Macroscopic polarization and related properties (BerryPI)

Oleg Rubel

Thunder Bay Regional Research Institute

Lakehead

How did it start?

[Wien] Piezoelectric properties

Oleg Rubel Thu, 14 Apr 2011 10:17:15 -0400

Dear Wien2k users and developers,

I am curious whether it is possible to extract piezoelectric properties (e.g., derivative of polarization with respect to strain) using Wien2k? It seems that there is no such a functionality documented in the UG, but maybe there some indirect ways. Ideally, it would be great to reproduce results of Saghi-Szabo et al. [PRL 80, 4321 (1998)] obtained using Berry's phase approach.

Thank you in advance Oleg

How did it start?

[Wien] Piezoelectric properties

Oleg Rubel Thu, 14 Apr 2011 10:17:15 -0400

Dear Wien2k users and developers,

I am curious whether it is possible to extract piezoelectric properties (e.g., derivative of polarization with respect to strain) using Wien2k? It seems that there is no such a functionality documented in the UG, but maybe there some indirect ways. Ideally, it would be great to reproduce results of Saghi-Szabo et al. [PRL 80, 4321 (1998)] obtained using Berry's phase approach.

Thank you in advance Oleg

https://github.com/spichardo/BerryPI

Outline

- Modern theory of polarization (Berry phase)
- BerryPI structure and execution
- Tutorials

Material properties related to polarization

Piezoelectricity

Effective charge

Dielectric screening

Pyroelectricity

Material properties related to polarization

Piezoelectricity

Effective charge

Dielectric screening

Pyroelectricity

Material properties related to polarization

Piezoelectricity

Effective charge

Dielectric screening

Pyroelectricity

We will now assume that in each atom there are charges q separated by a distance δ , so that $q\delta$ is the dipole moment per atom. (We use δ because we are already using d for the plate separation.) If there are N atoms per unit volume, there will be a dipole moment per unit volume equal to $Nq\delta$. This dipole moment per unit volume will be represented by a vector, P. Needless to say, it is in the direction of the individual dipole moments, i.e., in the direction of the charge

We will now assume that in each atom there are charges q separated by a distance δ , so that $q\delta$ is the dipole moment per atom. (We use δ because we are already using d for the plate separation.) If there are N atoms per unit volume, there will be a dipole moment per unit volume equal to $Nq\delta$. This dipole moment per unit volume will be represented by a vector, P. Needless to say, it is in the direction of the individual dipole moments, i.e., in the direction of the charge

We will now assume that in each atom there are charges q separated by a distance δ , so that $q\delta$ is the dipole moment per atom. (We use δ because we are already using d for the plate separation.) If there are N atoms per unit volume, there will be a dipole moment per unit volume equal to $Nq\delta$. This dipole moment per unit volume will be represented by a vector, P. Needless to say, it is in the direction of the individual dipole moments, i.e., in the direction of the charge

We will now assume that in each atom there are charges q separated by a distance δ , so that $q\delta$ is the dipole moment per atom. (We use δ because we are already using d for the plate separation.) If there are N atoms per unit volume, there will be a dipole moment per unit volume equal to $Nq\delta$. This dipole moment per unit volume will be represented by a vector, P. Needless to say, it is in the direction of the individual dipole moments, i.e., in the direction of the charge

We will now assume that in each atom there are charges q separated by a distance δ , so that $q\delta$ is the dipole moment per atom. (We use δ because we are already using d for the plate separation.) If there are N atoms per unit volume, there will be a dipole moment per unit volume equal to $Nq\delta$. This dipole moment per unit volume will be represented by a vector, P. Needless to say, it is in the direction of the individual dipole moments, i.e., in the direction of the charge

