
Chapter 1

Forward Look

1.1 Stages in a statistically designed experiment

There are several stages in a designing an experiment and carrying it out.

1.1.1 Consultation

The scientist, or other investigator, comes to the statistician to ask advice on
the design of the experiment. Sometimes an appointment is made; sometimes the
approach is by telephone or email with the expectation of an instant answer. A
fortunate statistician will already have a good working relationship with the scien-
tist. In some cases the scientist and statistician will both view their joint work as a
collaboration.

Ideally the consultation happens in plenty of time before the experiment. The
statistician will have to ask questions to find out about the experiment, and the
answers may not be immediately available. Then the statistician needs time to think,
and to compare different possible designs. In complicated cases the statistician may
need to consult other statisticians more specialized in some aspect of design.

Unfortunately, the statistician is sometimes consulted only the day before the
experiment starts. What should you do then? If it is obvious that the scientist has
contacted you just so that he can write ‘Yes’ on a form in response to the question
‘Have you consulted a statistician?’ then he is not worth spending time on. More
commonly the scientist genuinely has no idea that statistical design takes time. In
that case, ask enough questions to find out the main features of the experiment, and
give a simple design that seems to answer the purpose. Impress on the scientist that
this design may not be the best possible, and that you can do better if given more
notice. Try to find out more about this sort of experiment so that you are better
prepared the next time that this person, or one of her colleagues, comes to you.
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Usually the scientist does not come with statistically precise requirements. You
have to elucidate this information by careful questioning. About 90% of the statis-
tician’s input at this stage is asking questions. These have to be phrased in terms
that a non-statistician can understand. Equally, you must not be shy about asking
the scientist to explain technical terms from his field if they seem relevant.

If the scientist does have a preconceived idea of a ‘design’, it may be chosen
from an artifically short list, based on lack of knowledge of what is available. Too
many books and courses give a list of three or four designs and manage to suggest
that there are no others. Your job may be to persuade the scientist that a better
design is available, even if it did not figure in the textbook from which she learnt
statistics.

Example 1.1 (Ladybirds) A famous company (which I shall not name) had de-
signed an experiment to compare a new pesticide which they had developed, a stan-
dard pesticide, and ‘no treatment’. They wanted to convince the regulatory authority
(the Ministry of Agriculture, Fisheries and Foods) that their new pesticide was ef-
fective but did not harm ladybirds. I investigated the data from the experiment,
and noticed that they had divided a field into three areas, applied one pesticide (or
nothing) to each area, and made measurements on three samples from each area. I
asked the people who had designed it what the design was. They said that it was
completely randomized (see Chapter 2). I said that I could see that it was not com-
pletely randomized, because all the samples for each pesticide came from the same
area of the field. They replied that it must be completely randomized because there
were no blocks (see Chapter 4) and it was not a Latin square (see Chapter 6). In de-
fence of their argument they quoted a respectable textbook which gives only these
three designs.

1.1.2 Statistical design

The majority of this book is about statistical design. The only purpose in men-
tioning it here is to show how it fits into the process of experimentation.

1.1.3 Data collection

In collaboration with the scientist, design a form for collecting the data. This
should either be on squared paper, with squares large enough to write on conve-
niently, or the modern electronic equivalent, a spreadsheet or a hand-held data-
logger. There should be a row for each observational unit (see Section 1.4) and a
column for each variable that is to be recorded. It is better if these variables are
decided before the experiment is started, but always leave space to include extra
information whose relevance is not known until later.

Emphasize to the scientist that all relevant data should be recorded as soon as
possible. They should never be copied into a ‘neater’ format; human beings almost
always make errors when copying data. Nor should they be invented later.
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Example 1.2 (Calf-feeding) In a calf-feeding experiment each calf was weighed
several times, once at birth and thereafter on the nearest Tuesday to certain anniver-
saries, such as the nearest Tuesday to its eight-week birthday. The data included all
these dates, which proved to be mutually inconsistent: some were not Tuesdays and
some were the wrong length of time apart. When I queried this I was told that only
the birthdate was reliable: all the other dates had been written down at the end of the
experiment by a temporary worker who was doing her best to follow the ‘nearest
Tuesday’ rule after the event. This labour was utterly pointless. If the dates had
been recorded when the calves were weighed they would have provided evidence of
how closely the ‘nearest Tuesday’ rule had been followed; deducing the dates after
the event could more accurately and simply have been done by the computer as part
of the data analysis.

