
ar
X

iv
:1

80
2.

00
22

2v
1

 [
m

at
h.

C
O

]
 1

 F
eb

 2
01

8

THE HACKBUSCH CONJECTURE ON TENSOR FORMATS — PART

TWO

WERONIKA BUCZYŃSKA

Abstract. We prove a conjecture of W. Hackbusch in a bigger generality than in our
previous article. Here we consider Tensor Train (TT) model with an arbitrary number
of leaves and a corresponding "almost binary tree" for Hierarchical Tucker (HT) model,
i.e. the deepest tree with the same number of leaves. Our main result is an algorithm
that computes the flattening rank of a generic tensor in a Tensor Network State (TNS)
model on a given tree with respect to any flattening coming from combinatorics of the
space. The methods also imply that the tensor rank (which is also called CP-rank) of
most tensors in a TNS model grows exponentially with the growth of the number of
leaves for any shape of the tree.

1. Introduction.

In this article we study the variety of tensor network states TNS(T, f) ⊂ V1⊗· · ·⊗Vn for
a given tree, a function on its edges, vector spaces Vi assigned to the leaves following [4].

Our goal is to build some tools that help to compare tensor network spaces with each
other. We compute the maximum possible flattening rank of a tensor in a given TNS
model with respect to a fixed subset of leaves which encodes the flattening. The central
case of this paper is a version Hackbusch conjecture: two models are both defined by a
constant function on trees with the same number of leaves one is Train Track model and
the other is Hierarchical model on a almost perfect binary tree.

We also obtain a bound and an algorithm calculating the maximum flattening rank of
a tensor with respect to a subset of leaves for a non-constant function defining the TNS
space.

The main result of [2] is an exact bound for a flattening rank of a tensor. It is obtained
from flattenings that are divisions of the initial flattening. Our upper bound is a special
case of this result.

In numerical tensor analysis it is an important problem to know how fast can the
dimension of flattenings of tensors grow with the size of the tree. The main result of [3]
is a bound exponential in the number of leaves for HT model, that is on almost perfect
binary tree. In the paper [5] Theorem 1 says that such a bound holds for Train Track
model. With our technique we obtain exponential lower bound for tensors in a TNS
defined by any binary tree and constatnt function.

2. Notation and the vertex definition.

For a set S, its size is |S|. A brief notation for the set {1, . . . , j} is [j].
Given a tree T, we have the set of vertices V(T), the set of edges E(T), the set of leaves

L(T). When the tree is clear, we omit it. Let e ∈ E be an edge of the tree. Removing e

from the tree yields two trees – we say one is to the left of e, the other to the right. By

Date: 1 February 2018.
W. Buczyńska is supported by Polish National Science Center (NCN), project 2013/11/D/ST1/02580.

1

http://arxiv.org/abs/1802.00222v1

2 W. BUCZYŃSKA

←
e we denote the set of leaves of the tree to the left of the edge e. If v ∈ V is a vertex,
then ↓ v is the set of leaves of which v is an ancestor.

Definition 2.1. Given a binary tree T with n leaves, we pick a vector space Vi for each
leaf. We also fix an integer-valued function f : V(T) → N on the vertices of the tree. We
define the variety of tensor network states TNS(T, f) ⊂ V1 ⊗ · · · ⊗ Vn in the following
way: t ∈ TNS(T, f) if and only if there exist linear subspaces Uv of dimension at most
f(v), such that:

• Ui ⊂ Vi, if v = i is one of the leaves,
• Uv ⊂ Uv1 ⊗ Uv2 whenever v is not a leaf and v1 and v2 are its children,
• t ∈ Uv, if v is the root of the tree.

3. The edge definition of TNS.

The vertex definition of the Tensor Network Space encodes the space by a tree, a
natural-valued function on vertices, and vector spaces on leaves. We rewrite this defini-
tion: the function has the same values as before assigned to the edges instead of vertices.
Also, we remove the root and the value assigned to it. In our previous article Proposition
2.6 of [1], we explain that in this way we define the same variety:

Proposition 3.1. Let f , T and the order of leaves be as in Definition 2.1. The variety

TNS(T, f) is the locus of tensors t ∈ V1 ⊗ · · · ⊗ Vn, such that for any vertex v ∈ V we

have:

dim









⊗

l∈{↓v}

Vl





∗

xt



 ≤ f(v).

