
Which Adaptation Logic? An Objective and Subjective
Performance Evaluation of HTTP-based Adaptive Media

Streaming Systems
Christian Timmerer

Alpen-Adria-Universität Klagenfurt
Universitätsstraße 65-67

9020 Klagenfurt
+43-463-2700-3621

christian.timmerer@itec.aau.at

Matteo Maiero
Alpen-Adria-Universität Klagenfurt

Universitätsstraße 65-67
9020 Klagenfurt

+43-463-2700-3600
mmaiero@edu.uni-klu.ac.at

Benjamin Rainer
Alpen-Adria-Universität Klagenfurt

Universitätsstraße 65-67
9020 Klagenfurt

+43-463-2700-3627
benjamin.rainer@itec.aau.at

ABSTRACT
Multimedia content delivery over the Internet is predominantly
using the Hypertext Transfer Protocol (HTTP) as its primary
protocol and multiple proprietary solutions exits. The MPEG
standard Dynamic Adaptive Streaming over HTTP (DASH)
provides an interoperable solution and in recent years various
adaptation logics/algorithms have been proposed. However, to the
best of our knowledge, there is no comprehensive evaluation of
the various logics/algorithms. Therefore, this paper provides a
comprehensive evaluation of ten different adaptation
logics/algorithms, which have been proposed in the past years.
The evaluation is done both objectively and subjectively. The
former is using a predefined bandwidth trajectory within a
controlled environment and the latter is done in a real-world
environment adopting crowdsourcing. The results shall provide
insights about which strategy can be adopted in actual deployment
scenarios. Additionally, the evaluation methodology described in
this paper can be used to evaluate any other/new adaptation logic
and to compare it directly with the results reported here.

Keywords
Dynamic Adaptive Streaming over HTTP, Performance
Evaluation, Crowdsourcing, Subjective Quality Assessment,
Quality of Experience, QoE, DASH, MPEG

1. INTRODUCTION
Multimedia content is omnipresent in our daily life and we
consume it (among others) with different devices and in various
contexts ranging from wired to wireless connections on large,
high-resolution screens and small mobile devices. In many cases
the content is no longer stored on the actual device but streamed
from servers (within a cloud) over the open, unmanaged Internet.
The Hypertext Transfer Protocol (HTTP) is nowadays considered
as the primary protocol for the delivery of multimedia content
over the Internet and various approaches have been proposed,
starting with download-and-play, progressive download, and,
recently, adaptive HTTP streaming. For the latter, various
proprietary solutions are deployed from notable companies but
with MPEG’s Dynamic Adaptive Streaming over HTTP (DASH)
a standardized solution is in place which offers interoperability
among different vendors [1].

The basic design principle of DASH (and its proprietary
predecessors) is that multimedia content is provided in various
versions (e.g., different bitrates, resolutions, qualities, etc.), which
are referred to as representations. These versions are divided into

equally sized and time-aligned segments which can be located
using HTTP uniform resource locators (HTTP-URLs) and
independently downloaded using a conventional HTTP access
client. A DASH client receives a manifest describing the
relationship among representations and other metadata, which is
an XML document and referred to as Media Presentation
Description (MPD). The DASH client is now free to instruct the
HTTP access client to download segments from any
representation contained within the MPD in order of its
appearance and to concatenate the media segments at the client in
order to reconstruct a continuous media presentation. By doing so,
the DASH client may switch to different representations during
the streaming session according to context conditions observed
during download of individual segments (e.g., changes in the
available bandwidth or even changes in the device). The
component, which is typically responsible for deciding on these
representation switches, is generally referred to as adaptation
logic and not defined within the standard but deliberately left open
for competition.

Since the ratification of the MPEG-DASH standard in 2011 and
its official publication by ISO in 2012, many research papers have
been published addressing various aspects of adaptive HTTP
streaming including proposals for the adaptation logic and its
evaluation under various conditions or the comparison of different
approaches. For example, Akhshabi et al. provides a first
evaluation of rate-adaptation algorithms in adaptive streaming
over HTTP [2]. Therefore, they investigate two commercial
players (i.e., Microsoft Smooth Streaming and Netflix) and one
open source player (OSMF), which are evaluated under different
conditions. Müller et al. [15] perform a similar evaluation but in
vehicular environments using real-world bandwidth traces
captured while driving on a highway and accessing multimedia
content over HTTP. In particular, they compare Microsoft Smooth
Steaming, Adobe HTTP Dynamic Streaming, and Apple HTTP
Live Streaming to their own DASH-based implementation which
uses a simple throughput-based adaptation logic. A similar
comparison is conducted by Riiser et al. [19] within 3G networks,
again using bandwidth traces collected in real-world trials, which
uses OSMF, Apple HTTP Live Streaming, Microsoft Smooth
Steaming, and Netview’s Media Client. All the above evaluations
focus on objective metrics like throughput, start-up delay, or
number of stalls and a limited number of DASH-like clients
equipped with different adaptation logics. For commercial
deployments, these adaptation logics are typically not accessible
and only black box testing is possible.

In practice, however, to the best of our knowledge and at the time
of writing this paper, no research paper provides a comprehensive
evaluation of various adaptation logics/algorithms including a
methodology that makes it easy to compare others (including
those not yet developed) with results reported in the literature.
Therefore, this paper evaluates ten different adaptation
logics/algorithms, which have been proposed in the past years. In
particular, the evaluation is conducted both objectively and
subjectively. The objective evaluation is conducted within a
controlled environment based on established metrics known in the
literature. Additionally, we define the inefficiency and instability
of the adaptation logic as a derived metric. The subjective
evaluation is conducted within a real-world environment using
crowdsourcing.

The remainder of this paper is organized as follows. Section 2
provides an overview of the adaptation logics used in this paper.
The evaluation methodology for both objective and subjective
evaluation is described in Section 3. The actual results are
presented in Section 4 – for the objective evaluation – and Section
5 – for the subjective evaluation –, respectively. Finally, Section 6
concludes the paper.

2. OVERVIEW OF ADAPTATION LOGICS
This section introduces the adaptation logics used in this paper in
order to understand their characteristics, behaviors, advantages,
and drawbacks. The following ten adaptation logics have been
evaluated in this paper and are briefly introduced in the following:
DASH-JS [3], FESTIVE [4], Instant [5], Liu et al. [6], Miller et al.
[7], OSMF [8], PANDA [9], QDASH [10], Thang et al. [11], and
Tian-Liu [12].

We acknowledge the existing of other adaptation logics but an
exhaustive comparison is probably not feasible. However, this
paper and its methodology can be used as a basis to compare any
other adaptation logic (existing ones and those yet to be
developed) with the results obtained in this evaluation due to the
open access approach adopted in this work. That is, test conditions
and all material required to reproduce these tests are publicly
available. Finally, the terms adaptation logic and adaptation
algorithm are used interchangeably in this paper.