Sometimes a scientist wants to take the data from his field notebooks and re-
organize them into a more logical order for the statistician’s benefit. Discourage
this practice. Not only does it introduce copying errors; reordering the data loses
valuable information such as which plots were next to each other or what was the
time sequence in which measurements were made: see Example 1.4.

For similar reasons, encourage the scientist to present you with the raw data,
without making intermediate calculations. The data will be going into a computer
in any case, so intermediate calculations do not produce any savings and may well
produce errors. The only benefit brought by intermediate calculations is a rough
check that certain numbers are the correct order of magnitude.

Example 1.3 (Leafstripe) In an experiment on leafstripe disease on barley, one
measurement was apparently the percentage of disease on each plot. A preliminary
graph of the data showed one outlier far away from the rest of the data. I asked
to see the data for the outlying plot, and was given a collection of pieces of paper
like those shown in Table 1.1. It transpired that the agronomist had taken a random
sample of ten quadrants in each plot, had inspected 100 tillers (sideshoots) in each
quadrant to see how many were infected, and averaged the ten numbers. Only the
average was recorded in the ‘official’ data. For the outlying plot the agronomist
rightly thought that he did not need a calculator to add nine zeros to one non-zero
number, but he did forget to divide the total by 10. Once I had corrected the average
value for this plot, it fell into line with the rest of the data.

Also try to persuade the scientist that data collection is too important to be del-
egated to junior staff, especially temporary ones. An experiment cannot be better
than its data, but a surprising number of good scientists will put much effort into
their science while believing that the data can take care of themselves. Unless they
really feel part of the team, junior or temporary staff simply do not have the same
motivation to record the data carefully, even if they are conscientious. See also
Example 1.2.
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Plot 8 6
0
7
3
6
0
4
5
6
4

Average 4.1

Plot 23 0
0
0
0
0
0
0

28
0
0

Average 28

Table 1.1: Intermediate calculation in Example 1.3

1.1.4 Data scrutiny

After the experiment is done the data sheets or data files should be sent to the
statistician for analysis. Look over these as soon as possible for obvious anomalies,
outliers or evidence of bad practice. Can that number really be a calf’s birthweight?
Experienced statisticians become remarkably good at ‘data sniffing’—looking over
a sheet of figures and finding the one or two anomalies. That is how the errors
in Example 1.2 were found. Simple tables and graphs can also show up errors:
in Example 1.3 the outlier was revealed by a graph of yield in tonnes per hectare
against percentage of infected tillers.

Query dubious data while it is still fresh in the scientist’s memory. That way
there is a chance that either the data can be corrected or other explanatory informa-
tion recorded.

Example 1.4 (Rain at harvest) In an experiment whose response was the yield of
wheat on each plot, the numbers recorded on the last 12 plots out of a total of 72
were noticeably lower than the others. I asked if there was any reason for this, and
was told that it had started to rain during the harvest, with the rain starting when
the harvester was about 12 plots from the end. We were therefore able to include an
extra variable ‘rain’, whose values were 60 zeros followed by 1, 2, . . . , 12. Including
‘rain’ as a covariate in the analysis removed a lot of otherwise unexplained variation.

1.1.5 Analysis

This means calculations with the data. It should be planned at the design stage,
because you cannot decide if a design is good until you know how the data will
be analysed. Also, this planning enables the experimenter to be sure that she is
collecting the relevant data. If necessary, the analysis may be modified in the light
of unforeseen circumstances: see Example 1.4.

