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Abstract—Being able to build a map of the environment and robot, and an industrial mobile manipulation robot. Image
to simultaneously localize within this map is an essential skill for (@) shows the autonomous car Junior as well as a model
mobile robots navigating in unknown environments in absence of a parking garage that has been mapped with that car.

of external referencing systems such as GPS. This so-called ) . .
simultaneous localization and mapping (SLAM) problem has Thanks to the acquired model, the car is able to park itself

been one of the most popular research topics in mobile robotics autonomously at user selected locations in the garage.emag
for the last two decades and efficient approaches for solving this (b) shows the TPR-Robina robot developed by Toyota which
task have been proposed. One intuitive way of formulating SLAM  js also used in the context of guided tours in museums. This
is to use a graph whose nodes correspond to the poses of the robo robot uses SLAM technology to update its map whenever the

at different points in time and whose edges represent constraints - t has b h d. Robot fact h
between the poses. The latter are obtained from observations environment has been changed. RObOt manufacturers such as

of the environment or from movement actions carried out by KUKA, recently presented mobile manipulators as shown in
the robot. Once such a graph is constructed, the map can be Image (c). Here, SLAM technology is needed to operate such
computed by finding the spatial configuration of the nodes that devices in flexible way in changing industrial environments

is mostly consistent with the measurements modeled by the Figure 2 illustrates 2D and 3D maps that can be estimated by
edges. In this paper, we provide an introductory description he SLAM algorithm di din thi

to the graph-based SLAM problem. Furthermore, we discuss the - _ggorlt m discussed in this paper. L

a state-of-the-art solution that is based on least-squares emo  An intuitive way to address the SLAM problem is via
minimization and exploits the structure of the SLAM problems its so-called graph-based formulation. Solving a grapteta

during optimization. The goal of this tutorial is to enable the S| AM problem involves to construct a graph whose nodes

reader to implement the proposed methods from scratch. represent robot poses or landmarks and in which an edge
between two nodes encodes a sensor measurement that con-
|. INTRODUCTION strains the connected poses. Obviously, such constrantbe

To efficiently solve many tasks envisioned to be carried ogontradictory since observations are always affected ligeno
by mobile robots including transportation, search anduesc Once such a graph is constructed, the crucial problem is to
or automated vacuum cleaning robots need a map of thed a configuration of the nodes that is maximally consistent
environment. The availability of an accurate map allowdiier with the measurements. This involves solving a large error
design of systems that can operate in complex environmemiimization problem.
only based on their on-board sensors and without relyingThe graph-based formulation of the SLAM problem has
on external reference system like, e.g., GPS. The acauisitibeen proposed by Lu and Milios in 1997 [21]. However, it
of maps of indoor environments, where typically no GPS I9ok several years to make this formulation popular due ¢o th
available, has been a major research focus in the robotinparably high complexity of solving the error minimizati
community over the last decades. Learning maps under pgseblem using standard techniques. Recent insights irgo th
uncertainty is often referred to as the simultaneous Ipatitin  structure of the SLAM problem and advancements in the fields
and mapping (SLAM) problem. In the literature, a large Mvigrie of sparse linear algebra resulted in efficient approaches to
of solutions to this problem is available. These approaché®e optimization problem at hand. Consequently, grapledhas
can be classified either as filtering or smoothing. FilteringLAM methods have undergone a renaissance and currently
approaches model the problem as an on-line state estimati@ong to the state-of-the-art techniques with respecpted
where the state of the system consists inahgentrobot po- and accuracy. The aim of this tutorial is to introduce the SLA
sition and the map. The estimate is augmented and refineddsgblem in its probabilistic form and to guide the reader to
incorporating the new measurements as they become aeailatile synthesis of an effective and state-of-the-art gragsed
Popular technigues like Kalman and information filters [28BLAM method. To understand this tutorial a good knowledge
[3], particle filters [22], [12], [9], or information filter§7], of linear algebra, multivariate minimization, and probypi
[31] fall into this category. To highlight their incremehtatheory are required.
nature, the filtering approaches are usually referred to as
on-line SLAM methods. Conversely, smoothing approaches !l PROBABILISTIC FORMULATION OF SLAM
estimate the full trajectory of the robot from the full set of Solving the SLAM problem consists of estimating the robot
measurements [21], [5], [27]. These approaches address titagectory and the map of the environment as the robot moves
so-called full SLAM problem, and they typically rely on l¢as in it. Due to the inherent noise in the sensor measurements, a
square error minimization techniques. SLAM problem is usually described by means of probabilistic
Figure 1 shows three examples of real robotic systert@ols. The robot is assumed to move in an unknown environ-
that use SLAM technology: an autonomous car, a tour-guidgent, along a trajectory described by the sequence of random



