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HYBRID SIMULATION OF A CONTROLLED SYSTEM 

 
 
 
Understand differences among controllers, even if they were not part of those selected 
to be performed for report. 
 
PC (LabVIEW) is the controller: 
 
 Digital approximation to analog controller – PID (proportional integral derivative) 
 - may be inefficient 
 
 True digital controller with difference equation & Z.O.H. on output 
 - more efficient but requires a digital model of the analog plant 
 
 
Procedure covers: 
 
 Four digital implementations of analog PID controllers 
 - 3 PID controllers 
 - 1 Analog state-space (state feedback using pole placement) controller 
 
 A true digital Finite Settling Time, FST (Ripple Free) controller 
  - FST for a plant without delay and FST for a plant with delay 
 
 A Digital state-space (state feedback using pole placement) controller 
 
 
Required for report: 
 
 2 of the 3 analog PID controllers 
 
 1 FST controller (either with or without delay) 
 
 1 State-Space controller (either analog or digital) 
 
 
NOTE: 
It should be noted here that all process time delays will be implemented on the PC.  It is 
done this way because it is much easier to create a process with delays digitally. In 
practice, process time delays are harmful and adversely affect the stability of the 
controlled system.  A controller should never purposely insert a delay.  Unavoidable 
delays could be caused by slow processes, converters, or remote sensing devices (e.g. 
Earth-Mars remote control signals). 
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FLOW  METERS

 
 

Typical Direct Digital Control Application. 
 
 

 
 

t and s Domain Block Diagram of a Closed Loop System. 
 
 

 
 

State Feedback Control 
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PID  CONTROLLER Gc(s) 
 

Gc(s)  =  Kp  +  
Ki
s     +  Kds 

 
where: 

Kp is the proportional gain (initial feedback control, error forces change) 
Ki is the integral gain (integrator forces steady-state error to zero) 
Kd is the derivative gain (derivative slows down fast changing response to reduce 

overshoot) 
 
Variations: 
 

1) Proportional (P) controller: the Ki and Kd terms are zero. 
2) Proportional + Integral (PI) controller: the Kd term is zero. 
3) Proportional + Derivative (PD) controller: the Ki term is zero. 
4) Proportional + Integral + Derivative (PID) controller: all terms are non-zero. 

 
 

! 

˙ x (t)=
dx

dt
=

T"0
lim

x(t + T) # x(t)

T
$

x(t + T) # x(t)

T
 

 
The difference equation for the digital PID controller is: 
 

u(k)  =  Kpe1(k)  +  Kie22(k)  +  Kde23(k) 
 
where: 

U(k) is the control at the kth sample instant, 
e1(k) = r(k) - y(k), the error term, 
e22(k) = e22(k - 1) + Te1(k) the integral approximation, 
e23(k) = [e1(k) - e1(k - 1)]/T the derivative term, 
T is the sampling time in seconds, r(k) is the reference signal and y(k) is the output 
signal. 
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Steady State Error with Pure Proportional Feedback 
 
 
For a plant Gp(s) with no free integrator (1/s term that can be factored out of the 
numerator) 
 

 
Pure Proportional Control with Steady State Error 

 
 
With Kp = 1, steady state error will be 50%  (1 - 

! 

1

2
 = 50%) 

 
With Kp = 10, steady state error will be 9%  (1 - 

! 

10

11
 = 9%) 

 
 
 
 
Increasing Kp decreases steady state error, but will not make it go to zero 
 
Note: increasing Kp will increase the overshoot and settling time 
 
 
 
Need a Ki term to drive steady state error to zero 
 
Output of controller block will keep adjusting itself until input is zero  
(no steady state error) 
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Ziegler-Nichols Design 
 
Optimize: fast response time but with significant overshoot. 
 
Uses only 2 parameters derived from the system step response, R & L 

 

 
Example of a Unit Step Response. 

 
 
For the P control:  
  Kp = 1/RL=T/L 
 
For the PI control: 
  Kp = 0.9/RL,      Ki = 0.3Kp/L=0.27/(RL ) 
 
For the PID control: 
  Kp = 1.2/RL,      Ki = 0.5Kp/L=0.6/(RL ),        Kd = 0.5LKp=0.6/R 
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Gallier-Otto Design 
 

Optimize: 
  

! 