For a simple design the statistician should, in principle, be able to analyse the
data by hand, with a calculator. In practice, it is more sensible to use a reliable
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statistical computing package.Genstat is particularly suitable for designed exper-
iments. It is a good idea to do the planned analysis on dummy databeforethe real
data arrive, to avoid any unnecessary delay.

Many other Statistics books are concerned almost exclusively with analysis. In
this book we cover only enough of it to help with the process of designing experi-
ments.

1.1.6 Interpretation

The data analysis will produce such things as anova tables, lists of means and
standard errors,P-values and so on. None of these may mean very much to the sci-
entist. It is the statistician’s job to interpret the results of the analysis in terms which
the scientist can understand, and which are pertinent to his/her original question.

1.2 The ideal and the reality

Here I discuss a few of the tensions between what the statistician thinks is de-
sirable and what the experimenter wants.

1.2.1 Purpose of the experiment

Why is the experiment being done? If the answer is ‘to use an empty green-
house’ or ‘to publish another paper’, do not put much statistical effort into it. A
more legitimate answer is ‘to find out about the differences between so-and-so’ but
even this is too vague for the statistician to be really helpful.

Ideally, the aims of the experiment should be phrased in terms of specific ques-
tions. The aim may be to estimate something: for example, ‘How much better is
Drug A than Drug B?’ This question needs refining: how much of each drug? how
administered? to whom? and how will ‘better’ be measured? For estimation ques-
tions we should aim to obtain unbiased estimators with low variance.

On the other hand, the aim may be to test a hypothesis, for example that there is
no effective difference between organic and inorganic sources of nitrogen fertilizer.
Again the question needs refining: how much fertilizer? applied to what crop? in
what sorts of circumstances? is the effect on the yield or the taste or the colour? For
hypothesis testing we want high power of detecting differences that are big enough
to matter in the science involved.

1.2.2 Replication

This is the word for the number of times that each treatment is tested.
The well-known formula for the variance of the mean ofn numbers isσ2/n,

on the assumption that the numbers are a random sample from a population with
varianceσ2. Increasing the replication usually decreases the variance, because it
increases the value ofn.
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On the other hand, increased replication may raise the variance. Typically, a
larger number of experimental units are more variable than a small number, so in-
creasing the replication may increase the value ofσ2. Sometimes this increase
outweighs the increase inn.

Increased replication usually raises power. This is because it usually raises the
number of residual degrees of freedom, and certain important families of distribu-
tion (such as t) have slimmer tails when they have more degrees of freedom.

The one thing that is almost certain about increased replication is that it in-
creases costs, which the experimenter usually wants to keep down.

1.2.3 Local control

This means dividing the experimental units into blocks of alike units: see Chap-
ter 4. It is also calledblocking.

If it is done well, blocking lowers the variance, by removing some sources of
variability from treatment contrasts. If each block is representative rather than ho-
mogeneous then blocking has the opposite effect.

Blocking can increase the variance if it forces the design to be non-orthogonal:
see Chapter 11.

Because blocking almost always decreases the variance it usually raises power.
However, it decreases the number of residual degrees of freedom, so it can reduce
power if numbers are small: see Example 4.6.

Blocking increases the complexity of the design. In turn this not only increases
the complexity of the analysis and interpretation but gives more scope for mistakes
in procedure during the experiment.

1.2.4 Constraints

The most obvious constraint is cost. Everybody will be pleased if the same
results can be achieved for less money. If you can design a smaller, cheaper experi-
ment than the scientist proposes, this is fine if it produces good estimators. On the
other hand, it may be impossible to draw clear conclusions from an experiment that
is too small, so then the entire cost is wasted. Part of your duty is to warn when you
believe that the whole experiment will be wasted.

The availability of the test materials may provide a constraint. For example, in
testing new varieties of wheat there may be limited quantities of seed of some or all
of the new varieties.