(b)

Fig. 1. Applications of SLAM technology. (a) An autonomoustimmented car developed at Stanford. This car can acquirs imapuitilizing only its

on-board sensors. These maps can be subsequently useddooraous navigation. (b) The museum guide robot TPR-Robinaldleed by Toyota (picture
courtesy of Toyota Motor Company). This robot acquires a new mery time the museum is reconfigured. (c) The KUKA Concepbtrdé®mnirob”, a

mobile manipulator designed autonomously navigate and apérathe environment with the sole use of its on-board sengucsufe courtesy of KUKA
Roboter GmbH).

variablesx;.; = {x1,...,xr}. While moving, it acquires a r % ‘ '?rgdgg?;ksi
sequence of odometry measuremeaisr = {ui,...,ur} 20 ectony ]
and perceptions of the environmeat.r = {zi,...,z7}. 10

Solving the full SLAM problem consists of estimating the o

posterior probability of the robot’s trajectory,.r and the

map m of the environment given all the measurements plt -10

an initial positionxg: 20

p(X1:T7m | Zl:T;ul:T;X0>- (1) -50 -40 -30 -20 -10 0 10 20

The initial pOSitiOhxo defines the position of the map and9- 3. Landmark based maps acquired at the German Aerospater.Gen
this setup the landmarks consist in white circles paintedhenground that

can b_e chosen _arbltrarlly. For Con_VE”'e_nce of notationhen tare detected by the robot through vision, as shown in thenefge. The right
remainder of this document we will omity. The poses ;. image illustrates the trajectory of the robot and the estithatssitions of the

and the odometrya;. are usually represented as 2D or 3ndmarks. These images are courtesy of Udo Frese and Clistapzberg.
transformations i E(2) or in SE(3), while the map can be
represented in different ways. Maps can be parametrized as @ @ @ @
a set of spatially located landmarks, by dense represengati
like occupancy grids, surface maps, or by raw sensor measure
ments. The choice of a particular map representation depend
on the sensors used, on the characteristics of the envim@nme
and on the estimation algorithm. Landmark maps [28], [228] af %o 4> ***** > e ****** >
often preferred in environments where locally distingaisle
features can be identified and especially when cameras are
used. In contrast, dense representations [33], [12], [8] ar
usually used in conjunction with range sensors. Indepehden a @ a @
of the type of the representation, the map is defined by the
measurements and the locations where these measurements
have been acquired [17], [18]. Figure 2 illustrates threuécil
dense map representations for 3D and 2D: multilevel surfa
maps, point clouds and occupancy grids. Figure 3 shows
typical 2D landmark based map.
Estimating the posterior given in (1) involves operating iig 4. Dynamic Bayesian Network of the SLAM process.

high dimensional state spaces. This would not be tractéble i
the SLAM problem would not have a well defined structure.

This structure arises from certain and commonly done assun@row) between two nodes models a conditional dependence

tions, namely the static world assumption and the Markd¥etween them.
assumption. A convenient way to describe this structureas v In Figure 4, one can distinguish blue/gray nodes indicating
the dynamic Bayesian network (DBN) depicted in Figure 4he observed variables (heze.r andu;.7) and white nodes
A Bayesian network is a graphical model that describeswéhich are the hidden variables. The hidden variables-
stochastic process as a directed graph. The graph has oee ramdl m model the robot's trajectory and the map of the
for each random variable in the process, and a directed @dgegnvironment. The connectivity of the DBN follows a recutren



Fig. 2. (a) A 3D map of the Stanford parking garage acquiredh ait instrumented car (bottom), and the corresponding $ateléw (top). This map has
been subsequently used to realize an autonomous parkingitet{a) Point cloud map acquired at the university of Fregp(courtesy of Kai. M. Wurm)
and relative satellite image. (c) Occupancy grid map acquatethe hospital of Freiburg. Top: a bird’s eye view of the ardesttom: the occupancy grid
representation. The gray areas represent unobservedsedi® white part represents traversable space while #uk Iploints indicate occupied regions.

pattern characterized by the state transition model andéy t
observation model. The transition modelk; | x;—1,u:) is -
represented by the two edges leadingctaand represents the
probability that the robot at timeis in x; given that at time

t—1 it was inx; and it acquired an odometry measuremer

Ug.