3.1. The edge definition versus vertex definition of TNS. We rewrite the definition
of the TNS(T, f). Given a tree T and a function f on vertices, we construct function g

from edges to the natural numbers. Let vs(e) and vf (e) be the two ends of the edge e so
that vf (e) is the father of vs(e). We set g(e) := f(vs(e)).

Moreover, we remove the root vr of the tree. The two edges e1 and e2 adjacent to
it become one edge er. The value g(er) := min(g(e1), g(e2)) = min(f(vs(e1)), f(vs(e2))
equal to the minimum of the values assigned to the two old edges or equivalently two
sons of the root.

This does not change the TNS(T, f), since the value at the root was irrelevant anyway
— see Proposition 3.1.

Definition 3.2. Let T be a tree and f : E(T) → N a natural valued function on the set
of edges of the tree T. Then TNS(T, f) is the set of tensors t ∈ V1 ⊗ · · · ⊗ Vn such that

dim









⊗

l∈{
←

e }

Vl





∗

xt



 ≤ f(v).

Lemma 3.3. Given a tensor t ∈ V1 ⊗ . . .⊗ Vn and a subset A ⊂ L of the leaves it is not

important if we hook t in A or its complement

dim (⊗l∈AVl)
∗
xt = dim (⊗l /∈AVl)

∗
xt

Proof. This follows from the properties of the rank – the rank of a matrix and its transpose
is the same. �

THE HACKBUSCH CONJECTURE ON TENSOR FORMATS — PART TWO 3

Remark 3.4. In the edge definition of the TNS, as we said before, we do not have the
root of the tree. But we can place the root on any edge we like and go back to the vertex
definition.

Definition 3.5. Given a tree T and a subset A ⊂ L of the leaves of the tree, we define
a minimal monochromatic cut as a minimal set of edges, such that each tree in the
forest obtained by removing those edges from the initial tree has all leaves either in the
set A or in its complement. We denote by MinMonoCuts (T,A) the set of all minimal
monochromatic cuts. By

MonoSize |T,A|

we denote the size of a minimal monochromatic cut.

Definition 3.6. Given a tree T and a subset of A ⊂ L of the leaves of the tree, we define
maximal colour cut as a maximal set of edges, such that neither of the trees in the
forest obtained by removing those edges from the initial tree has all the leaves in A or
in its complement. We denote by MaxColorCuts (T,A) the set of all maximal colour
cuts.

Remark 3.7. Neither minimal monochromatic cut or maximal colour cut are unique for
a given tree and a subset of leaves.

Example 3.8. The following tree with 12 leaves and the dark/white division of leaves
has a unique monochromatic cut:

The colour cut in this case is not unique:

A simple example with a non-unique monochromatic cut:

Proposition 3.9. Let T be a tree with a subset of leaves A. Let M ∈
MinMonoCuts (T,A) be a minimal monochromatic cut and C ∈ MaxColorCuts (T,A)
a maximal colour cut, then

|M| = |C|+ 1.

For consistency, if MaxColorCuts (T, A) is empty, we replace |C| in the above formula

by −1.

Proof. We prove two inequalities. First we remove all the edges of C from the tree T to
obtain a forest of |C|+ 1 trees. Each tree has some leaves in the set A and some outside

4 W. BUCZYŃSKA

of it. Therefore, each tree must contain an element of M – our minimal mono cut. This
proves that

|M| > |C|+ 1.

For the other inequality, we use induction on the size of the tree T and the size of the set
A. Let us choose a minimal monochromatic cut M.

If the set A or its complement are empty, we stop here: there is no maximal colour
cut, so the right side is 0. There is exactly one minimal monochromatic cut M = ∅, so
left side is also 0.

For the induction step, the set A and its complement are non-empty. We find a trivalent
vertex v (not a leaf), such that the forest of three trees obtained by removing the vertex
v consists of

• a tree T1, attached to v by edge e1, with all leaves in A,
• a tree T2, attached to v by edge e2, with all leaves outside of A,
• a tree T3, attached to v by edge e3.

