
Chapter 9

The General Linear Model
(GLM): A gentle introduction

9.1 Example with a single predictor variable.
Let’s start with an example. Schizophrenics smoke a lot. They smoke be-
tween two and three times more than the general population and about 50%
more than those with other types of psychopathology (??). Obviously, expli-
cating the nature of this relationship might provide insights into the etiology of
schizophrenia.

One early type of research into this area compared the density of cholingergic
nicotinic receptors (nAChR) in the brains of schizophrenics and controls (?).
The data set “Schizophrenia and nicotinic receptors” shown in Table 9.1. gives
hypothetical data of such a study done in the past when analysis of post mortem
brain specimens was the only way to examine this question.

For the moment, ignore the variables Age, Smoke and Cotinine and let us
ask the simple question of whether schizophrenics have more or fewer nicotinic
receptors in the brain area used in this study. The operative word in the gen-
eral linear model (GLM) is “linear.” That word, of course, implies a straight
line. Hence, mathematically we begin with the equation for a straight line. In
statisticalese, we write

Ŷ = β0 + β1X (9.1)

Read “the predicted value of the a variable (Ŷ ) equals a constant or intercept
(β0) plus a weight or slope (β1) times the value of another variable (X). Let’s
look at the data first by plotting Y (not Ŷ ) as a function of X, or in the example,
variable nAChR as a function of variable Schizophrenia (see Figure 9.1).

The purpose of a GLM is to fit a straight line through the points in Figure
9.1. Here is where the βs in Equation 9.1 come in. β0 is the intercept for a
straight line, i.e., the value of Y when X is 0. β1 is the slope of the line. When
β1 = 0, then the predicted nAChR density for schizophrenics is the same as
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Table 9.1: Data set on schizophrenia and brain density of nicotinic receptors.

Schizophrenia SzDummyCode Age Smoke Cotinine nAChR

1 No 0 55 No 2.00 18.53
2 No 0 83 No 9.03 11.73
3 No 0 52 ? 5.6 19.01
4 No 0 74 No 2.00 25.93
5 No 0 61 No 2.00 21.66
6 No 0 56 ? 103.11 25.54
7 No 0 80 ? 5.27 11.28
8 No 0 84 ? 4.85 16.22
9 No 0 49 Yes 85.19 30.69
10 No 0 87 Yes 78.54 21.03
11 No 0 74 ? 72.33 23.65
12 No 0 44 ? 4.40 17.27
13 No 0 94 No 2.00 17.34
14 Yes 1 91 ? 4.69 11.41
15 Yes 1 70 ? 100.70 10.90
16 Yes 1 58 ? 65.50 21.38
17 Yes 1 61 ? 78.89 12.45
18 Yes 1 42 Yes 84.64 27.20
19 Yes 1 70 ? 66.74 17.08
20 Yes 1 69 ? 108.62 26.77
21 Yes 1 30 ? 74.00 19.56
22 Yes 1 70 Yes 90.08 17.73
23 Yes 1 40 Yes 113.77 26.30
24 Yes 1 91 No 2.00 10.30
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Figure 9.1: Number of nicotinic receptors (nAChR) as a function of diagnosis.

that for controls. As the slope deviates from 0, in either a positive or negative
direction, then there is more and more predictability.

At this point, you may rightly ask how one can have an intercept and a slope
for a variable that has values of “No” and “Yes.” We’ will see the answer later,
but for the time being let us create a numeric variable called SzDummyCode
that has the numerical value of 1 for Schizophrenia = “Yes” and 0 otherwise.1
Running the GLM gives these estimates: β0 = 19.99 and β1 = −1.71. Hence,
for controls, the value of X in Equation 9.1 is 0, so the predicted nAChR
concentration is

Ŷ = 19.99− 1.71 ∗ 0 = 19.99

and for the schizophrenics in the sample,

Ŷ = 19.99− 1.71 ∗ 1 = 18.28

One reason for calling the general linear model “general” is that it can handle
an X that is not numerical as well as one that is numerical. Hence, there is
no difference between performing a GLM analysis using Equation 9.1 with X is
variable Schizophrenia with values of “No” and “Yes” and performing one where
X is the numerical variable SzDummyCode with values of 0 and 1. Table 9.2
gives the results of GLMs in which the X variable is the numeric SzDummyCode
(top) and in which the X variable is the qualitative variable Schizophrenia.

Notice that there are no differences in any value between the output for vari-
able SzDummyCode and Schizophrenia. Notice also that there the bottom half
of the table labels the variable “SchizophreniaYes” and not simply “Schizophre-
nia.” This is a hint as to what is going on when the GLM handles a nonnumeric

1Dummy coding is described in Section X.X.
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Table 9.2: GLM results using a numeric (SzDummyCode) and a nonnumeric
(Schizophrenia) variable.

