unable to
move around and optimize. The C code specified writing the value zero to port res at the
start of every product loop. This may be part of the intended behavior. HLS cannot simply
decide to change the specification of the algorithm.

The code intuitively captured the behavior of a matrix multiplication, but it prevented a required
behavior in the hardware: streaming accesses.

This lab exercise uses an updated version of the C code you worked with in Lab 1. The following
explains how the C code was updated.

Figure 161 shows the 1/O access pattern for the code in Lab 1. Out of necessity the address
values are shown in a small font.

As variables i, j and k iterate from 0 to 3, the lower part of Figure 161 shows the addresses
generated to read a, b and write to res. In addition, at the start of each Product loop, res is set to
the value zero.

Row i

g s [| e —
(O T e g [g e ——m—

Product k mm___mmm_
a l:mm-u.mnnn-_mma-a

: EEemmEE

Figure 161: Lab 1 Matrix Multiplier Address Accesses

To have a hardware design with sequential streaming accesses, the ports accesses can only be
those shown highlighted in red. For the read ports, the data must be cached internally to ensure

the design does not have to re-read the port. For the write port res, the data must be saved into
a temporary variable and only written to the port in the cycles shown in red.

The C code in this lab reflects this behavior.

Step 1: Create and Open the Project

1. From the Vivado HLS command prompt used in Lab 1, change to the lab2 directory as
shown in Figure 162,

2. Create a new Vivado HLS project by typing vivado_hls —f run_hls.tcl.

High-Level Synthesis www.xilinx.com 165

UG871 (v2014.1) May 6, 2014 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=165

& XILINX. Design Optimization

C:\Vivado_HLS_Tutorial\Design_Optimization\labl>cd ..

C:\Vivado_HLS_Tutorial\Design_Optimization>cd lab2

4 |1

C:\Uivado_HLS_Tutorial\Design_Optimization\lah2>vivado_hls -f run_hls.tcl

Figure 162: Setup for Interface Synthesis Lab 2

3. Open the Vivado HLS GUI project by typing vivado_hls —p matrixmul_pr;j.

4. Open the Source folder in the explorer pane and double-click matrixmul.cpp to open the
code as shown in Figure 163.

Ll matrixmul.cpp 2 =8
L\i'{ P
#pragma HLS ARRAY RESHAPE variable=b complete dim=1

4 #pragma HLS ARRAY RESHAPE variable=a complete dim=2

5 #pragma HLS INTERFACE ap fifo port=a

6 #pragma HLS INTERFACE ap fifo port=b

7 #pragma HLS INTERFACE ap_fifo port=res

mat_a t a row[MAT A ROWS];

mat b t b _copy[MAT B _ROWS][MAT B COLS];

int tmp = 9;

// Iterate over the rowa of the A matrix
Row: for(int i = @; i < MAT_A ROWS; i++) {
// Iterate over the columns of the B matrix
Col: for(int j = 0; j < MAT_B COLS; j++) {
#pragma HLS PIPELINE

// Do the inner product of a row of A and col of B
tmp=0;

// Cache each row (so it's only read once per function)
if (j == 9)

Cache Row: for(int k = 8; k < MAT_A ROWS; k++)
a_row[k] = a[i][k];

m

// Cache all cols (so they are only read once per function)
if (1 == @)
Cache Col: for(int k = 8; k < MAT B _ROWS; k++)

b_copy[k][3] = b[k][3];

Product: for(int k = 8; k < MAT B ROWS; k++) {
tmp += a_row[k] * b_copy[k][j]; -

4 1l 3

Figure 163: C Code with updated IO accesses

Review the code and confirm the following:

High-Level Synthesis www.xilinx.com 166

UG871 (v2014.1) May 6, 2014 | Send Feedback |

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=166

& XILINX. Design Optimization

e The directives from Lab 1, including the FIFO interfaces, are specified in the code as
pragmas.

e For-loops have been added to cache the rol and column reads.

e A temporary variable is used for the accumulation and port res is only written to when the
final result is computed for each value.

e Because the for-loops to cache the row and column would require multiple cycles to
perform the reads, the pipeline directive has been applied to the Col for-loop, ensuring
these cache for-loops are automatically unrolled.

Synthesize the design and verify the RTL using co-simulation.
5. Click the Run C Synthesis toolbar button to synthesize the design to RTL.

6. When synthesis completes, use the Run C/RTL Cosimulation toolbar button to launch the
Cosimulation Dialog box.

7. Click OK to start RTL verification.

The design has been now been fully synthesized to read one sample every clock cycle using
streaming FIFO interfaces.

Conclusion

In this tutorial, you:

e Learned how to analyze pipelined loops and understand exactly which limitations prevent
optimizations targets from being achieved.

e The advantages and disadvantages of function versus loop pipelining.

e How unintended dependencies in the code can prevent hardware design goals from being
realized and how they can be overcome by modifications to the source code.

High-Level Synthesis www.xilinx.com 167

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=167

& XILINX.

Chapter 8 RTL Verification

Overview

The High Level Synthesis tool automates the process of RTL verification and allows you to use
RTL verification to generate trace files that show the activity of the waveforms in the RTL design.
You can use these waveforms to analyze and understand the RTL output. This tutorial covers all
aspects of the RTL verification process.

To perform RTL verification, you use both the RTL output from High-Level Synthesis (Verilog,
VHDL or SystemC) and the C test bench. RTL verification is often called “cosimulation” or "C/RTL
cosimulation”; because both C and RTL are used in the verification.

This tutorial consists of three lab exercises.
Lab1l

Perform RTL verification steps and understand the importance of the C test bench in verifying
the RTL.

Lab2
Create RTL trace files and analyze them using the Vivado Design Suite.
Lab3

Create RTL trace files and analyze them using a third-party RTL simulator. This lab requires a
license for Mentor Graphics ModelSim simulator. (You can use an alternative, third-party
simulator with minor modifications to the steps).

Tutorial Design Description

You can download the tutorial design file from the Xilinx website. Refer to the information in

High-Level Synthesis www.xilinx.com 168

UG871 (v2014.1) May 6, 2014
l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=168

& XILINX. RTL Verification

Obtaining the Tutorial Designs.

This tutorial uses the design files in the tutorial directory
Vivado_HLS_Tutorial\RTL_Verification.

The sample design used in the lab exercise is a DUC (digital up converter) function. The purpose

of this lab is to demonstrate and explain the features of RTL verification. There are no design
goals for these lab exercises.

Lab 1: RTL Verification and the C test bench

This exercise explains the basic operations for RTL verification and highlights the importance of
the C test bench.

IMPORTANT: The figures and commands in this tutorial assume the tutorial data directory
Vivado HLS Tutorial is unzipped and placed in the location C:\Vivado_HLS_Tutorial

ﬁ If the tutorial data directory is unzipped to a different location, or on Linux systems, adjust
the few pathnames referenced, to the location you have chosen to place the
Vivado_HLS_Tutorial directory.

Step 1: Create and Open the Project
1. Open the Vivado HLS Command Prompt.

a. On Windows use Start > All Programs > Xilinx Design Tools > Vivado 2014.1 >
Vivado HLS > Vivado HLS 2014.1 Command Prompt (Figure 164).

b. On Linux, open a new shell.

Bl Vivado 2014.1 Tcl Shell
g Vivado 20141
@ Xilink Microprocessor Debugger 2014.1
e Cilinx SDK 2014.1
System Generator
Vivado HLS
Bl Vvivado HLS 2014.1 Command Promg
7| vivado HLS 2014.1

Figure 164: Vivado HLS Command Prompt

2. Using the command prompt window (Figure 165), change directory to the RTL Verification
tutorial, labl.

3. Execute the Tdl script to setup the Vivado HLS project, using the command
vivado_hls —f run_hls.tcl, as shown in Figure 165.

High-Level Synthesis www.xilinx.com 169

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=169

& XILINX. RTL Verification

C:\VUivado_HLS_Tutorial>cd RTL_Uerification

C:\Uivado_HLS_Tutorial\RTL_VUerification>cd labl

4 (1M

C:\Uivado_HLS_Tutorial\RTL_Uerification\labl>vivado_hls -f run_hls.tcl

Figure 165: Setup the RTL Verification Tutorial Project

4. When Vivado HLS completes, open the project in the Vivado HLS GUI using the command
vivado_hls —-p duc_prj, as shown in Figure 166.

RI [LIC-101] Checked in feature [HLS] -
Generating csim.exe

xxx DUC hardware test PASSED ' sxx

BRI [SIM-1] CSim done with @ errors.
@I [LIC-181] Checked in feature [HLS]

1 (1

C:\Uivado_HLS_Tutorial\RTL_Uerification\labl>vivado_hls -

Figure 166: Open RTL Verification Project for Lab 1

Step 2: Perform RTL Verification
1. Click the Run C Synthesis toolbar button to synthesize the design to RTL.

2. When synthesis completes, use the Run C/RTL Cosimulation toolbar button (Figure 167) to
launch the Cosimulation Dialog box.

File Edit Project Solution Window Help

x CEebaes s *

Figure 167: Run C/RTL Cosimulation Toolbar button

The Cosimulation Dialog box shown in Figure 168 opens.

High-Level Synthesis www.xilinx.com 170

UG871 (v2014.1) May 6, 2014 | Send Feedback |

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=170

& XILINX.

RTL Verification

+ | Co-simulation Dialog [

C/RTL Co-simulation

Verilog/VHDL Simulator Selection

Auto -

RTL Selection

() SystemC (@ Verilog () VHDL
Options

[Setup Only

Dump Trace

["] Optimizing Compile

["] Reduce Diskspace

Input Arguments

[] Do not show this dialog box again.

l oK] l Cancel

Figure 168: Cosimulation Dialog Box

The drop-down menu allows you to select the RTL simulator for HDL simulation. For this
exercise, you use the default Vivado Simulator with Verilog RTL for cosimulation..

3. Click OKto start RTL verification.
When RTL Verification completes, the simulation report opens automatically (Figure 169). The

report indicates if the simulation passed or failed. In addition, the report indicates the measured
latency and interval.

High-Level Synthesis www.xilinx.com 171

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=171

& XILINX. RTL Verification

£l duc_cosim.rpt 2 = 5

Cosimulation Report for 'duc’

Result
Latency Interval =
RTL Status min avg max min avg max
VHDL NA NA NA NA NA NA NA

Verilog Pass 32 33 40 33 34 41
SystemC NA NA NA NA NA NA NA

Figure 169: Cosimulation Report

RTL simulation completes in three steps. To better understand how the RTL verification process
is performed, scroll up in the console window to confirm that the messages described below
were issued.

First, the C test bench is executed to generate input stimuli for the RTL design.
@1 [SIM-14] Instrumenting C test bench ...

< C simulation executes to generate input stimuli >

At the end of this phase, the simulation shows any messages generated by the C test bench. The

output from the C function is not used in the C test bench at this stage, but any messages
output by the test bench can be seen in the console.

@1 [SIM-302] Generating test vectors ...

*** DUC hardware test PASSED 1 ***

An RTL test bench with newly generated input stimuli is created and the RTL simulation is then
performed.

@1 [SIM-333] Generating C post check test bench ...
@1 [SIM-12] Generating RTL test bench ...

@i-[SIM—ll] Starting SystemC simulation ...

Finally, the output from the RTL simulation is re-applied to the C test bench to check the results.
Once again, you can see any message output by the C test bench in the console. Finally, RTL
verification issues message SIM-1000 if the RTL verification passed.

SystemC: simulation stopped by user.
@1 [SIM-316] Starting C post checking ...

*** DUC hardware test PASSED 1 ***

@1 [SIM-1000] *** C/RTL co-simulation finished: PASS ***
To fully understand why the C test bench should check the results and how message SIM-1000
is generated, you will modify the C test bench.

High-Level Synthesis www.xilinx.com 172

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=172

& XILINX. RTL Verification

Step 3: Modify the C test bench
1. Expand the Test Bench folder in the Explorer pane (Figure 170).

2. Double-click duc_test.c to open the C test bench in the Information pane.

[5 Explorer w? = O|[€] due test.c &3 =8
. o f* Check The result *+/
=d &
.uc_prj 61 int retl = system("diff --brief duc_i.dat golden/duc_i.d:
P Includes 62 int ret2 = system("diff --brief duc_qg.dat golden/duc_q.d:
£ Source 63
fi= Test Bench 64 if (retl | ret2) {
[¢ duc_test.c 65 printf("\n *** DUC hardware test FAILED ! *** \n\n").
= golden 66 } else {
= solution1 67 printf("\n *** DUC hardware test PASSED ! *** \n\n"),
constraints 22 ¥
Bc_sim 70 return ((retl | ret2) ? 1 : 8);
= sim 71 //return 1; E‘
= syn 72} -
? w

lad fd |

-~

I F

Figure 170: RTL Test bench

3. Scroll to the end of the file to see the code shown in Figure 171.

4. Edit the return statement to match Figure 171 and ensure the test bench always returns the
value 1.

¢ *duc_test.c &2 =0
k /* Check the result */
int retl
int ret2

system("diff --brief duc_i.dat golden/duc_i.d:
system("diff --brief duc_g.dat golden/duc_g.d:

if (retl | ret2) {

printf("\n *** DUC hardware test FAILED ! *%% \n\n")
} else {

printf("\n *** DUC hardware test PASSED ! **% \n\n")

}

//return ((retl | ret2) ? 1 : 0);
return 1;

4] m

< | 111 P

Figure 171: Modified RTL Test bench

5. Save thefile.
6. Click the Run C Synthesis toolbar button to synthesize the design to RTL.

7. Click the Run C/RTL Cosimulation toolbar button to launch the Cosimulation Dialog box.

High-Level Synthesis www.xilinx.com 173

UG871 (v2014.1) May 6, 2014 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=173

& XILINX. RTL Verification

8. Leave the Cosimulation options at their default value and click OK to execute the RTL
cosimulation.

When RTL cosimulation completes, the cosimulation report opens and says the verification has
failed (Figure 172).

=l duc_cosim.rpt % = B|(gz Outline 2 . Directive ¢~ —0

. . . . + ||An outline is not available.
Cosimulation Report for "duc

Result
Latency Interval =
RTL Status min avg max min avg max
VHDL MNA MNA NA NA NA NA NA
Verilog Fail MNA NA NA NA NA NA

SystemC NA NA NA NA NA NA NA

El Console &2 . @] Errors| & Warnings BE = = O
Vivado HLS Conscle

Generating cosim.tv.exe
@I [SIM-382] Generating test vectors ...

% DUC hardware test PASSED | *

@E [SIM-359] C TB simulation failed, nonzero return value '1'.
@E [SIM-320] Generating test vectors failed.
@E [SIM-4] *** C/RTL co-simulation finished: FAIL ***

while executing
"cosim_design -trace_level none -rtl verilog -tool auto”

(file "C:/Vivado_ HLS_Tutorial/RTL_Verification/labl/duc_prj/solutionl/cosim.tcl" line 8)
@I [LIC-1@01] Checked in feature [HLS]

4 (1

Figure 172: Cosimulation Report Failure

In Figure 172, you can see from the message printed to the console (DUC hardware test

PASSED) that the results are correct, however, the verification report says the RTL verification
failed.

If required, you can confirm the results are correct. To do this, compare the output files created
by the RTL simulation with the golden results. The RTL simulation is executed in the simulation

directory wrapc, which is inside the solution directory. Figure 173 shows the solution directory,
with the output files highlighted.

High-Level Synthesis www.xilinx.com 174

UG871 (v2014.1) May 6, 2014 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=174

& XILINX. RTL Verification

{5 Explorer &3 v = B
» Y Includes -
> = Source

: U= Test Bench
4 = solution1
4 % constraints
W directives.tcl
W scriptitcl
= csim
4 [= sim
> = autowrap
» = report
=
4 [= wrapc
le] AESL_pka.h
L] apatb_duc.cpp
l¢ apatb_duch
= apcclog
[cosim.tv.exe
cosim.tv.mk
L] dds.c_pre.c.tb.c
duc_ldat
duc_g.dat
L] duc_test.c_pre.ctb.c
duc.autotvin.dat
duc.autotvout.dat
le] duc.c_pre.c.tb.c
L] imfl.c_pre.c.tb.c

m

Ll imf2.c_pre.c.tb.c

Figure 173: Cosimulation Output Files

RTL Cosimulation only reports a successful verification when the test bench returns a value of 0
(zero). Modifying the test bench to return a non-zero value ensures RTL verification (and C
simulation if it was performed) would always report a failure.

To ensure that the RTL results are automatically verified: the C test bench must always check the

output from the C function to be synthesized and return a 0 (zero) if the results are correct OR
return any other value if they are not correct.

When RTL Verification is performed, the same testing occurs in the test bench, and the output
from the RTL block is automatically checked. This is why it is important for the C test bench to
check the results and return a zero value only if they are correct (or return a non-zero value if

they are incorrect).

9. Exit the Vivado HLS GUI and return to the command prompt.

High-Level Synthesis www.xilinx.com 175

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=175

& XILINX. RTL Verification

Lab 2: Viewing Trace Files in Vivado

This exercise explains how to generate RTL trace files and how to view them using the Vivado
Design Suite tools.

Step 1: Create an RTL Trace File using Xsim

1. From the Vivado HLS command prompt you used in Lab 1, change to the lab2 directory as
shown in Figure 174.

2. Create a new Vivado HLS project by typing vivado_hls —f run_hls.tcl

@I [HLS-18] Running 'C:/Xilinx/Uivado_HLS/2014.1/bin/unurapped/winé4.o/vivado_hl
s.exe’

for user ‘duncanm’ on host ‘xsjduncanm38’ (Windows NT_amd6é4 version

6.1) on Tue Apr 08 15:46:41 -8700 2014

in directory 'C:/Uivado_HLS_Tutorial/RTL_Uerification/labl’

@I [HLS-18] Bringing up Uivado HLS GUI ...

C:\Uivado_HLS_Tutorial\RTL_Uerification\labl>cd ..

C:\VUivado_HLS_Tutorial\RTL_Uerification>cd lab2

C:\Uivado_HLS_Tutorial\RTL_Uerification\lab2>vivado_hls -f run_hls.tcl

4 |1

Figure 174: Setup for RTL Verification Lab 2

Open the Vivado HLS GUI project by typing vivado_hls —p duc_prj.

Click the Run C Synthesis toolbar button to synthesize the design to RTL.

Click the Run C/RTL Cosimulation toolbar button to launch the Cosimulation Dialog box.

In this case, you will produce a trace file you can open using the Vivado Simulator (Xsim).
Therefore explicitly select Xsim.

6. Inthe Co-simulation Dialog window:

a. Select Xsim from the Verilog/VHDL Simulator Selector (Figure 175).
b. De-select SystemC.
c. Select Verilog.
d. Activeate the Dump Trace drop-down menu and select the all option , to have the
options shown in Figure 175.
e. Click OKto execute RTL cosimulation.
High-Level Synthesis www.xilinx.com 176

UG871 (v2014.1) May 6, 2014 | Send Feedback |

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=176

& XILINX.

RTL Verification

¢ ECo-simuIation Dialog @

C/RTL Co-simulation

Verilog/VHDL Simulator Selection

XSim -

RTL Selection

() SystemC @ Verilog () VHDL
Options

[] Setup Only

Dump Trace

[Optimizing Compile

|| Reduce Diskspace

Input Arguments

[] Do not show this dialog box again.

[OK l [Cancel

Figure 175: Cosimulation Dialog Box For Lab 2

When RTL verification completes, the cosimulation report automatically opens. The report shows
that the Verilog simulation has passed (and the measured latency and interval). In addition,
because the Dump Trace option was used with the Xsim simulator option and because Verilog

was selected, two trace files are now present in the Verilog simulation directory. These are
shown highlighted in Figure 176.

High-Level Synthesis www.xilinx.com

UG871 (v2014.1) May 6, 2014 l Send Feedback I

177

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=177

& XILINX.