The observation model(z; | x;, m;) models the probabil-
ity of performing the observation; given that the robot is at
locationx; in the map. It is represented by the arrows enterin
in z;. The exteroceptive observatian depends only on the _
current locationx; of the robot and on the (static) map. T
Expressing SLAM as a DBN highlights its temporal structure, _ N
and therefore this formalism is well suited to describe ritig f:'gurfkcofr?iggé?pﬁnfeo"se(fﬁs(émiﬁg La dfé;;%;ifgf;‘;e:g:%&”o
processes that can be used to tackle the SLAM problem. qptimization. The maps are obtained by rendering the laserssaecording
o the robot positions in the graph.

An alternative representation to the DBN is via the so-callé
“graph-based” or “network-based” formulation of the SLAM

problem, that highlights the underlying spatial structulre o i )
graph-based SLAM, the poses of the robot are modeled (59nt-end and it is heavily sensor dependent, while thersé:co

nodes in a graph and labeled with their position in theart is called back-end and relies on an abstract repreagenta
environment [21], [18]. Spatial constraints between pabas ©f the data which is sensor agnostic. A short example of a
result from observations; or from odometry measurementgront-end for 2D laser SLAM is described in Section V-A.
u; are encoded in the edges between the nodes. Morelfipthis tutorial we will describe an easy-to-implement but
detail, a graph-based SLAM algorithm constructs a graph defficient back-end for graph-based SLAM. Figure 5 depicts an

of the raw sensor measurements. Each node in the grafiforrected pose-graph and the corresponding corrected on

represents a robot position and a measurement acquired at

that position. An edge between two nodes represents a lspatia IIl. RELATED WORK

constraint relating the two robot poses. A constraint csiasi There is a large variety of SLAM approaches available in
in a probability distribution over the relative transfortioas the robotics community. Throughout this tutorial we focus o
between the two poses. These transformations are eithar-odgraph-based approaches and therefore will consider such ap
etry measurements between sequential robot positionseor proaches in the discussion of related work. Lu and Miliod [21
determined by aligning the observations acquired at the tweere the first to refine a map by globally optimizing the system
robot locations. Once the graph is constructed one seeksofoequations to reduce the error introduced by constraints.
find the configuration of the robot poses that best satisfi€utmann and Konolige [11] proposed an effective way for
the constraints. Thus, in graph-based SLAM the probleoonstructing such a network and for detecting loop closures
is decoupled in two tasks: constructing the graph from thehile running an incremental estimation algorithm. Sirtvent,
raw measurements (graph construction), determining th&t mmany approaches for minimizing the error in the constraint
likely configuration of the poses given the edges of the grapletwork have been proposed. For example, Hovedral. [15]
(graph optimization). The graph construction is usualljech apply relaxation to localize the robot and build a map. Frese



et al. [8] propose a variant of Gauss-Seidel relaxation called
multi-level relaxation (MLR). It applies relaxation at fifent
resolutions. Dellaert and Kaess [5] were the first to exploi
sparse matrix factorizations to solve the linearized pobl
in off-line SLAM. Subsequently Kaesst al. [16] presented //
iISAM, an on-line version that exploits partial reorderings -
compute the sparse factorization. B / \
Recently, Konoligeet al. [19] proposed an open-source |
implementation of a pose-graph method that constructs the l -
linearized system in an efficient way. Olsen al. [27] pre- /
sented an efficient optimization approach which is based on
the stochastic gradient descent and can efficiently coenest ‘ \
large pose-graphs. Grisettit al. proposed an extension of ! :
Olson’s approach that uses a tree parametrization of thesnod - - * - O
in 2D and 3D. In this way, they increase the convergence
speed [10].
GraphSLAM [32] applies variable elimination techniques tEig. 6. A pose-graph representation of a SLAM process. Ewede in the

reduce the dimensionality of the optimization problem. Th&aph corresponds to a robot pose. Nearby poses are codigceziges that
ATLAS framework [2] constructs a two-level hierarchy ofmodel spatial constraints between robot poses arising fromsumements.