Numeric variable SzDummyCode

Variable Estimate St. Error t p

Intercept 19.991 1.675 11.938 4E-11
SzDummyCode -1.711 2.473 -0.692 .496

Nonnumeric variable Schizophrenia

Variable Estimate St. Error t p

Intercept 19.991 1.675 11.938 4E-11
SchizophreniaYes -1.711 2.473 -0.692 .496

X variable. All GLM programs change the nonnumeric variable into a nu-
meric one so that they can solve the mathematical problem. After that is done,
the GLM “translates” the numerical output back into the original categories.
Hence, the “SchizophreniaYes” using the variable Schizophrenia signifies that
one should add -1.711 to the value of the intercept to get the predicted value
when the variable Schizophrenia = “Yes.”

(A cautionary aside: Different GLM programs use different mechanisms for
converting the categories in a nonnumeric variable into numbers. Also, a user
can specify how to perform the conversion. Thus, the values of the βs can
be different for different coding schemes for the same problem. The predicted
values, however, for the groups will always remain the same).

Finally, look at the p value for the effect. It is .496 and definitely non-
significant. One might be tempted to conclude that there is no difference in
nAChR concentrations between schizophrenics and controls, but that would be
unwise. To see why, we must combine substantive knowledge on neuroscience
with statistics.

9.2 Example with more than one predictor vari-
able.

Remember, schizophrenics smoke a lot. Most of you have already asked yourself
about the effect of smoking on the nicotinic receptor density. Similarly, smok-
ing is associated with early death, so any effect of age on nAChR concentration
might also cloud the results. These are not trivial issues because there is evi-
dence that the number of nicotinic receptors decrease with age (?) and that they
are upregulated by the use of nicotine (?). The increase in nAChR from smok-
ing and early death might have masked the differences between schizophrenics
and controls in this hypothetical study.
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Table 9.3: Results of the GLM predicting nAChR from Age and SzDummyCode

Variable Estimate Std.Error t p

Intercept 32.61 4.45 7.33 5E-07
Age -0.18 0.06 -2.99 0.007

SzDummyCode -2.77 2.14 -1.29 0.211

Ideally, one would like to have a control matched to each schizophrenic on age
of death and smoking status at or near death. The practicalities of research with
brain banks, however, make it difficult and expensive–perhaps even impossible–
to pull that off. Smoking status at death is often not known, and even if it is
known, there is wide variability in the amount of nicotine intake among smokers.
Indeed, the data on variable Smoke (was the person a smoker at or near death?)
in Table 9.1 has so many unknowns as to make the variable useless. One way to
address this issue is to measure brain cotinine, a metabolite of nicotine, because
it has a longer half-life than nicotine.

We now want to control for both age and cotinine levels. We could divide
the specimens into groups by categorizing variables Age and Cotinine, but that
approach is not recommended. In fact, it is downright stupid. If we used a cutoff
of 65 on age for “young” versus “old,” there would be no young schizophrenics
with low cotinine values, and we would be comparing groups of size four with
those of size two in other categories.

A GLM approach, however, avoids this. Suppose that we want to control
for Age. We just add a second X variable to the right-hand side of Equation
9.1, or

Ŷ = β0 + β1X1 + β2X2 (9.2)

It is good practice to put any control variables into the equation before the
variable of interest so X1 denotes variable Age and X2 is, as before, SzDummy-
Code (or Schizophrenia). Instead of a two dimensional plot as in Figure 9.1, the
problem would now be visualized via a three dimensional plot. Variable nAChR
would be axis equivalent to the height of the plot while Age and Schizophrenia
would be the width and depth dimensions. With a single predictor variable, the
predicted values form a straight line in a two-dimensional plot. With two pre-
dictor variables, the predicted nAChR levels form a plane in a three dimensional
plot. Figure 9.2 gives an example.

From the prediction plane in the figure, age is associated with lower nAChR
levels. Although it is difficult to tell from the plot, there is also a downward
projection of the plane suggesting a decrease in the brains of schizophrenics.
Would controlling for age now reveal a significant difference between controls
and schizophrenics?

