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CHAPTER 2  

2 - 1  We use  D e  M o r g a n ' s  l a w :  - - 
(a) X + 6 +  I+B = AB + A% = A ( B + % )  = A 

because = (01 BB = I01 

2-2 If A = { 2 < x ; 5 )  - B = { 3 < x < 6 1  - - S = {-=-<x<=-) then 

A + B  = { 2 < x < 6 )  - - AB = { 3 < x < 5 )  - - 
(A+B)(E) = { 2 < x < 6 1  - - [ { x < 3 1  + E x > 5 1 ]  

= { 2 < x < 3 )  - + { 5 < x < 6 1  - 

2 - 3  I f  AB = (0 1 then A c;; hence 

P  (A) - < P (i) 

2-4 (a) P ( A )  = P ( A B )  + P ( A ~ )  P(B) = P(AB) + P(XB) 
If, therefore,  P ( A )  = P ( B )  = P(AB)  then 

P(G) = 0 ~ ( h )  = 0 hence 

P(XB+AIB) = P(XB)  + P(A%) = o 
( b )  If P ( A )  = P (B)  = 1 then 1 = P (A) 5 P (A + B) hence 

1 = P ( A + B )  = P ( A )  + P ( B )  - P ( A B )  = 2  - P ( A B )  

This  v i e l d s  P ( A B )  = 1 

2-5  F r o m  (2-1 3) i t  f o l l o w s  t h a t  

P ( A + B + C )  = P(A) + P ( B + C )  - P [ A ( B + c ) ]  

P ( B + C )  = P ( B )  + P ( C )  - P ( B C )  

P  [ A ( B  + C )  ] = P (AB) + P(AC)  - P(ABC) 

b e c a u s e  ABAC = ABC. C o m b i n i n g ,  w e  obtain the  d e s i r e d  r e s u l t .  

U s i n g  induct ion,  w e  can s h o w  s i m i l a r l y  t h a t  

? (A + A 2 + * - + A  ) = P(A1) + P ( A 2 ) + * * *  + P ( A n )  
1 n 

- P ( A  A ) - ... - 
1 2  P 'An-lAn' 

+ P (A1A2A3) + + P (An-2An) 

* . . * . I . . . . . . . . . . . . . . . . * . , . *  

k P ( A  A * *  An) 
1 2  

___ _..__---I -. ---- - 



2-6 Any subse t  of S con ta ins  a countable  number of  elements,  hence, i t  

can be w r i t t e n  a s  a countable  union of elementary events .  It i s  

t h e r e f o r e  a n  event .  

2-7 Forming a l l  unions,  i n t e r s e c t i o n s ,  and complements of t h e  s e t s  E l )  

and {2,3) ,  we o b t a i n  t h e  fol lowing sets: 

(01, C11, (41, {2,31, {1,41, {1,2,31, {2,3,41, {1,2,3,41 

2-8 I f  ACB,P(A) = 114, and P(B) = 113, then  

2-10 We use induct ion .  The formula is  t r u e  f o r  n = 2  because 

P(A1A2) - P ( A ~ I A ~ ) P ( A ~ ) .  Suppose t h a t  i t  is  t r u e  f o r  n. Since 

we conclude t h a t  i t  must be t r u e  f o r n + l .  

2-11 F i r s t  s o l u t i o n .  The t o t a l  number of m element subse t s  equals  (") ( s ee  
m  

Probl .  2-26). The t o t a l  number of m element subse t s  conta in ing  5 equals  
0 

n- l 
(m-l) Hence 

Second s o l u t i o n .  Clear ly ,  P{C, I A ~ )  = mln is  t h e  p r o b a b i l i t y  t h a t  5 
0 

is i n  a s p e c i f i c  Am. Hence ( t o t a l  p r o b a b i l i t y )  

where t h e  summation is  over  a l l  sets A . 
m 



2 
2-12 (a)  P E 6 < t < 8 1 = -  - - 10 

P E 6 r t s 8 1  2 
(b) ~ { 6  - < t - < 81t > 51 = P ( t ,  51 = - 5 

2-13 From (2-27) it follows t h a t  

Equating t h e  two s ides  and s e t t i n g  t l= tO+  A t  w e  obta in  

f o r  every to. Hence, 

Di f fe ren t i a t ing  the  s e t t i n g  c = a ( O ) ,  we conclude t h a t  

2-14 I f  A and B a r e  independent, then P (AB) = P (A)P (B) . I f  they a r e  

mutually exclusive,  then P(AB) = 0 ,  Hence, A and B a r e  mutually 

exclusive and independent i f f  P(A)P(B) = 0. 