IAE = | e(t) |

0

"

# dt  

 
Assumes the model for the plant matches the 2nd order equation below, need to have 
approximations for T1, T2, K, & TD 
 

! 

Gp (s) =
Ke

"TDs

(T
1
s+1)(T

2
s+1)

 

where: 
K is the process gain, 
T1 is the smaller time constant, 
T2 is the larger time constant, 
TD is the time delay. 

 
Define: 
  λ = T1/T2 
 
  Tn = T1 + T2 + TD 
 
  tD = TD/Tn 
 

  Gc(s)  =  Kp (1  +  1
Tis

   +  Tds) 

 
found for various values of λ and tD. 
 
Gallier and Otto compiled graphs relating the controller parameters to the process 
parameters l and tD, for both PI and PID control.  In particular, these graphs give 
optimal values for the normalized parameters: 

K0 = KpK, the loop gain of the closed loop system,  
ti = Ti/Tn, the normalized reset time,  
td = Td/Tn, the normalized derivative time. 

 
  Gc(s) = Kp + Ki/s + Kds 
 
three coefficients become: 

  Kp  =  
K0
K   

  Ki  =  
Kp
Ti

   =  
Kp
tiTn

  

  Kd  =  KpTd  =  KptdTn 
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Gallier-Otto Gains for PI and PID Control. 



 8 

Graham-Lathrop 
 

Optimize: 
  

! 

ITAE = t | e(t) |

0

"

# dt  

Assumes model for the controlled system N(s)/D(s) and all coefficients are known, here 

    

! 

Y (s)

R(s)
=

Gc (s)Gp (s)

1+ Gc (s)Gp (s)
 with Gc (s) = Kp  or  

Kps + Ki

s
  or  

Kds2 + Kps + Ki

s
 

Want the characteristic equation of a closed loop system (denominator of the Closed 
Loop Transfer Function) to have its roots match those of a standard form: 
 
 

 Closed Loop Characteristic Equations as derived by Graham & Lathrop 
1 s  +  ω

 
0  

2 s2  +  1.4ω
 
0 s  +  ω

2
0  

3 s3  +  1.75ω
 
0 s2  +  2.15ω

2
0 s  +  ω

3
0  

4 s4  +  2.1ω
 
0 s3  +  3.4ω

2
0 s2  +  2.7ω

3
0 s  +  ω

4
0  

5 s5 +  2.8ω
 
0 s4  +  5.0ω

2
0 s3  +  5.5ω

3
0 s2  +  3.4ω

4
0 s  +  ω

5
0  

6 s6 +  3.25ω
 
0 s5 +  6.6ω

2
0 s4  +  8.6ω

3
0 s3  +  7.45ω

4
0 s2  +  3.95ω

5
0 s  +  ω

6
0  

7 s7 +  4.47ω
 
0 s6 +  10.42ω

2
0 s5 +  15.08ω

3
0 s4  +  15.54ω

4
0 s3  +  10.64ω

5
0 s2  +  4.58ω

6
0 s  +  ω

7
0  

8 s8 +  5.2ω
 
0 s7 +  12.8ω

2
0 s6 +  21.6ω

3
0 s5 + 25.75ω

4
0 s4  +  22.22ω

5
0 s3  +  13.3ω

6
0 s2  +  5.15ω

7
0 s  +  ω

8
0  

Graham-Lathrop Standard Forms Table. 
 

 
Roots for 1st, 2nd, 3rd, and 4th order Graham-Lathrop Forms. 
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FINITE SETTLING TIME (FST) CONTROLLER 
 
FST Controller for a 1st Order System 
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FST Controller for a 2nd Order Process Without Time Delay  
(Ripple Free Controller) 

 

 
Sampled Data Version of the Continuous System 
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Typical z-Plane Block Diagram. 

 
Assume: 

! 

Gp (s) =
1

(T
1
s+1)(T

2
s+1)

 

 
The process transfer function with a zero order hold on its input is given by: 
 

  

! 