2.1 DASH-JS
DASH-JS is one of the first implementations adopting the W3C
Media Source Extensions (MSE) which allow a seamless
integration within the Web environment [3]. It is based on a
simple bandwidth estimation as shown in Equation (1).

 bn =
w1bn−1+w2bm

w1+w2
 (1)

where bn−1 is the throughput calculated at the n−1th segment, bm
denotes the throughput measured during the download of the n−1th
segment, while w1 and w2 are weighting factors that adjust the
influence of the recently measured segment download (i.e.,
w1=0.7 and w2=1.3 according to [3]). Thus, the bandwidth
estimated for the next segment is calculated taking 1.3 times the
bitrate observed for the last segment downloaded and 0.7 times
the estimated throughput that was calculated during the previous
call. The initialization is based on the bandwidth measured when
downloading the MPD.

2.2 FESTIVE
FESTIVE is a Fair, Efficient, Stable, adaptIVE algorithm which is
one of the first algorithms taking into account interactions across

multiple adaptive streaming players that compete for bandwidth
[4]. Therefore, FESTIVE introduces different components to
reach its goal, i.e., a harmonic bandwidth estimator, a stateful and
delayed bitrate update, and a randomized scheduler.

The segment requests are randomized over the timeline, allowing
for a fair share of the available bandwidth. The algorithm switches
only to the next higher/lower representation (i.e., bitrate) available
according to the MPD, with the proposed bitrate for the next
segment that is calculated relating the current bitrate with the
throughput of the bandwidth estimation that FESTIVE adopts as a
smoothed value computed over the last n segments with n=20 as
in [4]. The bitrate for the next segment is calculated based on a
given cost function, which provides a balance among efficiency,
fairness, and stability.

2.3 Instant
The Instant algorithm simply takes the bandwidth measured
during the download of the last segment which is mapped to the
available representation (i.e., bitrate) according to the MPD [5]. In
particular, the representation which bitrate is lower than the
measured bandwidth is used for the next segment request. The
initialization is done in the same way as for DASH-JS by using
the measured bandwidth while downloading the MPD.

2.4 Liu et al.
The algorithm proposed by Liu et al. [6] – in the following simply
referred to as Liu – is one of the first adaptation logics in this
domain. The algorithm is based on a smoothed HTTP/TCP
throughput measurement method that relates the segment fetch
time with the media playback time contained in that segment. It is
in some way similar to TCP’s Additive Increase Multiplicative
Decrease (AIMD) where switching up to a higher representation
is additive (i.e., to the next higher bitrate) and switching down is
multiplicative (i.e., to the actual observed bandwidth which
possibly skips some representations). When the two thresholds are
not met, the algorithm keeps the selected rate.

2.5 Miller et al.
The goal of this algorithm – henceforth referred to as Miller – is
to adapt the bitrate requested depending on the buffer level and
trying to maximize the average bitrate while minimizing the
number of quality switches [7]. It uses the available throughput
calculated for the previous segment and the available buffer level
as an input, providing the representation (i.e., bitrate) for the next
segment and the minimum buffer level when to start the download
of the segment as an output. The algorithm can be divided in two
phases: an initial fast start-up phase that increases the quality of
the downloaded segments in a more aggressive manner and a
stable condition where the algorithm prefers to keep a high buffer
level. Finally, it keeps multiple thresholds (0 < bmin < blow < bmax)
with the objective to keep the buffer level in an optimal range
defined as bopt= 0.5(blow+bmax).

2.6 OSMF
The Open Source Media Framework (OSMF) is provided by
Adobe [8] and comes with a very basic adaptation logic, based on
a factor calculated as the ratio between the media segment
duration time and the time needed to download that segment. It
provides instant reaction to bandwidth changes and allows for
skipping intermediate representations, i.e., it is possible to switch
immediately to the highest or lowest quality representation
whereas others typically adopt a step-wise switching approach.

2.7 PANDA
PANDA stands for Probe-AND-Adapt, which means that the
actions of probing and rate adapting are the basic principles of this
algorithm [9]. It basically probes the network by incrementing the
request rate preparing to back off when congestion is experienced.
This constant network probing has the advantage that competing
clients will observe the correct status of the network in a few steps
and hopefully share the available resources in a fair way.

2.8 QDASH
QDASH takes into account the Quality of Experience (QoE) based
on the assumption that users typically do not notice quality
improvements while they heavily criticize quality degradation
[10]. Therefore, QDASH adopts a step-wise adaptation to lower
quality representations in case of a bandwidth drop in order to
mitigate this effect. The original version of this algorithm adopts a
proxy service for bandwidth estimation, which is replaced here –
for simplicity and without impacting its performance – with an
instantaneous evaluation of the available bandwidth performed
during segment download.

2.9 Thang et al.
The algorithm proposed by Thang et al. aims for a smooth
playback during short-term bandwidth fluctuations but reacts
quickly in case of larger bandwidth drops [11]. Therefore, the
Thang algorithm uses a sliding average of the observed media
throughput, which dynamically adapts to changing bandwidth
conditions. Interestingly, the first segment to be requested always
belongs to the lowest representation, which is in contrast to others
that use the MPD download as an educated guess, e.g., [3][5].

2.10 Tian-Liu
Finally, the algorithm proposed by Tian and Liu [12] – in this
paper simply referred to as Tian-Liu – uses the buffer to mitigate
bandwidth fluctuations and enable smooth playback. Additionally,
if the available bandwidth drops below a certain threshold, the
adaptation logic starts to behave like Instant in order to leverage
the difference between throughput observed and bitrate selected,
in order to avoid buffer underruns/stalls and restore a sufficient
video buffer level.

3. METHODOLOGY
3.1 Introduction
This section describes the methodology for evaluating the
adaptation logics introduced in Section 2.

The test sequence is based on the DASH dataset [13] where we
adopt the Big Buck Bunny sequence that we encoded with ffmpeg
and segmented with GPAC’s MP4Box [14] in order to get the

representations as shown in Table 1. The configuration is inspired
by [15] and provides a good mix of resolutions and bitrates for
both fixed and mobile network environments. In fact, we provide
two versions, one with a segment length of 2s and the other with
10s that are the most common segment sizes currently adopted by
actual deployments (i.e., Apple HLS uses 10s whereas others like
Microsoft and Adobe use 2s).

3.2 Objective Evaluation Setup
For the objective evaluation we adopt the setup according to [15]
where the bandwidth and delay between a server and client are
shaped using a shell script, that invokes the Unix program TC
with netEM and a token bucket filter. In particular, the delay was
set to 80ms and the bandwidth follows a predefined trajectory as
shown in Figure 1. The delay corresponds to what can be
observed within long-distance fixed line connections or
reasonable mobile networks and, thus, is representative for a
broad range of application scenarios. The bandwidth trajectory
contains both abrupt and step-wise changes in the available
bandwidth to properly test all the adaptation logics under different
conditions.