Such a vertex exits: let e3 be "an initial edge" in C, that is removing e3 from T, yields
two trees, one with no edges in C, the other is T3.

The new smaller tree for the induction step is T3 and v becomes its leaf. The new
subset of leaves is A3 defined as

A3 =

{

A ∩ V(T3) if e1 ∈ M,

{v} ∪ (A ∩ V(T3)) if e2 ∈ M.

This new leaf v is in A3 provided that the minimal cut contains edge e2, and is outside
of A3, if it contains e1. We note that M3 = M∩E(T3) is a minimal monochromatic cut
for the tree T3 and C3 = C ∩ E(T3) is a maximal colour cut for T3. Finally, |C3| = |C| − 1
and |M3| = |M| − 1, and by induction |M3| 6 |C3|+ 1. This ends the proof.

�

Fact 3.10. Let t1 ∈ V1 = W1 ⊗W ′
1 and t2 ∈ V2 = W2 ⊗W ′

2. Then

(W1 ⊗W2)
∗
x(t1 ⊗ t2) = W ∗

1 xt1 ⊗W ∗
2 xt2

Lemma 3.11 (Lemma 4.1, [1]). Fix any subset A ⊂ L(T) of leaves of a tree T, and

choose two disjoint subtrees T′ and T′′ and set A′ = A ∩ L(T′) and A′′ = A ∩ L(T′′).
Define q′ := dim

((
⊗

l∈A′ Vl

)∗
xt′
)

and q′′ := dim
((
⊗

l∈A′′ Vl

)∗
xt′′
)

. Then there exists a

tensor t = t′ ⊗ t′′ ∈ TNS(T, r) such that

dim

((

⊗

l∈A

Vl

)∗

xt

)

= q′q′′.

3.2. Optimal function.

Definition 3.12. The function f : E → N on edges of the tree is optimal if for every
edge e ∈ E(T) the flattening rank of a generic tensor t ∈ TNS(T, f) at e is equal to f(e):

dim

(

⊗

l∈←−e

V ∗l xt

)

= f(e).

Remark 3.13. The other way of saying the function f is optimal is that it is the smallest
function that gives the variety in question. In particular, for every edge e the bound f(e)
is attained for a general tensor in the TNS, for the flattening associated to the edge in
question.

THE HACKBUSCH CONJECTURE ON TENSOR FORMATS — PART TWO 5

The algorithm that transforms a function into an optimal one is described in the proof
of Proposition 2.7 of [1]. From a given function we construct a function f ′, which is the
optimal function and defines the same TNS as the function f .

Fact 3.14. The constant function is optimal if its value is not bigger then the dimension

of the vector spaces at the leaves of the tree.

3.3. An upper bound on the rank.

Theorem 3.15. Let T be a tree, L its set of leaves, f : E → N a function defining a

TNS. Let A be a subset of leaves of the tree T and let M be a monochromatic cut, i.e.

a subset of edges such that after removing them from the tree we get a forest of trees,

each with all leaves either in A or L(T) \ A. Then the flattening rank of any tensor in

TNS(T, f) with respect to A is not bigger then
∏

e∈M f(e).

Proof. To prove the inequality, let t ∈ TNS(T, f) be a tensor and let e ∈ M be an initial
edge of M. By this we mean that removing e from T yields two trees:

• a tree T1 with all leaves either in or outside of A and
• a tree T2 which is the rest of the tree.

Let us place the root of the tree T on the edge e. We denote by U1 and U2 the vector
spaces at the two ends of e — roots of respectively T1 and T2. Thus, by definition

t ∈ U1 ⊗ U2. So we write t =
∑f(e)

i=1 αi ⊗ βi where αi ∈ U1 is a basis of U1 and βi ∈ U2 a
basis of U2.

Let us write A1 = L(T1) ∩ A and A2 = L(T2) ∩ A, A∗ for
⊗

l∈A V
∗
l , similarly A∗1 and

A∗2.
We know e ∈ M and there are two cases:
First case is when L(T1)∩A = ∅. Then the flattening space of the tensor t with respect

to A∗ is contained in the algebraic sum of vector spaces:

A∗xt ⊂
r
∑

i=1

αi ⊗ (A∗2xβi) ≃
r
⊕

i=1

(A∗2xβi).