Gp
*
(s) = Gp (s)

1" e"Ts

s
=

1" e"Ts

s(T1s +1)(T2s +1)
 

 
    ↑ Z.O.H. 

 
The process pulse transfer function is given by 

    

! 

Z{Gp
*
(s)} : 

 

  

! 

Gp
*
(z) =

[1" (1+ d1)p1 " (1+ d2)p2 ]z
"1

+ [ p1p2 + d1p1 + d2p2 ]z
"2

(1" p1z
"1
)(1" p2z

"1
)

 

 
where: 

! 

p
1

= e
"T /T

1  

! 

p
2

= e
"T /T

2  

! 

d
1

=
"T

2

T
2
"T

1

 

! 

d
2

=
T
1

T
2
"T

1

 

 
The process pulse transfer function can be transformed into the general form: 
 

  

! 

Gp
*
(z) =

c1z
"1

+ c2z
"2

(1" p1z
"1
)(1" p2z

"1
)
 

 
where: 
 

c1  =  1  -  (1  +  d1)p1  -  (1  +  d2)p2 
c2  =  p1p2  +  d1p1  +  d2p2 
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FST controller difference equation 
 

u(k)  =  ∑
i = 0

Ne
 Keie(k - i)   +  ∑

i = 1

Nu
 Kuiu(k - i)   

where: 
e(k - i) is the error term at the kth sample instant 
u(k - i) is the control term at the kth sample instant 
Ke is the vector of gains for the error terms 
Ku is the vector of gains for the control terms 
Ne is the order of the error sum 
Nu is the order of the control sum 

 
Ragazzini and Franklin: 
 

Ne  =  2 
Nu  =  2 

Ke0  =  
1

c1  +  c2
  

Ke1  =  
-p1  -  p2
c1  +  c2

  

Ke2  =  
p1p2

c1  +  c2
  

Ku1  =  
c1

c1  +  c2
  

Ku2  =  
c2

c1  +  c2
  

 
Controller difference equation: 
 

u(k)  =  Ke0e(k)  +  Ke1e(k - 1)  +  Ke2e(k - 2)  +  Ku1u(k - 1)  +  Ku2u(k - 2) 

 
All controller coefficients are function of the sample period T. Note that as T gets 
smaller, the Ke terms increase.  For T < 1 second the control values that are 
proportional to the Ke terms will need to exceed their maximum value of 10 Volts to 
properly control the system, unless the input step size is very small.  For the purposes 
of this experiment, sampling time T for the FST controller should be greater than 1 
second. 
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FST Controller for a 2nd Order Process With Time Delay 
 
 
The process with time delay may be approximated by the transfer function 
 

! 

Gp (s) =
e
"TDs

(T
1
s+1)(T

2
s+1)

              [Numerator ≠ 1] 

 
where 

T1 and T2 are the process time constants.   
TD is the time delay implemented as an integral number of sample periods (TD = 
MT using a stack in the PC). 

 
The process transfer function with zero order hold is given by: 
 

! 

Gp (s) =
(1" e

"Ts
)e

"MTs

s(T
1
s+1)(T

2
s+1)

 

 
where 

M is the number of sample periods of time delays. 
T is the sampling period. 

 
The process pulse transfer function is [Remember eTs  =  z] 
 

! 

Gp (z) =
(c
1
z
"1

+ c
2
z
"2
)z

"M

(1" p
1
z
"1
)(1" p

2
z
"1
)

 

 
Controller difference equation: 
 

u(k)  =  Ke0e(k)  +  Ke1e(k - 1)  +  Ke2e(k - 2)  +  Ku1u(k - 1 - M)  +  Ku2u(k - 2 - M) 

 Note change: ↑ ↑ 
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STATE FEEDBACK CONTROLLER USING THE POLE PLACEMENT METHOD 
 
 
Introduction to State Variable and Pole Placement 
 
Uses canonic form of state variables for plant Gp(s) in matrix form and assumes all the 
states can be observed (measured) 
 
This requires the analog computer be rewired for the plant  
(Use 2nd analog computer for Hybrid Part D) 