The actual shell script is attached to the paper as supplemental
material to enable reproducible research.

The goal of this evaluation setup is to provide objective metrics
which are collected at the client to be analyzed during the
evaluation. These metrics include the observed bitrate, selected
quality representation, buffer level, start-up delay, stalls (re-
buffering due to underruns), and derived metrics as detailed in
Section 4.

Table 1. MPEG-DASH Representations for Test Sequence with
Representation ID, Resolution [pixels], and Bitrate [kbps].

Rep.id Res. [px] Bitrate [kbps] Rep.id Res. [px] Bitrate [kbps]

1 192×108 100 9 1920×1080 1300

2 192×108 150 10 1920×1080 1600

3 320×180 200 11 1920×1080 1900

4 480×270 350 12 1920×1080 2300

5 960×540 500 13 1920×1080 2800

6 960×540 700 14 1920×1080 3400

7 960×540 900 15 1920×1080 4500

8 1280×720 1100

Figure 1. Bandwidth Trajectory for Objective Evaluation within

a Controlled Environment.

Figure 2. Subjective Evaluation Methodology.

3.3 Subjective Evaluation Setup
For the subjective evaluation we adopt a crowdsourcing approach
according to [16] that uses the Microworker platform to run such
campaigns and to recruit participants, which are actually referred
to as microworkers. The content server is located in Europe and,
thus, we limit participants to Europe in order to reduce network
effects due to proxies, caches, or content distribution networks
(CDNs) that we cannot control as identified in [16].

At the end of the subjective evaluation, each microworker needs
to hand in a proof that she/he has successfully participated which
is implemented using a unique identification number. We set the
compensation to US$ 0.4, which is the minimum compensation
for this type of campaign at the time of writing this paper (we
noticed an increase in compensation required by the platform over
time).

The stimulus is the same as for the objective evaluation but we
added another sequence – an excerpt from Tears of Steel, also
available at [13] – in order to mitigate any bias that may be
introduced when using only one type of content. The content
configuration is the same as shown in Table 1 but we used only
one segment size of 2s.

Figure 2 depicts the subjective evaluation methodology
comprising an introduction, a pre-questionnaire, the main
evaluation, and a post-questionnaire. The introduction explains
the structure of the task and how to assess the actual QoE asking
the microworker to provide a honest response. The pre-
questionnaire collects demographic data like country of residence
that we use later to filter participants. The main evaluation
comprises a Web site presenting the stimulus (both sequences)
with a gray background as recommended in [17]. The content is
actually streamed over the open Internet to which the
microworker is connected using a JavaScript-based DASH client
with one of the adaptation logics as described in Section 2. The
selection of the adaptation logic is uniformly distributed (p=1/10)
among the participants and the size of DASH client is fixed to a
resolution of 1280×720 pixels. After the stimulus presentation,
participants rate the QoE using a slider with a continuous scale
from 0 to 100. The slider is initially set to 50 (middle position)
and the time for rating the QoE is limited to eight seconds [17].
The stimulus – both sequences – is presented in random order to
the participants. Finally, the post-questionnaire gathers any
feedback from the participants using a free text field.

(a)

0 200 400 600 800

DashJS data analysis

Time (s)

B
itr

at
e

(k
bp

s)

10
0

50
0

90
0

13
00

19
00

23
00

28
00

34
00

Bitrate shaped
Observed Bitrate
Selected Quality

 (b)

0 200 400 600 800

DashJS data analysis

Time (s)

B
itr

at
e

(k
bp

s)

10
0

50
0

90
0

13
00

19
00

23
00

28
00

34
00

Bitrate shaped
Observed Bitrate
Selected Quality

(c)

0 200 400 600 800

DashJS buffer level analysis

Time (s)

B
itr

at
e

(k
bp

s)

10
0

50
0

90
0

13
00

19
00

23
00

28
00

34
00

0
10

20
30

40
Selected Quality
Buffer level
Autopause level

 (d)

0 200 400 600 800

DashJS buffer level analysis

Time (s)

B
itr

at
e

(k
bp

s)

10
0

50
0

90
0

13
00

19
00

23
00

28
00

34
00

0
10

20
30

Selected Quality
Buffer level
Autopause level

Figure 3. Bandwidth Adaptation for DASH-JS with 2s and 10s segment length: (a) adaptation logic 2s, (b) adaptation logic 10s, (c)

buffer level 2s, (d) buffer level 10s. The buffer file state is provided in seconds on the right side.

In addition to the QoE rating we gather various objective metrics
such as number of stalls (i.e., buffer underruns), and the average
media throughput of the client.

This methodology enables a subjective evaluation of different
DASH adaptation logics within real-world environments as
opposed to controlled environments and, thus, provides a more
realistic evaluation of adaptive HTTP streaming systems.
However, using crowdsourcing requires a more careful evaluation
of the participant’s feedback as outlined in [18]. Therefore, we
filtered participants using browser fingerprinting, stimulus
presentation time, actual QoE rating, and feedback from the pre-
questionnaire as documented in [16].

In the following sections we provide the results of the objective
and subjective evaluations.

4. OBJECTIVE RESULTS
We use the following metrics to compare the objective results of
the adaptation logics in question. For the bandwidth adaptation we
define the bitrate shaped as the bandwidth trajectory as shown in
Figure 1, observed bitrate is the bitrate measured while
downloading the segments (it provides the major basis and input
for the adaptation logic), and selected quality corresponds to the
representation selected as an output of the adaptation logic.
Additionally, the buffer level provides the buffer fill state in
seconds and the autopause level indicates buffer underruns/stalls.

A first comparison is the difference between segment lengths of
2s versus 10s and its impact on the buffer level. For brevity we
show only results of one adaptation logic, i.e., DASH-JS, as
conclusions on the segment length are similar for others. Figure 3
depicts the bandwidth adaptation and buffer level for DASH-JS
using 2s (left side) and 10s (right side) segment length. The upper
part of the figure clearly shows that shorter segment durations (2s)
allow for better matching to the available bandwidth whereas
longer durations (10s) enable smoother bandwidth adaptation, i.e.,
switches are not as abrupt as for shorter durations. However, the
lower part reveals that longer segment size durations cause more
stalls, specifically during sudden bandwidth changes with high
amplitude (e.g., around second 350 and 600). Note that DASH-JS
uses the MPD download for the initial bandwidth estimation and
typically starts with higher quality representations that could lead
to a higher start-up delay and eventually stalls (e.g., at the very
beginning).

