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A question about the consistency of Bell’s correlation formula
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Abstract In the paper it is demonstrated that two equally consistent but conflicting uses of sign

functions in the context of a simple probability density shows that Bell’s formula is based on only one

consistent principle. The two conflicting principles give different result. However, according to use of

powers, i.e. 3 × (1/2) = (1/2) × 3, one must have the same result in both cases.
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1 Introduction

In 1964, John Bell wrote an important paper [1] on the possibility of hidden variables [2] caus-

ing the entanglement correlation E(a, b) between two particles. His paper was a response to

the criticism of Einstein on the completeness of quantum theory. In his paper, together with

Rosen and Podolsky, Einstein [2] argued that the quantum description must be supplemented

with extra variables to explain the entanglement phenomenon. von Neuman [4] presented a

mathematical proof that any hidden variables theory is in conflict with quantum mechanics.

However, one can doubt if von Neuman’s view on the matter was completely related to the

physics. Bell’s paper opened the possibility of experiment. In the present paper, an inconsis-

tency in the starting formula of Bell [1] will be demonstrated. This paper is a continuation /

response to [7]. In the paper Nordén already admitted that Bell’s formula may perhaps be not

as solid as presented in most discussions about Einstein. Here we will add to that argument

and show that Bell’s formula holds ambiguous elements that must be resolved before serious

conclusions can be drawn from experiments.

Bell, based his hidden variable description on particle pairs with entangled spin, originally

formulated by Bohm [3]. Bell used hidden variables λ that are elements of a universal set

Λ and are distributed with a density ρ(λ) ≥ 0. Suppose, E(a, b) is the correlation between

measurements with distant A and B that have unit-length, i.e. ||a|| = ||b|| = 1, real 3 dim

parameter vectors a and b.

...
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Then with the use of the λ we can write down the classical probability correlation between

the two simultaneously measured spins of the particles. This is what we will call Bell’s formula.

E(a, b) =

∫
λ∈Λ

ρ(λ)A(a, λ)B(b, λ)dλ (1.1)

The spin measurement functions are, A(a, λ) ∈ {−1, 1} and B(b, λ) ∈ {−1, 1}. The probability

density is normalized,
∫
ρ(λ)dλ = 1.

2 What about the sign in Bell’s formula for spin measurement?

This section contains a study on the obvious use of a sign distribution representing a (part of

a) measurement function, for either A or B in (1.1). We refer for definition of sign to [9] and

[10].

2.1 A sub-model that can be incorporated in any hidden variable theory

Suppose we look at a a probability density function in a single real variable x ∈ R.

ρ(x) =


−x, x ∈ [−1, 0]

+x, x ∈ [0, 1]

0, otherwise

(2.1)

It can be easily verified that ρ(x) ≥ 0 for all x ∈ [−1, 1]. Moreover, it is also easy to establish

that ∫ +1

−1

ρ(x)dx = −
∫ 0

−1

xdx+

∫ +1

0

xdx = −1

2
(0− (−1)2) +

1

2
(12 − 0) = 1 (2.2)

Hence, ρ is a real possibility for (part of a) probablity desity in (1.1). It is subsequently noted

that ρ(x) = |x| for all −1 ≤ x ≤ 1. Let us look at a part of a more complete model. We have

e.g.

E =

∫ 1

−1

|x|sign(x)dx (2.3)

The E defined previously can be the result of any model where, |x|ρ(λ), with, −1 ≤ x ≤ 1,

replaces the density ρ(λ) and A(a, λ)sign(x) replaces the A(a, λ). Then, E will occur in the

evaluation of the E(a, b) from (2.1).

2.2 sign algebra

Our object of study will be |x|sign(x). We have sign(x) = 1 when x ≥ 0 and sign(x) = −1

when x < 0.

2.2.1 Exponential

A sign defined as previously can be written down as an exponetial form:

sign(x) = exp [iπ(1−H(x))] (2.4)

We use, H(x) = 1 for x ≥ 0 and H(x) = 0 for x < 0. Now we know that |x|sign(x) =

xsign(x)sign(x). Usually, people claim that sign(x)sign(x) = 1. Here we will show it is highly

likely that sign(x)sign(x) cannot be computed. Of course that may sound crazy but we will

show an ambiguity.
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2.2.2 Fractional exponents

The first thing we note is that there can exist no objections towards complex numbers inter-

mediate results. Therefore we may write down the following expression

sign(x)sign(x) = {sign(x)}1/2 × {sign(x)}3/2 (2.5)

Now let us look at {sign(x)}3/2. In terms of (2.4) we then have

{sign(x)}3/2 = exp

[
3iπ

2
(1−H(x))

]
(2.6)

Moreover, note that (1/2) × 3 = 3 × (1/2). The equality is, however, not reflected in the

exponential expression. We have

{sign(x)}3/2 =
√

exp [3iπ(1−H(x))] (2.7)

and

{sign(x)}3/2 =

(
exp

[
iπ

2
(1−H(x))

])3

(2.8)

Equation (2.7) is a case of principle 1 below. If x < 0 then {sign(x)}3/2 = {{sign(x)}3}1/2 =√
(−1) = i. Equation (2.8) is a case of principle 2 below and for x < 0 we see, {sign(x)}3/2 =

{{sign(x)}1/2}3 = i× i× i = −i. The result reflects the inequality[
{sign(x)}3

]1/2
6≡
[
{sign(x)}1/2

]3
(2.9)

This also follows from comparing x < 0 between (2.7) and (2.8). However, with the use of

exponentials it is absolutely clear that in both cases we are looking at the same {sign(x)}3/2.

Therefore, we are looking at an ambiguity. The principles are itemized below and refer to the

treatment of

{sign(x)}3/2 = {sign(x)}−1/2 (2.10)

reflected in the exponentials above.

• Principle 1: In the evaluation of {sign(x)}3/2 of (2.10), the equation (2.7) is based on

first the power 3 then the power 1/2 and this concurs with, on the right hand of (2.10),

first the power −1 then the power 1/2.

• Principle 2: In the evaluation of {sign(x)}3/2 of (2.10), the equation (2.8) is based on

first the power 1/2 then the power 3 and this concurs with, on the right hand of (2.10),

first the power 1/2 then the power −1.

The two different breakdowns, reflecting the principles above, of |x|sign(x) in terms of expo-

nential functions are, firstly,

|x|sign(x) = x
√

exp [3iπ(1−H(x))]× {sign(x)}1/2 (2.11)

together with, secondly,

|x|sign(x) = x

(
exp

[
iπ

2
(1−H(x))

])3

× {sign(x)}1/2 (2.12)
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3 Conclusion & discussion

To the authors, the previous section represents two conflicting breakdowns of |x|sign(x).

Given 3× (1/2) = (1/2)× 3 the question is why 3× (1/2) gives another result compared to

(1/2)× 3. Again, in powers we have (1/2)× 3 = 3× (1/2). Despite the latter fact, principle 1

gives another result than principle 2 because of (2.9).

The claim of the authors, supported by [5], is that because of this demonstrated multi-

valuedness, concrete mathematical incompleteness is the cause of the ambiguity. As it was

stated previously E can occur in any model as a result of supplementing such a, perhaps

physically meaningful, model for a Bell formula.

Finally note, the experimentally demonstrated difference between classical and quantum

mechanics does not at all need Bell methodology. This state of affairs can be found at [7] and

[8].
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