Clear ly ,  A1 = A1A2 + ~ ~ i i ~  hence 

I f  t h e  events  A and a r e  independent,  then  1 2 

hence, t h e  events  A and A a r e  independent. Furthermore, S is  
1 2 

independent wi th  any A because SA = A. This  y i e l d s  

P(SA) = P(A) = P(S)P(A) 

Hence, t h e  theorem is  t r u e  f o r  n = 2 .  To prove i t  i n  genera l  we use 

induct ion:  Suppose t h a t  A is  independent of A1, ..., A . Clea r ly ,  - n+l n 
An+l and An+l a r e  independent of B1, ... ,B  . Therefore n 

2.16 The desired probabilit,ies are given by (a) 

(TI ;) 



2.17 Let Al I A2 and Ad represent tire events 

Al = "ball numbered less tha,n or equal to  rn is drawn? 
A2 = ('ball numbered rn i s  drawn" 
AS = ('ball numbered greater tillan rn is drawn" 

P ( A 1  occu,rs nl = k - 1, A2 occurs n2 = 1 and A3 occurs n3 = 0 )  

2.18 All cars are equally likely so that the first car is selected with 
probability p = 113. This gives the desired probability to be 

2.19 P{'drawing a whi te  bad1 " } = && 
P("atleat one whi te  ball i n  k triu,ls ") 

= 1 - P("al l  black balls in k trials") 

2.20 Let D = 2r represent the penny diameter. So long as the center 
of the penny is at a distance of r away from any side of the square, 
the penny will be entirely inside the square. This gives the desired 
probability to be 



2.21 Refer to Exanlple 3.14. 
(a )  Using (3.391, we get 

(h) 

P(" two  one-digit and four  two-digit numbers1') = 

n 
2-22 The number of equations of the form P(AiAk) = P(Ai)P(Ak) equals ( * I .  

The number of equations involving r sets equals (:). Hence the total 

number N of such equations equals 

And since 

we conclude that 

2-23 We denote by B1 and B2 respectively the balls in boxes 1 and 2 and 

by R the set of red balls. We have (assmption) 

P(B1) = P(BZ) '0.5 P(R\B~) - 0.999 ~ ( ~ 1 8 ~ )  = 0.001 

Hence (Bayes' theorem) 



2-24 We denote by B1 and B respect ively  the  b a l l  i n  boxes 1 and 2 and by 2 
D a l l  p a i r s  of defect ive pa r t s .  We have (assumption) 

To f ind P (D IB1) we proceed a s  i n  Example 2-10: 

F i r s t  so lut ion.  I n  box B1 the re  a r e  1000x999 pa i r s .  The number of 

p a i r s  with both elements defect ive  equals 100x99.  Hence, 

Second solut ion.  The p robab i l i ty  t h a t  the  f i r s t  bulb se lec ted  from 

B1 is defect ive  equals 100/1000. The p robab i l i ty  t h a t  the  second is  

defect ive  assuming the  f i r s t  was e f f e c t i v e  equals 99/999. Hence, 

We s imi la r ly  f ind  

(a) P(D)  = P ( D I B ~ ) P ( B ~ )  + P ( D ~ B ~ ) P ( B ~ )  - 0.0062 

e (D 1 B,)P (sl) 
(b) pml ID) = P (Dl 

= 0.80 

2-25 Reasoning a s  i n  Example 2-13, we conclude t h a t  t h e  probabi l i ty  tha t  the  

bus and the  t r a i n  meet equals 

Equating with 0.5, we f ind x = 60 - 1 0 6 1 .  