Availability of the experimental units provides a different sort of constraint.
There may be competition with other experimenters to use land or bench space.
If results are needed by a certain deadline then time limits the number of experi-
mental units. In a clinical trial it is unethical to use far too many patients because
this unnecessarily increases the number of patients who do not get the best treat-
ment. On the other hand, it is also unethical to use so few patients that no clear
conclusions can be drawn, for then all the patients have been used in vain. Similar
remarks apply to experiments on animals in which the animals have to be sacrificed.
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If there are natural ‘blocks’ or divisions among the experimental units these may
force constraints on the way that the experiment can be carried out. For example, it
may be impossible to have all vaccinations administered by the same nurse.

There are often other constraints imposed by the management of the experiment.
For example, temporary apple-pickers like to work with their friends: it may be
unrealistic to expect them each to pick from separate rows of trees.

1.2.5 Choice

Given all the constraints, there are still two fundamentally important choices
that have to be made and where the statistician can provide advice.

Which treatments are to be tested? The scientist usually has a clear idea, but
questions can still be helpful. Why did he decide on these particular quantities?
Why these combinations and not others? Should he consider changing two factors
at a time? (see Chapter 5). Does the inclusion of less interesting treatments (such as
the boss’s favourite) mean that the replication forall treatments will be too low?

There is a strong belief in scientific circles that all new treatments should be
compared with ‘no treatment’, which is often calledcontrol. You should always
ask if a control is needed. Scientific orthodoxy says yes, but there are experiments
where a control can be harmful. If there is already an effective therapy for a disease
then it is unethical to run an experiment comparing a new therapy to ‘do nothing’;
in this case the treatments should be the new therapy and the one currently in use.
In a trial of several pesticides in one field, if there is a ‘do nothing’ treatment on
some plots then the pest may multiply on those plots and then spread to the others.
A ‘do nothing’ treatment is also not useful if this would never be used in practice.

Which experimental units should be used? For example, is it better to use por-
tions of representative farmers’ fields or a well-controlled experimental farm? The
latter is better if the effect to be detected is likely to be small, or if one of the
treatments is sufficiently unknown that it might have disastrous economic or envi-
ronmental consequences. The former is better for a large confirmatory experiment,
before recommending varieties or treatments for use on a wide scale. Similarly, is
it better to use 36 heifers from the same herd or 36 bought at the market specifically
for this experiment? University students are a convenient source of experimental
units for psychologists, but how far can results valid for such students be extrapo-
lated to the general population?

1.3 An example

An example will help to fix ideas.

Example 1.5 (Rye-grass)An experiment was conducted to compare three differ-
ent varieties of rye-grass in combination with four quantities of nitrogen fertilizer.
The response measured was the total weight of dry-matter harvested from each plot.

The three varieties of rye-grass were called Cropper, Melle and Melba. The four
amounts of fertilizer were 0 kg/ha, 80 kg/ha, 160 kg/ha and 240 kg/ha.
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The experimental area consisted of two fields, each divided into three strips of
land. Each strip consisted of four plots.

Varieties were sown on whole strips because it is not practical to sow them
in small areas unless sowing is done by hand. In contrast, it is perfectly feasible
to apply fertilizers to smaller areas of land, such as the plots. The layout for the
experiment is shown in Figure 1.1.

0 160 240 160 80 0

160 80 80 0 160 80

80 0 160 240 0 240

240 240 0 80 240 160

↑ ↑ ↑ ↑ ↑ ↑
Cropper Melba Melle Melba Cropper Melle

Figure 1.1: Layout of the experiment in Example 1.5

Notice the pattern. Each amount of nitrogen is applied to one plot per strip,
and each variety is applied to one strip per field. This pattern is thecombinatorial
design.

Notice the lack of pattern. There is no systematic order in the allocation of
varieties to strips in each field, nor any systematic order in the allocation of amounts
of nitrogen to plots in each strip. This lack of pattern is therandomization.

1.4 Defining terms

Definition An experimental unitis the smallest unit to which a treatment can be
applied.

Definition A treatmentis the entire description of what can be applied to an ex-
perimental unit.

Although the previous two definitions appear to be circular, they work well
enough in practice.