RTL Verification
+ |Vivado HLS - duc_prj (C:\Vivado HLS Tutorial\RTL Verification\lab2\duc_prj) [T =5
File Edit Project Solution Window Help
3] ==} B Hé% e e g drie|®
%5 Debug -?cf Analysis
[Explorer 22 «* = O/ /2] due_cosim.rpt = O|(gzoutl 2 _MDire|] O
= Test Bench o . - . . -
¥= solution Cosimulation Report for "duc An outline is not available.
constraints Result
= FSim Latency Interval
= ||_'an RTL Status min avg max min avg max
& sim VHDL NA NA NA NA NA NA NA
= autowrap -
Verilog Pass 30 31 38 31 32 39
& report
=ty SystemC NA NA NA NA NA NA MNA
= verilog Export the report(.ntml) using the Export Wizard
4 check_sim.tcl |
duc_c_2_rom.dat 1
il duc_c_2v
duc_c_3_rom.dat
mi duc_c 3w
w duc_mul_17s 185 32 4w
mi duc_mul_18s_17ns_35_4v
s duc_mul_18s_18s_36_4v
wi duc_mul 19s 165 32 3w El Console £3 . @] Errors| & Warnings| % Man Page xRl =~ 0O
duc_shift_reg_p_1_ram.dat Vivado HLS Console B
i duc_shift_reg_p_lw ## save_wave_config duc.wcfg o
duc_shift_reg_p_2_ram.dat #ﬁ.m.m all] . .
wit duc_shift_reg_p_2v if;m?? called at time : 294527265 ps : File "duc.autotb.v" Line 381
qui
i ducautotb.y INFO: [Common 17-206] Exiting xsim at Thu Oct 17 13:32:54 2013...
5 due.performance.result.transac @T [STM-316] Starting C post checking ...
duc.prj
duc.resultlatrb *¥% DUC hardware test PASSED | **x
@ ductcl
it ducy @I [SIM-1888] *** C/RTL co-simulation finished: PASS ***
ducwefg @I [LIC-101] Checked in feature [VIVADO_HLS]
duc.wdb
imf2_c_1_rom.dat
mi imf2_c_1v =
imf2_shift_reg_p_ram.dat R o
4 I 2 a4 1 2
Figure 176: Verilog Xsim Cosimulation Results
The next step is to view the trace files inside the Vivado Design Suite.
7. Exit the Vivado HLS GUI and return to the command prompt.
Step 2: View the RTL Trace File in Vivado
1. Launch the Vivado Design Suite (not Vivado HLS):
a. On Windows use Start > All Programs > Xilinx Design Tools > Vivado 2014.1 >
Vivado 2014.1
b. On Linux, type vivado in the shell.
2. Inthe Vivado Tcl Console, enter the following commands, as shown in Figure 177. This
example assumes the top-level tutorial directory is C:\Vivado_HLS_Tutorial :
a. cd /Vivado_HLS_Tutorial/RTL_Verification/lab2/duc_prj/solutionl/sim/verilog
b. current_fileset
High-Level Synthesis www.xilinx.com 178

UGS871 (v 2014.1) May 6, 2014

l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=178

& XILINX.

RTL Verification
c. open_wave_database ducwdb
d. open_wave_config duc.wcfg
Tcl Console - 02 =
= cd /Vivado HLS Tutorial/RIL Verification/lab2/duc prj/scluticnl/sim/wverilcg -~
1_\._ current_fileaet
. sources_1
ﬁ' open_wave_database duc.wdb =
Eﬁ cpen wave_config C:/Users/duncanm/AppData/Roaming/Xilinx/Vivado/duc.wcig
b 2| 15 similation_1
Jopen_wave_config duc.wcig
_::luc:.wc.:'g S
4

b
|

2 Tel Console Messages | 4 Log

Figure 177: Opening the Trace File in Vivado

You can then view the waveforms in the waveform viewer. Figure 178 shows the zoomed

waveforms where the output data ports and their associated I/O protocol signals (output valid
signals) are shown highlighted.

Simulation Result - duc.wdb X
B duc.wcfg* x

& Objects

77, 40

— e I R B B M
o ; hl -*-.—-*--—-*--i-l—-

& op_roncy [T I T I I N IS T S IR 1|

= AESL_clk_counter[31:0] 20406

& Properties

.2, Scope

I ready_delay_la
1 done_delay.
I interface_done

Figure 178: Analyzing the RTL Trace File

3. Exit and close the Vivado GUI.

High-Level Synthesis www.xilinx.com 179

UG871 (v2014.1) May 6, 2014 | Send Feedback |

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=179

& XILINX. RTL Verification

4. Type exit to close the Vivado Tcl command prompt.

Lab 3: Viewing Trace Files in ModelSim

This exercise explains how you can generate and view RTL trace files and using the Mentor
Graphics ModelSim RTL simulator. Other third-party simulators are supported, and similar
process can be used if another RTL simulator is selected.

CAUTIONI! This lab exercise requires that the executable for ModelSim is defined in the

& system search path and that the required license to perform HDL simulation is available

on the system.

Step 1: Create an RTL Trace File using ModelSim

AR

From the Vivado HLS command prompt you used in Lab 2, change to the lab3 directory.
Create a new Vivado HLS project by typing vivado_hls —f run_hls.tcl.

Open the Vivado HLS GUI project by typing vivado_hls —p duc_prj.

Click the Run C Synthesis toolbar button to synthesize the design to RTL.

Click the Run C/RTL Cosimulation toolbar button to launch the Cosimulation Dialog box.

This exercise uses the Mentor Graphics ModelSim RTL simulator. The path to the simulator
executable must be set in your system search path.

6. Inthe Co-simulation Dialog window:

a.
b.

C.

Select ModelSim from the Verilog/VHDL Simulator Selector.
Unselect SystemC.
Select VHDL.

Activate the Dump Trace drop-down menu and select the all option, to have the
options shown in Figure 179.

Click OK to execute RTL cosimulation.

High-Level Synthesis www.xilinx.com 180

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=180

& XILINX.

RTL Verification

+ | Co-simulation Dialog [

C/RTL Co-simulation

Verilog/VHDL Simulator Selection

ModelSim -

RTL Selection

() SystemC () Verilog (@ VHDL
Options

[Setup Only

Dump Trace

["] Optimizing Compile

["] Reduce Diskspace

Input Arguments

[] Do not show this dialog box again.

l oK] l Cancel

Figure 179: Cosimulation Dialog Box For Lab 3

When RTL verification completes, the cosimulation report automatically opens, showing the
VHDL simulation has passed (and the measured latency and interval). In addition, because the
Dump Trace option was used with the ModelSim simulator option and because VHDL was

selected, a trace file is now present in the VHDL simulation directory. The trace file is shown
highlighted in Figure 180.

High-Level Synthesis www.xilinx.com

UG871 (v2014.1) May 6, 2014 l Send Feedback I

181

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=181

& XILINX. RTL Verification

[Explorer &2 ¥ = B
4 2 duc_prj -
e Includes
= Source

= Test Bench
a4 Y= solution1
& constraints
= csim
4 = sim
= autowrap
= report
= tv
4 = vhdl
st AESL_sim_pkg.vhd
W check_sim.tcl
E compile_modelsim.sh

11

= cosim.modelsim.scr

s duc_c_l.whd

s duc_c.vhd

s duc_mul_175_18s_32 4.vhd

s duc_mul_18s_17ns_35_3.vhd

rrd duc_mul_18s 18s 36 3.vhd

sl duc_mul_19s_16s_32 3.vhd

s duc_shift_reg_p_lvhd

s duc_shift_reg_p.vhd

s duc.autotb.vhd

El duc.performance.result.transaction.xml
=l duc.resultlatrb

s ducvhd

= duc.wlf

sl imf2_c_2.vhd

st iImf2_shift_reg_p_2vhd -

Figure 180: VHDL ModelSim Trace File

The next stepis to view the trace files inside ModelSim.

7. Exit the Vivado HLS GUI and return to the command prompt.

Step 2: View the RTL Trace File in ModelSim
1. Launch the Mentor Graphics ModelSim RTL Simulator.

2. Click the menu File > Open.

3. Select Log Files as the file type (Figure 181).

4

Navigate to the VHDL simulation directory and select duc.wilf.

High-Level Synthesis www.xilinx.com 182

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=182

& XILINX. RTL Verification

5. Click Open.
4 Open File 5
@O-| « 0SDisk (C) » Vivado_HLS_Tutorial » RTL Verification b lab3 » duc_prj » solutionl » sim » vhdl » [42][Search vhet 2|
Organize ~ New folder
A Name Date modified Type Size
I work 3/6/2013 4:52 PM File folder
' duc.wlif 3/6/2013 4:52 PM WLF File 3936 KB
ol I3
|
d =
¢
&
F
File name: ducwlf - ’Log Files (*.wlf) VI
I Open ‘VI I Cancel]

Figure 181: ModelSim Open File WLF

6. Add the signals to the trace window and adjust to see a view similar to Figure 182.

High-Level Synthesis www.xilinx.com 183

UG871 (v2014.1) May 6, 2014 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=183

& XILINX. RTL Verification

ap_clk

ap_done
ap_idle

ap_ready
ap_rst
ap_start
¢_1_address0 1h]-10f-9 |a 3 o [0 11 12[]
c_1_cel
¢ 1 load reg 691
c_1_qo
¢_address0
c_cel
¢_load_reg_618
c_qo
ch
ch_1
ch_1_load_reg_...
ch_load_reg_607
cnt
din_i

;4 dout_i

P dout_i_ap_vld

b dout_q_ap_vid
freq
grp_fu_400_ce
grp_fu_400_p0
grp_fu_400_p1
arn fi_ 400 _n?

Cursor 1
q [] «]] JE

ap_cs_fem I N T OO O T T T

| 4 dout_q 552 146 0000 |2

ap_ns_fsm T T T T T T T T O T T T O T T T I T

Figure 182: Viewing the Trace File in ModelSim

7. Exit and close the ModelSim RTL simulator.

Conclusion

In this tutorial, you learned how to:

e Perform RTL verification on a design synthesized from C and the importance of the test

bench in this process.

e Create and open waveform trace files using the Vivado Design Suite.

e Create and open waveform trace files using a third-party HDL simulator (ModelSim) and

view the trace file created by RTL verification.

High-Level Synthesis www.xilinx.com

184

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=184

& XILINX.

Chapter 9 Using HLS IP in IP Integrator

Overview

You can package the RTL from High-Level Synthesis and use it inside IP Integrator. This tutorial
demonstrates how to take HLSIP and use it in IP Integrator as part of a larger design.

This tutorial consists of a single lab exercise.
Labl

Complete the steps to generate two HLS blocks for the IP catalog and use them in a design with
Xilinx IP, an FFT. You validate and verify the final design using an RTL test bench.

Tutorial Design Description

You can download the tutorial design file from the Xilinx Website. Refer to the information in

High-Level Synthesis www.xilinx.com 185

UG871 (v2014.1) May 6, 2014
l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=185

& XILINX. Using HLS IP in IP Integrator

Obtaining the Tutorial Designs.

This tutorial uses the design files in the tutorial directory Vivado_HLS_Tutorial\
Using_IP_with_IPL

The design blocks in this tutorial process the data for a complex FFT.

e The Xilinx FFTIP block only operates on complex data. Although you can perform an FFT of

real data on a complex data set with all imaginary components set to zero, it can be done
more efficiently by pre-processing the data.

e The front-end HLS block in this lab applies a Hamming windowing function to the 1024 (N)
real data samples and sends even/odd pairs to an N/2-point XFFT as though they are
complex data.

e The back-end HLS block takes bit-reverse ordered data, puts it in natural order and applies
an O(N) transformation to FFT output to extract the spectral data for the N-point real data

set. Note, the first output pair packs the 0™ and 512" (purely real) spectral data point into
the real and imaginary parts, respectively.

e The designs are fully-pipelined, streaming designs for high throughput; intended for
continuous processing of data, but with throttling capability (stalls if input stalls).

e AXI4 Streaming interfaces are used to connect all blocks in IP Integrator (IPI).

Lab 1: Integrate HLS IP with a Xilinx IP Block

This lab exercise shows how two HLS IP blocks are combined with a Xilinx IP FFT in IP Integrator
and the design verified in the Vivado Design Suite.

IMPORTANT: The figures and commands in this tutorial assume the tutorial data directory
Vivado HLS Tutorial is unzipped and placed in the location C:\Vivado_HLS_Tutorial

ﬁ If the tutorial data directory is unzipped to a different location, or on Linux systems,
adjust the few pathnames referenced, to the location you have chosen to place the
Vivado_HLS_Tutorial directory.

Step 1: Create Vivado HLS IP Blocks

Create two HLS blocks for the Vivado IP Catalog using the provide Tcl script. The script runs HLS

C-synthesis, RTL co-simulation and package the IP for the two HLS designs (hls_real2xfft and
hls_xfft2real).

1. Open the Vivado HLS Command Prompt.

a. On Windows use Start > All Programs > Xilinx Design Tools > Vivado 2014.1 >
Vivado HLS > Vivado HLS 2014.1 Command Prompt.

b. On Linux, open a new shell.

High-Level Synthesis www.xilinx.com 186

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=186

& XILINX. Using HLS IP in IP Integrator

Bl Vivado 2014.1 Tcl Shell
g Vivado 20141
@ Xilink Microprocessor Debugger 2014.1
e Cilinx SDK 2014.1
System Generator
Vivado HLS
Bl Vivado HLS 2014.1 Command Promg
7| vivado HLS 2014.1

Figure 183: Vivado HLS Command Prompt

2. Using the command prompt window, change the directory to Vivado_HLS_Tutorial\
3. Using_IP_with_IPI\lab1\hls_designs (Figure 184).
4. Type vivado_hls —f run_hls.tcl to create the HLSIP (Figure 184).

C:\Uivado_HLS_Tutorial>cd Using_IP_with_IPI
C:\Vivado_HLS_Tutorial\Using_IP_with_IPI>cd labl

C:\Vivado_HLS_Tutorial\Using_IP_with_IPI\labl>cd hls_designs

C:\Vivado_HLS_Tutorial\Using_IP_with_IPI\labl\hls_designs>vivado_hls -f run_hls.
tcl

1 |11

Figure 184: Create the HLS Design for IPI

When the script completes, there are two Vivado HLS project directories, fe_vhls_prjand
be_vhls_prj, which contain the HLS IP, including the Vivado IP Catalog archives for use in Vivado

designs.
e The "front-end”IP archive is located at fe_vhls_prj/IPXACTExport/impl/ip/
e The "back-end” IP archive is located at be_vhls_prj/IPXACTExport/impl/ip/

The remainder of this tutorial exercise shows how the Vivado HLS IP blocks can be integrated
into a design (in IP Integrator) and verified.

Step 2: Create a Vivado Design Suite Project
1. Launch the Vivado Design Suite (not Vivado HLS):

a. On Windows use Start > All Programs > Xilinx Design Tools > Vivado 2014.1 >
Vivado 2014.1

b. On Linux, type vivado in the shell.

2. From the Welcome screen, click Create New Project (Figure 185).

High-Level Synthesis www.xilinx.com 187

UG871 (v2014.1) May 6, 2014 | Send Feedback |

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=187

& XILINX. Using HLS IP in IP Integrator

- Vivado 20141 =N RO =5
File Flow Tools Window Help Search commands
VIV} \DO Productivity. Multiplied. C XILINX
ALL PROGRAMMABLE.
Quick Start
Create New Project Open Project Open Example Project
Tasks
& E 4
_rh? pal.)
Manage IP Open Hardware Manager Xilinx Tel Store

Information Center

i'aig a

Documentation and Tutorials Quick Take Videos Release Notes Guide

3 Td Console

Figure 185: Create a Vivado Project

3. Click Next on the first page of the Create a New Vivado Project wizard.

4. Click the ellipsis button to the right of the Project location text entry box and browse to
the tutorial directory (Figure 186).

High-Level Synthesis www.xilinx.com 188

UG871 (v2014.1) May 6, 2014 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=188

& XILINX.

Using HLS IP in IP Integrator

42 Choose Project Location

Recent: | |= C:f

Directory: | C:\Wivado_HLS_Tutorial\Using_IP_with_IPT\labl

=5

1 OEimEXDIS

- | Titus

Users

- | Vivado_HLS

= | Vivado_HLS_Tutorial

| Arbitrary_Precision

| C_validation
Design_Analysis

| Design_Optimization
| Interface_Synthesis
Introduction
RTL_WVerification
Using_IP_with_IPI
--@Is_designs
[| wverilog_th

o

»

11

| Using_IP_with_SysGen -
Llsina TP wwith Fwnn (]
Select] ’ Cancel
Figure 186: Path to the Vivado Design Suite Project
5. Click Nextto move to the Project Type page of the wizard.
a. Select RTL Project.
b. Select Do not specify sources at this time (if not the default).
c. Click Next.
6. On the Default Part page, under Specify, click Boards and select the ZYNQ-7 ZC702
Evaluation Board, as shown in Figure 187.
High-Level Synthesis www.xilinx.com 189

UGS871 (v 2014.1) May 6, 2014

| Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=189

& XILINX.

Using HLS IP in IP Integrator

High-Level Synthesis
UG871 (v2014.1) May 6, 2014

¢ Mew Project
Default Part

Choose a default Xilinx part or board for your project. This can be changed later.

Specify Filter

& Parts Board Vendor | All
@ Boards Library | All
Mame | All

Version | Latest

Reset All Filters

Sl

Search: | O
Board Board Board Board Board Part
Vendor Library Name Version
@ MicroZed Board em.avnet.com zyng microzed e @ X7z w
@ ZedBoard Zyng Evaluation and Development Kit em.avnet.com zyng zed d @ xcTi—
@ Artix-7 AC701 Evaluation Platform xilinx.com artix7 ac701 1.0 & xc7e
@ Kintex-7 KC705 Evaluation Platform xlinzx.com kintex7? ke705 1.1 @ xc7h =
@ Virtex-7 VC707 Evaluation Platform xilinx.com virtex7 w707 1.1 & xeh
H Virtex-7 VC709 Evaluation Platform xllmx.com virtex7 vc709 1 0 & e
__ZYNQ-7 ZC702 Evaluation Board E!I- i XC73
ﬂ 7YNO-7 70706 Fualuation Roard yilinx.com Fvna 7o7NA
4 | 1
[< Back][Next = J Finish

Figure 187: Vivado Project Specification

The Vivado workspace populates and appears as shown in Figure 188.

www.Xilinx.com

7. Onthe New Project Summary Page, click Finish to complete the new project setup.

| Send Feedback l

190

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=190

& XILINX. Using HLS IP in IP Integrator

¢ praject_L - [Cuflinsftutorials/HLS IFIntegratar/labl/project_Lpraject_Lxpr] - Vivado 2013.1 ==
File Edit Flow Tools ‘indow Layout View Help Seaveh commands
23 e X[P ¥ S X T G| SoefaukLayou ~ | K| ® Ready
Flow Navigator « | | Project Manager - project_1 X
[=] Sources —Ow x T Project Summary X O x
o= et BIE = -
4 Project Manager NS ol = =3 {f§ Project Gettings Edt (2] (0 Messages £y
-5 Design Sources = X X
4% Project Settings (515 Constraits (1) Project name: project_1 Summary: Derrars
5 Add Sources £+ Simulation Sources (1) Product family: Zyng-7000 D L ariical warring
ﬂ IP Catalog e sim_L Project part: Z¥NQ-7 7C702 Evaluation Board (xc72020clq464-1) 0 warnings
Top module name: Not Cefined
4 IP Integrator
. Synthesis) Implementation %
& create Block Design ® s b 1mp
§ Open Block Design Status: = Ready Status: = Ready
Part: *e72020d3484-1 Part: %e720200l3484-1
4 simulation)
Strateqy: Yivado Synthests Defaults Strategy: tivado [mplementation Defaults
4 Simulation Settings
Incremental Compile: Hone
(i) Run Simulstion Hierarchy | Libraries | Compile Order
& Sources | Templates Sumemary gEoREE
4 RTL Analysis
» % Onen Elaborated Design Properties —gu=x @ DR violations x Timing 3
PN
4 Synthesis oRe . .
infarmatian is not available because it hasn't been n Timing information s nat awalable because it hasrt been run
5 Synthesis Settings
& Run Synthesis
uil 2 &) Power 2
> B Open Synthesized Design
4 Implementation Utilization informeation s not awailable because it hasrt been run Power information is not awaiable because it hasrt been run
5 Implementation Settings
[» Run Implementation
> B Open Implemented Design
4 Program and Debug
15 Bitstream Settings Design Runs i T S
¥ Generate Bitstream | hame Fart Constraints Strategy Status Frogress Start Eapsed WNS TS WH
Bl Open Hardiars Session Zi| == synth_t xc72020clg484-1 constrs_L Yivado Synthesis Defaults (vivado Synthesis 2013) Mot started 0%
" by = impl_t %e7z020clg484-1 constrs_L vivada Defaults (Vivado 2013) Mot started 0%
B Launch iPACT =
L]
»
“
=3
@
L% m A=
3 Tcl Console | & Messages | [Log | (2 Reports~ [Design Runs

Figure 188: Vivado Project

Step 3: Add HLS IP to an IP Repository
1. Inthe Project Manager area of the Flow Navigator pane, click IP Catalog.