Denote by M2 = M\ {e}. As βi ∈ TNS(T2), by induction we have

dim(A∗2xβi) ≤
∏

e∈M2

f(e).

Combining the above we get the required inequality, namely

dimA∗xt ≤
∏

e∈M

f(e).

The second case is when L(T1) ⊂ A. Since all leaves of T1 are in A, we have

A∗xt ⊂
r
∑

i=1

(A∗1xαi)⊗ (A∗2xβi) ⊂
r
∑

i=1

C⊗ (A∗2xβi) =
r
∑

i=1

(A∗2xβi).

Thus, as before

dimA∗xt ≤

f(ε)
∑

i=1

∏

e∈M2

f(e) = f(ε) ·
∏

e∈M2

f(e) =
∏

e∈M

f(e).

�

6 W. BUCZYŃSKA

3.4. The rank for constant function.

Theorem 3.16. Let T be a tree, L its set of leaves, f : E → N a constant function equal

to r. Let A be a subset of leaves of the tree T. Then the flattening rank of a generic

tensor in TNS(T, r) with respect to A equals rMonoSize |T,A|.

Proof. We prove two inequalities. The upper bound for the rank is a special case of
Theorem 3.15. For the lower bound we argue by induction on the size of the tree to
construct a tensor with the required flattening rank.

Let C be a maximal colour cut of the tree T with the set A and M be a minimal
monochromatic cut for the same tree and set. Let v, e1, e2, e3, T3, C3, M3, A3, T1, T2

be as in the proof of Proposition 3.9. Let also A1 = A ∩ L(T1) and A2 = A∩ L(T2).
To start the induction let T be a tree with at most tree leaves, then any M ∈

MinMonoCuts (T,A) has at most one element and the statement is straightforward.
Now let T be a tree. By induction there exists a tensor t3 ∈ TNS(T3, r) with flattening

rank r|M3| with respect to A3 as M3 is a minimal monochromatic cut for T3 and subset
of its leaves A3. Also, there exists a tensor in t12 ∈ TNS(T1 ∪e1−e2 T2, r) flattening rank
r with respect to the set A1 ∪A2.

Now, by Lemma 3.11, there exists a tensor t in TNS(T, r), namely t12 ⊗ t3, such that
dim(

⊗

l∈A V
∗
l xt) = r|M|, since |M| = |M3|+1. As the flattening rank is semicontinuous,

a generic tensor in TNS(T, r) has flattening rank at least r|M|. �

Remark 3.17. To compute the rank of a general tensor in TNS(T, r) with the constant
function equal to r, we can equally well compute it for r = 2. This is because the exponent
is independent of r.

4. The train track and almost binary models compared.

Definition 4.1. We say that a binary tree is an almost perfect binary tree if it differs
from a perfect binary tree only by removing the last leaves from the last row.

Let Ttrain
n denote a train track tree with n leaves. Let Tbin

n denote an almost binary
tree with n leaves.

In [1] we proved a simple version of the Hackbusch conjecture, namely we compared
a TNS(Ttrain

2q , r1) of a train track tree and TNS(Tbin
2q , r2) of a perfect binary tree with 2q

leaves. In this paper we extend this result a bit by allowing arbitrary number of leaves
for both tree types.

In order to compare the tensor network spaces coming from a train track tree and an
almost binary tree, both with a natural permutation of leaves (from left to right), we will
draw the almost binary tree in a specific way. Namely,

(4.2)

On the above picture both trees are almost perfect binary trees, one is perfect with 16
leaves, the other has nine new leaves in the new row and a total of 21 leaves. For a binary
tree drawn as on the Figure (4.2), each subtree below a vertical edge is a hanging subtree.