Figure 4 shows the bandwidth adaptation for all the adaptation
logics with a segment size of 2s. Most of the adaptation logics
follow the available bandwidth instantaneously and always select
a representation lower than the observed bitrate except for Liu (d)
and OSMF (f). The behavior of the former (Liu) can be explained
due to its AIMD-like approach (Section 2.4), which always tries
to increase the bitrate by additively selecting next higher quality
representations until it exceeds the measured bandwidth (then
followed by multiplicative decrease). The latter (OSMF) shows a
somewhat unpredictable behavior but this has been reported

(a)
0 200 400 600 800

DashJS data analysis

Time (s)

B
itr

at
e

(k
bp

s)

10
0

50
0

90
0

13
00

19
00

23
00

28
00

34
00

Bitrate shaped
Observed Bitrate
Selected Quality

(b)
0 200 400 600 800

Festive data analysis

Time (s)

B
itr

at
e

(k
bp

s)

10
0

50
0

90
0

13
00

19
00

23
00

28
00

34
00

Bitrate shaped
Observed Bitrate
Selected Quality

(c)
0 200 400 600 800

Instant data analysis

Time (s)

B
itr

at
e

(k
bp

s)

10
0

50
0

90
0

13
00

19
00

23
00

28
00

34
00

Bitrate shaped
Observed Bitrate
Selected Quality

(d)
0 200 400 600 800

Liu data analysis

Time (s)

B
itr

at
e

(k
bp

s)

10
0
50
0
90
0

16
00

23
00

28
00

34
00

45
00

Bitrate shaped
Observed Bitrate
Selected Quality

(e)
0 200 400 600 800

Miller data analysis

Time (s)

B
itr

at
e

(k
bp

s)

10
0

50
0

90
0

13
00

19
00

23
00

28
00

34
00

Bitrate shaped
Observed Bitrate
Selected Quality

(f)
0 200 400 600 800

OSMF data analysis

Time (s)

B
itr

at
e

(k
bp

s)

10
0
50
0
90
0

16
00

23
00

28
00

34
00

45
00

Bitrate shaped
Observed Bitrate
Selected Quality

(g)
0 200 400 600 800

Panda data analysis

Time (s)

B
itr

at
e

(k
bp

s)

10
0

50
0

90
0

13
00

19
00

23
00

28
00

34
00

Bitrate shaped
Observed Bitrate
Selected Quality

(h)
0 200 400 600 800

QDASH data analysis

Time (s)

B
itr

at
e

(k
bp

s)

10
0

50
0

90
0

13
00

19
00

23
00

28
00

34
00

Bitrate shaped
Observed Bitrate
Selected Quality

(i)
0 200 400 600 800

Thang data analysis

Time (s)

B
itr

at
e

(k
bp

s)

10
0

50
0

90
0

13
00

19
00

23
00

28
00

34
00

Bitrate shaped
Observed Bitrate
Selected Quality

(j)
0 200 400 600 800

Tian_Liu data analysis

Time (s)

B
itr

at
e

(k
bp

s)

10
0

50
0

90
0

13
00

19
00

23
00

28
00

34
00

Bitrate shaped
Observed Bitrate
Selected Quality

Figure 4. Bandwidth Adaptation with 2s segment size for (a) DASH-JS, (b) FESTIVE, (c) Instant, (d) Liu, (e) Miller,

(f) OSMF, (g) PANDA, (h) QDASH, (i) Thang, and (j) Tian-Liu.

independently already elsewhere [15][19] and is confirmed here
also. Interestingly, the algorithms handle the start-up phase quite
differently; some are conservative showing a step-wise behavior
from the lowest representation (d, e, g) while others are more
aggressive by switching to the appropriate representation right
after the first few segments (b, i) or instantly selecting it right
away (a, c, h, j).

Figure 5 depicts the same results but with a segment size of 10s
which reveals some interesting aspects if compared with Figure 4,
except for OSMF which shows the same weird behavior although
not to the same extent. In particular, FESTIVE (b) is much more
conservative with 10s segment size compared to 2s.
Representations higher than 700kbps are almost never selected
resulting in a relatively low media throughput at the client. The
algorithm Liu (d) performs now better than with 2s segment size
and always stays below the observed bitrate. Miller (e), QDASH
(h), and Thang (i) show roughly the same behavior and PANDA
(g) is also more conservative but not as much as FESTIVE.
Finally, Tian-Liu (j) seems to almost overcome the bandwidth
drop in the middle of the trajectory but making a false estimation
towards the end of streaming session.

Some of the behavior shown in Figure 4 and Figure 5 can be
further analyzed by investigating the buffer level which is shown
in Figure 6. For the 2s segment sizes (a-j), DASH-JS, FESTIVE,
Instant, QDASH, and Tian-Liu provide a stable buffer and quite
similar behavior. Interestingly, Miller, PANDA, and Thang have a

much higher buffer fill level than others. The Liu algorithm as a
very active, frequently changing buffer fill level while OSMF is
very unpredictable. When looking at the results for the 10s
segment sizes (k-t), DASH-JS, Instant, QDASH, and Tian-Liu are
still unremarkable although they produce more stalls due to the
larger segment size which becomes apparent during the bandwidth
drops. The buffer of FESTIVE is now much higher due to the
lower media throughput which allows for more data to be
buffered. Liu is more stable than with 2s segment size which is
also observed for OSMF but only to a certain extent (i.e., it is still
unpredictable). Also Miller, PANDA, and Thang are comparable
with the buffer when using the 2s segment sizes but with more
stalls, specifically during bandwidth drops, which shows the
impact of longer segment sizes.

(a)
0 200 400 600 800

DashJS data analysis

Time (s)

B
itr

at
e

(k
bp

s)

10
0

50
0

90
0

13
00

19
00

23
00

28
00

34
00

Bitrate shaped
Observed Bitrate
Selected Quality

(b)
0 200 400 600 800

Festive data analysis

Time (s)

B
itr

at
e

(k
bp

s)

10
0

50
0

90
0

13
00

19
00

23
00

28
00

34
00

Bitrate shaped
Observed Bitrate
Selected Quality

(c)
0 200 400 600 800

Instant data analysis

Time (s)

B
itr

at
e

(k
bp

s)

10
0

50
0

90
0

13
00

19
00

23
00

28
00

34
00

Bitrate shaped
Observed Bitrate
Selected Quality

(d)
0 200 400 600 800

Liu data analysis

Time (s)

B
itr

at
e

(k
bp

s)

10
0

50
0

90
0

13
00

19
00

23
00

28
00

34
00

Bitrate shaped
Observed Bitrate
Selected Quality

(e)
0 200 400 600 800

Miller data analysis

Time (s)

B
itr

at
e

(k
bp

s)

10
0

50
0

90
0

13
00

19
00

23
00

28
00

34
00

Bitrate shaped
Observed Bitrate
Selected Quality

(f)
0 200 400 600 800

OSMF data analysis

Time (s)