High-Level Synthesis www.xilinx.com 191
UG871 (v2014.1) May 6, 2014 Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=191

& XILINX. Using HLS IP in IP Integrator

| File Edit Flow Tools Window Layout VYiew Help
a2 D e b X (D D Y& K| B @ | Soefaul

Flaws Mavigakar L Project Manager - projeck_1

™ Ol i
L N — Sources

QA= et BIE

4 Project Manager
T Design Sources
[+ Constraints (1)

% Project Setkings
Q"J'ﬂ’ add Sources = Simulation Sources (1)

£|: IP Catalog

4 TP Inteqgraktar
7 Creats Block Design
8 Cpen Block Design

Figure 189: Open the IP Catalog

2. TheIP Catalog appears in the main pane of the workspace. Click the IP Settings icon.

1048 2 | 2[5 55 Defauk Lavout | K| ®

Project Manager - project_1

Sources — O % T Project Summary X | F IP Catalog X
(M A pa 3 13 -
A== Oﬁ = | | search: |
- =
i Design Sources e -1
[H-4=) Canstraints (1) . W5 (BN
B+ Simulation Sources (1) = B[Automative & Industrial
Ll sim_1 & B[AR Infrastruckure
— |5 BaselP
D% 7 Basic Elements
\}, [Communication & MNetwarking
"_ 1 Debug & Yerification
D t-[= Digital Signal Processing
ﬁ ([Embedded Processing
--|.-—.' FPiaA Features and Design
E IP Settings
Settings for IP Catalog, IP Generation, and IP Packager
Hierarchy | Libraries | Compile Order B[Standard Bus Interfaces
o = [video & Image Processing
4% Sources | 7 Templates
Properties N I K
- 3,} N
Details

Figure 190: Open the IP Catalog Settings

3. IntheIP Settings dialog, click Add Repository.
4. Inthe IP Repositories dialog:

High-Level Synthesis www.xilinx.com 192

UG871 (v2014.1) May 6, 2014 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=192

& XILINX. Using HLS IP in IP Integrator

a. Browse to the tutorial directory, Using_IP_with_IPI\labl.
b. Click the Create New Folder icon.

c. Enter "vivado_ip_repo” in the resulting dialog (Figure 191).

d. Click OK.

e. Click Selectto close the IP Repository window.

-

#- IP Repositories [2]

Recent: | = C:/Vivado_HLS_Tutarial/Using_IP_with_IPT/lab1 yZH=EEANEXDZ S

[Vl gl C: \ivado_HLS Tutorial\Using

»

Program Files (x86)
ProgramData

SymCache
SystemGeneratorForDSP
TCS3Update

Titus

Users

Vivado_HLS
Vivado_HLS_Tutorial Create New Folder [l
Arbitrary_Precision
C_Validation
Design_Analysis
Design_Optimization
| Interface_Synthesis
Introduction
RTL_Werification
Using_IP_with_IPI
=)

-- | hls_designs

-- | project_1

-- verilog_tb
| Using_IP_with_SysGen
| Using_IP_with_Zyng -
FFl- L Windowe (=]
Select] ’ Cancel

) jj Enter the name of the new folder: L

vivado_ip_repo

OK l | Cancel

Figure 191: Create a New IP Repository

5. Back in theIP Setting dialog:
a. Click Add IP.

b. Inthe Select IP to Add to Repository dialog box, browse to the location of the HLS IP
lab1/hls_designs/fe_vhls_prj/IPXACTExport/impl/ip/.

c. Select thexilinx_com _hls_hls_real2xfft_1 0.zip file (Figure 192).
d. Click OK.

High-Level Synthesis www.xilinx.com 193

UG871 (v2014.1) May 6, 2014 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=193

& XILINX. Using HLS IP in IP Integrator

4. Select IP To Add To Repositol
pository
Look in: | | ip ': THE B ARG B
P | bd Recent Directories
R:C;E_n,st | constraints = C:fVivado_HLS_Tutorial/Using_IP_with_IPI/labl/hls_designs... =
Ttems I doc File Preview
! I example File: xilimx_com_hls_hls_real2xfft 1_0.zip
L hdl Directory:
Desktop L misc C:/Vivado_HLS_Tutorial/Using_IP_with_IPT/abl/hls_designs/fe vhi
. | subcore Created: Tuesday 10#'(]8-"1‘3 10:03 AM
| B i Accessed: Tuesday 10/08/13 10:03 AM
My Loxgur Modified: Tuesday 10/08/13 10:03 AM
Documents 2 auxiliaryxml Size: 41.2 KB
componentxml Type: Archive project file
L - xilinx_com_hls_hls_real2xfft 1 0zip Owner: XLNX\duncanm
Computer
=
w
Network
< | I |
File name: xilinx_com_hls_hls_real2xfft 1 0.zip
Files of type: | 1P Packages (.xml, zip) x|

Figure 192: Add the HLS IP to the Repository

6. Follow the same procedure to add the 2nd HLSIP package to the repository:
xilinx_com hls hls xfft2real 1 0.zip.

7. The new HLSIP should now show up in the IP Setting dialog (Figure 193).
8. Click OK to exit the dialog box.

ii_-. Project Settings @

P |

Repositary Manager | Generation | Packager

3 Add directaries ko the list of repositaries. After hitting Apply wou will be able to see the IP
within each repository, You may then add additional IP. If an IP is disabled then a tool-tip
will alert you to the reason.

Sirmulation

IP Repositories

i filinbukorials HLS _IPIntegrator/labl jvi

A 4

Synthesis

v

Implementation

o
[ELeS

EY

Eitstream

[Add Repositary...] [@ Refresh All...

'

1P in Selected Repositary
Hls_real2xfft (xilin.com:hls:hls_realZ:fFft:1.00.a)
Hls_xfft2real {xilims.com:hls:hls_xfft2real:1.00.a)

[L add 1P,] [@ Refresh Repository. ..]

Figure 193: IP Repository with HLS IP

High-Level Synthesis www.xilinx.com 194

UG871 (v2014.1) May 6, 2014 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=194

& XILINX.

Using HLS IP in IP Integrator

A Vivado HLSIP category now appears in the IP Catalog and, if expanded, the HLSIP displays

(Figure 194).

Figure 194: IP Catalog with HLS IP

Step 4: Create a Block Design for RealFFT

T Project Summary % | 1F IP Catalog
4| search: |
=
. Mame . Stakus License
=]
. +-[= Automokive & Industrial
ﬁ + 1 8XI Infrastructure
= + ! BaselP
= [#-[= Basic Elements
3 + ' Comrmunication & Metworking
| B[Debug & Verification
i + ' Digikal Signal Processing
% + ' Embedded Processing
+= FPGEA Features and Design
E + ' Math Functions
+ ' Memaries & Starage Elements
+ ' Standard Bus Interfaces
+ ! Wideo & Image Processing
—-[= YI¥ADO HLS IP
£|= Hls_realz:«fFt Pre-production Included
“oAF His_xfftzreal Pre-production Included

1. Click Create Block Diagram under IP Integrator in the Flow Navigator.

a. Inthe resulting dialog box, name the design Real FFT.

b. Click OK.

High-Level Synthesis
UG871 (v2014.1) May 6, 2014

www.Xilinx.com

195

l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=195

& XILINX.

File
Pis

Edit Flow Toaols Windowe

&3 I’

Flow Mavigator &
azs
4 Project Manager

@ Project Settings

O%j Add Sources

1F 1P Catalog

[N

1P Integrator
S Create Block Desion
¥ Cpen Block Design

[N

Simulation
@ Simulation Settings
@ Run Simulation

[N

RTL Analysis
> 5% Open Elaborated Design

[N

Synthesis
@ Synthesis Settings
@ Run Synthesis
> ¥ Open Synthesized Design

[N

Implementation
4% Implementation Settings

P fm e lmmnmr abine

g‘“‘_ project_1 - [Co¥ilinx/tutarials/HLS IPIntegratar/lablfproject_1fproject 1xpr] - Vivado 2013.1
Layout Wiew Help

X | & b B8 K| L (@ |5 oefaul Layou

Project Manager - project_1

Sources

5 iy
ANl =

¥ 7| A |E

w5 Design Sources

{7 Constraints (1)

=147 Simulation Sources (1)
Cg sim_L

Hierarchy | Libraries | Compile Order

Using HLS IP in IP Integrator

T Project Summary % | IF IP Catalog X

4 search:

=

kE

=

|| & | S @ | B

Mame

T

7 Bukomative & Industrial

2 Al Infrastructure

! BaselP

7 Basic Elements

» Cammunication 8 Mebwaorking
2 Debug & Yerification

» Digital Signal Processing

7 Embedded Processing

» FPiEA Features and Design

7 Math Functions

7 Memories & Storage Elements
“[Standard Bus Interfaces

2 Sources | ' Templates

4. Create Block Design

Properties

« >[5

Design name: | RealFFT

A Please specify name of block design

Cancel

Figure 195: Create Block Diagram

The upper-right pane now has a Diagram tab. Add a Xilinx FFTIP block to the design and

customize it.

2.

a. Inthe Search box type “fourier”.

b. Press Enter.

High-Level Synthesis
UG871 (v2014.1) May 6, 2014

www.Xilinx.com

In the Diagram tab click the Add IP link in the “get started” message (Figure 196).

196

l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=196

& XILINX.

Using HLS IP in IP Integrator

The Xilinx IP block FFT is now instantiated in the design, as shown in Figure 197.

Figure 196:

&= Diagram X

*[| & RealFFT

@ () This design is empty. To get started, Add IF from the catalog.
[S

X

]

'a Search: | O~ fourier] (3 matches)

1

IE Mame

5 Discrete Fourier Transform

"x

%

g Select and press ENTER or drag and drop, ESC ...
@

&l

Add the Xilinx FFT IP

JE—B Diagram X |

*[]| # RealFFT

RE G SGDTHELR

rr ¥t 1 ﬁ

M_AXIS_DATALR |2
event_frame_started
4.5 AXIS_DATA event_tlast_unexpected
Elé.‘f- S_AXIS_CONFIG event_tlast_missing
wlaclk event_status_channel_halt
event_data_in_channel_halt
event_data_out_channel_halt|

[o

Fast Fourier Transform

Figure 197: Xilinx FFT IP

3. Double-click the new Fast Fourier Transform IP Symbol to open the Re-customize IP

dialog box.

High-Level Synthesis
UG871 (v2014.1) May 6, 2014

www.Xilinx.com

197

l Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=197

& XILINX.

Using HLS IP in IP Integrator

4. Onthe Configuration tab (Figure 198):

a. Change the Transform Length to 512.

b. Select Pipelined, Streaming1/O in the Architecture Choice section.

1F Re-customize IP
Fast Fourier Transform (9.0)

ﬁ’J Documentation |5 IP Location

ol

IP Symbol | Implementation Det 4 » B
[] show disabled paorts

M_AXIS_DATA
event_frame_started
o]-hS_AHIS_DATA
=l bs_ANIS_CONFIG

Jaclk. evert_status_channel_halt

event_tast_unexpectad

avant_tast_missing

event_data_in_channel_halt

event_data_cut_channel_halt

Component Name RealFFT_»fft_0_0

Configuration | Implementation | Detailed Implementation

Number of Channels | 1 -
Transform Length | 512 -
Architecture Configuration
Target Clock Frequency (MHz) | 250 [1..550]
Target Data Throughput (MSPS) |50 [1..550]

Architecture Choice

() Automatically Select

(") Radix-4, Burst /O

(") Radix-2, Burst /O

() Radix-2 Lite, Burst /0

[] Run Time Configurable Transform Length

oK] [Cancel
Figure 198: Xilinx FFT Configuration
5. Select the Implementation tab (Figure 199):
a. Select ARESETN (active low) in the Control Signals group.
b. Verify that Non Real Time is selected as Throttle Scheme.
c. Click OKto exit the Re-customize IP dialog box.
High-Level Synthesis www.xilinx.com 198

UGS871 (v 2014.1) May 6, 2014

l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=198

& XILINX. Using HLS IP in IP Integrator

ﬁ Re-customize IP |E|
Fast Fourier Transform (9.0) ﬁlj

ﬁ Documentation |) IP Location

IP Symbol | Implementation Det: 4 ¢ B Component Mame |RealFFT _xffc_1_0
[shaw disabled parts Configuration” Implementation | Detailed Implementation
-
Data Format Fixed Point)
Scaling Options | Scaled -
Rounding Modes | Truncation -

Precision Cptions

Input Data Width | 16 j Phase Factor Width | 16 =

Control Signals

M_ARIS_DATA R[S
ewent_data_in_channel_halt

[ACLKEN ARESETR (active low)

5 _ANIS_COMFIG + dhtes o
= 15_avis paTA event_data_out_channel_hal

ewent_frame_started
ewent_status_channel_halt

ARESETn must be asserted For a minimum of 2 cycles

OQutput Ordering Options

ewent_tlast_missing
ewent_tlast_unexpected

CQutput Ordering | Bit/Digit Reversed Order

Cylic Prefix Insertion

Optional Output Fields Thrattle Scheme

XE_INDER CYFLO
mES O @ Mon Real Time () Real Time

Cancel

Figure 199: Xilinx FFT Implementation

Add one instance of each of the HLS generated blocks to the design.

6. Right-click in any space in the canvas and select Add IP (Figure 200).

2= Diagram X

fal | i, RealFFT

(13
a;
&
[
):1
') @ Ctrl+E
Eﬁ" X Delete | xfft_1
= " GikE M_AXIS_DATA (5
& L Ctrl+/ event_frame_started
@ L Selectal Chrl+8, event_tlast_unexpected
& addIp.. Ctrl+1 event_tlast_missing
Create Hierarchy... event_status_channel_halt
event_data_in_channel_halt
Create Comment
event_data_out_channel_halt
Create Port., Ctrl+K
Create Interface Port... Ctrl+L [rier Transform
B Save as POF File..
Figure 200: Add IP blocks
High-Level Synthesis www.xilinx.com 199

UG871 (v2014.1) May 6, 2014 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=199

& XILINX. Using HLS IP in IP Integrator

7. Type "hls" into the Search text entry box.
a. Highlight both IPs (Click the control key and select both)

b. Press Enter.

The design block now as three IP blocks are shown in Figure 201.

Zo Diagram X Owr x
§|]| % ReaFFT

o -
L_ hls_real2xfft_1

i y y

L_ = qus_axis_din m_axis_dout g =

hls_xfft2real _1

Hls_realZxftt

gps_axis_din m_axis_doutdh =
aclk

ap_start

B Y P g | D

Hls_xft2real

*fft_1

M_AXIS_DATAC: =
event_frame_started
event_tlast_unexpected
event_tlast missing
event_status_channel_halt
event_data_in_channel_halt
event_data_out_channel_halt

=) apS_AXIS_DATA
= apS_AXIS_CONFIG

Fast Founer Transform

Figure 201: RealFFT IP Blocks

The next step is to connect HLS blocks to the FFT block and ports.

8. Hover the cursor over the “m_axis_dout” interface connector of Hls_real2xftt block until
pencil cursor appears.
a. Left-click and hold down the mouse button to start a connection.

b. Drag the connection line to “"S_AXIS_DATA" port connector of FFT block and release
(when green check mark appears next to it).

9. Ina similar fashion, connect the FFT's “M_AXIS_DATA" interface to the “s_axis_din” interface
of the Hls_xfft2real block.

The two connections are shown in Figure 202,

High-Level Synthesis www.xilinx.com 200

UG871 (v2014.1) May 6, 2014 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=200

& XILINX. Using HLS IP in IP Integrator

J = Diagram X OC x
| &, RealFFT |
o "
“q: hls_real2xfft_1
g ar s_axis_din m_mds doutsr
'I:.F dap _ready

ap
Y his_xfft2real_1 p start apid
{F =k s s din m_axis doutds B TE_realo=it
b ap.
i resetn ap
@ p_start ap_idl
His_xfitlreal
xfft_1
M_MXIS_DATA ==
=45 AXIS_DATA irema srated
—1r
= - . event_tlast
Z]45_AXIS_CONFIG tiast_unexpected
] dk event_tlast missing
-
i event_status channel_halt
event_data_in_channel_halt
event_data_out_channel halt
Fast Fourier Transrorm
L] R

Figure 202: Connecting Ports on the IP Blocks

To create I/O ports for the design, make some external connections.

10. Right-click the “s_axis_din" interface connector on Hls_real2xfft block and select Make
External (Figure 203).

hls_real 2xfft_1

3F = axis din m_asis_doutdF =

= & Block Interface Properties.., Ctrl+E
7% Delete Delete
l B Copy Ctrl+C
B Paste Ctrl+y
t Selectall Ctrl+&,
& AddIP.. Ctrl+]
|n'ﬂ Make External Ctrl+T
Start Connection Mode Ctrl+H

Disconnect Pin

Create Hierarchy.., DATA

Create Cornment | conFrG
Create Port... Crl+K
Create Interface Port.. Ctrl+L

B Save as PDF File..,

ast Fi

Figure 203: Make External Connections

High-Level Synthesis www.xilinx.com 201

UG871 (v2014.1) May 6, 2014 l Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=201

& XILINX.

Give the new interface port a clearly unique name.

In the External Interface Properties pane (Figure 204).

a. Click portsymbol to highlight it.

b.

C.

d. Type in "real2xfft_din” and press Enter.

Using HLS IP in IP Integrator

Double-click in the Name text entry box to highlight “s_axis_din".

i} IMPORTANT: Property changes might not take effect if this re-naming step is not done.

Block Design - RealFFT *

Design Hierarchy
QA

E= Diagram X

+ | %, RealFFT

&, RealFFT

- External Interfaces

G-I [i
-5 Interface Connections

G-4F =Fft_1 (Fast Fourier TransForm:3,0)
=-4F hls_real2xfft_1 (Hls_realz=FFt:1.00,a)
Al _axis_dout

Al 5_awis_din

aclk.

aresetn

ap_start

ap_ready

ap_done

ap_idle

=Lk hls_xfftzreal_1 (His_xfftzreal:1.00.a)
Al i _axis_dout

Al s_axis_din

= adk

AAAYY Y

m

BN om|fR R

& Sources-, B Design Hierarchy

External Interface Properties
« +» 5
o real2xfft_din

Mame: real2xfft_din

Mode: SLAVE

Conneckion | <= s_axis_din_1

General | Properties

Xfft2rea

Figure 204: Port Naming

11.In a similar manner to the previous step:

|_ hls_xfft2real 1 |-

ap_ready

His_xfftireal

a. Makethe "m_axis_dout” interface of Hls_xfft2real block external and rename it

“xfft2real_dout”

b. Right-click aclk connector of Hls_real2xfft block and select Make External.

c. Right-click aresetn connector of Hls_real2xfft block and select Make External.

High-Level Synthesis
UG871 (v2014.1) May 6, 2014

www.Xilinx.com

202

| Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=202

& XILINX. Using HLS IP in IP Integrator

12. Tie the ap_start ports of both HLS blocks high
a. Right-click canvas, select Add IP.
b. Type “const” into Search text entry box.
c. Select ConstantIP.
d. Press Enter.

e. Double-click ConstantIP Symbol (Figure 205) and verify that the settings for Const
Width and Const Val are both ‘1’ and click OK to close Re-customize IP dialog box.

ﬁ Re-custarmize IP @
Constant (1.0) ‘:\’

ﬁﬂ Documentation | IP Location

[7] Show disabled parts
Component Mame |RealFFT_xlconstant_1_0

Const Width 1 Range: 1...4096

Const Yal 1

const[0:0]

Figure 205: Constant IP Properties

f. Connect ap_start of both HLS blocks to the Constant block (Figure 206).

High-Level Synthesis www.xilinx.com 203

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=203

& XILINX. Using HLS IP in IP Integrator

Eo Diagram X

| i, RealFFT

his_real 2xfft_1

reatz«dft_din [T

ackk [
aresetn [_y— L

I_ his_xfftzreal_1 iI ;
B 1s_sods_dlin m_aodis_daut- 1+ B Hils_real 2t
P

: Tig_anis_ dlin m_axis_daut 1 [

R N admERAR

shoanstant 1

eon]0:0]

Constart

Figure 206: Connect AP_START to Constant 1

13. Make the remaining connections.

a. Click and drag from the aclk connector of FFT and Hls_xfft2real blocks to the aclk

external port (or aclk connector on Hls_real2xfft block or anywhere on “wire” connecting
them).

b. Connect aresetn of FFT and HlIs_xfft2real blocks to aresetn network.

c. The XFFT configuration interface is left unconnected, as this design always operates in
the default mode of the core.

14. Click the Regenerate icon to clean up and reorganize the Block Design.

High-Level Synthesis www.xilinx.com 204

UG871 (v2014.1) May 6, 2014 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=204

& XILINX. Using HLS IP in IP Integrator

Io Diagram X O x

3 | J RealFFT |

? R

reallft_din[T

ack[s
aresatn[_

D[RS _AMIS_DATA
|ThS_ARIS_CONFIG

Bl P g |00 7 |F

xconstant_1

Regenerate
Generate optirized layout

Figure 207: Re-generated Design Diagram

15. Validate the Block Design by clicking the Validate Design icon on the toolbar.

#4_ project_1 - [Cifxilinftutorials/HLS IPIntegratorflablfproject_1/project Lxpr] - Vivado 2013.1
File Edit Flow Tools Window Layout View Help

ii}: = By X || di} $ P Qﬂ ﬁ:’} % E |(___} 95 pefault Lavout

Flaw Nawigatar Yalidate Design
Ci\ E % ‘u‘alidatesand display errors and critical warnings in this design
™ A
4 Project Manager o %‘E:clk 1
ﬁ. Praoject Settings >‘l:: .ar'etn_l

Figure 208: Design Validation

16. Click File > Save Block Design.
17. Close the Block Design.
18. The next step is to generate output products.

a. Inthe Sources tab of Project Manager pane (Figure 209), right-click RealFFT.bd and
select Generate Output Products.

b. Click OKin the resulting dialog to initiate the generation of all output products.