graphs and employs a Kalman filter to construct the bottoR§gese:—1+ between consecutive poses model odometry measurements,
N . while the other edges represent spatial constraints griiom multiple
level. Then, a global optimization approach aligns the llocgpservations of the same part of the environment.
maps at the second level. Similar to ATLAS, Estrastaal.
proposed Hierarchical SLAM [6] as a technique for using
independent local maps. needs to determine the most likely constraint resultingnfro
Most optimization techniques focus on computing the bedp observation. This decision depends on the probability
map given the constraints and are called SLAM back-end#stribution over the robot poses. This problem is known
In contrast to that, SLAM front-ends seek to interpret th@S data association and is usually addressed by the SLAM
sensor data to obtain the constraints that are the basis ff@nt-end. To compute the correct data-association, &-&ad
the optimization approaches. Olson [25], for example, prgsually requires a consistent estimate of the conditional p
sented a front-end with outlier rejection based on spect@er the robot trajectory(xi.z | zi.7, ur.r). This requires
clustering. For making data associations in the SLAM front0 interleave the execution of the front-end and of the back-
ends statistical tests such as tfetest or joint compatibility end while the robot explores the environment. Therefore, th
test [23] are often applied. The work ofilshteret al. [24] accuracy and the efficiency of the back-end is crucial to the
aims at building an integrated SLAM system for 3D mappinglesign of a good SLAM system. In this tutorial, we will
The main focus lies on the SLAM front-end for findingnot describe sophisticated approaches to the data assnciat
constraints. For optimization, a variant of the approach &foblem. Such methods tackle association by means of spectr
Lu and Milios [21] for 3D settings is applied. The method§lustering [27], joint compatibility branch and bound [28}

proposed in this paper can be effectively applied to all ghe§ackiracking [13]. We rather assume that the given frouk-en
front-ends. provides consistent estimates.

If the observations are affected by (locally) Gaussianeois

and the data association is known, the goal of a graph-based
IV. GRAPH-BASED SLAM mapping algorithm is to compute a Gaussian approximation of

A graph-based SLAM approach constructs a simplified esthe posterior over the robot trajectory. This involves catirg
mation problem by abstracting the raw sensor measuremetits. mean of this Gaussian as the configuration of the nodes
These raw measurements are replaced by the edges inthisd maximizes the likelihood of the observations. Oncs thi
graph which can then be seen as “virtual measurementgtean is known the information matrix of the Gaussian can
More in detail an edge between two nodes is labeled witle obtained in a straightforward fashion, as explained in
a probability distribution over the relative locations béttwo Section IV-B. In the following we will characterize the task
poses, conditioned to their mutual measurements. In genefading this maximum as a constraint optimization problem.
the observation modeb(z; | x;,m;) is multi-modal and We will also introduce parts of the notation illustrated in
therefore the Gaussian assumption does not hold. This mekigure 6.
that a single observatios, might result in multiple potential  Let x = (x;, ... ,x7)T be a vector of parameters, where
edges connecting different poses in the graph and the graphdescribes the pose of nodd et z;; and(?;; be respectively
connectivity needs itself to be described as a probabilitie mean and the information matrix of a virtual measurement
distribution. Directly dealing with this multi-modalitynithe between the nodé and the nodg. This virtual measurement
estimation process would lead to a combinatorial explosion is a transformation that makes the observations acquiced fr
the complexity. As a result of that, most practical appreschi: maximally overlap with the observation acquired frgm_et
restrict the estimate to the most likely topology. Thus, ong;(x;,x;) be the prediction of a virtual measurement given a



A. Error Minimization via lterative Local Linearizations

If a good initial guessk of the robot’s poses is known, the
numerical solution of Eqg. (5) can be obtained by using the
popular Gauss-Newton or Levenberg-Marquardt algorithms.
The idea is to approximate the error function by its first orde
Taylor expansion around the current initial guess

_ - eij ()\)(7 —+ AX,;, )v{j + AX]') = eij ()u( + AX) (6)
_ - g ~ eij + JijAX. (7)
-
: . . . f.
@; 2ij Here,J,; is the Jacobian oé;;(x) computed inx ande;; def
e;j(X). Substituting Eq. (7) in the error ternk;; of Eq. (4),
we obtain:
Fij ()u( + AX)
= ei(x+Ax) Qe (x+ A 8
Fig. 7. Aspects of an edge connecting the vertgxand the vertexx;. eij (X + Ax) - s€is (X + Ax) (8)
This edge originates from the measurement. From the relative position ~ (e +Ji; Ax) Q4 (e + Jij Ax) )
of the two nodes, it is possible to compute the expected measutes; ; _ TO. .o TO. . T.. T1T ). ...
that represents; seen in the frame of;. The errore;; (x;,x;) depends on eij{tijei; +2 ;2 Ji; Ax + Ax™ J;;;Ji; Ax(10)
the displacement between the expected and the real measurémestige is cij b,; H,;
fully characterized by its error functioa;; (x;,x;) and by the information T
matrix €2;; of the measurement that accounts for its uncertainty. = ¢j +2bj;Ax+ Ax H;;Ax (11)

With this local approximation, we can rewrite the function

configuration of the nodes; andx;. Usually this prediction F(x) in Eq. (4) as
is the relative transformation between the two nodes. Tge o px | Ax) = S Fi(%+ Ax) (12)
likelihood 1;; of a measurement;; is therefore !