Definition An observational unitis the smallest unit on which a response will be
measured.
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Example 1.6 (Wheat varieties)The experiment compares different varieties of wheat
grown in plots in a field. Here the experimental units are the plots and the treatments
are the varieties. We cannot tell what the observational unit is without more infor-
mation. Probably a plot is the observational unit, but it might be an individual plant.
It might even be the whole field.

Example 1.5 revisited (Rye-grass)Here the treatments are the combinations of
varieties with amounts of fertilizer, so there are twelve treatments. The experimental
unit is the plot. The observational unit is probably the plot but might be a plant or a
strip.

Example 1.2 revisited (Calf-feeding)Here the treatments were different composi-
tions of feed for calves. The calves were not fed individually. They were housed
in pens, with ten calves per pen. Each pen was allocated to a certain type of feed.
Batches of this type of feed were put into the pen; calves were free to eat as much
of this as they liked. Calves were weighed individually.

The experimental units were the pens but the observational units were the calves.

Example 1.7 (Asthma) Several patients take part in an experiment to compare
drugs intended to alleviate the symptoms of chronic asthma. For each patient, the
drugs are changed each month. From time to time each patient comes into the clinic,
where the peak flow rate in their lungs is measured.

Here the treatments are the drugs. An experimental unit is a patient-month com-
bination, so if 30 patients are used for 6 months then there are 180 experimental
units. We do not know what the observational unit is without further information.

Example 1.8 (Mental arithmetic) After calculators became widespread, there was
concern that children in primary schools were no longer becoming proficient in
mental arithmetic. One suggested remedy was whole-class sessions, where the
teacher would call out a question such as ‘5+ 7?’ and children would put up their
hands to offer to give the correct answer. An alternative suggestion was to do this in
small groups of about four children, to encourage those who were shy of responding
in front of the whole class. Another question was: is it better to have these sessions
for one hour once a week or for 10–12 minutes every day?

The treatments are the four combinations of group size and timing shown in
Table 1.2. Each treatment can be applied only to a whole class, so the experimental
units are classes. However, to measure the effectiveness of the treatments, each
child must take an individual test of mental arithmetic after some set time. Thus the
observational units are the children.

Example 1.9 (Detergents)In a consumer experiment, 10 housewives test new de-
tergents. Each housewife tests one detergent per washload for each of four washloads.
She assesses the cleanliness of each washload on a given 5-point scale. Here the 40
washloads are the experimental units and the observational units; the detergents are
the treatments.
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Example 1.10 (Tomatoes)Different varieties of tomato are grown in pots in differ-
ent composts with different amounts of water. Each plant is supported on a vertical
stick until it is 1.5 metres high, then all further new growth is wound around a hor-
izontal rail. Groups of five adjacent plants are wound around the same rail. When
the tomatoes are ripe they are harvested and the weight of saleable tomatoes per rail
is recorded.

Now the treatment is the variety-compost-water combination. The pots are the
experimental units but the rails are the observational units.

These examples show that there are four possible relationships between experi-
mental units and observational units.

(i) The experimental units and the observational units are the same. This is the
most usual situation. It occurs in Example 1.9; in Examples 1.5 and 1.6 if
there is one measurement per plot; in Example 1.7 if there is one measurement
of peak flow rate in lungs per patient per month.

(ii) Each experimental unit consists of several observational units. This is usually
forced by practical considerations, as in Examples 1.2 and 1.8. Examples 1.5
and 1.6 are of this type if the observational unit is a plant. So is Example 1.7
if the observational unit is a patient-week. This situation is fine so long as the
data are analysed properly: see Chapter 8.

(iii) Each observational unit consists of several experimental units. This would
occur in Example 1.7 if each patient had their drugs changed monthly but
their peak flow rate measured only every three months. It would also occur
in Examples 1.5 and 1.6 if the observational unit were the strip or field re-
spectively. In these cases the measurements cannot be linked to individual
treatments so there is no point in conducting such an experiment.