High-Level Synthesis www.xilinx.com 205

UG871 (v2014.1) May 6, 2014 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=205

& XILINX.

08 2| R G | 2S Default Lavout

Project Manager - project_1

Sources

Q ooy o

M ey B al

3 [E

-5 Design Sources (1)

B

+ | Conskrainks (1)

—|-{= Simulation Sources (1)
-0 sim_1 (1)

Hierarchy | IP Sources | Lib

Au Sources | 5 Templ

Source Mode Properties
Rl
&, RealFFT (RealFFT.bd)

Maodule: Fe

19. Create an HDL Wrapper.

Using HLS IP in IP Integrator

%, Project Summary X

=0 Source Mode Properties..,

* Open File
Create HDL Wrapper

Wiews Instantiation Ternplate
Generate Output Products..,
Feset Output Products..,
Export Hardware for 30K,
Package Block Design...

H Remowe File from Project...

Disable File

Figure 209: Generating Output Products

=

e {E} Project Settings

=)

- Project name: prajec
Ctrl+E uct Farnily: Zynia-
Alt+0 ek part: THMG-

rodule name: Mok D
Synthesis
rus: o Ready
wrFz020clgds:
wkeqy: Wivado Svnkhe
Alt+I

’ DRC Yiolations
Delete
Alt+Equals DR.C infarmatian i
Alt+bdinus

a. Inthe Sources tab of the Project Manager pane, right-click RealFFT.bd and select
Create HDL Wrapper. (This is the same procedure and menu as described in the

previous step.)

b. Click OKand let Vivado manage the wrapper.

Step 5: Verify the Design

The next step in creating the final design is to verify design with the HDL test bench provided in
the lab exercise: realfft_rtl_tb.v.

1. Right-click Simulation Sources in Sources tab of Project Manager pane (Figure 210).

2. Select Add Sources.

High-Level Synthesis
UG871 (v2014.1) May 6, 2014

www.Xilinx.com

206

l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=206

& XILINX. Using HLS IP in IP Integrator

';i V = "ﬂl !{:} ';-"_-:;% ‘L Iu C B duil LayuoL i 1= L '-‘1!.\ =4

Block Design - RealFFT

Sources — O

M
b

E= Diagram x| &8 RealFF
A= e B B | Copilincftutotials/HLS_IF

-5 Design Sources (1) " 1 ‘ti‘Tl?ECﬂlE 1 p:
. [-E8% RealFFT_wrapper (RealFFT_wrapper) (1) | 2// 1ib IF Intes
| Canskrainks |:1:| £ Jmodule Real FFT_
El"i.-_..' Simulation SO tte 3&.:. 4 laclk,
FEh@n sim_1 (17 [B3 Ctrl+E > [aresetn,

Hierarchy Update k :j & real2xffr

. H=) 7 12xfft
@ Refresh Hierarchy rEaaRtiE L
| s realZxfft o
Edit Constraints Sets.., il 9 real2xfft «
Edit Sirmulation Sets... real2xffr ¢
xfftireal
B Add Sources.., At +2 -fE__J 12 :-:fftZreal_t
13 xfftZreal ¢
& 14 xfftZreal ¢
¢ |15 xfftireal ¢

Hierarchy | IP Sources | Libraries | Compile Qrder |E. le input aclk:
A% Sources | B Design Hierarchy —— 17 input areset
el 18 inpur [31:0]
Properties — O ¢ = 4519 dinput [3:0]re
& =» &J [20 input [0:07ke

21 output realz:

Figure 210: Adding Simulation Sources

3. Select Add or Create Simulation Sources in the Add Sources dialog.
4. Click next.
5. Inthe Add Sources dialog box, click the Add Files button highlighted in Figure 212.

High-Level Synthesis www.xilinx.com 207

UG871 (v2014.1) May 6, 2014 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=207

& XILINX. Using HLS IP in IP Integrator

F
g“‘_ Add Sources B
Add or Create Simulation Sources
Specify simulation specific HOL files, or directories containing HOL files, to add to your project. Create a new source file on disk and add it ko your ‘\\ -
project., -
Specify simulation set: | & sim_1 -

Id Marme Library Location

Add Files...] [Add Directotiss. .,] [Create File..,

Scan and add RTL includs files into project
Copy sources inko projeck
Add sources fram subdirectories

Include all design sources For simulation

Figure 211: Add Source Dialog Window

6. Browseto thefile real fft_rtl_tb.v in the tutorial directory
Using_IP_with_IPI\labl\verilog_tb.

7. Select it and click OK.
8. Select the checkbox Copy sources into the project (Figure 212).

High-Level Synthesis www.xilinx.com 208

UG871 (v2014.1) May 6, 2014 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=208

& XILINX. Using HLS IP in IP Integrator

4. Add Sources @

Add or Create Simulation Sources

Specify simulation specific HDL files, or directories containing HOL files, to add to your project. Create a new source file on ‘"i_
disk and add it to your project.

Specify simulation set: | & sim_1 -
Index Name Library Location
w1 realfft_rtl_tb.v work C:fVivado_HLS_Tutorial/Using_IP_with_IPI/lab1/verilog_tb
[AddFiles.. | [Add Directories...] ’ Create File...

|:| Scan and add RTL include files into project
Copy sources into project
Add sources from subdirectories

Include all design sources for simulation

MNext > Finish]’ Cancel

Figure 212: Copy Design Sources

Note: When you copy the design source files into the project, edits to the file(s) are not
automatically propagated to the original source file.

9. Click Finish.
10. Click Run Simulation in the Flow Navigator (Figure 213).

High-Level Synthesis www.xilinx.com 209

UG871 (v2014.1) May 6, 2014 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=209

& XILINX. Using HLS IP in IP Integrator

L == L w (=]

Flow Mavigator L5o
{ Ol i
Q=
4 Project Manager
&:’} Project Settings
Q""}'.' Add Sources

ﬁ IP Catalog

4 JP Integrator
,x"ﬁ Create Block Design

L 13 Cpen Block Design

4 Simulation
&:’} Simulation Settings
() Fun Simulation

Run Behavioral Simulation

4 RTLA

|

Figure 213: Execute Simulation

11. Once the simulation has started, click the Run All icon to complete simulation.

s
elp
¢ | B Default Layout - \b}\ m E_u fpir) 10 |us = | L= Q| &
ation - Functional - sim_1 - realfft_rtl_th Run All (F3)
— O /" = Run the simulation until there are no more events or until 2 Verilog pp
. = — T inish' or "§stop’,
=[S e RIS ~ T T e |
Design Unit Block Tyvpe | harne Yalue Daka Type ﬂ Mane

Figure 214: Run The Simulation to Conclusion

Conclusion
In this tutorial, you learned:
e How to create Vivado HLS IP using a Tcl script.

e How toimport create a design using IP integrator (IPI) and include both Xilinx IP and the
Vivado IP blocks.

e How to verify the design in IPL

High-Level Synthesis www.xilinx.com 210

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=210

& XILINX.

Chapter 10 Using HLS IP in a Zynq Processor Design

Overview

A common use of High-Level Synthesis design is to create an accelerator for a CPU —to move
code that executes on the CPU into the FPGA programmable logic to improve performance. This

tutorial shows how you can incorporate a design created with High-Level Synthesis into a Zynq
device.

This tutorial consists of two lab exercises.

Lab1l

You create and configure a simple HLS design to work with the CPU on a Zynq device. The HLS
design used in this lab is simple to allow the focus of the tutorial to be on explaining the
connections to the CPU and how to configure the software drivers created by High-Level
Synthesis to control the device and manage interrupts.

Lab2

This lab illustrates a common high performance connection scheme for connecting hardware
accelerator blocks that consume data originating in the CPU memory and/or producing data
destined for it in a streaming manner. The lab highlights the software requirements to avoid

cache coherency issues.

Tutorial Design Description

You can download the tutorial design file can be downloaded from the Xilinx Website. Refer to
the information in

High-Level Synthesis www.xilinx.com 211

UG871 (v2014.1) May 6, 2014
l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=211

& XILINX. Using HLS IP in a Zynq Processor Design

Locating the Tutorial Design Files.

This tutorial uses the design files in the tutorial directory Vivado_HLS_Tutorial\
Using_IP_with_Zynq.

The sample design is a simple multiple accumulate block. The focus of this tutorial exercise is

the methodology, connections and integration of the software drivers. (The tutorial does not
focus on the logic in the design itself.)

Lab 1: Implement Vivado HLS IP on a Zynq Device

This lab exercise integrates both the High-Level Synthesis IP and the software drivers created by
HLS to control the IP in a design implemented on a Zynq device.

IMPORTANT: The figures and commands in this tutorial assume the tutorial data directory
Vivado HLS Tutorial is unzipped and placed in the location C:\Vivado_HLS_Tutorial

ﬁ If the tutorial data directory is unzipped to a different location, or on Linux systems, adjust
the few pathnames referenced, to the location you have chosen to place the
Vivado_HLS_Tutorial directory.

Step 1: Create a Vivado HLS IP Block

Create two HLS blocks for the Vivado IP Catalog using the Tcl script provided. The script runs
HLS C-synthesis, runs RTL co-simulation, and packages the IP for the two HLS designs
(hls_real2xfft and hls_xfft2real).

1. Open the Vivado HLS Command Prompt.

a. On Windows use Start > All Programs > Xilinx Design Tools > Vivado 2014.1 >
Vivado HLS > Vivado HLS 2014.1 Command Prompt (Figure 215).

b. On Linux, open a new shell.

Bl Vivado 2014.1 Tcl Shell
g Vivado 20141
@ Xilink Microprocessor Debugger 2014.1
e Cilinx SDK 2014.1
System Generator
Vivado HLS
Bl Vvivado HLS 2014.1 Command Promg
7| vivado HLS 2014.1

Figure 215: Vivado HLS Command Prompt

2. Using the command prompt window, change the directory to
Vivado_HLS_Tutorial\Using_IP_with_Zynqg\lab1\hls_macc (Figure 216).

3. Type vivado_hls —f run_hls.tcl to create the HLSIP (Figure 216).

High-Level Synthesis www.xilinx.com 212

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=212

& XILINX. Using HLS IP in a Zynq Processor Design

C:\Vivado_HLS_Tutorial>cd Using_IP_with_Zyngqg

C:\Vivado_HLS_Tutorial\Using_IP_with_Z2yng>ed labi

C:\Vivado_HLS_Tutorial\Using_IP_with_2Zyng\labl>cd hls_macc

C:\Uivado_HLS_Tutorial\Using_IP_with_Zyngq\labl\hls_macc>vivado_hls -f run_hls. tclg

Figure 216: Create the HLS Design

When the script completes, thereis a Vivado HLS project directory vhls_prj, which contains the
HLSIP, including the Vivado IP Catalog archive for use in Vivado designs.

The remainder of this tutorial exercise shows how the Vivado HLS IP blocks can be integrated
into a Zynq design using IP Integrator.

Step 2: Create a Vivado Zynq Project
1. Launch the Vivado Design Suite (not Vivado HLS):

a. On Windows use Start > All Programs > Xilinx Design Tools > Vivado 2014.1 >
Vivado 2014.1.

b. On Linux, type vivado in the shell.

2. From the Welcome screen, click Create New Project (Figure 217).

High-Level Synthesis www.xilinx.com 213

UG871 (v2014.1) May 6, 2014 | Send Feedback |

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=213

& XILINX.

Using HLS IP in a Zynq Processor Design

#- Vivado 2014.1
File Flow Tools Window Help

Me—sie LR

Quick Start
AR / ‘
N -
Create New Project Open Project
Tasks
/:g: '._; 3
(o &
Manage IP Open Hardware Manager

Information Center

i'aig Ei

Documentation and Tutorials Quick Take Videos

VIVADO! o s

E__

Open Example Project

Xilinx Tel Store

e Ej

Release Notes Guide

& XILINX

3 Td Console

Figure 217: Vivado Welcome Screen

3. Inthe New Project wizard:

a. Click Next.

b. Inthe Project Location text entry box, browse to the location of the tutorial file directory

and click Next (Figure 218).

c. Onthe Project Type page, select “Do not specify sources at this time” (if it is not the

default).
d. Click Next.

High-Level Synthesis
UG871 (v2014.1) May 6, 2014

www.Xilinx.com 214

| Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=214

& XILINX.

Using HLS IP in a Zynq Processor Design

New Project
Project Name

Project name: | project_1
Project location: | C:/Vivado_HLS

Create project subdirectory

Enter a name for your project and specify a directory where the project data files will be stored

_Tutorial/Using_IP_with_Zyn q,-'lab1|

Project will be created at: C:/Vivado_HLS_Tutorial/Using_IP_with_Zynq/labl/project_1

=5

[

’ < Back ” Mext =] Finish

Figure 218: Specify the Vivado Project Directory

4. Onthe Default Part page:
a. Click Boards.

b. Select the ZYNQ-7 ZC702 Evaluation Board (Figure 219).

4 New Project @
Default Part
Choose a default Xilinx part or board for your project. This can be changed later. ':L
Specify Filter
& Parts Board Vendor | All -
@ Boards Library | All -
Name | All M
Version | Latest 7
Reset All Filters
Search:
Board Board Board Board
Boagd Vendor Library Name Version IR
@ MicroZed Board em.avnet.com zynqg microzed e @ xc7z010clge w
@ ZedBoard Zynq Evaluation and Development Kit em.avnet.com zyng zed d i xc7z020clge—
@ Artix-7 AC701 Evaluation Platform xilinx.com artix7 ac701 1.0 @ xc7a200tfhy
@ Kintex-7 KC705 Evaluation Platform xilinx.com kintex7 kc705 1.1 & xc7k325tffg| =
@ Virtex-7 VC707 Evaluation Platform xilinx.com virtex7 ve707 1.1 @ xcTvxa 85t
@ Virtex-7 VC709 Evaluation Platform ilinx.com virtex7 ve709 1.0 G xc7xB90tff|
¢ ZYNQ-7 ZC702 Evaluation Board plin.com __Jzyng ____Jac702 ___f1.0_____ [+ i .
E 7vYN0-7 7C706 Fvaluation Roard xilinx.com 7vna 7706 1.1 @ r77045ffad
< | 11 r O

High-Level Synthesis
UG871 (v2014.1) May 6, 2014

Figure 219: Specify the Vivado Project Details

www.Xilinx.com

215

| Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=215

& XILINX.

Using HLS IP in a Zynq Processor Design

c. Click Next.
d. Click Finish on the New Project Summary Page.

The project workspace opens as shown in Figure 220.

2 Pewer

Ut rformmaton 5 . slabl bstacse & haseibowr P rfirmatin el vl ecinste £ hasri beeri

Proress e Baned i NS W

Figure 220: Initial Vivado Zynq Project

Step 3: Add HLS IP to the IP Catalog

1. Inthe Project Manager area of the Flow Navigator pane, click IP Catalog.

File Edit Flow Tools Window Layout Wiew Help

A doRR X P DU EX LG Sofu

Flow Mawigakor <« Project Manager - project_1
L e —] Sources

AzTEma R
o) Design Sources

[0 Constrainks {10

Cﬁﬂ’ rdd Sources [=)-{ Simulation Sources (1)

L sim 1
g: IP Catalog =

4 Project Manager

ﬁ. Project Settings

4 TP Integrator

gﬁ Create Block Design

i COpen Block Design

Figure 221: Open the IP Catalog

The IP Catalog appears in the main pane of the workspace.

2. Click the IP Settings icon (Figure 222).

High-Level Synthesis www.xilinx.com 216

UG871 (v2014.1) May 6, 2014 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=216

& XILINX.

Using HLS IP in a Zynq Processor Design

I @ 9| (G S Default Layout - | &
Project Manager - project_1
Sources —Oe x
o = e
AZ=E war R
@ Design Sources
Canstraints (1)
Simulation Sources (1)
g sim_1
Hierarchy | Libraries | Compile Order
& sources | ' Templates
Properties — O =
+ =% &

I Project Summary X | iF IP Catalog X

AxI4

[#-[= Automotive & Industrial

AT Infrastructure

BaselP

Basic Elements
Communication & hNetwarking
Debug & Yerification

Digital Signal Processing
Embedded Processing

[+ FPiah Features and Design

IP Settings

Settings forIP Catalog, IP Generation, and IP Packager

[H-[= Standard Bus Interfaces
[#H-[= ¥ideo & Image Processing

Dietails

Figure 222: Open the IP Catalog Settings

3.
4. Inthe IP Repositories dialog box:
a.
b.
Click OK.

Click Select to close the IP Repository.

0

In the IP Settings dialog, click Add Repository.

Browse to the tutorial directory location and click the Create New Folder icon.

Enter "vivado_ip_repo” in the resulting dialog (Figure 223).

¢ IP Repositories []
Recent: | [C:/Vivado_HLS_Tutorial/Using_IP_with_Zyng/lab1 2O =AM X[z 5
it Og'HIC:\ Vivado_HLS_Tutorial\Using_IP_with_Zyng\lab1]
= pen L =L ey i
[+ | PerfLogs
[+ | Program Files
| Program Files (x86)
[+ | ProgramData |
- | SymCache
[+ | Titus
- | Users Create New Folder @ i
&k, Vivado_HLS .-" ; | Enter the name of the new folder: I
(= | Vivado_HLS_Tutorial & — -
| Arbitrary_Precision wvado_lp_repo|
C_Validation .
N s) ’ oK] ’ Cancel I
| Design_aAnalysis
| Design_Optimization
| Interface_Synthesis
| Introduction
| RTL_Verification
| Using_IP_with_IPI
| Using_IP_with_SysGen
- | Using_IP_with_Zynq N
=5 (]

Figure 223: IP Repository

High-Level Synthesis

www.Xilinx.com

217

UGS871 (v 2014.1) May 6, 2014

| Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=217

& XILINX.

5. Returning to theIP Setting dialog box:
a. Click AddIP.

Using HLS IP in a Zynq Processor Design

b. Inthe Select IP to Add to Repository dialog, browse to the location of the HLSIP:
Using_ IP_with _zZyng/labl/hls_macc/vhls_prj/solutionl/impl/ip/.

c. Select theIP Catalog package Xilinx_com_hls_hls macc_1_00)a.zip file (Figure

224).
d. Click OK.

#. Select IP To Add To Repository

Look in: b.ip
= I bd
] i
Recent I constraints
Ttems I doc
L drivers
! | example
Desktop hdl
I misc
| subcore
My .
Documents | L Xgul
.. % auxiliary.xml
== & componentxml
S = xilinx_com_hls_hls_macc_1_0.zip|
w
Network

File name: xilinx_com_hls_hls_macc_1_0.zip

Files of type: | 1P Packages (i, zip)

2o EBAEDXS

Recent Directories

s

| C:fVivado_HLS_Tutorial/Using_IP_with_Zynq/lab1/vivado_ip... =

File Preview

File: xilinx_com_hls_hls_macc_I_0.zip
Directory:

Created: Tuesday 10/08/13 10:05 AM
Accessed: Tuesday 10/08/13 10:05 AM
Modified: Tuesday 10/08/13 10:05 AM
Size: 21.1KB

Type: Archive project file

Owner: XLNX duncanm

C:/Vivado_HLS_Tutorial/Using_IP_with_Zynq/labl/hls_macc/vhls_p

r g

Figure 224: Add IP to the Repository

6. The new HLSIP should now appear in the IP Settings dialog box.

High-Level Synthesis

www.Xilinx.com

UGS871 (v 2014.1) May 6, 2014

218

| Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=218

& XILINX. Using HLS IP in a Zynq Processor Design

J}‘_: Project Settings =]

: | ®
@ Repository Manager | Generation | Packager
General

= @ Add directories ko the lisk of repositories. After hitting Apply you will be able ko see the IP
i within each repositary. You may then add additional IP. IF an IP is disabled then a taol-tip
will alert you ko the reason,
Simulation IP Repositaries

@ C: filinzftutorials/HLS_IPIntegratorflab2fvivado_ip_repo (Project)

H
g
h‘b!

g: Add Repository, .,] [@ Refresh Al

1P in Selected Repository

acci1.00.a)

I IFAddIP...] I & Refresh Repository. ..]

[QK] [Cancel] [Apply

Figure 225: HLS IP in the Repository

7. Click OK to exit the dialog box.

8. There is now a Vivado HLSIP category in the IP Catalog and, if expanded, the Hls_macc IP
diplays (Figure 226).

% Project Summary X | 1F IP Catalog X

'3\ Search:

==

q

Mamez o Axl4 Skatus License
[#- = Aukomotive & Industrial

= ARl Infrastructure

= BaselP

— Basic Elements

= Communication & Metwaorking
— Debug & verification

t-[= Digital Signal Processing

= Embedded Processing

~ FPaA Features and Design

= Math Functions

— Memaories & Storage Elements
= Skandard Bus Inkerfaces

= Video & Image Processing
- [YIVADO HLS TP

----- 1F Hls_macc AXI4 Pre-production Included

|| & | & PR G

Figure 226: HLS IP in the IP Catalog

Step 4: Creating an IP Integrator Block Design of the System

1. IntheIP Integrator area of the Flow Navigator, click Create Block Design and enter
“Zynq_Design” in the dialog box.

High-Level Synthesis www.xilinx.com 219

UG871 (v2014.1) May 6, 2014 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=219

& XILINX.