Remark 4.3. Let ak =
∑i=k

i=0 4
i for k > 0, and set a0 = 0. This number can be

interpreted combinatorially as the biggest number of leaves that the almost binary tree

THE HACKBUSCH CONJECTURE ON TENSOR FORMATS — PART TWO 7

T has, if there exists a subset A of its leaves and MonoSize(T,A) 6 k. Other way of
defining these numbers is to define a sequence of almost binary trees for each ak. The
first one is empty. The next has a1 = 5 leaves. Having defined those trees up to k-th, the
k + 1 tree is the almost binary tree with the smallest number of leaves, such that it has
the kth one as a hanging subtree.

Lemma 4.4. Suppose n is in the set {ak−1+1, . . . , ak} and the leaves of the almost binary

tree with n leaves are labelled from left to right, when the tree is drawn as above. Then

there exists j ∈ {1, . . . , n} such that MonoSize |Tbin
n , [j]| > k.

Proof. We argue by induction on the size of the binary tree. First we check case by
case n ∈ {1, . . . , 6}. Up to n = a1 = 5 leaves of the subsets of leaves of type [j] for some

j ∈ {1, . . . , n} are also of type
←
e , so there is nothing to prove and the number of cuts is 1.

When we get to n = 6 = a1 + 1, then we need one more cut — for the subset {1, 2, 3} of
the leaves. Now we want to prove the claim for the pair of trees with n leaves. Suppose
we proved our claim for all m < n. Let us observe that the induced permutations on the
hanging subtrees are natural. We distinguish two cases.

The first case is when all hanging subtrees of our binary tree with n leaves require
at most k − 1 cuts. Then for each subset of leaves coming from the train track model,
that is for the sets of type {1, . . . , j}, the whole tree requires at most k cuts. Indeed,
any minimal monochromatic cut induces a minimal monochromatic cut for the hanging
subtree, which has at least k − 1 elements. One more cut is needed in order to separate
the hanging tree from the leaves with indices that are either greater or less than j.

The second case is when at least one of the hanging trees needs k cuts. We know that
for m < n the increase in the number of cuts needed occurs at each m = al + 1 for some
l ∈ N.

The smallest n in question for which this happens is n = ak + 1. Then all the hanging
trees are perfect binary trees except one called Tξ, which has ak−1 + 1 leaves and hangs
from a vertical edge ξ — keep in mind our tree is almost perfect binary tree. If we look
at the edge ξ, we see that it has two horizontal incident edges one to the left and one
to the right, call them ξl and ξr respectively. By construction, the tree with the root
equal to the left (respectively right) vertex of ξl (respectively ξr) is perfect binary with
ak−1 < 4k < ak leaves. Thus, both also need k cuts.

For all bigger trees, that is for n > ak + 1, by the induction assumption there exists j

such that to cut out the set {1, . . . , j} ∩ L(Tξ) = {j′, . . . , j} or its complement in Tξ, we
need at least k cuts inside the tree Tξ. As ξ is neither first or last vertical edge, one more
cut outside the tree Tξ is needed.

�

Lemma 4.5. Suppose n is in the set {ak−1 + 1, . . . , ak} and the leaves of the almost

binary tree with n leaves are labelled by any permutation. Then there exists j ∈ {1, . . . , n}
such that MonoSize |Tbin

n , [j]| > k. In other words, natural permutation always gives the

smallest minimal monochromatic cut for any subset from the definition of Ttrain
n .

Proof. Again we proceed by induction on the number of leaves. As the first induction
step, for the number of leaves from 1 to 6 we check case by case that switching from
natural permutation to any other permutation, the number of cuts can only increase.

For the induction step we will construct M ∈ MinMonoCuts(T,A). We consider two
situations. The first case is when at any vertex, at most two of the three trees that have

8 W. BUCZYŃSKA

a root at this vertex require k cuts, the other(s) at most k − 1. Then, as in the proof of
Lemma 4.4, the number of cuts required for the whole tree is at least k.

In the second case there exists a vertex, such that all three subtrees require k cuts.
The smallest n for which this situation occurs for all permutations, is n = ak + 1. To see
this, use induction combined with Lemma 4.4.

Tξ1

Tξ2

Tξ3

We call those trees Tξ1, Tξ2 , Tξ3 . Since we work with almost perfect binary tree, this
is true for all bigger n as well. We claim at least k+1 cuts are needed for the whole tree
for a set [j] for some j.