B
itr

at
e

(k
bp

s)

10
0
50
0
90
0

16
00

23
00

28
00

34
00

45
00

Bitrate shaped
Observed Bitrate
Selected Quality

(g)
0 200 400 600 800

Panda data analysis

Time (s)

B
itr

at
e

(k
bp

s)

10
0

50
0

90
0

13
00

19
00

23
00

28
00

34
00

Bitrate shaped
Observed Bitrate
Selected Quality

(h)
0 200 400 600 800

QDASH data analysis

Time (s)

B
itr

at
e

(k
bp

s)

10
0

50
0

90
0

13
00

19
00

23
00

28
00

34
00

Bitrate shaped
Observed Bitrate
Selected Quality

(i)
0 200 400 600 800

Thang data analysis

Time (s)

B
itr

at
e

(k
bp

s)

10
0

50
0

90
0

13
00

19
00

23
00

28
00

34
00

Bitrate shaped
Observed Bitrate
Selected Quality

(j)
0 200 400 600 800

Tian-Liu data analysis

Time (s)

B
itr

at
e

(k
bp

s)

10
0

50
0

90
0

13
00

19
00

23
00

28
00

34
00

Bitrate shaped
Observed Bitrate
Selected Quality

Figure 5. Bandwidth Adaptation with 10s segment size for (a) DASH-JS, (b) FESTIVE, (c) Instant, (d) Liu, (e) Miller,

(f) OSMF, (g) PANDA, (h) QDASH, (i) Thang, and (j) Tian-Liu.

Finally, we investigate the performance of the different adaptation
logics using a set of predefined metrics as follows: inefficiency,
instability, media throughput (mean of bitrates), buffer level, start
time, and buffer underruns/stalls.

Inefficiency is defined according to Equation (2) and determines
to what extent the algorithm utilizes the available network. The
lower the value, the more efficiently the scheme is utilizing the
network throughput in order to deliver the media content to the
client device.

 Inefficiency = bi,t−Wi,t
Wi,t

t
∑ (2)

where bi,t is the rate selected for the segment i at time t and Wi,t is
the observed bandwidth measured during downloading of the
segments.

Instability provides the ratio between the observed switching
steps and the sum of the selected bitrates over a window of k=20
seconds as shown in Equation (3).

 Instability =
bt−d − bt−d−1 ⋅ω d()

d=0

k−1
∑

bt−d ⋅ω d()
d=1

k
∑

 (3)

where the function ω(d) = k – d return a weight that adds more
penalty to the most recent switches. A lower value for the
instability means a smoother video quality adaptation to changing
network conditions.

The media throughput is defined by the mean of bitrates that has
been selected by the individual adaptation logics throughout the
session, which is compared to the bitrate shaped (available
bandwidth) and observed bitrate (measured while downloading
the segments). The buffer level defines average buffer fill state in
seconds throughout the streaming session and start time provides
the time between the MPD request and until four seconds of
media contents are available in the buffer. Finally, the number of
underruns/stalls provides a very important metric for the user’s
Quality of Experience (QoE).

Figure 7 shows the performance results for the different segments
sizes of 2s and 10s using media throughput, buffer level,
underruns/stalls, and start-up delay.

(a)
0 200 400 600 800

DashJS buffer level analysis

Time (s)

B
itr

at
e

(k
bp

s)

10
0

50
0

90
0

13
00

19
00

23
00

28
00

34
00

0
10

20
30

40

Selected Quality
Buffer level
Autopause level

(b)
0 200 400 600 800

Festive buffer level analysis

Time (s)

B
itr

at
e

(k
bp

s)

10
0

50
0

90
0

13
00

19
00

23
00

28
00

34
00

0
10

20
30

40Selected Quality
Buffer level
Autopause level

(c)
0 200 400 600 800

Instant buffer level analysis

Time (s)

B
itr

at
e

(k
bp

s)

10
0

50
0

90
0

13
00

19
00

23
00

28
00

34
00

0
10

20
30

Selected Quality
Buffer level
Autopause level

(d)
0 200 400 600 800

Liu buffer level analysis

Time (s)

B
itr

at
e

(k
bp

s)

10
0
50
0
90
0

16
00

23
00

28
00

34
00

45
00

0
2

4
6

8
10

12Selected Quality
Buffer level
Autopause level

(e)
0 200 400 600 800

Miller buffer level analysis

Time (s)

B
itr

at
e

(k
bp

s)

10
0

50
0

90
0

13
00

19
00

23
00

28
00

34
00

0
10

20
30

40
50

Selected Quality
Buffer level
Autopause level

(f)
0 200 400 600 800

OSMF buffer level analysis

Time (s)

B
itr

at
e

(k
bp

s)

10
0
50
0
90
0

16
00

23
00

28
00

34
00

45
00

0
2

4
6

8
10

Selected Quality
Buffer level
Autopause level

(g)
0 200 400 600 800

Panda buffer level analysis

Time (s)

B
itr

at
e

(k
bp

s)

10
0

50
0

90
0

13
00

19
00

23
00

28
00

34
00

0
5

10
15

20
25

30Selected Quality
Buffer level
Autopause level

(h)
0 200 400 600 800

QDASH buffer level analysis

Time (s)

B
itr

at
e

(k
bp

s)

10
0

50
0

90
0

13
00

19
00

23
00

28
00

34
00

0
5

10
15

20
25

30

Selected Quality
Buffer level
Autopause level

(i)
0 200 400 600 800

Thang buffer level analysis

Time (s)

B
itr

at
e

(k
bp

s)

10
0

50
0

90
0

13
00

19
00

23
00

28
00

34
00

0
10

20
30

40

Selected Quality
Buffer level
Autopause level

(j)
0 200 400 600 800

Tian_Liu buffer level analysis

Time (s)

B
itr

at
e

(k
bp

s)

10
0

50
0

90
0

13
00

19
00

23
00

28
00

34
00

0
10

20
30

40

Selected Quality
Buffer level
Autopause level

(k)
0 200 400 600 800

DashJS buffer level analysis

Time (s)

B
itr

at
e

(k
bp

s)

10
0

50
0

90
0

13
00

19
00

23
00

28
00

34
00

0
10

20
30

Selected Quality
Buffer level
Autopause level

(l)
0 200 400 600 800

Festive buffer level analysis

Time (s)

B
itr

at
e

(k
bp

s)

10
0

50
0

90
0

13
00

19
00

23
00

28
00

34
00

0
10

20
30

40
50

Selected Quality
Buffer level
Autopause level

(m)
0 200 400 600 800

Instant buffer level analysis

Time (s)

B
itr

at
e

(k
bp

s)