File Edit Flow Tools Window

&0 E|

Flows Mavigator

0 A g
“ iy B

4 Project Manager
Q:’; Project Settings
045’ Add Sources
ﬂ IP Catalog

4 TP Integrator
Iﬁ.”‘ Create Block Design
¥ Open Block Design

4 Simulation
@ Simulation Settings
@ Run Simulation

4 RTL Analysis
> Eﬁ’ Open Elaborated Design

4 Synthesis
@ Synthesis Settings
@ Run Synthesis
> [Open Synthesized Design

4 Implementation

@ Implementation Settings

The Block Design view opens in the main pane, with a new Diagram tab, containing a blank
Block Design canvas.

Layout Wiew Help

Ecd

% 3 Qﬂ @ % E 2 | 25 Default Layout

Project Manager - project_1

Sources

A= e B

Using HLS IP in a Zynq Processor Design

- XN ®

i Design Sources
+ | Constraints (1)
== Simulation Sources (1)

® . Project Surmmary % | £F IP Catalog x
4| Search;
£

)]

@ || E

= Aukomotive & Industrial

7 AxT Infrastructure

7 BaselP

7 Basic Elements

7 Communication & MNetworking
7 Debug & Verification

7 Digital Signal Processing

7 Embedded Processing

7 FPGA Features and Design

7 Math Functions

7 Memoaries & Storage Elements

E 8

Hierarchy | Libraries | Compile Order
£ Sources | 7 Templates

Core Folder Properties

« +[El5

= WIVADO HLS TP

7 Standard Bus Interfaces

Mame; VIVADO HLS IP

g”_ Create Block Design

Design name:

,:0:, Flease specify name of block design

Zynq_Design|

=

Figure 227: Create the Zynq Design

2. Click the Add IP link under the title bar, which pops up an IP search dialog.

a. Type in “proce” into the Search text entry box.

b. Select the ZYNQ7 Processing System item and press Enter.

High-Level Synthesis

www.Xilinx.com

UGS871 (v 2014.1) May 6, 2014

220

l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=220

& XILINX. Using HLS IP in a Zynq Processor Design

J %= Diagram X |

#[| &, Zyng_design
@:| () This design is empty. To get started, Add IP from the catalog.
o
X
Bl
Search: proce 3 matches
Wh h: | Q h
1
IE Mame VLNV
a_\ xilinx.com...
ﬁ ZYNQ7 Processing Syst ili
o g System... xilimx.com...
%
g Select and press ENTER or drag and drop, ESC ...
@
&l

Figure 228: Add a CPU Processor to the Design

An IP symbol for the ZYNQ7 Processing System appears on the canvas.

3. Double-click the ZYNQ IP symbol to open its Re-customize IP dialog.
a. Click the Presets icon and select ZC702 (Figure 229).

High-Level Synthesis www.xilinx.com 221

UG871 (v2014.1) May 6, 2014 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=221

& XILINX. Using HLS IP in a Zynq Processor Design

LF Re-customize IP
ZYNQ7 Processing System (5.3)

ff Documentation 3 Fresets [P Location % Import XPS Settings

Page Navigator Current Preset: None bn

Zynq Black Desig Default

Microzed

PS-PL Configurati ‘ o0 1O Peri
SPI0 Settings Application Pr
Peripheral O P o SWDT

Clock Configuration (15:0) J2GH . ARM Cortox Tho

CAN O
DDR Configuration CAN 1 <
UART 0
o UART 1
Interrupts MUX GPIO

(MI0) SDO
a <7 |__sp1

USB 0

System Level
Control Regs

SMC Timing Calculation

USB 1

DMAS
Channel
ENET 1 Central ®
Bank1 4
1
L]
DAP

MIO FLASH Memory «
(53:16) Interfaces —

SRAM/NOR
NAND

QUAD SPI DEVG ‘ Programmable

Logic to Memory
SMC Timing
Calculation

Interconnect
e
Figure 229: Configure the Zynq Processor

=]
=
>

ISync

EEL
me

4. Click MIO Configuration in the Page Navigator pane.
a. Expand the Application Processor Unit tree view.

b. Unselect Timer 0 (or any other timer if they are selected)..

1F Re-customize IP

ZYNQ7 Processing System (5.3)

“ Documentation ﬁ Fresets | IP Location ﬁfx Import XFS Settings

Page Navigator ® |MID Configuration
Zyng Block Design 4= | Bank 0 IO Voltage LVCMOS 1.8V = Bank 1 IO Voltage LVCMOS 1.8V~
Q|
PS-PL Configuration w=a| Search: | Q:
[=5]
o
Peripheral I/O Pins % Peripheral 0 Signal 10 Type Speed Pullup Direction
MIO Cenfiguration | E'% ' Memur‘{r Interfaces
@ | VO Peripherals
Clock Configuration EF Application Processor Unit
DDR Configuration H i

-[C] Timer 1

i B "] watchdog
Interrupts Programmable Logic Test and Debug

SMC Timing Calculation

Figure 230: Zynq Processor Interrupt Configuration

5. Click Interrupts in the Page Navigator pane.

c. Select Fabric Interrupts and expand its tree view.

High-Level Synthesis www.xilinx.com 222

UG871 (v2014.1) May 6, 2014 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=222

& XILINX. Using HLS IP in a Zynq Processor Design

d. Select IRQ _F2P[15:0] and click OK to close the Re-customize IP dialog box.

g: Re-customize IP
ZYINQ7 Processing System (5.01)

ﬁj Dacumentation | IP Location {_ﬁ Presets

Fage Mavigator 4 |Interrupts
Zwni Block Design : Search
PS-PL Configuration I-X-' Interrupk Park] Description
=g
)) i | B Fabric Interrupts Enable PL Interrupts ko PS and vi
MIC Configuration = EI PL-PS Inkterrupk Ports

' | 91:584], [68:... [Enables 16-hit shared interrupt p

PG s s [] Corel_nFIg 78 Enables Fast private interrupt sig

s @rar=tsn - [C] Cared_nIRGQ 31 Enables private interrupt signal fo

<[] Corel_nFIg 28 Enables Fast private interrupt sig

DOR Configuration [Corel_nIRg 31 Enables private interrupt signal fo
[=F P5-PL Interrupt Ports

SMC Timing Calculation IR _PZF_DMAC_ABORT Enables shared interrupt abart siy

IRC_PZF_DMACH Enables shared interrupt signal 0

Interrupts IR P2F_DMACL Enables shared interrupt signal 1

IRC_PZF_DMACE

Enables shared interrupt signal 2

Figure 231: Zynq Processor Interrupt Configuration

IPI provides Designer Assistance to automate certain tasks, such as making the correct external
connections to DDR memory and Fixed I/O for the ZYNQ PS7.
6. Click the Run Block Automation link under the title bar (Figure 232).

a. Select /processing_system7_1.

b. Ensure Apply Board Presets is Unselected. If this remains selected it will re-apply the
timers which were disable in step 4 and result in additional ports on the Zynq block in
Figure 232

c. Click OKto complete in the resulting dialog box.

High-Level Synthesis www.xilinx.com 223

UG871 (v2014.1) May 6, 2014 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=223

& XILINX. Using HLS IP in a Zynq Processor Design

J &= Diagram x | B Address Editor x m]

[E
3| 4 Zynq_design
Q| (% Designer Assistance available. Run Block Automation
s H iF /processing_system7_0 ” i
&
Q,
"
&
@ processing_system?7 0
el
oor |
Frxen_to |||
wi_AXI_GPO_ACLK - usemno_o |||
mIRQ_F2P[0:0] Z | R)‘ M_AXI_GPO 4= |
FCLK_CLKO
FCLK_RESETO_N
ZYNQ7 Processing System
4 11 P K

Figure 232: Run Automation

7. Add HLSIP to the design by right-clicking in an open space of canvas and by selecting Add
IP from the context menu.

a. Type "hls” in the Search text entry box and press Enter to add it to design (Figure 233).

High-Level Synthesis www.xilinx.com 224

UG871 (v2014.1) May 6, 2014 l Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=224

& XILINX.

Using HLS IP in a Zynq Processor Design

J&ﬂ Diagram X | 8 Address Editor % e
31| # zyng_design
Q¢ | (% Designer Assistance available. Run Connection Automation
g -
&
2 rocessin tem7_0
IE 2 g_sys |
e
Q, DDR - DDR
i} FIXED_10R FIXED_IO
i M_AXL_GPO_ACLK - UsBIND_0- |||
b RQ_F2P[0:0] ZYNQ. M_ax1_GPod |
R 3 FCLK_CLKD
=) FCLK_RESETO_N
@ ZYN
ol Q7 Processing System
hls_macc_0
%/ 4 S_AXI_HLS_MACC_PERIPH_BUS | visador” s
aclk interrupt
aresetn ‘
Hls_macc (Pre-Production)
< r K

Figure 233: processor and HLS IP

Designer assistance is also available to automate the interconnection of IP blocks.

8. Click the Run Connection Automation link at the top of the canvas.

9. Select /hls_macc_1/S _AX1_HLS MACC_PERIPH_BUS and click OK in the resulting dialog
box to automatically connect the HLSIP to the M_AXI_GPO interface of the PS7.

This adds an AXI Interconnect (instance: processing_system7_1_axi_periph), a Proc Sys Reset
block (instance: proc_sys_reset) and makes all necessary AXI related connections to create the

design shown in Figure 234.

J:-" Diagram X | & Address Editor X‘ [Ee
311 & Zyng_design »
Q -
Qg
g rst_processing_system?_0_50M prcce:l ng_system?7_0_axi_periph
2 +
Fa slowest_sync_dk mb_reset = i 4= S00_AXI
@ ext_reset_in bus_struct_reset[0:0]m= ——JACLK hls macc 0
é\ -alx_reset_in peripheral_reset[0:0] = | ARESETN = =
R —mb debug sys rst interconnect_aresetn[0:0] S00_ACLK MOO_AXI 4 £ + R S_AXI_HLS_MACC_PERIPH_BUS | vuaco His
ﬁ =dem_lodked peripheral_aresetn[0:0] |_ARESETN aclk interrupt,
i, MOO_ACLK etn '
& Processor System Reset MOO_ARESETN
= Hls_macc (Pre-Production)
= processing_system?_0 AXI Interconnect
2l
< DR || DDR
FIXED_I04: ||| {3 FIXED_IO
M_AXI_GPO_ACLK - usBIND_0 - |||
1RQ_F2P[0:0] ZYNO M_AXI_GPOdp ||| =t
FCLK_CLKO
FCLK_RESETO_Nf—
ZYNQ7 Processing System
< (L
Figure 234: AXI4 Interconnect
High-Level Synthesis www.xilinx.com 225

UGS871 (v 2014.1) May 6, 2014

| Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=225

& XILINX.

Using HLS IP in a Zynq Processor Design

The only remaining connection necessary is from the HLS interrupt port to the PS7 IRQ_F2P port.

10. Bring the cursor over the interrupt pin on the hls_macc_1 IP symbol.

a. When the cursor changes to pencil shape, click and drag to the IRQ_F2P[0:0] port of the
PS7 and release, completing the connection

11. Bring the Address Editor tab forward and confirm that the hls_macc_1 peripheral has been
assigned a master address range. If it has not, click the Auto Assign Address icon.

S| cel
:ZJ, —I-4F fprocessing_system?_1
pig =I-E Data

- “mm fhls_mace_1

= Diagram ¥ | [Address Editor X

Base Mame Offset Address

Reqg 04300000

Figure 235: Address Editor

High Address

D4 3C0OFFFF

The final step in the Block Diagram design entry process is to validate the design.

12. Click the Validate Design icon in the toolbar.

13. Upon successful validation, save (control-s) the Block Design.

Step 5: Implementing the System

Before proceeding with the system design, you must generate implementation sources and
create an HDL wrapper as the top-level module for synthesis and implementation.

1. Return to the Project Manager view by clicking on Project Manager in the Flow Navigator.

2. Inthe Sources browser in the main workspace pane, a Block Diagram object named
Zyng_Design is at the top of the Design Sources tree view (Figure 236). Right-click this
object and select Generate Output Products.

3. Intheresulting dialog box, click Generate to start the process of generating the necessary

source files.

High-Level Synthesis
UG871 (v2014.1) May 6, 2014

www.Xilinx.com

226

l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=226

& XILINX. Using HLS IP in a Zynq Processor Design

g*‘ project_1 - [C/Xilinx/tutorials /HLS IPIntegratorflab2/project_Liproject_Lxpr] - Vivado 2013.1
File Edit Flow Tools Window Layout View Help

Pl] | (P D B H XK L G S oefaul Layou - K|

Flow Navigator « | | Project Manager - project_1
Q= Saurces — O x T Project Summary X |
Q 57 ol 3 =
4 Project Manager S = E :J @ Project Settings
- -7 Design Sources (1) | = .) .
@ Project Settings BN 0 Desian (Zyn_Design. bl {41 Project name: Projec
Oﬂf Add Sources -5 Constraints (1 @ Source Mode Properties... Ctrl+E 2yng-
= Simulation Sources (1
il]: 1P Catalog - w * OpenFile Ale+0 £YNG:
bl sim_L (1)
e Dok O
Create HDL Mrapper
4 [P Integrator
Wiew Instantiation T lats 3
Is}‘ Create BIockDesign 1esns Instantistion | emplate
Gi te Output Products...
% Open Black Design enerate Output Products Ready
Reset Output Products...
eset Qutput Products 020cld
4 Simulati
LT Expart Hardware for DK, lado Svnthe
% Simulation Settings Package Block Design...
,@Q Run Simulation Hierarchy | IP Sources | Libraries | Co
44 Sources | 7 Templates
4 RTL Analysis
> Eﬁ' ©pen Elaborated Design Source Nods Properties AleT tions
= O‘ kg . Remove File from Project... Delete
4 Synthesis #, Zyng_Design {Zynq_Design.bd) Alt+Equals prmation is
@’ SyDthecieSattings | . Disable File Alt+hinus
T, Madule: Zyng Desian

Figure 236: Wrapper Generation

4. Right-click the Zynq_Design object again, select Create HDL Wrapper, and click OK to exit
the resulting dialog box.

The top-level of the Design Sources tree becomes the Zynq_Design_wrapper.v file. The design is
now ready to be synthesized, implemented, and to have an FPGA programming bitstream
generated.

5. Click Generate Bitstream to initiate the remainder of the flow.

6. Inthe dialog that appears after bitstream generation has completed, select Open
Implemented Design and click OK.

Step 6: Developing Software and Running it on the ZYNQ System

You are now ready to export the design to Xilinx SDK. In SDK, youcreate software that runs on a
ZC702 board (if available). A driver for the HLS block was generated during HLS export of the
Vivado IP Catalog package. This driver must be made available in SDK so that the PS7 software
can communicate with the block.

1. From the Vivado File menu select Export > Export Hardware for SDK.
Note: Both the IPI Block Design and the Implemented Design must be open in the Vivado

workspace for this step to complete successfully.

2. Inthe Export Hardware for SDK dialog box (Figure 237), ensure that the Include Bitstream
and Launch SDK options are enabled and click OK.

High-Level Synthesis www.xilinx.com 227

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=227

& XILINX. Using HLS IP in a Zynq Processor Design

i

é":-'_:. Export Hardware for SDE @

,'0‘, Export hardware platform For SDE,

Options
Source: 5, Zvnig_Design.bd =
Export ko | B0 <Local bo Project = -
Warkspace: | B0 <Local to Project = -

| Export Hardware

| Include bitstream (Mote: an implemented design must be loaded)

QK | | Cancel

Figure 237: Export to SDK Dialog Window

3. SDK opens.If the Welcome page is open, close it.
4. From the SDK File menu, select New > Application Project.
a) Inthe New Project dialog enter a project name: Zynqg_Design_Test
b) Click Next.
c) Select the Hello World template.
d) Click Finish.

High-Level Synthesis www.xilinx.com 228

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=228

& XILINX. Using HLS IP in a Zynq Processor Design

@D Mew Praject o @] =]

Application Project p f

Project name: Zyng_Design_Test
Use default location
Civilindtutorials\HLS_IPIntegratorilab2hproject_Thproject 1 Browvse,.,

default

Hardware Platform ’hw_platform_ﬂ VI
Processar ’ps?_cortexag_ﬂ V]
O35 Platform [standalone VI
Language @C (CC++

Board Support Package (@ Create Mew Zyng_Design_Test_bsp

Use existing

'@:‘ < Back ’ Mewt >] [Finish] ’ Cancel

Figure 238: Application Project

5. Power up the ZC702 board and test the Hello World application:

b. Ensure the board has all the connections to allow you to download the bit stream on the
FPGA device. Refer to the documentation that accompanies the ZC702 development
board.

7. Click XilinxTools > Program FPGA (or toolbar icon).
Notice that the Done LED (DS3) is now on.
8. Setup a Terminal in the tab at bottom of workspace:

a) Click the Connecticon (Figure 239).

High-Level Synthesis www.xilinx.com 229

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=229

& XILINX.

Peripheral Drivers

Drivers present in the Board Support Package,
hls_macc_1 hls_macc_top
ps7_afi_l generic

bs¥ afi 1 qeneric
4 m

Crsepvien | Source

[£0 Problems | ¥ Tasks | B Console | =l Properties | 4% Terminal 1 53

Mo Connection Selected

Using HLS IP in a Zynq Processor Design

B Rl &%~ O

Figure 239: The Connect Icon

b) Select Connection Type > Serial.

c) Select the COM port to which the USB UART cable is connected (generally not COM1

or COM3)On Windows, if you are not sure, open the Device Manager and identify the
port with the Silicon Labs driver under Ports (COM & LPT).

d) Change the Baud Rate to 115200 (Figure 240).

e) Click OKto exit the Terminal Settings dialog box.

@Terminal Settin

View Settings:

IH

Wiew Title: Terminal 1

Encoding: 130-8859-1

Connection Type:

(==l

Serial

Settings:
Part:
Baud Rate:
Data Bits:
Stop Bits:

Parity:

Timeau t (sech:

COS

(]
(I
i
Wone =
Flowe Cantrol: | Mane -

5

oK \

Cancel

Figure 240: Terminal Settings

9. Right-click the application project Zynq_Design_Test in the Explorer pane (Figure 241).

a. Click Run As > Launch on Hardware.

High-Level Synthesis www.xilinx.com 230

UGS871 (v 2014.1) May 6, 2014

l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=230

& XILINX. Using HLS IP in a Zynq Processor Design

- - Ee=1E 4 -

L[Praject Explarer &3 = 5|4z systemxml I systernumss 21
G~ :
Zynq_Design_Test_bsp Board Support Package
4 g bae_platform_0
|g] psT_init.c Mewy ¥
[l5 ps7_inith GoInto
@ psT_inithtml
] psT_inittel Open in Mew Windou
systern.bit tornpiled ta run on the following target,
I systern.xml = Copy Ctrl+C . .
= - rhbutarial s AHLS_IPIntegratorilab 2 project_Thproje
= Zyng_Design_Tes Paste Ctrl+i/
: - ortexad_
4 [Zyng Design Tes ¥ Delete Delete
-1 B3P Docume
Source 3
[psT_cortexal
| libgen.log Move..
libgen.option Renarme... F2
& Makefile N
I, systernamss 23 Import.. a sitnple, low-level software layer, It provides acce
ey Expart.. 4 exceptions as well as the basic features of a hoste
rtand exit,
Build Project 300 3
Clean Project
| Refresh F5
Close Project iport Package.
Close Unrelated Projects F_top
Build Canfigurations »
hdake Targets 3
Index 3
sole B2 = Properties | & Terminal 1
Show in Rermote Systerns view
Convert To.,
Run As » | #7 1launch on Hardware
Debug &z v | [E] 2Llocal CFC++ Application
Profile &5 3 i: 3 Remote ARM Linux Application
»
T=m Run Configurations...
Cornpare YWith 3
n* =% Funa N Restnre fram | neal Histane

Figure 241: Run the Application Project

10. Switch to the Terminal tab and confirm that “Hello World” was received.

FEripneral Urivers

Drivers present inthe Board Support Package,
hls_tnacc_1 hls_macc_top
psf_afi_l generic

bs¥ afi 1 aeneric
o m

Owerdiewy | Source

[21 Problems | ¥ Tasks | Bl Console | 2 Properties | &8 Terminal 1 &3

Serial: (COMS, 115200, 8, 1, MNone, None - COMNECTED) - Encoding: I50-8853-1)
Hello Werld

Mone - COMMECTED) - Encoding: (IS0-8859-1)

Figure 242: Console Output

High-Level Synthesis www.xilinx.com
UG871 (v2014.1) May 6, 2014

M EEHE 2-F-x "0

231

l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=231

& XILINX. Using HLS IP in a Zynq Processor Design

Step 7: Modify software to communicate with HLS block

The completely modified source file is available in the arm_code directory of the tutorial file set.
The modifications are discussed in detail below.