We increase j until we need k cuts inside one of the trees Tξi for i1 ∈ {1, . . . , 3} for
the first time. This guarantees the other two have some leaves outside the set {1, . . . , j}.
If at least one has a leaf in this set, we are done. If not, we continue increasing j until
a second of the trees, say Tξi2

needs k cuts. In this situation Tξi1
has some leaves in

{1, . . . , j} and Tξi3
has some leaves outside of it. This implies we need k cuts inside Tξi2

and at least one more outside of it, which concludes the proof. �

Theorem 4.6 (Hackbush conjecture). Let n ∈ {ak−1 + 1, . . . , ak}. Then

HH(n, r) ⊂ TT (n, rk)

when both underlying trees have the same order of leaves. On the other hand for any

permutation of leaves

HH(n, r) * TT (n, rk − 1).

5. Models with non-constant function

Suppose now we have two trees T1 and T2. Let us fix a function on edges of the first
tree. Then, using our methods, we can give bounds for the function on the edges of the
second tree so that there is an inclusion of the TNS models.

Theorem 5.1. Let TNS(T1, f) and TNS(T2, g) be two tensor network spaces with the

same number of leaves and the same vector spaces associated to them. If

TNS(T1, f) ⊂ TNS(T2, g)

then for any edge ε ∈ E(T2)

g(ε) >
∏

e∈M

f(e)

where M ∈ MinMonoCuts

(

T2,
←
ε
)

.

Proof. The statement follows from Theorem 3.15 applied once for each edge of the tree
T2, with the tree T1 and subset given by the edge. �

THE HACKBUSCH CONJECTURE ON TENSOR FORMATS — PART TWO 9

6. Exponential growth of the rank

Theorem 6.1 (Exponential growth of tensor rank). Let TNS(T, r) be a tensor network

space on a binary tree with n leaves and a constant function. Then the rank of a generic

tensor in TNS(T, r) is at least r⌊
n

2
⌋. In particular, the growth of the rank is at least

exponential.

Proof. We construct a subset A ⊂ L of the leaves such than ColorSize(T,A) > ⌊n
2
⌋.

Initially A = ∅.
We say that an inner (edge or) vertex of the tree is initial, if it is (adjacent to) a leaf

in a tree obtained from T by removing all leaves and then removing vertices that have
exactly two adjacent edges. Every initial vertex has two sons, which are leaves. We
pick an initial edge (there will be always at least one) and we say that one son of the
corresponding initial vertex is in A and the other is not in A. At each step we cut an
edge removing two leaves from the initial tree.

Now it is enough to use Theorem 3.16 with the constructed set.
�

References

[1] Weronika Buczyńska, Jarosław Buczyński, and Michałek Mateusz. The Hackbusch conjecture on
tensor formats. J. Math. Pures Appl. (9), 104(4):749–761, 2015.

[2] Enrico Carlini and Johannes Kleppe. Ranks derived from multilinear maps. J. Pure Appl. Algebra,
215(8):1999–2004, 2011.

[3] Nadav Cohen, Or Sharir, and Amnon Shashua. On the expressive power of deep learning: A tensor
analysis. JMLR: Workshop and Conference Proceedings, 49, 2016.

[4] Wolfgang Hackbusch. Tensor spaces and numerical tensor calculus, volume 42 of Springer Series in
Computational Mathematics. Springer, Heidelberg, 2012.

[5] Ivan Oseledets Valentin Khrulkov, Alexander Novikov. Expressive power of recurrent neural networks.
arXiv:1711.00811 [cs.LG], 2017.

Weronika Buczyńska, Departement of Mathematics, Mechanics and Computere Sci-

ence, ul. Banacha 2, 02-097 Warszawa, Poland

E-mail address : wkrych@mimuw.edu.pl

	1. Introduction.
	2. Notation and the vertex definition.
	3. The edge definition of `39`42`"613A``45`47`"603ATNS.
	3.1. The edge definition versus vertex definition of `39`42`"613A``45`47`"603ATNS.
	3.2. Optimal function
	3.3. An upper bound on the rank
	3.4. The rank for constant function

	4. The train track and almost binary models compared.
	5. Models with non-constant function
	6. Exponential growth of the rank
	References