10
0

50
0

90
0

13
00

19
00

23
00

28
00

34
00

0
5

10
15

20
25

30
35

Selected Quality
Buffer level
Autopause level

(n)
0 200 400 600 800

Liu buffer level analysis

Time (s)

B
itr

at
e

(k
bp

s)

10
0

50
0

90
0

13
00

19
00

23
00

28
00

34
00

0
20

40
60

80Selected Quality
Buffer level
Autopause level

(o)
0 200 400 600 800

Miller buffer level analysis

Time (s)

B
itr

at
e

(k
bp

s)

10
0

50
0

90
0

13
00

19
00

23
00

28
00

34
00

0
20

40
60

80Selected Quality
Buffer level
Autopause level

(p)
0 200 400 600 800

OSMF buffer level analysis

Time (s)

B
itr

at
e

(k
bp

s)

10
0
50
0
90
0

16
00

23
00

28
00

34
00

45
00

0
10

20
30

Selected Quality
Buffer level
Autopause level

(q)
0 200 400 600 800

Panda buffer level analysis

Time (s)

B
itr

at
e

(k
bp

s)

10
0

50
0

90
0

13
00

19
00

23
00

28
00

34
00

0
10

20
30

40
50

Selected Quality
Buffer level
Autopause level

(r)
0 200 400 600 800

QDASH buffer level analysis

Time (s)

B
itr

at
e

(k
bp

s)

10
0

50
0

90
0

13
00

19
00

23
00

28
00

34
00

0
10

20
30

Selected Quality
Buffer level
Autopause level

(s)
0 200 400 600 800

Thang buffer level analysis

Time (s)

B
itr

at
e

(k
bp

s)

10
0

50
0

90
0

13
00

19
00

23
00

28
00

34
00

0
10

20
30

Selected Quality
Buffer level
Autopause level

(t)
0 200 400 600 800

Tian-Liu buffer level analysis

Time (s)

B
itr

at
e

(k
bp

s)

10
0

50
0

90
0

13
00

19
00

23
00

28
00

34
00

0
20

40
60

Selected Quality
Buffer level
Autopause level

Figure 6. Buffer Level with 2s and 10s segment size: (a-j) 2s segment size, (k-t) 10s segment size.

The media throughput (a, e) is compared with the available
bandwidth (red bar) and the measured bitrate (green bar).
Interestingly, OSMF reaches the highest value (at least for 2s
segment size) despite its unpredictable behavior but please note
the results for the other metrics. Additionally, for 2s segment
sizes, the algorithms Thang, Miller, and PANDA are below
800kbps on average whereas others are close to what has been
observed while downloading the segments. Looking at the results
of 10s segment size, FESTIVE (e) falls below 400kbps on average
which is observed also in Figure 5(b).

A buffer level (b, f) greater than zero is maintained by all the
adaptation logics in all the cases and it is larger than 15s of
buffered segments for most of the cases. Only Liu and OSMF
have a relatively low buffer fill state for the 2s segment size which
results in a high number of stalls for OSMF (c). For Liu this is
also reflected in the adaptation behavior as shown in Figure 4(d)
where segment bitrates often exceed the available bandwidth.
However, Liu and also FESTIVE have a much higher buffer fill
state using a segment size of 10s which adopts a more
conservative adaptation behavior than with 2s. PANDA is also
more conservative in the 10s case but this does not impact the
buffer fill state. Others show roughly the same buffer level for
both cases.

The buffer underruns/stalls (c, g) represent a very important QoE
metric and only Thang manages to avoid stalls in both cases.
Interestingly, some approaches manage to reduce the number of
stalls when using 10s segments which could be explained due to
an increased buffer fill state (e.g., FESTIVE and Liu). However,
others like DASH-JS, Instant, QDASH, and Tian-Liu result in an
increased number of stalls when using 10s segments which is due
to the already low buffer fill state.

Finally, the start-up delay (d, h) is low in general but expectably
higher for those approaches which use the MPD download for
estimating the bitrate of the first segment to be retrieved like
DASH-JS or Instant. Thus, using the MPD download as an
educated guess for selecting the initial representation maybe only
used for use cases where start-up delay does not play an important

role, e.g., for on-demand content of full length videos (like
Netflix), as opposed to short video clips (e.g., YouTube) where a
high start-up delay is usually not tolerable.

A summary of performance results for the media throughput and
buffer underruns/stalls is given in Table 2.

The results for the derived metrics – inefficiency and instability –
are depicted in Figure 8. Notably, the inefficiency metric
increases for FESTIVE in case 10s segments are used which is
reflected also in the low media throughput. Nevertheless, the
instability is still very low as it can be also seen in the low number
of stalls. The results for OSMF are also reflected in the
performance metrics above and others show similar results for
both 2s and 10s segment sizes. In particular, DASH-JS and Instant
provide a consistently low inefficiency and instability among all
tested adaptation logics.

(a) M
ea

n
B

itr
at

e
S

ha
pe

d

M
ea

n
B

itr
at

e
O

bs

D
as
hJ
S

Fe
st
iv
e

In
st
an
t

Li
u

M
ill
er

O
S
M
F

P
an
da

Q
D
A
S
H

Th
an
g

Ti
an
_L
iu

Mean Bitrate Segments received

kb
ps

0

200

400

600

800

1000

1200

(b)

D
as
hJ
S

Fe
st
iv
e

In
st
an
t

Li
u

M
ill
er

O
S
M
F

P
an
da

Q
D
A
S
H

Th
an
g

Ti
an
_L
iu

Mean Buffer level

Ti
m

e
(s

)

0

5

10

15

20

25

30

35

(c)

D
as
hJ
S

Fe
st
iv
e

In
st
an
t

Li
u

M
ill
er

O
S
M
F

P
an
da

Q
D
A
S
H

Th
an
g

Ti
an
_L
iu

N. underruns

0

2

4

6

8

(d)

D
as
hJ
S

Fe
st
iv
e

In
st
an
t

Li
u

M
ill
er

O
S
M
F

P
an
da

Q
D
A
S
H

Th
an
g

Ti
an
_L
iu

Start times

Ti
m

e
(s

)

0

2

4

6

8

(e) M
ea

n
B

itr
at

e
S

ha
pe

d

M
ea

n
B

itr
at

e
O

bs

D
as
hJ
S

Fe
st
iv
e

In
st
an
t

Li
u

M
ill
er

O
S
M
F

P
an
da

Q
D
A
S
H

Th
an
g

Ti
an
-L
iu

Mean Bitrate Segments received

kb
ps

0

200

400

600

800

1000

1200

(f)

D
as
hJ
S

Fe
st
iv
e

In
st
an
t

Li
u

M
ill
er

O
S
M
F

P
an
da

Q
D
A
S
H

Th
an
g

Ti
an
-L
iu

Mean Buffer level

Ti
m

e
(s

)

0

10

20

30

40

(g)

D
as
hJ
S

Fe
st
iv
e

In
st
an
t

Li
u

M
ill
er

O
S
M
F

P
an
da

Q
D
A
S
H

Th
an
g

Ti
an
-L
iu

N. underruns

0

1

2

3

4

5

6

(h)

D
as
hJ
S

Fe
st
iv
e

In
st
an
t

Li
u

M
ill
er

O
S
M
F

P
an
da

Q
D
A
S
H

Th
an
g

Ti
an
-L
iu

Start times

Ti
m

e
(s

)

0

5

10

15

Figure 7. Performance Results for 2s (a-d) and 10s (e-h) Segment Size:

Media Throughput (a, e), Buffer Level (b, f), Buffer Underruns/Stalls (c, g), Start-up Delay (d, h).