Table 9.3 gives the results of the GLM that predicts nAChR from Age and the
dummy code for schizophrenia. . It is helpful to write the prediction equation

5



9.2. EXAMPLE WITH MORE THAN ONE PREDICTOR VARIABLE.
CHAPTER 9. THE GENERAL LINEAR MODEL (GLM): A GENTLE

INTRODUCTION

Figure 9.2: A scatterplot with two predictor variables.

twice, once for controls and the second time for schizophrenics:

�nAChRC = 32.61− .18 ∗Age

�nAChRS = 32.61− .18 ∗Age− 2.77

= 29.84− .18 ∗Age

There are two salient aspects about the concept of control in the GLM.
The first, arbitrarily called predictive control here, is evident by plugging any
single value of age into both of the equations. No matter what value of age,
schizophrenics will always be predicted to have 2.77 units of nicotinic receptors
less than controls. Hence, we can use the following language to describe these
results: “controlling for age, schizophrenics are predicted to have 2.77 fewer
units of nAChR than controls.”

The second type of control may be called statistical control, and it applies
to the statistical significance of the results. From Table 9.3, the coefficient for
age is significant while the coefficient for variable SzDummyCode is not. The
statistics behind calculation of the p values are complicated, but their meaning
is simple. For age, the meaning is equivalent to the following: “controlling for
diagnosis, does age predict nAChR better than chance?” The answer here is
“Yes.”

For diagnosis, the relevant question is “controlling for any age differences
between schizophrenics and controls, is the 2.77 unit difference between the
two greater than chance?” Here, the answer is “No.” It is logical to hypothesize
that the excess early mortality associated with schizophrenia may have obscured
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Table 9.4: Predicting nAChR from age, cotinine and diagnosis.

Variable Estimate Std.Error t p

Intercept 26.20 4.44 5.09 9E-06
Age -0.12 0.06 -2.15 0.044

Cotinine 0.08 0.03 2.87 0.009
SzDummyCode -5.70 2.11 -2.70 0.014

differences in nAChR density between them and controls in the initial analysis.
The current GLM gives no support to that idea.

We now want to control for cotinine, so we enter that variable into the GLM.
In “variable-ese” the equation is

�nAChR = β0 + β1Age + β2Cotinine + β3SzDummyCode

or in statisticalese,
Ŷ = β0 + β1X1 + β2X2 + β3X3

Table 9.4 gives the results of this GLM.
Once again, write the equation for controls and the one for schizophrenics:

�nAChRC = 26.20− .12Age + .08Cotinine

�nAChRS = 26.20− .12Age + .08Cotinine− 5.7(1)

= 20.50− .12Age + .08Cotinine

Note again that if we substitute into both equations any single value for age
and any single value for cotinine, then we predict that schizophrenics will have
5.7 fewer units of nAChr than controls. From Table 9.4, that difference is now
significant!

The fact that all three variables in Table 9.4 are significant tells us that:

1. increases in age (regardless of, or controlling for, cotinine and diagnosis)
predict lower nAChR levels better than chance;

2. that increases in cotinine (regardless of, or controlling for, age and diag-
nosis) predict higher nAChR levels better than chance;

3. that an “increase” in diagnosis or the presence of schizophrenia (regardless
of, or controlling for, age and cotinine) predicts decreases nACHr density
better than chance.

Why did we not find an association between schizophrenic an nAChR den-
sity in the first analysis? The answer is simple–schizophrenics smoke a lot.
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Schizophrenics smoke more than controls. Because of the amount of missing
data for smoking status at death, the initial brain samples could not be ade-
quately matched for this important variable. Consistent with previous evidence,
nicotine up regulated acetylcholine nicotinic receptors and, of course, results in
high levels of its metabolite cotinine. This up regulation masked the differ-
ence in nAChR density between schizophrenic and control brains in the initial
analysis.

Hence, the conclusion of this exercise is that schizophrenia is associated
with decreases in nAChR number. Note carefully that the operative word is
“associated ”. Synonyms would be “correlated ” and “predicted.” Finally, note
that any real life analysis would start with the third GLM that used age, cotinine
and diagnosis as predictors. The order of presentation for the GLMs above was
purely didactic.

9.3 GLM terminology
As in the vocabulary for any system that has evolved over time, GLM termi-
nology can be confusing. As statistical theory grew, it was realized that several
different techniques could be combined into a single, general technique. Hence,
the term general in GLM. Also, the advent of digital computers permitted the
mathematics behind the general approach to be implemented. Nevertheless, we
are left with a legacy of terms derived from the old techniques as well as tables
and short cuts used in hand calculations.

The first type of terminology applies to the variables in the GLM. The
variable on the left hand side of the GLM equation (Y or nAChR in the example)
is called the dependent, predicted, or response variable. The variables on the
right side of the equation (the X s or Schizophrenia, Age, and Cotinine) are called
the independent, predictor, or explanatory variables. Usually, these terms are
paired: dependent with independent, predicted with predictors, and response
with explanatory.