(i,7)€eC
lij X [Zij — iij (Xi, Xj)]TQij [Zij — ilJ (Xi, Xj)]. (2) ~ Z Cij —+ QbijAX + AXTHijAX (13)
. . i,j)€C
Let e(x;,x;,2;;) be a function that computes a difference e T T
= c+2b Ax+ Ax  HAx. (14)

between the expected observatipn and the real observation

z;; gathered by the robot. For simplicity of notation, we Wi”The quadratic form in Eq. (14) is obtained from Eq. (13) by
encode the indices of the measurement in the indices of %tingc =Y ¢ b=Yb,, andH = S H,,. It can be
= ijs - 171 - 7"

error function minimized in Ax by solving the linear system
€ (xi,%x;) = zij — 24 (X4, X;). 3)
Figure 7 illustrates the functions and the quantities thay p
a role in defining an edge of the graph. l@tbe the set of The matrixH is the information matrix of the system, since
pairs of indices for which a constraint (observatiangxists. it is obtained by projecting the measurement error in the

The goal of a maximum likelihood approach is to find thepace of the trajectories via the Jacobians. It is sparse by
configuration of the nodes* that minimizes the negative log construction, having non-zeros between poses connected by

HAx* = -b. (15)

likelihood F(x) of all the observations constraint. Its number of non-zero blocks is twice the numbe
T of constrains plus the number of nodes. This allows to solve
Fix) = Z e {dijei;, (4) Eq. (15) by sparse Cholesky factorization. An efficient yet

(i.y)ec Fi; compact implementation of sparse Cholesky factorizateam c

be found in the library CSparse [4].
. The linearized solution is then obtained by adding to the
x" = argminF(x). (5) initial guess the computed increments

X

In the remainder of this section we will describe an approach x* = %4+ Ax". (16)
to solve Eg. 5 and to compute a Gaussian approximation
of the posterior over the robot trajectory. Whereas the prdhe popular Gauss-Newton algorithm iterates the linetidaa
posed approach utilizes standard optimization metholls, lin Eqg. (14), the solution in Eq. (15), and the update step in
the Gauss-Newton or the Levenberg-Marquardt algorithndsg. (16). In every iteration, the previous solution is used a
it is particularly efficient because it effectively explithe the linearization point and the initial guess.
structure of the problem. The procedure described above is a general approach to
We first describe a direct implementation of traditional homultivariate function minimization, here derived for thzesial
linear least-squares optimization. Subsequently, wedhice case of the SLAM problem. The general approach, however,
a workaround that allows to deal with the singularities ia thassumes that the space of parameteis Euclidean, which is
representation of the robot poses in an elegant manner. not valid for SLAM and may lead to sub-optimal solutions.

thus, it seeks to solve the following equation:



B. Considerations about the Structure of the Linearized Sydlgorithm 1 Computes the meax™ and the information
tem matrix Hx of the multivariate Gaussian approximation of the

According to Eq. (14), the matri{ and the vectob are robot'pos% posteirlor fr.or.n. a graph of constraints.
obtained by summing up a set of matrices and vectors, one Rgauire: X = Xy.ro initial guess.C = {{e;;(*), )}
every constraint. Every constraint will contribute to tlystem constralins _ . . , ,
with an addend term. Th&tructureof this addend depends OnEnsu.re: X" new SOIU“Q”’H new qurmatlon matrix
the Jacobian of the error function. Since the error function// f|_nd the maximum likelihood solution
of a constraint depends only on the values of two nodes, theVhile —~converged do

o . b+0 H+O0
Jacobian in Eg. (7) has the following form:
a-(7) g for all (e;;, ;) € C do

/I Compute the Jacobiand;; and B;; of the error

T = |00 Ay 00 By 00f an) A g s
node d node J /I compute thé Contribution of this constraint to the
HereA,;; andB;; are the derivatives of the error function with linear system
respect tox; andx;. From Eq. (10) we obtain the following Hy; += ATQ A, Hpj) += ATQ,B;;
structure for the block matrifl;;: Hj; += Bj;QiA4; Hi;; += B;;Qi;Bi;