Table 2. Summary of Results: Media Throughput and Stalls for 2s
and 10s segment sizes.

 Throughput 2s Throughput 10s Stalls 2s Stalls 10s

Avail. Bw. 1,269.53 – –

Measured Bw. 1,194.07 1,252.87 – –

DASH-JS 1,026.52 1,069.95 3 6.8

FESTIVE 950,10 382.69 1.33 0

Instant 1,022.54 1,060.11 2.6 3.7

Liu 1,129.69 1,063.92 3.1 0

Miller 766.27 770.91 0 1

OSMF 1,170.65 1,061.79 9.8 2

PANDA 774.18 554.89 1.4 0.4

QDASH 1,034.71 994.67 4.4 5

Thang 793.29 783.93 0 0

Tian-Liu 1,037.71 1,172.28 4.4 6.5

5. SUBJECTIVE RESULTS
In total 220 microworkers participated in the subjective quality
assessment from which 19 participants were excluded from the
evaluation (due to issues during the crowdsourcing test as outlined
in Section 3.3). From the remaining 201 participants were 143
male and 58 female with an average age of 28.

The results presented in this section reflect the behavior of the
adaptation logics in a real-world environment with subjects spread
across Europe accessing the test sequences over the open Internet.

Unfortunately, the crowdsourcing study did not provide any data
for the algorithm from Tian-Liu due to a software error and, thus,
this algorithm is excluded from the subjective results.

Figure 9 depicts the QoE in terms Mean Opinion Score (MOS)
per adaptation logic (95% confidence interval). Interestingly,
DASH-JS (and also Instant) provides the highest MOS value but
due to overlapping confidence intervals relatively little can be
stated whether it performs significantly better than the other
algorithms. However, it provides a good indication about its
effectiveness in a real-world environment. OSMF does not have
the lowest MOS value despite its worse performance during the
objective evaluation. In particular, Thang has the lowest MOS
value although – during the objective evaluation – it does not
cause any stalls but comes with a relatively low media throughput
for both segment sizes.

In addition to the QoE results, we also collect objective
performance metrics that predominantly impact the QoE. In
particular, we present results for the number of buffer

underruns/stalls and media throughput as observed in such a real-
world environment, which are depicted in Figure 10 and Figure
11, respectively. In general, the number of stalls is (very) low on
average with some outliers for QDASH (i.e., “larger” confidence
interval than others but still relatively small). Thus, all adaptation
logics tested within a real-world environment basically confirm to
the most important QoE guideline for adaptive HTTP streaming,
i.e., a zero/low number of stalls. Regarding the average media
throughput we observe lower values for FESTIVE, Miller,
PANDA, and Thang which confirm results obtained during the

(a)

D
as
hJ
S

Fe
st
iv
e

In
st
an
t

Li
u

M
ill
er

O
S
M
F

P
an
da

Q
D
A
S
H

Th
an
g

Ti
an
_L
iu

Inefficiency

0.0

0.1

0.2

0.3

0.4

0.5

0.6

(b)

D
as
hJ
S

Fe
st
iv
e

In
st
an
t

Li
u

M
ill
er

O
S
M
F

P
an
da

Q
D
A
S
H

Th
an
g

Ti
an
-L
iu

Inefficiency

0.0

0.1

0.2

0.3

0.4

0.5

0.6

(c)

D
as
hJ
S

Fe
st
iv
e

In
st
an
t

Li
u

M
ill
er

O
S
M
F

P
an
da

Q
D
A
S
H

Th
an
g

Ti
an
_L
iu

Instability

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(d)

D
as
hJ
S

Fe
st
iv
e

In
st
an
t

Li
u

M
ill
er

O
S
M
F

P
an
da

Q
D
A
S
H

Th
an
g

Ti
an
-L
iu

Instability

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 8. Inefficiency and Instability for (a-b) 2s segment size and (c-d) 10s segment size.

Figure 9. Mean Opinion Score (MOS) per Adaptation Logic with

a 95% Confidence Interval.

Figure 10. Average Number of Buffer Underruns/Stalls per

Adaptation Logic with a 95% Confidence Interval.

Figure 11. Average Media Throughput per Adaptation Logic

with a 95% Confidence Interval.

objective evaluation within a controlled environment (cf. Table 2).
On the other hand, DASH-JS provides the highest media
throughput, which is again an indication that simplicity rules out
complexity in terms of performance.

We also captured the number of representation switches per
adaptation logic which are shown in Figure 12. Additionally,
Figure 13 shows the average amplitude of the switches (i.e., the
distance between the representation switches). OSMF has the
highest number of switches and second highest amplitude of
switches which is also apparent when looking at Figure 4 and
Figure 5. FESTIVE has the second highest number of switches –
slightly “ahead” of Instant – but at a very low amplitude which
indicates switches only among neighboring representations at a
lower rate (cf. low media throughput of FESTIVE in Figure 11).

Miller and PANDA have the lowest number of quality switches;
the former has also the second lowest switching amplitude
whereas the latter has the highest amplitude. Thus, one may
conclude that PANDA does not switch very often but, when
switching is required, it switches to the right representation
without much fine-tuning. The adaptation logic with the highest
MOS and media throughput – DASH-JS – provides an average
performance in terms of number of switches and amplitude
compared to all others. Interestingly, its number of switches is
lower than Instant while performing almost equal regarding the
switching amplitude thanks to its weighting factors.

However, in general, the switching amplitude needs to be
considered always together with the number of switches in order
to draw any conclusions (cf. PANDA in Figure 12 and Figure 13).

6. CONCLUSIONS
In this paper we have investigated various adaptation HTTP
streaming adaptation logics/algorithms proposed in the literature.
We provide a comprehensive evaluation using both objective and
subjective metrics within both controlled and real-world
environments. The subjective results gathered in real-world
environments using crowdsourcing confirm the objective results
conducted within a controlled environment. As somehow
expected, there is not clear winner which takes it all but,
interestingly, simple approaches – like DASH-JS and Instant –
perform reasonably well in both cases. Therefore, we can

conclude that these simple solutions clearly follow Einstein’s rule
to make things as simple as possible but not simpler.