An independent, predictor or explanatory variable that is measured with
numbers is called a numeric or quantitative variable or a covariate. One that is
not numeric (or uses numbers to indicate groups) is called a factor.2 The specific
groups within a factor are termed the levels of that factor. For example, the
factor sex would have two levels–female and male.

The three classic statistical procedures that comprise the GLM are: (1) the
analysis of variance or ANOVA; (2) the analysis of covariance or ANCOVA;
and (3) regression. In ANOVA, all of the independent variables are factors
(i.e., qualitative variables). An ANOVA with only one factor is called a oneway

ANOVA. An ANOVA with more than one factor is called a factorial ANOVA.
Often a factorial ANOVA is described by the number of levels in the factors.
For example, if the first factor has two levels and the second factor has three
levels, the model is called a “two by three” design or “two by three ANOVA.”

2Sometimes nonnumeric variables are called qualitative variables.
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A regression is GLM in which all of the variables are quantitative. When
there is only one X or independent variable, the regression is called a simple

regression. When there are two or more X s, the regression is called a multiple

regression.
An ANCOVA is a GLM with at least one qualitative and at least one quanti-

tative predictor. Hence, ANCOVA is synonymous with GLM. Most statisticians
today eschew the term ANCOVA and use GLM.

9.3.1 Orthogonal and non orthogonal designs

In generic statisticalese, the word orthogonal is a synonym for uncorrelated.
Like most jargon in science, it was probably developed for two reasons: (1) lend
an air of respectability to statistics as a science; and (2) deliberately confuse
anyone trying to learn the field. When all independent variables of a GLM are
uncorrelated with one another, then the model is orthogonal. When at least one
pair of independent variables are correlated, the design is non-orthogonal. If the
GLM has at least one continuous independent variable, then always regard it
as non-orthogonal3. Hence, the term orthogonal only applies to classic ANOVA
, i.e., when all independent variables are strictly categorical. An ANOVA is
orthogonal when each cell contains the same number of observations. This
condition is also termed a balanced design.

In an orthogonal design, there is one and only one mathematical way to
estimate the parameters of the model and to perform the statistical tests. In
non-orthogonal designs, however, there is more than one way to compute these
statistics, so the user must make some assumptions about the best way to in-
terpret the results.

Finally, orthogonality is not akin to falling off a cliff. A two by two ANOVA
that has eight rats in three of its cells but seven in the fourth is so close to
being orthogonal that the different ways of estimating the sums of squares will
all yield the same substantive results. Hence, most designs in experimental
neuroscience will be close to being orthogonal. The issue is much more salient
for certain types of observational research. A random sample of, say, alcoholics
or sociopaths will contain roughly three males for every female. Here, one must
be very careful about which type of sums of squares to request and to interpret
when a variable like gender is in the model. In general, the more correlated

the independent variables are, the more care must be taken in interpreting the

results.

9.4 The meaning of the betas
The general equation for GLM is

Ŷ = β0 + β1X1 + β2X2 + . . .+ βkXk (9.3)

3There are exceptions to this rule but they are beyond the scope of this book.
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The βs in a GLM are coefficients or weights assigned to the predictor vari-
ables, i.e. the X s on the right had side of the prediction equation. Here, let us
explore some properties of these coefficients.

The first β, β0, is a constant. That it, it is the same for every observation
regardless of any values on any of the X s. In geometrical terms, β0 is an
intercept. Examine Equation 9.3 and let all of the X s equal 0. β0 is the
predicted value of Y when all of the X s equal 0. In terms of our example, it
would be the predicted nAChr density for neonatal controls (age is 0) with no
brain cotinine. (This prediction, however, is not sensible because it extends far
beyond the age range of the observed data, See Section X.X).

The other βs are all associated with a variable. Because the variable is mul-
tiplied by the β, the β is a “weight” that determines how much the X contributes
to prediction. If β = 0, then the associated variable does not predict individual
differences in Y (once again, with the proviso that we are controlling for all
the other variables). As an example, suppose that the β for age had been 0 in
the nicotinic receptor data. Then if we picked a subject with a given diagnosis
and cotinine value, then changing age would make no difference in the predicted
nAChR level for that individual.

In more specific terms, a β gives the predicted change in Y for a one unit
change in the X, keeping everything else constant. There is a very simple proof
of this interpretation. Assume GLM equation of the form of Equation 9.3 and
concentrate on the ith X. We can write this equation as

Ŷ0 = . . .+ βiXi (9.4)

where the ellipses (. . .) denote “everything else in the equation that is kept
constant.” Now change the value of Xifrom Xi to (Xi + 1). The predicted
value is now

Ŷ1 = . . .+ βi (Xi + 1) (9.5)

Subtracting Equation for Ŷ0 from that for Ŷ1 from X gives

Ŷ1 − Ŷ0 = βi (Xi + 1)− βiXi = βi

A β gives the predicted change in Y for a one unit increase in X.

