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If A is a square matrix of order n with real or complex elements it is
well known that it may be reduced by means of a unitary transformation
U to a matrix of the same order all of whose elements below the leading
diagonal are zero.! Even when the elements of A are real the elements
of the transforming matrix U are complex if the characteristic numbers
of A are not all real and it is desirable to give a canonical form which may
be reached by the use of real unitary (i.e., orthogonal) matrices. The
derivation of this canonical form differs only in detail from that given by
Schur. ,

The characteristic numbers N of the matrix A are determined by the
equation det(A — AE) = 0, where E is the unit matrix, and they may be
real or complex. If, as we suppose, the elements of A are real the complex
roots will occur in conjugate imaginary pairs. If all the characteristic
numbers are real the unitary transformations occurring in Schur’s deri-
vation will be real and the canonical form sought for is that given by
Schur. On the other hand, let \; = u + v and \; = p — v be a pair of
conjugate complex characteristic numbers of the matrix A (u, v real,
v # 0); on denoting by x, = a + b, (a, b, real) a characteristic vector
of A associated with the characteristic number \; we have Ax; = \x;
which implies the two equations

Aa = ua — vb; Ab = ub + va. 1)

It is clear that neither a nor b can be the zero vector; for if a = 0 then
b = 0 from the first of the two equations just given and hence x, = 0,
which is at variance with the statement that x, is a characteristic vector;
similarly, if b = 0, a = 0 from the second of the two equations and x,
would again = 0. Furthermore b cannot be a multiple of a, for then
x; = a would be a characteristic vector of A corresponding to A; and we
have just seen that this is impossible. Hence the two vectors a and b
determine a plane and if u and v are two unit orthogonal vectors in this
plane, a and b may be expressed in the form

a = ou + fv; b= yu+ v,

where we may, without lack of generality, assume a6 — By = 1 (since a
characteristic vector is indeterminate to the extent of a scalar factor).
On inserting these expressions in (1) and solving for Au and Av we obtain
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Au = [p — v(aB + v8)Ju — »(8% + 8%)v; Av = v(a®? + yHu
+ [p 4+ v(aB + vO)]v.

If now we denote by O an orthogonal matrix whose columns consist, in
the order given, of the components of u and of v and of #-2 other real vectors
forming with these a set of mutually orthogonal unit vectors, we have u
= QOe,, v = Oe,, where e; and e; are the vectors (1,0,0 ... 0) and (0, 1,
0 ... 0), respectively. It follows from equations (2), on denoting the
matrix O ~'AO by B that

Bey = [n = o(e + 10)les = o8 + ey Bew = o(el + e
+ [u + v(aB + 79)]e,

and on considering the third, fourth, ... to last components of these
vector equations we find 2 = 0 = b (p, ¢ = 3, ... n), where b} denotes
the element in the #*® row and s* column of B. Hence B has all elements
in the first two columns, under the first two rows, zero. By properly choos-
ing the unit orthogonal vectors (u, v) in the (a, b) plane the elements b; and
b? may be made one the negative of the other. This requires a? + y2 =
B2 + 82 and if this equality is not satisfied a rotation of the (u, v) vectors
through an angle
6 = 1/yarc tan(B? 4+ 82 — a? — v2)/2(af + v9)

in their plane procures it. Proceeding in this way with the remaining
pairs of conjugate complex characteristic numbers (if any) and by Schur’s
method with the real characteristic numbers we find as a canonical form,
under orthogonal transformations, of an arbitrary real matrix A the form

()

i Cp... Cn
aq c. cn
c=10 0 4&... ;= —c; ¢y = —chetc. (4)
0 0 ...
0o 0 O ...

where when, instead of a pair of conjugate complex characteristic numbers,
we have a real characteristic number the element such as ¢ or c} is also
zero. Since the characteristic numbers of a matrix are invariant under
transformations of the matrix it is clear that \; and \; are the characteristic

1 1
numbers of the fwo-rowed matrix (c; c:) , ¢t = —c} and so on.
(1 Cp
Normal Matrices.—A matrix A is said to be normal when it is commutable
with its transposed, i.e., AA’ = A’A. This property is invariant under
transformation by an orthogonal matrix. On expressing the fact that
C is normal we find* that ¢ = ¢} = = ¢, = 0; ¢; = c; and so on, so

that the canonical form for normal matrices is
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a c 0... 0
¢ 0... 0
0 0 ¢ ¢ o0...0
0 0 ¢ ¢ 0...0

2

Cy = ;e = —q, etc. (5)

Since A is normal and remains so under orthogonal transformations,
it is clear that its canonical form Cy consists of normal two-rowed matrices
(if » is odd the canonical form also contains one ‘‘one-rowed”’ matrix).
The transformation or invariant theory of real normal matrices with
respect to the group of (real) orthogonal transformations is accordingly
reduced to the case n = 2.

In order that a two-rowed matrix should be normal, it is clearly necessary
and sufficient that it should be either symmetrical (containing three
arbitrary elements) or of the form

(-5 2) Q

(containing only two arbitrary elements), the common boundary of the
domains of these two classes being the set of diagonal matrices for which
the two diagonal elements are equal, i.e., scalar matrices.

Returning to the case of an arbitrary # it is clear that the (real) sym-
metric, skew-symmetric and orthogonal matrices are normal and renrain
symmetric, skew-symmetric or orthogonal, respectively, under orthogonal
transformations so that also the two-rowed matrices of their canonical
forms must belong respectively to these three types. The skew-sym-
metric and orthogonal two-rowed matrices being characterized by the
fact that they may be written in the form (6) where « = O and o® 4 8% = 1,
respectively, we see that the above theorem on the canonical form of
normal matrices yields, not only for the symmetric but also for the
skew-symmetric and orthogonal matrices, the classical canonical forms
which in the literature, for instance Weyl,® are not obtained by a common
demonstration. We have, of course, canonical forms also for normal
matrices which do not belong to these three special types. The char-
acteristic numbers of the matrix (6) being « = 48 it is clear from (5) that
any # rowed real normal matrix is then and only then symmetric, skew-
symmetric or orthogonal if all its characteristic numbers lie on the real
axis, or the imaginary axis, or the boundary of the unit circle respectively
(only the first part of the theorem is generally known, but from the polygon
rule of Toeplitz the second part of the theorem concerning the sufficiency
can be derived). ’ :

Any normal matrix A may be represented as the product of two com-
mutable matrices P and O where P is symmetric and not-negative definite
and O is orthogonal. Conversely any matrix A which may be represented
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in this form is clearly normal. This product representation® which
corresponds to the polar representation a = pt, p 2> zero and |t| = 1, of
the ordinary complex numbers ¢ may obviously be reduced to the case

= 2 and in this case a simple calculation verifies the theorem.
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It is well known that small disturbances from equilibrium in a com-
pressible fluid medium are propagated in accordance with the wave
equation
' Ve =g/, : 1)

where ¢ is the velocity potential (i.e., the function of the codrdinates such
that £, 7, p, the component particle velocities of the medium in the x,
Op Op bqo
ox’ 0y’ Oz
of propagation. Perhaps the simplest way to deduce this equation is to
consider the two fundamental equations: (A), that which expresses the
essential continuity of the medium and (B), the hydrodynamic equation
of motion written under the approximation appropriate to the small
changes assumed. If 8p is the variation from the equilibrium density
po, We introduce the important auxiliary quantxty s, the condensation,
equal to 8p/pe. We may then write
(A) The equation of continuity

Vip = —5. (2).

(B) The equation of motion?!

9, 2 directions, are equal, respectively, to — ) and c is the velocity

¢ = —c. 3)