2-26 We wish t o  show t h a t  the  number N (k) of t h e  element subsets  of S n 
equals 

This is  t r u e  f o r  k = l  because the  number of l-element subsets  equals n. 

Using induction i n  k, w e  s h a l l  show t h a t  

n - k  
N ( k +  1 )  = Nn(k) Ir+l n 

We a t t ach  t o  each k-element subset  of S one of the  remaining n - k  elements 

of S. We, then, form Nn(k)(n-k) k+l-element subsets .  However, these 

subsets  a r e  not a l l  d i f f e r e n t .  They form groups each of which has k + l  

i d e n t i c a l  elements. We must, therefore ,  d iv ide  by k + l .  



2 - 2 7  In this experiment we have 8 outcomes. Each outcome is a selection of a particular coin 

and a specific sequence of heads or tails; for example fhh is the outcome "we selected the 

fair coin and we observed hh". The event F = (the selected coin is fair) consists of the 

four outcomes fhh, fht, fth and fhh. Its complement F is the selection of the two- 

headead coin. The event HH = (heads at both tosses) consists of two outcomes. Clearly, 

Our problem is to find P(F(HH). From (2-41) and (2-43) it follows that 



CHAPTER 3 

3.1 (a) P ( A  occurs atleast twice in n trials) 
= 1 - P ( A  never occurs in n trials) - P ( A  occurs once in n trials] 

= 1-(1-p)" - np(1 - p)"-l 

(b)  P ( A  occurs atleast thrice in n trials) 
= 1 - P ( A  never occurs in n trials) - P ( A  occurs once in n trials) 

-P(A occurs twice in n trials) 

- - 1 - ( I  - p)" - np(1 - p)"-l - E k p g ( l  - p)n-2 

P("doub1e six atleast three times in n trials") 

3-3 ~f A = {seven), then 

If the dice are tossed 10 times, then the probability that w i l l  occur 

10 them equals (5/6)1°. Hence, the probability p that {seven} w i l l  show 

at least once equals 

1 - (5/6)1° 



3-4 If k is the number of heads, then 

But 

= (q + q)n ' qn + (;:P qn-l +("2p2q*-2 + * * *  

(P - 9) ' = qn - (;lp qn-l + (p2 qne2 - 
Adding, we obtain 

1 + (p - q)" 5 2 ~{evenl 

N 
3-5 In this experiment, the total number of outcomes is the number ( , ) of ways of picking 

n out of N objects. The number of ways of picking k out of the K good components 
K 

equals ( ) and the number of ways of picking n-k out of the N-K defective 
N-K 

components equals ( ,-k ). Hence, the number of ways of picking k good components 
K N-K 

and n-k deafective components equals ( ) ( ,,-k ). From this and (2-25) it follows that 

K N-K N 
~ ' ( k ) ( n - k ) / ( n )  

3.6 (a) 

(b) 

(4 



3.7 (a) Let n represent the number of wins required in 50 games so that 
the net gain or loss does not exceed $1. This gives the net gain to  be 

50 17 3 33 
P(net gain does not exceed $1) = (17) (a) (a) = 0.432 

P(net gain or loss exceeds $1) = 1 - 0.432 = 0.568 

(b) Let n represent the number of wins required so that the net gain 
or loss does not exceed $5. This gives 

50-n 
P(net  gain does not exceed $5) = xn l9 = 14 (50) (a)" ($) = 0.349 

P(net gain or loss exceeds $5) = 1 - 0.349 = 0.651 



3.8 Define the events 
A=" r successes in n Bernoulli trials" 
B="success at the ith Bernoulli trial" 
C= "r - 1 successes in the remaining n - 1 Bernoulli trials excluding 

the ith trial" 

P(C) = (C 1 ;)p'-' qn-' 

We need 

3.9 There are ( )  ways of selecting 13 cards out of 52 cards. The 
number of ways to select 13 cards of any suit (out of 13 cards) equals 

( )  = 1 Four such (mutually exclusive) suits give the total number 
of favorable outcomes to be 4. Thus the desired probability is given by 
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