1.
2.

6.

Open the helloworld.c source file.

Several BSP (and standard C) header files need to be included:

#include <stdlib.h> // Standard C functions, e.g. exit()

#include <stdbool.h> // Provides a Boolean data type for ANSI/1SO-C
#include "xparameters.h™ // Parameter definitions for processor
peripherals

#include "xscugic.h" // Processor interrupt controller device driver
#include "XHIs _macc.h" // Device driver for HLS HW block

Define variables for the HLS block and interrupt controller instance data. The variables will
be passed to driver API calls as handles in the respective hardware.

// HLS macc HW instance
XHIs_macc HlsMacc;

//1Interrupt Controller Instance
XScuGic ScuGic;

Define global variables to interface with the interrupt service routine (ISR).

volatile static Int RunHIsMacc = 0O;
volatile static iInt ResultAvailHIsMacc = 0;

Define a function to wrap all run-once APl initialization function calls for the HLS block.
int hls macc_init(XHIs_macc *hls_maccPtr)

{
XHIs_macc Config *cfgPtr;
int status;

cfgPtr = XHIs _macc LookupConfig(XPAR_XHLS MACC O DEVICE_ID);

if (IcfgPtr) {
print(""ERROR: Lookup of accelerator configuration failed.\n\r");
return XST_FAILURE;

status = XHIls_macc_Cfglnitialize(hls_maccPtr, cfgPtr);

iT (status !'= XST_SUCCESS) {
print(""ERROR: Could not initialize accelerator . \n\r');
return XST_FAILURE;

}

return status;

}

Define a helper function to wrap the HLS block API calls required to enable its interrupt and
start the block.
void hls_macc_start(void *InstancePtr){

XHIs_macc *pAccelerator = (XHIs_macc *)InstancePtr;
XHIs_macc_InterruptEnable(pAccelerator,l);

High-Level Synthesis www.xilinx.com 232

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=232

& XILINX. Using HLS IP in a Zynq Processor Design

XHIs_macc_InterruptGlobalEnable(pAccelerator);
XHIs_macc_Start(pAccelerator);

}

An interrupt service routine is required in order for the processor to respond to an interrupt
generated by a peripheral.

Each peripheral with an interrupt attached to the PS must have an ISR defined and registered
with the PS’s interrupt handler.

The ISR is responsible for clearing the peripheral’s interrupt and, in this example, setting a flag
that indicates that a result is available for retrieval from the peripheral. In general, ISRs should be
designed to be lightweight and as fast as possible, essentially doing the minimum necessary to

service the interrupt. Tasks such as retrieving the data should be left to the main application
code.

void hls_macc_isr(void *InstancePtr){
XHIs macc *pAccelerator = (XHIs macc *)InstancePtr;

//Disable the global interrupt

XHIs_macc_InterruptGlobalDisable(pAccelerator);
//Disable the local interrupt

XHIs_macc_InterruptDisable(pAccelerator, OXFFFFFffr);

// clear the local interrupt
XHIs_macc_InterruptClear (pAccelerator,l);

ResultAvai lHIsMacc = 1;

// restart the core if it should run again

i f(RunHIsMacc){
hls_macc_start(pAccelerator);

}

}

7. Define a routine to setup the PS interrupt handler and register the HLS peripheral’s ISR.
int setup_interrupt()

//This functions sets up the interrupt on the ARM
int result;
XScuGic_Config *pCfg =
XScuGic_LookupConFig(XPAR_SCUGIC_SINGLE DEVICE_ID);
if (pCfg == NULL){
print("Interrupt Configuration Lookup Failed\n\r'");
return XST_FAILURE;

}
result = XScuGic_Cfglnitialize(&ScuGic,pCfg, pCfg->CpuBaseAddress);
if(result = XST _SUCCESS){

return result;

}
// self-test
result = XScuGic_SelfTest(&ScuGic);
if(result 1= XST_SUCCESS){
return result;

// Initialize the exception handler
Xil_Exceptionlnit();

High-Level Synthesis www.xilinx.com 233

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=233

& XILINX. Using HLS IP in a Zynq Processor Design

// Register the exception handler
//print("Register the exception handler\n\r'");
Xil_ExceptionRegisterHandler (XIL_EXCEPTION_ID_INT,

(Xil_ExceptionHandler)XScuGic_InterruptHandler,&ScuGic);

//Enable the exception handler
Xil_ExceptionEnable();
// Connect the Adder ISR to the exception table
//print(*'Connect the Adder ISR to the Exception handler table\n\r");
result = XScuGic_Connect(&ScuGic,
XPAR_FABRIC_HLS MACC_O_INTERRUPT_INTR,

(Xil_InterruptHandler)hls_macc_isr,&HIsMacc);

iT(result = XST_SUCCESS){

return result;

3
//print("Enable the Adder ISR\n\r');
XScuGic_Enable(&ScuGic,XPAR_FABRIC _HLS MACC O INTERRUPT_INTR);

return XST_SUCCESS;

Define a software model of the HLS hardware functionality with which you can compare

reference results.
void sw_macc(int a, Int b, int *accum, bool accum clr)

{

}

static int accum_reg = 0;
if (accum_clr)

accum_reg = 0;
accum_reg += a * b;
*accum = accum_reg;

9. Modify main() to use the HLS device driver API and the functions defined above to test the
HLS peripheral hardware.

int minQ

print("'Program to test communication with HLS MACC peripheral in

PL\N\r');

inta=2, b =21;
int res_hw;

int res_sw;

int 1;

int status;

//Setup the matrix mult
status = hls_macc_init(&HlsMacc);
if(status 1= XST_SUCCESS){
print(""HLS peripheral setup failed\n\r');

exit(-1);

//Setup the interrupt

status = setup_interrupt();

if(status = XST_SUCCESS){
print(""Interrupt setup failed\n\r");
exit(-1);

¥

High-Level Synthesis www.xilinx.com 234

UG871 (v2014.1) May 6, 2014 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=234

& XILINX. Using HLS IP in a Zynq Processor Design

//set the input parameters of the HLS block
XHIs_macc_SetA(&HIsMacc, a);

XHIs_macc SetB(&HIsMacc, b);
XHIs_macc_SetAccum_clr(&HlIsMacc, 1);

if (XHIs_macc_IsReady(&HIsMacc))

print("'HLS peripheral is ready. Starting...);

else {
print(*'11! HLS peripheral is not ready! Exiting...\n\r");
exit(-1);

if (0O) { 7/ use interrupt
hls_macc_start(&HlsMacc) ;
while('Resul tAvailHIsMacc)
; // spin
res hw = XHIs_macc_GetAccum(&HIsMacc);
print("'Interrupt received from HLS HW_\n\r");
} else { 7/ Simple non-interrupt driven test

XHIs_macc_Start(&HIsMacc);

}

do {
res hw = XHIs_macc_GetAccum(&HIsMacc);
} while (!XHIs_macc_IsReady(&HIlsMacc)) ;
print(‘'Detected HLS peripheral complete. Result received.\n\r");

}

//call the software version of the function
sw_macc(a, b, &res _sw, False);

printF("'Result from HW: %d; Result from SW: %d\n\r'', res_hw, res_sw);
if (res_ hw == res_sw) {

print(**** Results match ***\n\r");

status = O;

else {
print("'11t MISMATCH TTI\n\r");
status = -1;

}

cleanup platform(Q);
return status;

10. Save (control-s) the modified source file, and SDK automatically attempts to re-build the
application executable. If the build fails, fix any outstanding issues.

Run the new application on the hardware and verify that it works as expected. Ensure that a TCF
hardware server is running, that the FPGA is programmed and a terminal session is connected to
the UART. Then Launch on Hardware, as you did for the previous Hello World application code.

Upon success, the Terminal session looks similar to Figure 243.

High-Level Synthesis www.xilinx.com 235

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=235

& XILINX. Using HLS IP in a Zynq Processor Design

[£0 Problems | ¥ Tasks | El Console | =l Praperties | & Terminal 1 &2 i B 05 RE - - =8
Serial (COMS, 115200, 8, 1, Mone, Mone - COMMECTED) - Encoding: (T50-3859-1)
Result from HW: 42; Result from SW: 42 -

W and HW results match!

Program to test communication with HLS MACC bleck in PL

fccelerstor is ready. Starting... Detected HLS block complete. Result received.
Result from HW: 42; Result from =SW: 42

% Sl oand HW results match ***

m

Figure 243: Console Output with Updated C Program

Lab 2: Streaming data between the Zynqg CPU and HLS
Accelerator Blocks

This lab illustrates a common high-performance connection scheme for connecting hardware
accelerator blocks that consume data originating in the CPU memory and/or producing data
destined for it, in a streaming manner.

e This tutorial uses the same Vivado HLS and XFFT IP blocks created in Lab 1 of the tutorial

“Using HLS IP in IP Integrator”. In this lab exercise these blocks are connected to the HPO
Slave AXI4 port on a Zynqg7 processing system via an AXI DMA P core.

e The hardware accelerator blocks are free-running and do not require drivers; as long as data
is pushed in and pulled out by the CPU (often simply referred to as the Processing System or
PS).

e The lab highlights the software requirements to avoid cache coherency issues.

Step 1: Generate the HLS IP

1. From the Vivado HLS command prompt used in Lab 1, change to the lab2 directory as
shown in Figure 244.

2. Run Vivado HLS to create two HLSIP blocks by typing vivado_hls —f run_hls.tcl.

[Vivado HLS 2013.2 Command Prompt = Eeh

C:\Wivado_HLS_Tutorial\Using_IP_with_Zyng\labl>cd .. -

C:\Vivado_HLS_Tutorial\Using_IP_with_Zynq>cd lab2

C:\Wivado_HLS_Tutorial\Using_IP_with_Zynqg\lab2>cd hls_designs

C:\Wivado_HLS_Tutorial\Using_IP_with_Zyngq\lab2\hls_designs>vivado_hls -f run_hlsfg
.tel -

Figure 244: Setup for Zynq Lab 2

High-Level Synthesis www.xilinx.com 236

UG871 (v2014.1) May 6, 2014 | Send Feedback |

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=236

& XILINX. Using HLS IP in a Zynq Processor Design

When the script completes, there are two Vivado HLS project directories, fe_vhls_prjand
be_vhls_prj, which contain the HLS IP, including the Vivado IP Catalog archives for use in Vivado
designs.

e The "front-end”IP archive is located at fe_vhls_prj/IPXACTExport/impl/ip/
e The "back-end” IP archive is located at be_vhls_prj/IPXACTExport/impl/ip/

Step 2: Create a Vivado Design Suite Project
1. Launch the Vivado Design Suite (not Vivado HLS):

a. On Windows use Start > All Programs > Xilinx Design Tools > Vivado 2014.1 >
Vivado 2014.1

b. On Linux, type vivado in the shell.
2. From the Welcome screen, select Create New Project.
3. Click Next on the first page of the Create a New Vivado Project wizard.

4. Click the ellipsis button to the right of the Project location text entry box and browse to the
lab2 tutorial directory.

5. Click Nextto move to the Project Type page of the wizard.
a. Select RTL Project and click Next.
b. Do not specify sources at this time (if not the default); just click Next.
¢. Do not add any Existing IP; just click Next.
d. Do not add any constraints; just click Next.

6. On the Default Part page click Boards under Specify and select the ZYNQ-7 ZC702
Evaluation Board. Click Next.

7. Onthe New Project Summary Page, click Finish to complete the new project setup.

Step 3: Add HLS IP to an IP Repository
1. Inthe Project Manager area of the Flow Navigator pane, click IP Catalog.
2. The IP Catalog appears in the main pane of the workspace.
a. Click the IP Settings icon.
3. IntheIP Settings dialog box, click Add Repository.
4. Inthe IP Repositories dialog box:
a. Browse to the Lab 2 tutorial directory lab2.
b. Click the Create New Folder icon.
c. Enter "vivado_ip_repo” in the resulting dialog.

d. Click OK.

High-Level Synthesis www.xilinx.com 237

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=237

& XILINX. Using HLS IP in a Zynq Processor Design

a. Click Select to close the IP Repository window.
On returning to the IP Setting dialog box:
a. Click Add IP.

b. Inthe Select IP to Add to Repository dialog box, browse to the location of the HLS IP
lab2/hls_designs/fe_vhls_prj/IPXACTExport/impl/ip/ or, if using IP created in previous
tutorial, browse to the corresponding path.

c. Select the xilinx_com_hls_hls_real2xfft_1_00_a.zip file.

d. Click OK.

Follow the same procedure to add the2nd HLSIP package, in directory
lab2/hls_designs/be_vhls_prj/IPXACTExport/impl/ip/ , to the repository:
xilinx_com_hls_hls_xfft2real_1_00_a.zip.

The new HLSIP now appears in the IP Setting dialog box.
Click OK to exit the dialog box.

There is now a Vivado HLSIP category in the IP Catalog and, if expanded, the HLS IP
displays.

Step 4: Create a Top-level Block Design

1. Click Create Block Diagram under IP Integrator in the Flow Navigator.
a. Inthe resulting dialog box, name the design Zynq_RealFFT.
b. Click OK.
2. Inthe Diagram tab, click the Add IP link in the “get started” message.
a. Inthe Search box, type “fourier”.
b. Press Enter.
3. Double-click the new Fast Fourier Transform IP symbol to open the Re-customize IP dialog
box. On the Configuration tab:
a. Change the Transform Length to 512.
b. Change the Target Clock Frequency to 100 MHz.
c. Inthe Architecture Choice section, select Pipelined, Streaming I/O
4. Select the Implementation tab:
a. Select ARESETN (active low) in the Control Signals group
b. Verify that Bit/Digit Reversed Order is selected under Output Ordering Options
c. Verify that Non Real Time is selected as Throttle Scheme.
d. Click OKto exit Re-customize IP dialog
5. Add one instance of each of the HLS generated blocks to the design
High-Level Synthesis www.xilinx.com 238

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=238

& XILINX. Using HLS IP in a Zynq Processor Design

i

Right-click in any space in the canvas and select Add IP.
b. Type "hls” into the Search text entry box.

9]

Highlight both IPs (Click the control key and select both)
d. Press Enter.

Because the output AXI4-Stream interface of the hls_xfft2real block does not include a TKEEP
signal, it cannot be directly connected to the AXI DMA (which will be added later). For that
reason, you add a Xilinx AXI4-Stream Subset converter: this block configures automatically.
6. Right-click in any space in the canvas and select Add IP.
a. Type “subset” into the Search text entry box.
b. Click Enter.
7. Connect the HLS blocks to the FFT block.

a. Hover the cursor over the “m_axis_dout” interface connector of the Hls_real2xftt block
until a pencil cursor appears.

b. Left-click and hold down the mouse button to start a connection.

c. Dragthe connection line to the "S_AXIS_DATA"input port connector of the FFT block and
release when a green check mark appears next to it.

8. Ina similar fashion:

a. Connect the FFT's "M_AXIS_DATA" interface to the “s_axis_din” input interface of the
Hls_xfft2real” block.

b. Connect the m_axis_dout pin of the hls_xfft2real_1 component to the S_AXIS pint of the
axis_subset_converter_1 component

9. Now put the data processing blocks into their own level of hierarchy.
a. Select everything in the current digram by entering Ctrl+A.

b. Right-click the canvas and select Create Hierarchy from the context menu.

High-Level Synthesis www.xilinx.com 239

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=239

& XILINX. Using HLS IP in a Zynq Processor Design

J:—“ Diagram X]ﬂ,nddress Editor O x
]| # Zyng_RealFFT
0_;' -
oc
&l
»?]4 |Z Block Properties... Ctrl+E
»[_‘\l; A Delete Delete real?xift
é & Copy Ctrl+C . - S
."\ B Paste Chrl+ Eﬂh Hj
I B Select Al Ctrl+2, ¢ i
||| ® Acar. Ctrl+I
@ i¥ Customize Block...
] Orientation »
% Walidate Design F&

¥ Mark Debug
Unmark Debug

| Create Hierarchy.., |

Create Comment

Create Port.. Crl+K

Create Interface Port., Ctrl+L
@ Regenerate Layout

B Save as PDF File..,

Figure 245: Create a Hierarchy Block

c. Inthe Create Hierarchy dialog box, enter RealFFT as the Cell name.

d. Ensurethat the Move ‘4’ selected blocks to new hierarchy option is checked, as shown
in Figure 246.

¢2- Create Hierarchy

@ Please specify name of hierarchical cell to create in
S Zyng_RealFFT. You can also move selected blocks to new
hierarchy.

Cell name: |FEEIS30

Move '4' selected blocks to new hierarchy

ok || Ccancel

Figure 246: Name Hierarchy Block

e. Click OK.

High-Level Synthesis www.xilinx.com 240

UG871 (v2014.1) May 6, 2014 l Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=240

& XILINX. Using HLS IP in a Zynq Processor Design

The diagram will look as Figure 247.

Io Diagram % | B Address Editor X

2

& Zyng_RealFFT »

FZ|ER A

RealFFT

-
=

B QY P g &

Figure 247: New Hierarchy Block

Add pins to the RealFFT hierarchical block so that you can connect it at the top-level

10. Double-click the RealFFT block to open its diagram.

M
s

EZaDiagram X | B Address Editor X | F= Diagram - RealFFT X O

f§[|| B, Zyng_RealFFT » [RealFFT

W F|ER P

his_realnét_1

Rk B AIFEL

vart_ta_in_chimndl_fatf=
wand_dts_out_chinmdl_fatfe

Figure 248: RealFFT Diagram

11. Right-click the s_axis_din pin of the hls_real2xfft_1 block and select Create Interface Pin
from the context menu.

High-Level Synthesis www.xilinx.com 241

UG871 (v2014.1) May 6, 2014 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=241

& XILINX.

B a4 Py

hls_real2diy 1

Using HLS IP in a Zynq Processor Design

I
= |5

is_mmzZs

@

AfRealFF] ®

Block Interface Properties...

Copy

Select &1
AddIP..

hake External
Walidate Design

Start Connection Maode

Create Hierarchy..,
Create Comment
Create Pin...

Create Interface Pin..,
Regenerate Layout

Sawve as PDF File..,

Ctrl+E
Delete
Ctrl+C
Ctrl +4/
Ctrl+4,
Ctrl+I
Ctrl+T
Féi

Ctrl+H

Ctrl+K
Ctrl+L

L}

M_8RIS_DATA o

event_frame_startec
event,_Hast_unexpected

fRealFia

Figure 249: Creating an Interface Pin

12. In the Create Interface Pin dialog box, change the Interface name to realfft_s_axis_din.

a. Accept all other defaults and click OK.

ﬁl‘..{p Create Interface Pin

Interface name:

LMY

Mode:

wilinz:, comninterface: axis_rtl:1.0

SLAVE

-

Connect bo selected inkerface s_axis_din

-,

(=3

Ik

] [Cancel

Figure 250: Naming an Interface Pin

13. Right-click the aclk pin of the his_real2xfft_1 block and select Create Pin from the context

menu.

a. Click OKto accept all defaults in the Create Pin dialog.

High-Level Synthesis
UG871 (v2014.1) May 6, 2014

www.Xilinx.com

242

l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=242

& XILINX. Using HLS IP in a Zynq Processor Design

®x
i "
o™ AT oy g,
& Block Pin Properties,., Ctrl +E
X Delete
B Copy Ctrl+C
L] Chrl +4
B Select Al Ctrl +2
i AddIP.. Crl+]
®K Make External Ctrl+T
[alidate Design Fi
Start Connection Mode el +H
Create Hierarchy..,
‘ Create Commment
Create Pin.., el +1
et_bd_intf pins Create Interface Pin... Ctrl+Ll pd_intf pins /RealFl
de Jlawve -wlnwv x] & Regenerate Layout Falfft = axiz_din'
B Sawe as PDF File..,

Figure 251: Create a Clock Pin

Once you create this clock pin, the RealFFT diagram appears.

his_realixf_1

realift s s _dn dendt " MLz

P

TamF

Figure 252: RealFFT Diagram with Interface Pin and clock pin

14. Following the procedures in steps 11 to 13:

a. Create an interface pin called ‘realfft_m_axis_dout’ connected to the M_AXIS pin of the
axis_subset_converter_1 component.

b. Create a pin for aresetn (from any one of the blocks).

High-Level Synthesis www.xilinx.com 243

UG871 (v2014.1) May 6, 2014 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=243

& XILINX. Using HLS IP in a Zynq Processor Design

After this step, the RealFFT diagram appears.