Example 1.10 also appears to be of this form. Because the experiment would
be useless if different pots in the same group (allocated to the same rail) had
different treatments, in effect it is the group of pots that is the experimental
unit, not the individual pot.

In fact, there are some sophisticated experiments where the response on the
observational unit can be considered to be the sum of the (unknown) re-
sponses on the experimental units contained within it. However, these are
beyond the scope of this book.

(iv) Experimental units and observational units have a partial overlap, but neither
is contained in the other. This case is even sillier than the preceding one.

It is useful to write down the experimental units and the observational units in
the experimental protocol. This should draw attention to cases (iii) and (iv) before
it is too late to change the protocol.
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Definition In cases (i) and (ii) an observational unit will often be called aplot for
brevity.

This usage is justified by the large amount of early work on experimental design
that took place in agricultural research. However, it can be a little disconcerting if
the plot is actually a person or half a leaf. It is a useful shorthand in this book, but
is not recommended for your conversations with scientists.

Notation In this book, general plots are denoted by lower-case Greek letters, such
asα, β, γ, ω. The whole set of plots is denoted byΩ, and the number of plots byN.

Example 1.11 (Pullets)Two feeds for pullets are to be compared for their effect
on the weight of their eggs. Ten pullets are selected for the experiment, are isolated
and are individually fed, with five pullets receiving each of the two feeds. After the
feeding regime has been in place for one month, the eggs laid thereafter by each
pullet are individually weighed.

The individual feeding implies that the pullets are the experimental units, but
what are the observational units? If the eggs are the observational units then we
have two difficulties: we do not know the number of observational units in advance
and the numbers will vary from one pullet to another. Both of these difficulties can
be overcome by declaring that only the first so many eggs laid (or, more practically,
collected) will be weighed. On the other hand, if the feeds affect the number of
eggs laid as well as their weight then it might be more sensible to measure the total
weight of eggs laid by each pullet; in this case the pullets are the observational units.

Example 1.12 (Simple fungicide)In a fungicide trial the treatments are the doses
of fungicide: full spray, half spray and ‘no treatment’. The experimenter might
say that there are two treatments and a control; in our vocabulary there are three
treatments.

Example 1.13 (Fungicide factorial) In another fungicide trial on winter wheat the
fungicide could be sprayed early, mid-season or late, or at any combination of those
times. The treatments consisted of all combinations of ‘spray’ and ‘no-spray’ at
each date. See Table 1.3. Thus there were eight treatments: the experimenter told
me that there were seven, because he did not consider ‘never spray’ to be a treat-
ment.

Example 1.14 (Fungicide factorial plus control) In an important variant of Ex-
ample 1.12, the spray is applied only once, but this can be early, mid-season or
late. Thus the treatments are combinations of amount of fungicide with time of
application. How many treatments are there? It is quite common to see the treat-
ments in this example laid out schematically as in Table 1.4, which suggests that
there are nine treatments, being all combinations of amount of fungicide with time
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of application. I have seen data from such experiments analysed as if there were
nine treatments. However, if there is no fungicide then it does not make sense to
distinguish between time of application: the time of application should be regarded
as ‘not applicable’. This gives the seven treatments shown in Table 1.5.

Example 1.15 (Oilseed rape)An experiment on methods of controlling the dis-
ease sclerotina in oilseed rape compared four new chemicals, codedA, B, C, D,
with both ‘no treatment’ and the current (expensive) standard chemicalX. Each of
the new chemicals could be applied either early or late; the standardX was applied
at both times. Thus there were two control treatments, and the treatments had the
structure shown in Table 1.6.

Notation In this book, general treatments are denoted by lower-case Latin letters,
such asi, j. The whole set of treatments is denoted byT , and the number of
treatments byt.

The experimental protocol needs to contain a precise description of each treat-
ment. Give complete technical details, such as ‘5 mg of ciprofloxacin 4 hours after
contact’. Then give each treatment a simple code likeA, B, C or 1, 2, . . . for refer-
ence later.

Definition Treatment structuremeans meaningful ways of dividing upT .