The methodology adopted in this paper can be easily reused for
both objective evaluations in controlled environments and
subjective evaluations in real-world environments. In particular, it
allows for an easy, fast, and reliable evaluation of adaptive HTTP
streaming systems.

Future work in this area comprises further evaluating the data
gathered during these evaluations and providing means to test
different network delays (round trip time) and competing clients
adopting different approaches (i.e., different adaptation logics and
other traffic). Furthermore, performing such experiments in
different contexts (e.g., home vs. mobile) would reveal additional
results regarding the usability of the different adaptation logics.
Therefore, a more automated setup for conducting and the
analysis of such experiments with pluggable adaptation logics is
hereby solicited.

7. ACKNOWLEDGMENTS
This work was supported in part by the EC in the context of the
SocialSensor (FP7-ICT-287975) and QUALINET (COST IC
1003) projects and partly performed in the Lakeside Labs research
cluster at AAU.

8. REFERENCES
[1] Thomas Stockhammer. 2011. Dynamic Adaptive Streaming

over HTTP: Standards and Design Principles. In Proceedings
of the second annual ACM conference on Multimedia
systems (MMSys '11). ACM, New York, NY, USA, 133-
144. DOI=http://doi.acm.org/10.1145/1943552.

[2] Saamer Akhshabi, Ali C. Begen, and Constantine Dovrolis.
2011. An experimental evaluation of rate-adaptation
algorithms in adaptive streaming over HTTP. In Proceedings
of the second annual ACM conference on Multimedia
systems (MMSys '11). ACM, New York, NY, USA, 157-
168. DOI=http://doi.acm.org/10.1145/1943552.1943574

[3] B. Rainer, S. Lederer, C. Muller, and C. Timmerer. A
Seamless Web Integration of Adaptive HTTP Streaming. In
Signal Processing Conference (EUSIPCO), 2012

Figure 12. Average Number of Representation Switches per

Adaptation Logic with a 95% Confidence Interval.

Figure 13. Average Amplitude of Representation Switches per

Adaptation Logic with a 95% Confidence Interval.

Proceedings of the 20th European, pages 1519–1523, Aug
2012.

[4] Junchen Jiang, Vyas Sekar, and Hui Zhang. Improving
Fairness, Efficiency, and Stability in HTTP-based Adaptive
Video Streaming with FESTIVE. In Proceedings of the 8th
International Conference on Emerging Networking
Experiments and Technologies, CoNEXT ’12, pages 97–
108, New York, NY, USA, 2012. ACM.

[5] L. R. Romero. A Dynamic Adaptive HTTP Streaming Video
Service for Google Android. Master’s thesis, Royal Institute
of Technology (KTH), Stockholm, October 2011.

[6] Chenghao Liu, Imed Bouazizi, and Moncef Gabbouj. Rate
Adaptation for Adaptive HTTP Streaming. In Proceedings of
the Second Annual ACM Conference on Multimedia
Systems, MMSys ’11, pages 169–174, New York, NY, USA,
2011. ACM.

[7] K. Miller, E. Quacchio, G. Gennari, and A Wolisz.
Adaptation Algorithm for Adaptive Streaming over HTTP. In
Packet Video Workshop (PV), 2012 19th International, pages
173–178, May 2012.

[8] Adobe. Open Source Media Framework.
"http://blogs.adobe.com/osmf/", last access: October 2014.

[9] Zhi Li, Xiaoqing Zhu, J. Gahm, Rong Pan, Hao Hu, AC.
Begen, and D. Oran. Probe and Adapt: Rate Adaptation for
HTTP Video Streaming At Scale. Selected Areas in
Communications, IEEE Journal on, 32(4):719–733, April
2014.

[10] Ricky K. P. Mok, Xiapu Luo, Edmond W. W. Chan, and
Rocky K. C. Chang. QDASH: A QoE-aware DASH System.
In Proceedings of the 3rd Multimedia Systems Conference,
MMSys ’12, pages 11–22, New York, NY, USA, 2012.
ACM.

[11] Truong Cong Thang, Quang-Dung Ho, Jung-Won Kang, and
AT. Pham. Adaptive Streaming of Audiovisual Content
using MPEG DASH. Consumer Electronics, IEEE
Transactions on, 58(1):78–85, February 2012.

[12] Guibin Tian and Yong Liu. Towards Agile and Smooth
Video Adapta- tion in Dynamic HTTP Streaming. In

Proceedings of the 8th International Conference on Emerging
Networking Experiments and Technologies, CoNEXT ’12,
pages 109–120, New York, NY, USA, 2012. ACM.

[13] Stefan Lederer, Christopher Müller, and Christian Timmerer.
2012. Dynamic adaptive streaming over HTTP dataset. In
Proceedings of the 3rd Multimedia Systems Conference
(MMSys '12). ACM, New York, NY, USA, 89-94.
DOI=http://doi.acm.org/10.1145/2155555.2155570

[14] Jean Le Feuvre, Cyril Concolato, and Jean-Claude
Moissinac. 2007. GPAC: open source multimedia
framework. In Proceedings of the 15th international
conference on Multimedia (MULTIMEDIA '07). ACM, New
York, NY, USA, 1009-1012.
DOI=http://doi.acm.org/10.1145/1291233.1291452

[15] Christopher Müller, Stefan Lederer, and Christian Timmerer.
2012. An evaluation of dynamic adaptive streaming over
HTTP in vehicular environments. In Proceedings of the 4th
Workshop on Mobile Video (MoVid '12). ACM, New York,
NY, USA, 37-42.
DOI=http://doi.acm.org/10.1145/2151677.2151686

[16] Benjamin Rainer, Christian Timmerer. 2014. Quality of
Experience of Web-based Adaptive HTTP Streaming Clients
in Real-World Environments using Crowdsourcing.
Accepted for publications in Proceedings of ACM CoNEXT
2014. Sydney, Australia, December 2014.

[17] Rec. ITU-R BT.500-11.

[18] T. Hossfeld, C. Keimel, M. Hirth, B. Gardlo, J. Habigt, K.
Diepold, and P. Tran-Gia. Best Practices for QoE
Crowdtesting: QoE Assessment With Crowdsourcing.
Multimedia, IEEE Transactions on, 16(2):541–558, Feb
2014.

[19] Haakon Riiser, Håkon S. Bergsaker, Paul Vigmostad, Pål
Halvorsen, and Carsten Griwodz. 2012. A comparison of
quality scheduling in commercial adaptive HTTP streaming
solutions on a 3G network. In Proceedings of the 4th
Workshop on Mobile Video (MoVid '12). ACM, New York,
NY, USA, 25-30.
DOI=http://doi.acm.org/10.1145/2151677.2151684