/Py

Figure 253: RealFFT Diagram with all pins

Finalize RealFFT block internal connections. The ap_start pins for the HLS blocks are tied
HIGH, and the aclk and aresetn pins on all blocks are tied together.

15. Right-click the canvas and select Add IP from the context menu.
a. Type ‘const’ into the search box and press Enter.

b. Double-click the xlconstant_1 component and verify that the Const Val field in the
Customize IP dialog is setto '1".

ﬁ Re-customize IP @
Constant (1.0) ‘:\,

ﬁﬂ Documentation |7 IP Location

[shaw disabled parts
Component kame | Zyng_RealFFT_xlconstant_1_0

Const Width 1 Range: 1...409
Const val 1

const[0:0]

Figure 254: Create A Constant 1 Tie-Off

16. Following techniques covered in Labl of this tutorial:

a. Connect the output pin of xlconstant_1 to the ap_start pin of hls_real2xfft_1.

High-Level Synthesis www.xilinx.com 244

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=244

& XILINX. Using HLS IP in a Zynq Processor Design

b. Connect the output pin of xlconstant_1 to the ap_start pin of hils_xfft2real_1.

17. Similarly, connect all remaining component aclk and aresetn pins to the RealFFT block
diagram aclk and aresetn pins respectively.

Leave the S_AXIS_CONFIG input interface of xfft_1 unconnected. For this tutorial, the default

operating modes suffice. Also, leave all other output pins of the components unconnected.
The final RealFFT diagram appears with the connections shown in Figure 255.

E= Diagram X | B Address Editor % | E= Diagram - RealFFT X Owe =

"D| F, Zynq_RealFFT » [T RealFFT |

-

(_'{.

o
&

s
Lul
)
&

3
L} b_1 hi_siftaraad_t o _as st _pcartor_L
P || I _l 5 b . i . sty okt
L .,.naw}% 1 34 ['] e [P]

| ‘—E

Figure 255: Final RealFFT Diagram

18. Close the RealFFT diagram tab and return to the top-level Zynqg_RealFFT diagram.

19. Create the Zynq system.

a. Right-click the canvas of the top-level diagram and select Add IP from the context
menu.

b. Type ‘proce’ in the search box, select ZYNQ7 Processing System and press Enter.

c. Double-click the processing_system7_1 component to enter the Re-customize IP wizard
for the ZYNQ?7.

d. Click the Presets button near the top of the wizard screen, select the ZC702
Development Board Template, and click OK.

e. Click PS-PL Configuration in the Page Navigator pane on the left of the wizard.

f. Expand the HP Slave AXIInterface category and check the box for the S AXI HPO
interface, leaving the S AXI HPO DATA WIDTH at 64.

High-Level Synthesis www.xilinx.com 245

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=245

& XILINX. Using HLS IP in a Zynq Processor Design

ﬁ Re-customize IP
ZY¥YNQ7 Processing System (5.2)

ﬂ Documentation |7 IP Location @p Presets

Page Mavigator € |PS-PL Configuration

Zynq Block Design g\ Search;

PS-PL Configuration = | Mame Select Descripkion
=
s | [General

Peripheral [j Pins =1

2)
£ DMA Controller
b GP Master AT Interface
H- GP Slave AXI Interface
(= HP Slave AXI Interface

MIC Configuration

Clock Configuration

I HPO interface ables AXI high performance s
AXTHPODATA WIDTH
AXIHPL intetface
&1 HPZ interface
-5 AL HP3 interface
£ ACP Slave AT Interface

DDR Configuration | llows HPO to be used in 3264 bit data width mode

4

SMIC Timing Calculation Enables AXI high performance slave inkerface 1

Enables %I high performance slave interface 2
Inkerrupks

3G O]

Enables AxI high performance slave interface 3

Figure 256: Configuring Port HPO

g. Select Clock Configuration in the Page Navigator, expand PL Fabric Clocks, and change
the requested frequency to 100 (MHz).

ﬁ Re-customize IP
ZY¥YNQ7 Processing System (5.2)

ﬁ Documentation || IP Location Et Presets

Page Mavigator < |Cluck Configuration
Zynq Black Design g\ Input Frequency {MHz) 33.333333 CPU Clock Ratio) 6:2:1 -
Search:
PS-PL Caonfiguration Z
Petipheral 1jO Pins % Companent Clock, Source Requested Frequen,,, Ackual Frequency(M... Range(MHz)
E|§ [# ProcessorfMemory Clocks
MIO Configuration [10 Feripheral Clocks

Clock Configuration

.IO PLL = _ 0,100000 : 250.000000

DR Configuration

IO PLL s0 S0.000000 0,100000 : 250.000000
SMC Timing Calculation [7] Folk_clkz IOPLL 50 50.000000 0,100000 : 250.000000
- [0 FLK_CK3 IOPLL 50 50.000000 0,100000 : 250.000000
Interrupts :
System Debug Clocks
Tirners

Figure 257: Configuring the Clock

h. Leave all other settings at their defaults; click OK to apply customizations.
20. Note the Designer Assitance Available notification at the top of the screen.

a. Run Block Automation on /processing_system7_1.

b. Click OKin the resulting dialog box.

21. Add AXIDMAIP to allow the PS to stream data to/from the RealFFT block via its HPO Slave
AXI interface

a. Right-click the canvas and select Add IP from the context menu.

High-Level Synthesis www.xilinx.com 246

UG871 (v2014.1) May 6, 2014 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=246

& XILINX.

Using HLS IP in a Zynq Processor Design

b. Type ‘direct’ into the search box and select AXI Direct Memory Access from the menu
and press Enter.

22. Double-click the axi_dma_1 component to open its Re-customize IP dialog and make the
following changes (Figure 259):

a. Disable the Scatter Gather Engine (deselect the option).

b. Set the Memory Map Data Width to 64 for both Read and Write channels.
c. Set the Stream Data Width to 16 for the Read channel (MM2S).

d. Leavethe Stream Data Width at 32 for the Write channel (S2MM).

e. Set the Max Burst Size to 128 for both channels.

f. Enable Allow Unaligned Transfers for both channels.

1F Re-customize IP @
AXI Direct Memory Access (7.0) ﬂ/
ﬁ’ﬂ Documentation |3 IP Location
D Show disabled ports Component Name | Zynq_RealFFT_axi_dma_1_0
b Enable Asynchronous Clocks (Auto)
["] Enable Scatter Gather Engine
Enable Multi Channel Support
Enable Control / Status Stream
= FIM25_primey_reset out_n
= qRS_AXIS_S2MM 5 LAl p—
= SZMm_prmry_reset_out_n Width of Buffer Length Reqister (8-23) | 14 bits
TPSAXLLITE M_AHIS_MM25 ke e
laxi_resetn > y Enable Read Channel Enable Write Channel
. M_AXI_MM25 R |
m_axi_mm2s_aclk o . _
M_AXT_S2MM o b Mumber of Channels 1 Mumber of Channels 1
rn_ai_s2rmm_aclk) !
. mMm2s_introut Memory Map Data Width | 64 hd Memory Map Data Width 64 -
=_axi_lite_aclk
S2mm_introut| Stream Data Width 16 Stream Data Width 32 hd
Max Burst Size 128 - Max Burst Size 28 -
Allows Unaligned Transfers Allows Unaligned Transfers
Use Rxlength In Status Stream
111

Figure 258: Configuring the AXI Direct Memory Access

23. Note that Designer Assistance is again available. Run Connection Automation on
/axi_dma_1/S_AXI_LITE and click OK in the resulting dialog box.

After running Design Assistance, the diagram appears similar to the one shown in Figure 260.

www.Xilinx.com 247

l Send Feedback I

High-Level Synthesis
UG871 (v2014.1) May 6, 2014

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=247

& XILINX.

Using HLS IP in a Zynq Processor Design

Za Diagram X | [Address Edibor %

A | # Zynq_ReslFFT »

Q La Designer Assistance avalable, Run Connection Automation

7|18 R

processing_system?_L

processing_system?7_L_axi_periph

B/ QP

DDR.3.
FIXED I0-1-
- USBIND_0. 3

M_AXI_GRD

Jp——{x00R

;_LDFD(ED

FOLK_CLKD
FOLK_RESETO_N :‘»
19 System

\—— stwest_syne_ci m

mi_resat b

proe_sys_roset

et reset i
—[ena_reset in
={mb_debug_sys Rt interconned_amsen[0:0]
={dem_lacked perphersl_aesetn]

bus_skuet_reset{0 0] jm
periaheral_reser0:0]

Froc Sys Resel

M_AIS_MHRS- - |

115 RS STS 1 B
s M_AKIS_CNTRL T £
- mmizs_prmry_reset_oue_n
—m_axi_sg_aclk

MNS,_eriel_resser oot

—{m_asi_mmzs_ack
={rn_ax_g2emen_sck
|_resstn

sDenen_preney_reset_ot_n
s2men_sts_reset ok n

Figure 259: Zynq Diagram with Internal Connections

24. Run Connection Automation on /processing_system7_1/S_AXI_HPO and click OK to accept
the default connection in the dialog box.

Note: the Connection Automation only connects one of the AXI DMA components M_AXI_* ports
through the axi_mem_intercon component.

25. Double-click the axi_mem_intercon component to re-customize it.

a. Change the Number of Slave Interfaces from 1 to 2 (Figure 260).

b. Click OK.

High-Level Synthesis

UGS871 (v 2014.1) May 6, 2014

www.Xilinx.com

248

| Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=248

& XILINX. Using HLS IP in a Zynq Processor Design

i.} Re-customize IP
AXI Interconnect (2.0)
fﬂ Docurnentation 1 IP Location

Component Mame | Zyna_RealFFT _axi_mem_intercon_3

Top Level Settings | Slave Interfaces | Master Interfaces

Number of Slave Interfaces 2 ~
Number of Master Interfaces 1 -
Interconnect Optimization Strategy Custom "

Axl Interconnect 2.0 includes IP Integratar automatic conwerter insertion and configuration.

when the endpoint IPs attached to the interfaces of the A% Interconnect differ

in width, clack or protocal, 5 converter IP will automatically be added inside the interconnect.
If a converter IP is inserted, IP integrator's parameter propagation automatically

configures the converter ko match the design.

To see which conversion IPs have been inserted, use the IP integrator

‘expand hierarchy' buttons to explore inside the AXI Interconnect hierarhey,

MOTE:addressing information for AXI Interconnect is specified in the IP Integrator address editar.

Enable Advanced Configuration Options

28
A
i
Cancel

Figure 260: Customizing the AXI Interconnect

26. Make a connection between the M_AXI_S2MM port on axi_dma_1 component and SO1_AXI

port on the axi_mem_intercon component.

27. Connect the clocks and reset ports.

a. Connect the axi_mem_intercon SO1_ACLK and SO1_ARESETN ports to the appropriate
nets already present in the diagram (processing_system7_1_fclk_clkO and

proc_sys_reset_peripheral_aresetn, respectively).

b. Connect the m_axi_s2mm_aclk port of the axi_dma_1 component to the clock network.

28. Connect the RealFFT block to rest of the sytem.

a. Make a connection between the realfft_s_axis_din input of the RealFFT block and the

M_AXIS_MM2S output of the axi_dma_1 component.

b. Make a connection between the realfft_m_axis_dout output of the RealFFT block and the

S_AXIS_S2MM input of the axi_dma_1 component.

c. Connect the aclk and aresetn pin of the RealFFT block to the existing networks.

29. Finalize the IPI block diagram design.

a. Select the Address Editor tab and click the Auto Assign Address icon.

High-Level Synthesis www.xilinx.com

UGS871 (v 2014.1) May 6, 2014

249

l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=249

& XILINX. Using HLS IP in a Zynq Processor Design

Z Bﬁ Iprocessing_system7_1

| E-H Data

=1

E=Diagram X | B Address Editor X

S e Interface Pin Base Mame Offset Address Range Hig

e fai_dma_t 5_AYI_LITE Reg D0x40400000 64K v Dxd

B E| 1F faxi_dma_1

L BB Data SG
Auto Assign Address
Automatically assign offset address and range to all unmapped slaves

Figure 261: Auto Assign System Addresses

30. To view the completed design, run Validate Design by clicking the icon in the toolbar
(Figure 263).

=

T Y

g | 80D

/9%

M
*

Diagram X | [Address Editor X a

3 ‘ i 2yno_RealFFT »

- Validdate Design

[| " . N .
0 Validation successful, There are no errars or critical warnings in this design,

.

Figure 262: Final Validated Design

Step 5: Implementing the System

Before proceeding with the system design, you must generate implementation sources and
create an HDL wrapper as the top-level module for synthesis and implementation.

1. Return to the Project Manager view by clicking Project Manager in the Flow Navigator.

2. Inthe Sources browser in the main workspace pane, a Block Diagram object named Zynq_
RealFFT appears at the top of the Design Sources tree view. Right-click this object and select
Generate Output Products.

3. Inthe resulting dialog box, click OK to start the process of generating the necessary source
files.

High-Level Synthesis www.xilinx.com 250

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=250

& XILINX. Using HLS IP in a Zynq Processor Design

4. Right-click the Zynq_RealFFT object again, select Create HDL Wrapper, and click OK to exit
the resulting dialog box.

The top-level of the Design Sources tree becomes the Zynq_ RealFFT _wrapper.v file. You are
now ready to synthesize, implement, and generate an FPGA programming bitstream for the
design.

5. Click Generate Bitstream to initiate the remainder of the flow.

6. Inthe dialog that appears after bitstream generation has completed, select Open
Implemented Design and click OK.

Step 6: Setup SDK and test the ZYNQ System

You are now ready to export the design to Xilinx SDK. In SDK, you create software to be runon a
ZC702 board (if available). A driver for the HLS block was generated during HLS export of the

Vivado IP Catalog package and must be made available in SDK for the PS7 software to
communicate with the block.

1. From the Vivado File menu select Export > Export Hardware for SDK.

Note: Both the IPI Block Design and the Implemented Design must be open in the Vivado
workspace for this step to complete successfully.

2. Inthe Export Hardware for SDK dialog box, ensure that the Include Bitstream and Launch
SDK options are checked, and click OK.

SDK opens. If the Welcome page is open, close it.
4. Create a Hello World application (also creates BSP).

a. Select File > New > Application Project.

b. Enter the project name Zynqg_RealFFT_Test.

c. Click Next.

d. Select Hello World (if it is not the default).

e. Click Finish.
5. Power up the ZC702 board and program the FPGA.

Ensure the board has all the connections to allow you to download the bit stream on the FPGA
device. Refer to the documentation that accompanies the ZC702 development board.

a. Select XilinxTools > Program FPGA. The Done LED (DS3) goes on.
6. Set up aTerminal in the tab at bottom of workspace:

a. Click the Connecticon.

b. Select Connection Type > Serial.

c. Select the COM port to which the USB UART cable is connected (generally not COM1 or

COM3)On Windows, if you are not sure, open the Device Manager and identify the port
with the Silicon Labs driver under Ports (COM & LPT).

High-Level Synthesis www.xilinx.com 251

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=251

& XILINX. Using HLS IP in a Zynq Processor Design

d. Change the Baud Rate to 115200.
e. Click OKto exit Terminal Settings dialog box.
f. Check that terminal is connected by message in tab title bar.
7. Right-click application project Zynq_Design_Test in the Explorer pane
a. Select Run As > Launch on Hardware.
8. Switch to the Terminal tab and confirm that “Hello World” was received.
9. This project uses the C math library (libm), so you must adjust the build settings to link to it.

a. Right-click the zynq_realfft_test project in the Project Explorer pane and select C/C+
Build Settings (Figure 264).

» p—

€ C/C++ - 7yng_realf Run A3 -

File Edit Source Debug As ol
— Prafile s 3
Ci-EHE S " X o
: g Barm
= 5 - _

Cormpare With *

13 Project Explorer & Restore from Local Histon.., I

- ‘;S"‘ Run CfC++ Code Snalysis Sy
a 3 hu_platform_
|2 psi_initc
[5 ps7_inith | Mf, Change Referenced B3P
@ psi_initht E Create BootImage

Generate Linker Script

8] ps?_wnt.t:: C/T++ Build Settings —
systern.bit d i
IF Fystermxrm Properties Alt+Enter | ’
L zynq_realfft_test Fa\
4 = mna. = Target Processor psT_cortexad_(
+ [np! Includes
- = Debug 0 .
perating System
4 = sec
- J£ helloworld.c Board Support Package OF,
- k| platform_config.h Marne: standalone
-l platform.c Wersion: 3.10.a
. |h| platfarrm.h Description: Standalone is a simple, |
] Iscript.ld as wvell as the basic featy
a [zynq_realfft_test_bsp Docurnentation: standalone w3 10 a

-

Figure 263: Specify C/C++ Build Settings

b. Add the ARM gcc linker libraries.
i. Inthe Tool Settings tab, select "ARM gcc linker’ > Libraries.
ii. Click the Add icon.

High-Level Synthesis www.xilinx.com 252

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=252

& XILINX.

Using HLS IP in a Zynq Processor Design

Properties for zyng_realfft_test

type filter text

> Resource
Builders
4 CfC++ Build
Build Variables
Discowvery Options
Environrment
Logging
Settings
Tool Chain Editor
= CFC++ General
Project References
Run/Debug Settings

Settings

% Tool Settings | Build Steps

Build Ar‘tifactl Binary Parsers | [X] ErrorParsers|

4 I8 ARM gcc assembler
(2 General

4 % ARM gee compiler
(8 Symbals
@ “Warnings
22 Optimization
@ Debugging
(# Prafiling
(Z2 Directaries

Libraries (-I)

&

| Add... |

(2 Miscellaneous
4 @ Inferred Options
@ Software Platform
@ Processor Options
4 B ARM g linker
(2 General
(2 Libraries
@ Miscellaneous

Library search path (-L) &

[,},:‘9 Linker Script |

Figure 264: C/C+ + Build Settings

c. Enter'm’in the text box in the Enter Value dialog box and click OK.

’ Enter Walue @
Libraries (-1
ro|

(] l [Cancel

Figure 265: Library Setting
d. Click OKto exit the Properties for zynq_realfft_test dialog box.

Step 7: Modify software to communicate with HLS block

The completely modified source file is available in the arm_code directory of the tutorial file set.
The modifications are discussed in detail below.

1. Open the helloworld.c source file.
2. Several BSP (and standard C) header files must be included:
#include <stdlib.h> // Std C functions, e.g. exit()

#include <math.h> // libm header: sqrt(), cos(), etc

High-Level Synthesis
UG871 (v2014.1) May 6, 2014

www.Xilinx.com 253

l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=253

& XILINX. Using HLS IP in a Zynq Processor Design

#include "xparameters.h" // System parameter definitions

#include "xaxidma.h" // Device driver API for AXI DMA

3. Define the (real data) transform length of the FFT:
#define REAL_FFT_LEN 1024
4. Define a custom complex data type with 16-bit real and imaginary members:
typedef struct {
short re;
short im;

} complex16;

5. Declare helper functions before the definition of main(); they will be defined later.

Note: The init_dma() function wraps up all run-once, initialization AXI DMA driver API calls and
checks that hardware initialization is successful before returning or exiting on an error condition.
The generate_waveform() function is fills an array with a simple, periodic waveform to be used as
input stimulus for the RealFFT accelerator.

int init_dma(XAxiDma *axiDma);

void generate_waveform(short *signal buf, int num_samples);

6. Modify main() to generate and send input data to the RealFFT accelerator and receive the

spectral data from it via the AXI DMA engine. Sections of particular importance will be
discussed in detail.

// Program entry point
int main()
{
a. Declare an XAxiDma instance that will be used as a handle to the AXI DMA hardware:
// Declare a XAxiDma object instance

XAxiDma axiDma;

b. Declare variable for local data storage:

// Local variables

int i, j;

int status;

static short realdata[4*REAL_FFT_LEN];

volatile static complex16 realspectrum[REAL_FFT LEN/2];
¢. Run platform and DMA initialization functions:

// Initialize the platform

High-Level Synthesis www.xilinx.com 254

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=254

& XILINX. Using HLS IP in a Zynq Processor Design

init platform();

print("-------------mm e \n\r");
print("- RealFFT PL accelerator test program -\n\r");
print("-------------mm e \n\r");

// Initialize the (simple) DMA engine
status = init_dma(&axiDma);
if (status != XST_SUCCESS) {
exit(-1);
}
d. Generate a stimulus waveform:
// Generate a waveform to be input to FFT
for (i =0; 1< 4; i++)
generate waveform(realdata + i * REAL_FFT_LEN, REAL_FFT_LEN);

e. Before making the DMA transfer request, the buffer containing the data must be flushed
from the processor’s data cache. Without this step, the DMA might pull stale data from
the DRAM.