Examples of treatment structure include:

unstructured This means that there is no structure to the treatments at all.

several new treatments plus controlThis is the structure in Example 1.12. It is
examined further in Chapter 3.

all combinations of two factors See Example 1.8 and Chapter 5.

all combinations of two factors, plus control See Example 1.14 and Section 5.9.

all combinations of three factors See Examples 1.10 and 1.13 and Chapters 5 and 12.

increasing doses of a quantitative factorThis is not covered explicitly in this book
because the relevant ideas can be found in most books on regression.

Definition Plot structuremeans meaningful ways of dividing up the setΩ of plots.

Examples of plot structure include:

unstructured There is no structure to the observational units at all.

experimental units containing observational units This is the structure in Exam-
ple 1.2. It is discussed in Chapter 8.
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whole class small groups
one hour once per week

√ √

12 minutes every day
√ √

Table 1.2: Four treatments in Example 1.8

spray midseason no mid spray-season
spray late no late spray spray late no late spray

spray early
√ √ √ √

no early spray
√ √ √ √

Table 1.3: Factorial treatment combinations in Example 1.13

mid-
early season late

full spray
√ √ √

half spray
√ √ √

no spray
√ √ √

Table 1.4: Inappropriate description of
the treatments in Example 1.14

mid-
early season late n/a

full spray
√ √ √

half spray
√ √ √

no spray
√

Table 1.5: Appropriate description of the
treatments in Example 1.14

early late both n/a
none

√

A
√ √

B
√ √

C
√ √

D
√ √

X
√

Table 1.6: Treatment structure in Example 1.15
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blocks This means local control: dividing the experimental units into homogeneous
blocks. In Example 1.9 the housewives should be treated as blocks. See
Chapter 4.

blocks containing subblocks containing plotsThis is the structure in Example 1.5.
It is also discussed in Chapter 8.

blocks containing experimental units containing observational units

two different sorts of blocks, neither the containing the other This is the plot struc-
ture in Example 1.7, where the two sorts of block are patients and months. See
Chapter 6.

All these structures (except for quantitative treatments) are described in a unified
way in Chapter 10.

In principle, any type of treatment structure can occur withany type of plot
structure. That is why it is neither possible nor sensible to give a short list of useful
designs.

Definition Thedesignis the allocation of treatments to plots.

Although we speak of allocating treatments to plots, mathematically the design
is a functionT from Ω to T . Thus plotω is allocated treatmentT(ω). The function
has to be this way round, because each plot can receive only one treatment. It may
seem strange to apply a functionT to an actual object such as a rat or a plot of land,
but this is indeed what the design is.

We usually chooseT to satisfy certain combinatorial properties. The design has
theoretical plots (perhaps numbered 1, . . . ,N) and coded treatments.

Definition Theplanor layout is the design translated into actual plots.

Some randomization is usually involved in this translation process.
The actual plots must be labelled or drawn in such a way that the person applying

the treatments can identify the plots uniquely. For example, in a field trial the North
arrow will usually be shown on the plan.

Example 1.15 revisited (Oilseed rape)The North arrow was omitted from the plan
for this experiment. The person applying chemicals at the later date held the plan
upsidedown relative to the person applying them early. The effect of this is shown
in Table 1.7, where there are some quite unintended treatments.

The treatments in the plan usually remain in coded form. Partly this is for
brevity. Partly it is to prevent unconscious biases from the people applying the
treatments or recording the data: see Chapter 7.
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Plot Early Late (intended) Late (actual)
1 D − −
2 − A C
3 B − B
4 − − −
5 A − X
6 − B −
7 − D −
8 C − −
9 − C A
10 X X D
11 − D X
12 − A C
13 D − −
14 B − D
15 C − B
16 X X −
17 A − −
18 − B −
19 − C A
20 − − −

Table 1.7: Result of holding the plan upsidedown at the later date in Example 1.15

1.5 Linear model

The response on plotω is a random variableYω whose observed value after the
experiment isyω. Thus we have a data vectory which is a realization of the random
vectorY.