/I compute the coefficient vector
by += AjQje; by += BQjje;

A;J;QZJA” .- AEQ”B” end for - .
H; = : : (18) /}/IkeeE)r theIflrst node fixed
T T 1 +=
BjjijAy - BjQBy; /I solve the linear system using sparse Cholesky factor-
ization

Ax + solve(H Ax = —b)
/I update the parameters

AiTjQijeij X += Ax
bij = . (19) el;]d le'llle
o X" X
B;€Yijei; H* + H
: Il release the first node
. - . . Hrn] =1
For simplicity of notation we omitted the zero blocks. return  (x*, H*)

Algorithm 1 summarizes an iterative Gauss-Newton proce
dure to determine both the mean and the information matrix
of the posterior over the robot poses. Since most of the | gast Squares on a Manifold
structures in the system are sparse, we recommend to use
memory efficient representations to store the Hes#kof A common approach in numeric to deal with non-Euclidean
the system. Since the structure of the Hessian is known gpaces is to perform the optimization on a manifold. A mani-
advance from the connectivity of the graph, we recommendf@d is a mathematical space that is not necessarily Euatide
pre-allocate the Hessian once at the beginning of the bt on a global scale, but can be seen as Euclidean on a local
and to update it in place by looping over all edges whenevegale [20]. Note that the manifold-based approach destribe
a new linearization is required. Each edge contributes ¢o there is similar to the way of minimizing functions #$0(3)
blocks Hy;;, Hy;, Hyjy, and Hyj; and to the blocksb;,, as described by Taylor and Kriegman [30].
andby; of the coefficient vector. An additional optimization In the context of the SLAM problem, each parameter
is to compute only the upper triangular part Hf, since it block x; consists of a translation vecter and a rotational
is symmetric. Note that the error of a constraif depends componentw;. The translationt; clearly forms a Euclidean
only on the relative position of the connected posesand space, while the rotational componentsspan over the non-
x;. Accordingly, the erroiF'(x) of a particular configuration Euclidean 2D or 3D rotation grougO(2) or SO(3). To
of the pose is invariant under a rigid transformation of allavoid singularities, these spaces are usually describexhin
the poses. This results in Eq. 15 being under determined. eer-parametrized way, e.g., by rotation matrices or quate
numerically solve this system it is therefore common pcacti nions. Directly applying Eqg. (16) to these over-paramettiz
to constrain one of the incremensx,, to be zero. This can be representations breaks the constraints induced by the over
done by adding the identity matrix to tHé" diagonal block parametrization. The over-parametrization results iritathl
H[kk]. Without loss of generality in Algorithm 1 we fix the degrees of freedom and thus introduces errors in the solutio
first nodex;. An alternative way to fix a particular node ofTo overcome this problem, one can use a minimal represen-
the pose-graph consists in suppressingitieblock row and tation for the rotation (like, e.g., Euler angles in 3D). §hi
the £** block column of the linear system in Eq. 15. however, is subject to singularities. The singularitiesthie



2D case can be easily recovered by normalizing the angle,
however in 3D this procedure is not straightforward.

An alternative idea is to consider the underlying space as
a manifold and to define an operatét that maps a local
variation Ax in the Euclidean space to a variation on the
manifold, Ax — x B Ax. We refer the reader to the work of
Hertzberg [14] for the mathematical details. With this ater,

a new error function can be defined as
(A%, A%;) T e;(x B AR, %, HAK;) (20)
= e (XxHAX) ~&; + J;;A%,(21)

where x spans over the original over-parametized spacgh 2. upiee e i 0 hepeina st 11l s o

for instance quaternions. The terx is a small increment

around the original positiott and is expressed in a minimal

representation. With a straightforward extension of the notation, we can
As an example, in 3D SLAM a good choice of thdnsert Eq. (21) in Eq. (9). This leads to the following linear

parametrization of the rotations is twector partof the unit system:

quaternion. In more detail, one can represent the incresment

A% as 6D vectorsAx” = (At’ §7), where At denotes

the translation andj’ = (Ag, Ag, Ag.)" is the vector since the incrementd* are computed in the local Euclidean
part of thevTU”'t 9Tui‘tTem'°” representing the 3D rotatiogyroundings of the initial guess they need to be re-mapped
Converselyx™ = (t* q" ) uses a quaternioq to encode the intg the original over-parametrized space by eoperator.