 

 
 

Block Diagram of a Typical 2nd order Plant. 
 

  x
.
 1(t)  =  x2(t)  x1(0)  =  x10 

  x
.
 2(t)  =  -a1x1(t)  -  a2x2(t)  +  bu(t) x2(0)  =  x20 

  y(t)  =  cx1(t) 

 
or in matrix form: 
  x .(t)   =  Acx(t)  +  Bcu(t) , x(0)  =  x0 
  y(t)  =  Ccx(t)   

 
where: 

! 

x(t) =
x
1
(t)

x
2
(t)

" 

# 
$ 

% 

& 
' ,   

! 

A
c

=
0 1

"a
1

"a
2

# 

$ 
% 

& 

' 
( ,   

! 

B
c

=
0

b

" 

# 
$ 
% 

& 
' ,   

! 

C
c

= c 0[ ],   

! 

x
0

=
x
10

x
20

" 

# 
$ 

% 

& 
'  

 
Y(s)
U(s)   =  H(s)  =  

bc
s2  +  a2s  +  a1

  

   
det[ sI - Ac ]  =   s2  +  a2s  +  a1  =  0   [characteristic equation, denominator of H(s)] 

 
 
A state space controller feedback signal is only the sum of the system states multiplied 
by gain constants:  u(k) = kc1x1(k) + kc2x2(k) 
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Pole Placement for the Continuous Case 
 
Using the same general plant above, the objective is to determine gains kc1 & kc2 so that 
the closed loop system has its poles at p1, and p2.  Thus the desired characteristic 
polynomial becomes: 
 

s2  +  ms  +  n  =  0 ,      -m  =  p1  +  p2 ,      n  =  p1p2 
 
In augmented system with the feedback gains kc1, kc2 and a reference input signal r(t) 
all present, it is necessary to amplify the reference signal with a feedforward gain g (to 
be found), for zero steady state error (output matching the input) under a step input. 

 

 
 

Augmented system with feedback controller and reference. 
 

Assuming zero initial conditions as before, the new state equations are: 
 

  x
.
 1(t)  =  x2(t) 

  x
.
 2(t)  =  -a1x1(t)  -  a2x2(t)  -  kc1bx1(t)  -  kc2bx2(t)  +  gbr(t) 

  y(t)  =  cx1(t) 
 
From direct comparison between equations (30) and (26) it's easy to note that the 
control law u(t) is given by: 

u(t)  =  gr(t)  -  [kc1x1(t)  +  kc2x2(t)]  =  gr(t)  -  Kcx(t) 

 
with 

! 

K
c

= k
c1

k
c2[ ]  which precisely is the formula for the state feedback control.  

Equations (30) can be written in matrix form as: 
 

  x .(t)   =  (Ac  -  BcKc)x(t)  +  Bcgr(t)  , x(0)  =  x0 
  y(t)  =  Ccx(t) 

The overall transfer function and characteristic equation of the closed loop system are: 
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! 

Y (s)

U(s)
= H(s) =

gbc

s
2

+ (a
2

+ bkc2)s+ (a
1

+ bkc1)
 

 
det[ sI - Ac ]  =   s2  +  (a2 +  bkc2)s  +  (a1  +  bkc1)  =  0 

 
Gains are found by coefficient matching  
 
The unknown feedforward gain g is calculated as follows: 
 

! 

ess =lim
t"#
(R $ y(t)) = R $ yss  

 
Applying the Final Value theorem and noting that R(s) = R/s, we calculate yss 
 

  

! 

yss =lim
t"#

 y(t) =lim
s"0

 sY (s) =lim
s"0

 s

gb
R

s

s
2

+ (a2 + bkc2)s+ (a1 + bkc1)
=

gbR

a1 + bkc1
 

 
Want zero steady state error hence yss must be equal to R, which identifies g as a 
function of the gains Kc: 

g  =  
a1
b    +  kc1 

 
 
 
 
Pole Placement for the Discrete Case 
 
Convert continuous system to discrete using the relationship: 
 

zi  =  esiT 

 
where T is the sampling time. 
 