We assume that
Yω = Zω + τT(ω), (1.1)

whereτT(ω) is aconstant, depending on the treatmentT(ω) applied to plotω, and
Zω is a random variable, depending onω. ThusZω can be thought of as the con-
tribution of the plotω to the response, whileτi is the contribution of treatmenti.
Of course, this gives us more unknowns than measurements, so we have to assume
something about the values of theZω.

The probability space is taken to be the set of occasions and uncontrolled con-
ditions under which the experiment might be carried out. The non-repeatability of
the experiment givesZω its randomness. Ifα andβ are two different plots thenZα
andZβ are different random variables on the same probability space, so they have a
joint distribution, including a correlation, which may be zero.

What is the joint distribution of the(Zω)ω∈Ω? Here are some common assump-
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tions:

simple textbook model theZω are independent identically distributed normal ran-
dom variables with mean 0 and varianceσ2;

fixed-effects model the Zω are independent normal random variables each with
varianceσ2, and the meanµω of Zω depends on the position ofω within Ω;

random-effects model theZω have identical distributions, and the covariance cov(Zα,Zβ)
depends on howα andβ are related in the plot structure;

randomization model theZω have identical distributions, and cov(Zα,Zβ) depends
on the method of randomization.

Using our assumptions about theZω, the analysis of the data should give

• minimum variance unbiased estimators of the treatment parametersτi and
linear combinations thereof, such asτi− τ j ;

• estimates of the variances of those estimators;

• inferences about presence or absence of effects.
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Figure 1.2: Overview and preview

The top half of Figure 1.2 summarizes this chapter. The plot structure and the
treatment structure must both be taken into account in choosing the design. Ran-
domizing the design gives the plan. The method of randomization is usually dictated
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by the plot structure, but occasionally we use the method of randomization to define
the plot structure.

The bottom half of the figure gives a preview of the rest of the book. The plot
structure determines the null analysis, as we shall see in Chapter 10: this has no
treatments and no data. Putting this together with the design gives the skeleton
analysis, which has treatments but still no data. The skeleton analysis enables us to
make educated guesses about variance and power using preliminary guesses about
the size ofσ2. If the variance is too big or the power too low then we should go
back and change the design (possibly changing the plot structure by adding plots or
the treatment structure by removing treatments) and begin the cycle again.

Questions for Discussion

1.1 A professional apple-grower has written to you, making an appointment to dis-
cuss an experiment which he is proposing to conduct in the coming growing season.
Part of his letter reads:

There is a new type of chemical spray available, which is supposed to
make the apple flowers more attractive to bees. Since bees are essential
for setting the fruit, I want to investigate these chemicals. Two manu-
facturers are selling the new sprays, under the trade names Buzz!! and
Attractabee.

I propose dividing my orchard into three parts. I shall spray Attractabee
onto one part, and Buzz!! onto the second part. The third part will be
managed in the normal way, with none of these new sprays. I shall then
see which part of the orchard does best.

Make notes on what you should discuss with him—and why!—at your meeting.

1.2 A psychology course has the 21 students shown below. The professor wants
to use the students to test two new types of pill for keeping people awake, called
Wakey-Wakey and Zizzaway. He has only six pills of Wakey-Wakey and five pills
of Zizzaway. He plans to use 11 students. Each student will be shut alone in the
observation room, swallow their allocated pill, and then follow a set programme of
activities until they fall asleep. A hidden watcher will record when they swallow
the pill and when they fall asleep.

Design the experiment for the professor, to the extent of giving him a plan allo-
cating pills to students.
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Name Sex Age
Adrian M 19
Belinda F 20
Caroline F 19
David M 20
Esther F 28
Fiona F 20
Gregory M 19

Name Sex Age
Helen F 20
Ingrid F 20
James M 20
Katherine F 19
Linda F 28
Michael M 20
Naomi F 19

Name Sex Age
Olivia F 20
Peter M 20
Quentin M 27
Ruth F 20
Sarah F 19
Trixie F 20
Ursula F 20