Hence, the β for age (-.12) informs us that a one year increase in age is
associated with a decrease of -.12 units of brain nAChR. The β for cotinine tells
us that a one unit increase in cotinine predicts .08 units of increase in nAChR.
Finally, an increase in one unit of diagnosis (in effect, a change from control to
schizophrenia) predicts -5.7 units decrease in nAChR.

Note carefully that the actual magnitude of a βs is a function of the units
of measurement of its X. Suppose X was measured in milligrams. The β would
give the predicted change in Ŷ for a one milligram increase in X. If we changed
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the scale of X from milligrams to micrograms, then the β in the new equation
would give the change in Ŷ from a one microgram change in X. One can therefore
arbitrarily make a β larger or smaller by simply changing the scale of its variable.

This scale property of β leads to one of the most important cautions in
interpreting the results from a GLM: never compare the βs across variables to

determine the importance of the variables in prediction. In our example, the
β for a diagnosis of schizophrenia was -5.7 while the one for cotinine was .08.
This does NOT imply that schizophrenia predicts nAChR much better than
cotinine. Statistics other than the βs must be used to compare the effect sizes
of the predictors.

Never compare βs across variables to determine the importance of the
variables in prediction.

9.4.1 Standardized betas

The type of betas (βs) that we have been dealing with are often called raw or
unstandardized regression or GLM coefficients. These terms derive from the
fact that the predictor variable are expressed in raw or unstandardized units.
In some cases, it is helpful to examine standardized regression coefficients.

Suppose that we transformed the response variable, Y, to a new variable,
ZY , with standard scores (see Section X.X). This means that the mean of ZY is
0 and the variance of ZY is 1.0. Suppose that we also standardized each of the
predictor variables in the model to have means of 0 and standard deviations of
1. The GLM equation is

ZŶ = β0 + β1ZX1 + β2ZX2 + . . . βkZXk (9.6)

The βs in this equation are called standardized coefficients. They are the GLM
coefficients from a model in which all variables have been standardized to have
a mean of 0 and a standard deviation of 1.0.

Standardized βs may be used to compare the relative predictive effects
of the independent variables.

The interpretation of a standardized coefficient is the same as the one for
a raw β but is expressed in terms of standard deviation units instead of raw
units. Hence, if β1 = .09, then we predict that a one standard deviation change
in variable X1 will result in a .09 standard deviation change in Y. Because all of
the standardized predictor variables are the in the same units, standardized βs
may be compared to assess the predictive effect of one variable versus another.
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That is, if the standardized β1 = .12 and standardized β2 = .07, then X1 is a
better predictor of Y than X2.

9.5 GLM and causality
It is essential to stress that even though we speak of “dependency”, “explana-
tions” and “effects,” causal interpretation of a GLM depends on the design of
the study. True experiments (i.e., direct experimental manipulation, random
assignment, and strict control) permit inferences about causality. Given appro-
priate controls, if manipulation of variable A results in a change in the dependent
variable, then in some way, shape or form–directly or indirectly–A has a causal
influence on the response. How that causal influence comes about, whether the
relationship is necessary and/or sufficient, and the mechanism(s) of causality
cannot be answered by the statistical analysis of an experiment. Often, the an-
swer to these questions depends on substantive issues coupled with the outcome
of the experiment.

The smoking example is an excellent one for the discussion of causality.
Cotinine predicts receptor density, but does it cause change in the number
of receptors? Probably not. The most likely casual agent is nicotine. The
nicotine up regulates receptors (??) and generates cotinine as a metabolite.
Hence, cotinine is correlated with but has little causal effect on the number of
receptors. Because of cotinine’s long half life (relative to nicotine), it works as
a good control variable in the study.

Technically, a GLM applied to non-experimental observational research does
not permit inferences about causality. But one must be reasonable here because
interpretation of a GLM must be taken in the context of existing data and
theory. There has never been, and never will be, a true experiment examining
the health consequences of cigarette smoking in humans. It would be unethical–
in fact, downright cruel–to randomly assign young adolescents to a smoking
group and a non-smoking control group, compelling the former to smoke and the
latter to abstain from cigarettes, until their health status could be ascertained
40 years later. Yet, all the observational, epidemiological data on humans agree
so well with true experiments in animals and with mechanistic research into the
cardiovascular and pulmonary effects of smoking that reasonable scientists infer
a causal connection.
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