rotational part. Thus, the operatiér can be expressed by firstaccordingly, the update rule of Eq. (16) becomes
convertingAq to a full quaternionAq and then applying the

transformationAx” = (At” Aq”) to %. In the equations x" = xHAX" (27)
describing the error minimization, these operations caelyi
be encapsulated by tH& operator. The Jacobiaiy;j can be
expressed by

HAX* = -—b. (26)

Thus, formalizing the minimization problem on a manifold
consists of first computing a set of increments in a local
Euclidean approximation around the initial guess by Eq),(26
and second accumulating the increments in the global non-
Euclidean space by Eq. (27). Note that the linear system
computed on a manifold representation has the same steuctur
_ ) _ ) of the linear system computed on an Euclidean space. One
Since in the previous equation depends only omMAX; and  can easily derive a manifold version of a graph minimization
Ax; we can further expand it as follows: from a non-manifold version, only by defining &h operator
3. 23) and its JacobiaM; w.r.t. the corresponding parameter block.
) . . . .
Algorithm 2 provides a manifold version of the Gauss-Newton
method for SLAM.
... Oeij(XHAX) ... Oeij(XH AZX) The HessianH of the manifold problem no longer rep-
0AX; A%=0 OAX; Az=0 resents the information matrix of the trajectories but a th
A, B, trajectory increment&x. To obtain the information matrix of
the trajectory Algorithm 2 computeH in the original space

Using the rule for the partial derivatives and exploiting thof the posesx.
fact that the Jacobian is evaluated &x = 0, the non-zero

v 0AX

(22)
AX=0

blocks become: V. PRACTICAL APPLICATIONS
Oejj(x BAX;)  Oei(x) x;HAX; 24 In this section we describe some applications of the pro-
OAX; - o%x;  0AX, A0 (24) posed methods. In the first scenario we describe a complete
T 2D mapping system, and in the second scenario we briefly de-
. - Yoo M: scribe a 3D mapping system and we highlight the advantages
Oy XBAX;) _ Oey(X) X;BAX; (25) of a manifold representation.
0AX; 0% ; 0AX; |az_0
—_——  ————
Bij M; A. 2D Laser Based Mapping

Accordingly, one can easily derive from the Jacobian not We processed the data recorded with the mobile robot
defined on a manifold of Eq. 17 a Jacobian on a manifokhuipped with a laser range finder illustrated in Figure 8 at
just by multiplying its non-zero blocks with the derivatieé the Intel Research Laboratory in Seattle. This data cansist
the B operator computed it; andx;. of odometry measurements describing 2D transformations



Algorithm 2 Manifold version of Algorithm 1. While this al-

gorithm has the same computational complexity, it is substa

tially more robust than the non-manifold version, espécial
the 3D case.
Require: x =

x1.p: initial guess.C = {(e;;(-), Qi;)}:
constraints
Ensure: x* : new solution,H* new information matrix
/I find the maximum likelihood solution
while —converged do
/I Compute the auxiliary Jacobiardd;.;- over the mani-
fold
for all x;, € x do

end for
b+ 0 H«o0
for all (e;;,9Q;;) € C do
/I Compute the Jacobiand;; and B;; of the error

function

Ay 2509 By« ]

I Project the Jacobians through the manifold
Aij — Az]Mz Eij < Biij

/I compute the nonzero Hessian blocks
Hjy += ALQ;A; Hjj; += ALQ;By;
Hyy += B;l;-ﬂiinj Hyj; += Bgﬂisz‘j
/I compute the coefficient vector

by += AfQije; by += BjQjey;

end for
/I keep the first node fixed
Hypy+=1

/I solve the linear system using sparse Cholesky factor-
ization
A% + solve(H A% = —b)
/I update the parameters
for all x; € x do
end for
end while
X" x
[/l the maximum is found, now compute the Hessian in the
original space
H" +~0
for all (eij, Q”> eC do
Hp += AL QA
H[JZ] += BijQiinj
end for
return

Hyjj) += Bj;8:;By;

(x*, H")

Fig. 9.
top of the resulting map. Right: The optimized pose graph ardésulting
consistent map.
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Intel Research Lab. Left: Unoptimized pose graph layed on

corresponding to the movements of the platform between
consecutive time frames, and 2D laser range data.
The graph is constructed in the following way:

« Whenever the robot moves more than 0.5 meters or

rotates more than 0.5 radians, the algorithm adds a new
vertex to the graph and labels it with the current laser
observation.