// *IMPORTANT* - flush contents of 'realdata' from data cache to memory
// before DMA. Otherwise DMA is likely to get stale or uninitialized data
Xil_DCacheFlushRange((unsigned)realdata, 4 * REAL_FFT_LEN * sizeof(short));

f. Request DMA transfer from PS to PL. Enough data to fill the front-end block and the FFT
processing pipelines must be sent in order for spectral data to be ready when the PL to

PS transfer is requested. Therefore, four data sets are sent before the first output set is
requested:

// DMA enough data to push out first result data set completely
status = XAxiDma SimpleTransfer(&axiDma, (u32)realdata,
4 * REAL_FFT_LEN * sizeof(short), XAXIDMA DMA_TO DEVICE);

// Do multiple DMA xfers from the RealFFT core's output stream and
// display data for bins with significant energy. After the first frame,
// there should only be energy in bins around the frequencies specified
// in the generate_waveform() function - currently bins 191~193 only
for (i =0; i < 8; i++) {
g. Request DMA transfer of a frame of FFT spectral data from PL to PS then poll for
completion of the transfer before proceeding.
// Setup DMA from PL to PS memory using
// AXI DMA's 'simple' transfer mode

status = XAxiDma_SimpleTransfer(&axiDma, (u32)realspectrum,

High-Level Synthesis www.xilinx.com 255

UG871 (v2014.1) May 6, 2014 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=255

& XILINX. Using HLS IP in a Zynq Processor Design

REAL_FFT_LEN / 2 * sizeof(complex16), XAXIDMA DEVICE_TO DMA);
// Poll the AXI DMA core
do {
status = XAxiDma_Busy(&axiDma, XAXIDMA DEVICE_TO DMA);
} while(status);

h. Before attempting to use the spectral data, the processor’s data cache copy of the buffer

must be invalidated to avoid use of stale data.
// Data cache must be invalidated for 'realspectrum' buffer after DMA
Xil_DCacheInvalidateRange((unsigned)realspectrum,
REAL_FFT_LEN / 2 * sizeof(complex16));

Push another set of stimulus data to the PL in order to start the accelerator processing
the next frame:

// DMA another frame of data to PL
if (!XAxiDma_Busy(&axiDma, XAXIDMA_DMA_TO_DEVICE))
status = XAxiDma_SimpleTransfer(&axiDma, (u32)realdata,
REAL_FFT_LEN * sizeof(short), XAXIDMA DMA_TO DEVICE);
printf("\n\rFrame #%d received:\n\r");

Do something to verify that the accelerator is functioning. In this case, the spectral data
is scanned for bins that contain significant energy. The expectation is to detect only
energy in bins around the single tone (192) generated by the generate_waveform()
function.

// Detect energy in spectral data above a set threshold
for (j = 0©; j < REAL_FFT_LEN / 2; j++) {
// Convert the fixed point (s.15) values into floating point

values
float real = (float)realspectrum[j].re / 32767.60f;
float imag = (float)realspectrum[j].im / 32767.60f;
float mag = sqrtf(real * real + imag * imag);
if (mag > 0.00399625f) {
printf("Energy detected in bin %3d - ",j);
printf("{%8.5f, %8.5f}; mag = %8.5f\n\r", real, imag, mag);
}
}
printf("End of frame.\n\r");
}

PPintf("***************\n\p");
printf("* End of test *\n\r");

pr‘intf("***************\n\r.\n\r‘n);

High-Level Synthesis www.xilinx.com

256

UG871 (v2014.1) May 6, 2014 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=256

& XILINX. Using HLS IP in a Zynq Processor Design

return ©;

}

7. Define the helper function that generates the waveform data sets. This version simply fills a

buffer with a single tone with 192 cycles per num_samples data window with values in a S.15
fixed point format.

void generate_waveform(short *signal buf, int num_samples)

{
const float cycles per_win = 192.0f;
const float phase = 0.0f;
const float ampl = 0.9f;
int i;
for (i = 9; i < num_samples; i++) {
float sample = ampl *
cosf((i * 2 * M PI * cycles per win / (float)num_samples) + phase);
signal buf[i] = (short)(32767.0f * sample);
}
}

8. Define a routine to set up the and initialize the AXI DMA engine, wrapping all driver API calls
that only need to be run once at startup.

int init_dma(XAxiDma *axiDmaPtr){
XAxiDma_Config *CfgPtr;
int status;
// Get pointer to DMA configuration
CfgPtr = XAxiDma_LookupConfig(XPAR_AXIDMA_© DEVICE_ID);
if(!CfgPtr){
print("Error looking for AXI DMA config\n\r");
return XST_FAILURE;
}
// Initialize the DMA handle
status = XAxiDma_CfgInitialize(axiDmaPtr,CfgPtr);
if(status != XST_SUCCESS){
print("Error initializing DMA\n\r");
return XST_FAILURE;
}
//check for scatter gather mode - this example must have simple mode only
if(XAxiDma_HasSg(axiDmaPtr)){
print("Error DMA configured in SG mode\n\r");

High-Level Synthesis www.xilinx.com 257

UG871 (v2014.1) May 6, 2014 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=257

& XILINX. Using HLS IP in a Zynq Processor Design

return XST_FAILURE;
}
//disable the interrupts
XAxiDma_IntrDisable(axiDmaPtr, XAXIDMA_IRQ_ALL_MASK,XAXIDMA DEVICE_TO DMA);
XAxiDma_IntrDisable(axiDmaPtr, XAXIDMA IRQ_ALL_MASK,XAXIDMA DMA TO_DEVICE);

return XST_SUCCESS;

9. Save the modified source file. As soon as you save the file, SDK automatically attempts to re-
build the application executable. If the build fails, fix any outstanding issues.

10. Run the new application on the hardware and verify that it works as expected. Ensure that
the FPGA is programmed and a terminal session is connected to the UART. Then Launch on
Hardware, as done for the previous Hello World application code.

High-Level Synthesis www.xilinx.com 258

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=258

& XILINX.

Chapter 11 Using HLS IP in System Generator for DSP

Overview

The RTL created by High-Level Synthesis can be packaged as IP and used inside System
Generator for DSP (Vivado). This tutorial shows how this process is performed and demonstrates
how the design can be used inside System Generator for DSP.

This tutorial consists of a single lab exercise.
Labl Description

Generate a design using Vivado HLS and package the design for use with System Generator for
DSP. Then include the HLSIP into a System Generator for DSP design and execute an RTL
simulation.

Tutorial Design Description

You can download the tutorial design file from the Xilinx Website. Refer to the information in

High-Level Synthesis www.xilinx.com 259

UG871 (v2014.1) May 6, 2014
l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=259

& XILINX. Using HLS IP in System Generator for DSP

Obtaining the Tutorial Designs.

This tutorial uses the design files in the tutorial directory
Vivado_HLS_Tutorial\ Using_IP_with_SysGen.

The sample design is a FIR filter that uses streaming interfaces modeled with the High-Level

Synthesis hls::stream class. The design is fully pipelined at the function level. The optimization
directives are embedded into the C code as pragmas.

Lab 1: Package HLS IP for System Generator

This lab exercise integrates the High-Level Synthesis IP into System Generator for DSP.

IMPORTANT: The figures and commands in this tutorial assume the tutorial data
directory Vivado_HLS_Tutorial is unzipped and placed in the location
ﬁ C:\Vivado_HLS Tutorial
If the tutorial data directory (s unzipped to a different location, or on Linux systems, adjust
the few pathnames referenced, to the location you have chosen to place the
Vivado_HLS_Tutorial directory.

Step 1: Create a Vivado HLS IP Block

Create two HLS blocks for the Vivado IP Catalog using the provided Tcl script. The script runs
HLS C-synthesis, runs RTL co-simulation, and package the IP for the two HLS designs
(hls_real2xfft and hls_xfft2real).

1. Open the Vivado HLS Command Prompt.

a. On Windows, go to Start > All Programs > Xilinx Design Tools > Vivado 2014.1 >
Vivado HLS > Vivado HLS 2014.1 Command Prompt.

b. On Linux, open a new shell.

Bl Vivado 2013.4 Tcl Shell
g Vivado 20134
Accessories
SDK
System Generator
Vivado HLS
Bl Vivado HLS 2013.4 Command Promp
[] Vivado HLS 20134

Figure 266: Vivado HLS Command Prompt

2. Using the command prompt window, change the directory to
Vivado_HLS_Tutorial\Using_IP_with_SysGen\labl.

3. Type vivado_hls —f run_hls.tcl to create the HLSIP.

High-Level Synthesis www.xilinx.com 260

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=260

& XILINX. Using HLS IP in System Generator for DSP

[Vivado HLS 2013.2 Command Prompt =R

C:\Vivado_HLS_Tutorial>cd Using_IP_with_SysGen

C:\Vivado_HLS_Tutorial\Using_IP_with_SysGen>cd labl

4 |

C:\Uivado_HLS_Tutorial\Using_IP_with_SysGen\labl>vivavo_hls -f run_hls.tcl

Figure 267: Create the HLS Design

A key aspect of the Tcl script used to create this IP is the command export_design —-format
sysgen. This command creates an IP package for System Generator. When the script completes
there is a Vivado HLS project directories fir_prj, which contains the HLS IP, including the IP
package for use in a System Generator for DSP design.

The remainder of this tutorial exercise shows how to integrate the Vivado HLSIP block into a
System Generator design.

Step 2: Open the System Generator Project

1. Open System Generator for DSP.

a. On Windows use the desktop icon.

b. On Linux, open a new shell and type sysgen.

System
(Generat...

Figure 268: System Generator 2014.1 Icon

2. When Matlab invokes, click the Open toolbar button.

HOME

= New Variable Analyze Code
L Sr W [Find Fies v g = L
i+ Open Variable + ﬁf Run and Time
New New |Open |1=] Compare Impart Save
Script - Data Workspace (77 Clear Workspace ~ [Clear Comman
i3 Open. Ctrl=Q

Figure 269: Open the System Generator Design

3. Navigate to the tutorial directory Vivado_HLS_Tutorial\Using_IP_with_SysGen\labl and select
the file fir_sysgen.mdl.

High-Level Synthesis www.xilinx.com 261

UG871 (v2014.1) May 6, 2014 | Send Feedback |

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=261

& XILINX. Using HLS IP in System Generator for DSP

OSDisk (C) » Vivado_HLS_Tutorial » Using_IP_wit

MNew folder
Mame

L. fir_pr

fir.cpp
firh

"4 fir_sysgen.mdl

fir_test.cpp

Figure 270: Select File fir_sysgen.mdl

When System Generator invokes, all blocks and ports except the HLS IP are already instantiated
in the design.

4. Right-click in the canvas and select Xilinx BlockAdd.

b,hﬁr_syr:-;gen
File Edit View Display Diagram Simulation Analysis Code Tools Help
R = EH-E GOP 2 ©v m @ -

fir_sysgen

® |*a|fir_sysgen

nes Xilinx BlockAdd
Xilinx BlockConnect

B UL E e

Xilinx Tools ' g
E'—'D ”””” Xilinx View Signals ...
Cors@nt sprst "
Explore ’
i a——
IWI Can't Undo Ctrl+Z g
Pulse Generator -
Can't Redo Ctrl+Y

B S e N »
. o} Paste Ctrl+V 22

Puke Generatort input_val V_dout
Paste Duplicate Inport

.1 ________ LV _din
. D Select All Ctrl+A

input_val_V/_smpy_n

Constant1 >
. - LV _write
,I} N :':Ind RFeferenceId Earl;t;:as.‘ks X
L m‘—‘m_m_v_m"_" ost Freguently Use oc v >
Remove Highlighting Ctrl+Shift+H =
;?4 Update Diagram Ctrl+D
Figure 271: Adding an new Block
5. Type "hls” in the Add Block field.
6. Select Vivado HLS.
High-Level Synthesis www.xilinx.com 262

UG871 (v2014.1) May 6, 2014 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=262

& XILINX. Using HLS IP in System Generator for DSP

Add block | hls

Vivado HLS

Figure 272: Selecting a Vivado HLS IP Block

7. Double-click the Vivado HLS block to open the Vivado HLS dialog box.

8. Navigate to the fir_prj project and select the solutionl folder.

2 IMPORTANT: System Generator for DSP uses the location of the solution folder to
identify the IP.

9. Click OK to load the IP block.

52 Vivado HLS (Xilinx High Level Sy..| = | & [[w3m]

This block allows including C,C++ and SystemC source files in
System Generator for DSP designs.

Solution with_SysGen/lab1/fir_prij/solution1/'

D Use C simulation model if available

|:| Display signal types

Output Sample Times’SimuIink system period vl

ok || cancel || nelp || appy |

Figure 273: Selecting the FIR IP Block

The FIRIP block is instantiated into the design.
10. Connect the design 1/O ports to the ports on the FIRIP block.

High-Level Synthesis www.xilinx.com 263

UG871 (v2014.1) May 6, 2014 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=263

& XILINX.

Using HLS IP in System Generator for DSP

*}fir_sysgen EI@
File Edit View Display Diagram Simulation Analysis Code Tools Help
W8 a EH-E GO - @ w o] @ -
fir_sysgen
@® |*alfir_sysgen hd
@&
R 4
:g o
s
ap_rﬂ ap_done L Out || 2p_done
Constant ap_rst 2p_dans
ap_idle :’ﬁll e
ap_sart ap_idle R
DS i ap_st.arl
Consend ap_ready g Out || ey ¥
outp Ln_\al_\"_iﬂ:{:mb:del ap_ready
o cutput_val V_full_n output_val_V_din :m‘hﬂp”t- e >
.—’_—’ﬁﬂ _ input_val_V_dout -
Pulsealnﬂ input_val_V_dout output_val_V_write > Out | ouput W hre———
output val W_wrike
| 1 » In input_val_V_empty n jnnyt yval W read P'Wl
Constant1 input_val V_empy._n input_wval V_read nput_wal V_read
Vivado HLE
Soope
b
Ready 94% oded5 .
Figure 274: Design with All Connections
11. Ensure the simulation stop time says 300.
12. Click the Run button on the toolbar to execute simulation.
13. Double-click the Scope block to view the simulation waveforms.
Conclusion
In this tutorial, you learned:
e How to create Vivado HLS IP using a Tcl script.
e How toimport an HLS design as IP into System Generator for DSP.
High-Level Synthesis www.xilinx.com 264

UGS871 (v 2014.1) May 6, 2014

| Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2014.1&docPage=264

	Vivado Design Suite Tutorial: High-Level Synthesis
	Revision History
	Tutorial Description
	Overview
	High-Level Synthesis Introduction
	C Validation
	Interface Synthesis
	Arbitrary Precision Types
	Design Analysis
	Design Optimization
	RTL Verification
	Using HLS IP in IP Integrator
	Using HLS IP in a Zynq Processor Design
	Using HLS IP in System Generator for DSP

	Software Requirements
	Hardware Requirements
	Locating the Tutorial Design Files
	Preparing the Tutorial Design Files

	High-Level Synthesis Introductory Tutorial
	Overview
	Lab 1
	Lab 2
	Lab 3

	Tutorial Design Description
	HLS Lab 1: Creating a High-Level Synthesis Project
	Introduction
	Step 1: Creating a New Project
	Understanding the Graphical User Interface (GUI)
	Explorer Pane
	Information Pane
	Auxiliary Pane
	Console Pane
	Toolbar Buttons
	Perspectives

	Step 2: Validate the C Source Code
	Step 3: High-Level Synthesis
	Step 4: RTL Verification
	Step 5: IP Creation

	HLS: Lab 2: Using the Tcl Command Interface
	Introduction
	Step 1: Create a Tcl file

	HLS: Lab 3: Using Solutions for Design Optimization
	Introduction
	Step 1: Creating a New Project
	Step 2: Optimize the I/O Interfaces
	Step 3: Analyze the Results
	Step 4: Optimize for the Highest Throughput (lowest interval)
	Conclusion

	C Validation
	Overview
	Tutorial Design Description
	Lab 1: C Validation and Debug
	Overview
	Step 1: Create and Open the Project
	Step 2: Review Test Bench and Run C Simulation
	Step 3: Run the C Debugger

	Lab 2: C Validation with ANSI C Arbitrary Precision Types
	Introduction
	Step 1: Create and Open the Project
	Step 2: Run the C Debugger

	Lab 3: C Validation with C++ Arbitrary Precision Types
	Overview
	Step 1: Create and Open the Project
	Step 2: Run the C Debugger
	Conclusion

	Interface Synthesis
	Overview
	Tutorial Design Description
	About the Labs

	Interface Synthesis Lab 1: Block-Level I/O protocols
	Overview
	Step 1: Create and Open the Project
	Step 2: Create and Review the Default Block-Level I/O Protocol
	Step 3: Modify the Block-Level I/O protocol

	Interface Synthesis Lab 2: Port I/O protocols
	Overview
	Step 1: Create and Open the Project
	Step 2: Specify the I/O Protocol for Ports

	Interface Synthesis Lab 3: Implementing Arrays as RTL Interfaces
	Introduction
	Step 1: Create and Open the Project
	Step 2: Synthesize Array Function Arguments to RAM ports
	Step 3: Using Dual-port RAM and FIFO interfaces
	Step 4: Partitioned RAM and FIFO Array interfaces
	Step 5: Fully Partitioned Array interfaces

	Interface Synthesis Lab 4: Implementing AXI4 Interfaces
	Introduction
	Step 1: Create and Open the Project
	Step 2: Create an Optimized Design with AXI4 Stream Interfaces
	Step 3: Implementing an AXI4-Lite Interfaces
	Conclusion

	Arbitrary Precision Types
	Overview
	Tutorial Design Description

	Arbitrary Precision: Lab 1
	Step 1: Create and Open the Project
	Step 2: Review Test Bench and Run C Simulation
	Step 3: Synthesize the Design and Review Results

	Arbitray Precision: Lab 2
	Introduction
	Step 1: Create and Simulate the Project
	Step 2: Synthesize the Design and Review Results
	Conclusion

	Design Analysis
	Overview
	Lab1

	Tutorial Design Description
	Lab 1: Design Optimization
	Step 1: Create and Open the Project
	Step 2: Review the source Code and Create the Initial Design
	Step 3: Review the performance using the Synthesis Report
	Step 4: Review the Performance using the Analysis Perspective
	Step 5: Apply Loop Pipelining & Review for Loop Optimization
	Step 6: Apply Loop Optimization and Review for Bottlenecks
	Step 7: Partition Block RAMs and Analyze Concurrency
	Step 8: Partition Block RAMs and Apply Dataflow optimization
	Step 9: Optimize the Hierarchy for Dataflow
	Conclusion

	Design Optimization
	Overview
	Tutorial Design Description
	Lab 1: Optimizing a Matrix Multiplier
	Step 1: Create and Open the Project
	Step 2: Synthesize and Analyze the Design
	Step 3: Pipeline the Product Loop
	Step 4: Pipeline the Col Loop
	Step 5: Reshape the Arrays
	Step 6: Apply FIFO Interfaces
	Step 7: Pipeline the Function

	Lab 2: C Code Optimized for I/O Accesses
	Step 1: Create and Open the Project

	Conclusion

	RTL Verification
	Overview
	Lab1
	Lab2
	Lab3

	Tutorial Design Description
	Lab 1: RTL Verification and the C test bench
	Step 1: Create and Open the Project
	Step 2: Perform RTL Verification
	Step 3: Modify the C test bench

	Lab 2: Viewing Trace Files in Vivado
	Step 1: Create an RTL Trace File using Xsim
	Step 2: View the RTL Trace File in Vivado

	Lab 3: Viewing Trace Files in ModelSim
	Step 1: Create an RTL Trace File using ModelSim
	Step 2: View the RTL Trace File in ModelSim

	Conclusion

	Using HLS IP in IP Integrator
	Overview
	Lab1

	Tutorial Design Description
	Lab 1: Integrate HLS IP with a Xilinx IP Block
	Step 1: Create Vivado HLS IP Blocks
	Step 2: Create a Vivado Design Suite Project
	Step 3: Add HLS IP to an IP Repository
	Step 4: Create a Block Design for RealFFT
	Step 5: Verify the Design

	Conclusion

	Using HLS IP in a Zynq Processor Design
	Overview
	Lab1
	Lab2

	Tutorial Design Description
	Lab 1: Implement Vivado HLS IP on a Zynq Device
	Step 1: Create a Vivado HLS IP Block
	Step 2: Create a Vivado Zynq Project
	Step 3: Add HLS IP to the IP Catalog
	Step 4: Creating an IP Integrator Block Design of the System
	Step 5: Implementing the System
	Step 6: Developing Software and Running it on the ZYNQ System
	Step 7: Modify software to communicate with HLS block

	Lab 2: Streaming data between the Zynq CPU and HLS Accelerator Blocks
	Step 1: Generate the HLS IP
	Step 2: Create a Vivado Design Suite Project
	Step 3: Add HLS IP to an IP Repository
	Step 4: Create a Top-level Block Design
	Step 5: Implementing the System
	Step 6: Setup SDK and test the ZYNQ System
	Step 7: Modify software to communicate with HLS block

	Using HLS IP in System Generator for DSP
	Overview
	Tutorial Design Description
	Lab 1: Package HLS IP for System Generator
	Step 1: Create a Vivado HLS IP Block
	Step 2: Open the System Generator Project

	Conclusion