As in the continuous case the discrete desired second order polynomial is 
 

z2  +  qz  +  p  =  0 ,      with      -q  =  z1  +  z2 ,      p  =  z1z2 

 
Equivalent discrete-time system is: 
 
  x(k + 1)  =  Adx(k)  +  Bdu(k) 
  y(k)  =  Cdx(k) 

 
where Ad, Bd, and Cd are the discrete counterparts of Ac, Bc, and Cc determined by: 
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Ad  =  eAcT ,      Bd  =  ⌡⌠

0

T

eAcµ Bc  dµ   =  (Ad - I)(Ac)-1Bc,      Cd  =  Cc 

 
May us MATLAB to solve for Ad, Bd, and Cd 
 
Key element is the State Transition Matrix eAcT.  This is computed using the above 
either analytically as the inverse Laplace transform of the matrix [(sI - Ac)-1], or 
numerically from the infinite sum (or using MATLAB): 
 

eAct  =.    L-1 {(sI  -  Ac)-1}  =.    I  +  Ac t  +  A
2
c 

t2
2!   +  A

3
c 

t3
3!   +  . . . 

 
Compute the Kd gains by coefficient matching with the discrete system closed loop 
characteristic equation: 
 

det[ zI - (Ad   -  BdKd) ]  =  0 

 
Again the discrete control u(k) has the same form as its continuous counterpart: 
 

u(k)  =  gr(k)  -  [ kd1x1(k)  +  kd2x2(k) ] 

 
with r(k), x1(k), x2(k) the discrete equivalent of the reference and state signals. 
 
The discrete closed loop transfer function is given by equation (43): 
 

H(z)  =  
Y(z)
R(z)   =  Cd[ zI - (Ad   -  BdKd) ]-1Bd 

 
The feedforward gain is calculated as before, using the discrete Final Value Theorem, 

the output Y(z) = R(z)H(z), the transfer function H(z), and the unit step 

! 

R(z) =
R

(1" z
"1
)

 

 

! 

yss =lim
k"#

y(k) =lim
z"1
(1$ z

$1
)Y (z) = lim

z"1
(1$ z

$1
)R(z)H(z) = lim

z"1
(1$ z

$1
)

R

(1$ z
$1
)
H(z) = RH(1)  

 
The steady state error ess = R - yss is required to be zero, thus yss = R, and from the 
above formulas we conclude that H(1) = 1, which determines the gain g. 
 
H(1) is the H(z) evaluated at z = 1, and Cd = Cc = 1.   
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PID & FST Plant Simulation Diagram 

 

 
 

See OPTIMAL CONTROL experiment analog closed loop wiring diagram for pure analog  
controller. 

 
Pole Placement Plant Simulation Diagram 

 
 

  

! 

Gp (s) =
0.05

(s + 0.1)(s + 0.5)
=

0.05

s2 + 0.6s + 0.05
=
0.125

s + 0.1
+
"0.125

s + 0.5
 

 
                                BOTTOM            TOP 

AMP 1 

AMP 2 

AMP 1 

POT 1 

AMP 7 

AMP 3 

POT 3 

POT 2 

AMP 8 POT 2 

POT 1 

POT 3 AMP 7 

AMP 2 

AI 0 AO 0 

AI 1 

AI 0 AO 0 
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EXPERIMENTS IN OPTIMAL CONTROL 
 
 

STATE SPACE CONTROLLER, LINEAR QUADRATIC CONTROLLER (LQR) 
 

 
 

State Feedback Control 
 
General plant equations: 

    

! 

˙ x (t) =" (x,u)

x(t0) = c     # I.C.s are very important
 

 
Instead of applying a step input to the system and observing the response, here the 
system starts with nonzero initial values and the response as it moves toward zero is 
observed 
 
Objective is get the system states to go from I.C.s to zero as fast as possible while 
meeting certain conditions and constraints - formally minimizing system performance 
index J: 
 

J  =  h(x(tf), tf)  +  ⌡⌠

t0

tf
 g(x(t), u(t), t) dt 

 
where: 

tf represents the end of the control interval 
h and g are user defined penalty expressions. 