This laser scan is matched with the previously acquired
one to improve the odometry estimate and the corre-
sponding edge is added to the graph. We use a variant of
the scan-matcher described by Olson [26].

When the robot reenters a known area after traveling for a
long time in a previously unknown region, the algorithm
seeks for matches of the current scan with the past
measurements (loop closing). If a matching between the
current observation and the observation of another node
succeeds, the algorithm adds a new edge to the graph.
The edge is labeled with the relative transformation that
makes the two scans to overlap best. Matching the current
measurement with all previous scans would be extremely
inefficient and error prone, since it does not consider
the known prior about the robot location. Instead, the
algorithm selects the candidate nodes in the past as the
ones whos&c marginal covariances contains the current
robot pose. These covariances can be obtained as the
diagonal blocks of the inverse of a reduced Hes$iagy,.

H,.q is obtained fromH by removing rows and the
columns of the newly inserted robot podd,.q is the
information matrix of all the trajectory when assuming
fixed the current position.

The algorithm performs the optimization whenever a loop
closure is detected.

At the end of the run, the graph consists 10802 nodes
and 3,546 edges. Even for this relatively large problem the
optimization can be carried on in 100 ms on a standard laptop
(Intel Core2@2.4 GHz). Since the robot travels at a veloafity
around 1 m/s the graph optimization could be executed after
adding every node instead of after detecting a loop closure.

Figure 9 shows the effect of the optimization process on the
trajectory, while Figure 10 illustrates the uncertaintijpsies.
The robot is located in the region where the ellipse become
small. Note that the poses i$iF(2) do not need to be over
parameterized, so in this case there is no advantage irinugjli



Fig. 11. Pose-graph obtained by simulating a robot moving ophere.
Left: Initial configuration. Right: After optimizing the pesgraph the sphere
has accurately been recovered by Algorithm 2.
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Fig. 10. Pose uncertainty estimate for a real-world data set. 1 04 T
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B. 3D Laser Based Mapping Iteration

E)ftending to 3!3 the SLAM. algorithm presented in theig 12 Evolution of the erroF(x) for Gauss-Newton optimization with
previous section is rather straightforward. One has only Eoler angles and with manifold linearization to the 3D sphaataset.

replace the 2D scan matching and loop closure detection

with their 3D counterparts that operate on 3D point cloud§gre 12 shows the evolution of the error during the iterati
instead than on single laser scans. In our implementation W€ ihe two approaches. First both approaches are able to
utilize the popular ICP algorithm [1] and for determining@th yecrease the error. However, not appropriately consigerin

loop closures we use the algorithm by Stea#ral. [29]. he singularities leads to a divergence of Algorithm 1 while
Additionally, each node of the graph and each constrale'sl|vA|gorithm 2 converges to the right solution.

in SE(3). Typical outputs of this algorithm are illustrated in
Figures 2(a) and (b).
The minimum number of parameters required to represent VI. CONCLUSIONS

an element oS E5(3) is 6, a possible choice consists in a 3D |, thig paper we presented a tutorial on graph-based SLAM.
translation vector plus the three Euler angles. Utlizing t o aim was to provide the reader with sufficient details and
parametrization leads to Algorithm 1. However, this minimg,qjqhts to allow for an easy implementation of the proposed
representation is subject to singularities that can bed@ebi yo1hods. The algorithms presented in this paper can be used
by utilizing an over-parametrized state space. AlterB#IV .5 5 pyilding blocks of more sophisticated methods, however

one can describe the relative perturbations of the optioZa ytimized implementations of these algorithms can deah wit
problem Ax in a minimal representation while leaving thesurprisingly large problems.

poses in the original over-parametrized space. This leads t
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where® is the motion composition operator

Qi(tj))
i DX, = 40
Xi DX <Qi - qj (40)
and the operatof-)[;.) selects the first 6 elements of its vector
argument.
The Jacobians of the error function are:
Oe;;(x)
A =1 41
Oe;;(x)
B, = —1—. 42

The @ operator mapsA%, = (A%, ,Ag’) to the original
space
At;
x HAX, = x;&® Ag;
V1=|[lAagl?
where At; denotes the translation andAgq' =
(Aqyc,Aqy,AqZ)T is the vector part of the unit quaternion

representing the 3D rotation and thiigdg;| < 1. The
Jacobians of the manifold in the 3D case are given by

;o (43)

M= S22 (44)
8Axi AR=0
CHHAX

M= B2 (45)
IAX; | az—o
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