 
 
 
Lab implements both a continuous and discrete controller 
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CONTINUOUS LQR CONTROL 
 
Plant is described by the matrix equations: 
 

    

! 

˙ x (t) = Ax(t) + Bu(t),       x(0) = x0

y(t) = Cx(t) + Du(t)     " Don' t care about sustem output
 

 
where: 

x(t) is the (n x 1) state vector, 
x0 is the initial state vector, 
u(t) is the (m x 1) control input vector, 
y(t) is the (r x 1) output vector, 
A is the (n x n) state dynamics matrix, 
B is the (n x m) control dynamics matrix, 
C is the (r x n) state-output matrix, 
D is the (r x m) input-output matrix (for all practical purposes assumed 0 
thereafter). 

 
General system performance index (penalty function) in a quadratic form becomes: 
 

J(u(t), x(t), t)  =  
1
2  x'(t)Hx(t)  +  

  

! 

1

2
{x' (t)Qx(t) + u' (t)Ru(t)}

0

t f

" dt 

 
where: 

H is the (n x n) terminal state penalty matrix, 
Q is the (n x n) state penalty matrix, 
R is the (m x m) control penalty matrix. 

 
Simplified linear time-invariant form (Linear Quadratic Regulator): 
 

J  =   
  

! 

1

2
{x' (t)Qx(t) + u' (t)Ru(t)}

0

t f

" dt 

 
Note: for a 1st order system: 

J =   
  

! 

1

2
{Qx

2
(t) +Ru

2
(t)}

0

t f

" dt 

 
with Q the weight on the state error (penalize position error) and R the weight on the input 
(penalize fuel use) 
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Optimal control signal is defined by: 
 

u*(t)  =  -R-1B'P(t)x(t)  =  G(t)x(t) 

G(t)  =.    -R-1B'P(t) 
 
where: 

G(t) is the (m x n) optimal feedback gain matrix, 
P(t) is an (n x n) symmetric and positive definite matrix that satisfies the continuous 
matrix differential Riccati equation given by: 

 
 
And P is the solution to the Riccati Equation: 

P  
.
(t)   =  -P(t)A  -  A'P(t)  +  P(t)BR-1B'P(t)  -  Q  ,           P(tf)  =  H 

 
for Steady State conditions: 

0  =  -PA  -  A'P  +  PBR-1B'P  -  Q 
 
 
Once P is found (solution is provided by routines in the experiment), then G can be found 
from R, B, & P, and the optimal feedback gains can be implemented in the controller 
 
NOTE: as R → 0, K → ∞, meaning fuel savings is completely unimportant 
 
 

 
 

Analog computer simulation of the closed loop system. 
 
 

AO 0 
AI 0 

AI 0 

-1 

-1 -1 
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DISCRETE LQR CONTROL 
 
 
Plant is described by the discrete matrix difference equations: 
 

x(k + 1)  =  Ax(k)  +  Bu(k) ,           x(0)  =  c 
y(k)  =  Cx(k)  +  Du(k)     ← Still don’t care about system output 

 
The discrete performance index in a quadratic form is given by: 
 

J  =  
1
2  x'(N)Hx(N)  +  

1
2∑

k=0

N

{ x'(k)Qx(k)  +  u'(k)Ru(k) }  

 
where A, B, C, D, H, Q and R are similar to those in the continuous case and N is a fixed 
number of time intervals 
 
The optimal control feedback gains is found to be: 
 

u*(k)  =  G(k)x(k) 
 
where G is again the (m x n) feedback gain matrix given by: 
 

G(k)  =  -R-1B'(A')-1[P(k)  -  Q ] 
 
P is the (n x n) real positive definite solution of the discrete matrix difference Riccati 
equation given by: 
 

P(k)  =  Q  +  A'[P-1(k + 1)  +  BR-1B']-1A 
 
When N approaches ∞ and the same conditions mentioned in the continuous case apply, 
then the P(k) matrix converges to a constant symmetric, real, positive definite matrix P. 
Hence:  
 

P(k)  =  P(k + 1)  =  P 
 

 
Block diagram of the closed loop system. Feedback done using LabVIEW on PC. 