Pioneered by King-Smith, David Vanderbilt and Raffaele Resta

$$\Delta \mathbf{P} = \mathbf{P}^{(0)} - \mathbf{P}^{(1)}$$

Pioneered by King-Smith, David Vanderbilt and Raffaele Resta

$$\Delta \mathbf{P} = \mathbf{P}^{(0)} - \mathbf{P}^{(1)}$$

Pioneered by King-Smith, David Vanderbilt and Raffaele Resta

$$\Delta \mathbf{P} = \mathbf{P}^{(0)} - \mathbf{P}^{(1)}$$

Pioneered by King-Smith, David Vanderbilt and Raffaele Resta

$$\Delta \mathbf{P} = \mathbf{P}^{(0)} - \mathbf{P}^{(1)}$$

$$\frac{\Delta \mathbf{P}}{\Delta \text{strain}}$$

$$\frac{\Delta \mathbf{P}}{\text{displacement}}$$

Pioneered by King-Smith, David Vanderbilt and Raffaele Resta

$$\Delta \mathbf{P} = \mathbf{P}^{(0)} - \mathbf{P}^{(1)}$$

$$\frac{\Delta \mathbf{P}}{\Delta \text{strain}}$$

$$\frac{\Delta \mathbf{P}}{\text{displacement}}$$

Polarization as a transient current

$$\Delta \mathbf{P} = \mathbf{P}^{(1)} - \mathbf{P}^{(0)} = \Omega^{-1} \int dt \int_{\text{cell}} d\mathbf{r} \mathbf{j}(\mathbf{r}, t)$$

- transient current density

$$\mathbf{P} = \mathbf{P}_{\mathrm{ion}} + \mathbf{P}_{\mathrm{el}}$$

$$\mathbf{P}_{\text{ion}} = \frac{e}{\Omega} \sum_{s}^{\text{atoms}} Z_s^{\text{ion}} \mathbf{r}_s$$

In Wien2k Z_s^{ion} is the core charge

$$-\mathbf{P}_{\mathrm{el}} = \Omega^{-1} \int d\mathbf{r} \, \mathbf{r} \rho(\mathbf{r})$$

Polarization as a transient current

$$\Delta \mathbf{P} = \mathbf{P}^{(1)} - \mathbf{P}^{(0)} = \Omega^{-1} \int dt \int_{\text{cell}} d\mathbf{r} \mathbf{j}(\mathbf{r}, t)$$

- transient current density

$$\mathbf{P} = \mathbf{P}_{\mathrm{ion}} + \mathbf{P}_{\mathrm{el}}$$

$$\mathbf{P}_{\text{ion}} = \frac{e}{\Omega} \sum_{s}^{\text{atoms}} Z_{s}^{\text{ion}} \mathbf{r}_{s}$$

In Wien2k Z_s^{ion} is the core charge

$$-\mathbf{P}_{el} = \Omega^{-1} \int d\mathbf{r} \, \mathbf{r} \rho(\mathbf{r}) = \Omega^{-1} \sum_{n=1}^{\text{occ.}} \langle \psi_n | \mathbf{r} | \psi_n \rangle$$

Polarization as a transient current

$$\Delta \mathbf{P} = \mathbf{P}^{(1)} - \mathbf{P}^{(0)} = \Omega^{-1} \int dt \int_{\text{cell}} d\mathbf{r} \mathbf{j}(\mathbf{r}, t)$$

- transient current density

$$\mathbf{P} = \mathbf{P}_{ion} + \mathbf{P}_{el}$$

$$\mathbf{P}_{\text{ion}} = \frac{e}{\Omega} \sum_{s}^{\text{atoms}} Z_s^{\text{ion}} \mathbf{r}_s$$

In Wien2k Z_s^{ion} is the core charge

$$-\mathbf{P}_{\mathrm{el}} = \Omega^{-1} \int d\mathbf{r} \, \mathbf{r} \rho(\mathbf{r}) = \Omega^{-1} \sum_{n=0}^{\infty} \langle \psi_n | \mathbf{r} | \psi_n \rangle \equiv \frac{2ei}{(2\pi)^3} \sum_{n=0}^{\infty} \int_{\mathrm{BZ}} d\mathbf{k} \, \langle u_{n\mathbf{k}} | \nabla_{\mathbf{k}} | u_{n\mathbf{k}} \rangle$$

Berry phase

$$d\varphi_n = -i\langle u_{n\mathbf{k}}|\nabla_{\mathbf{k}}|u_{n\mathbf{k}}\rangle \cdot d\mathbf{k} = -i\ln\langle u_{n\mathbf{k}}|u_{n(\mathbf{k}+d\mathbf{k})}\rangle$$

$$\mathbb{S}_{mn}(\mathbf{k}_j, \mathbf{k}_{j+1}) = \langle u_{m\mathbf{k}_j} | u_{n\mathbf{k}_{j+1}} \rangle$$
 WIEN2WANNIER

$$\varphi(\mathbf{k}_{\parallel}) = 2 \operatorname{Im} \left[\ln \prod_{j=0}^{J-1} \det \mathbb{S}_{M \times M}(\mathbf{k}_j, \mathbf{k}_{j+1}) \right]$$

$$\varphi_{\mathrm{el},\alpha} = S_{\perp}^{-1} \int_{S_{\perp}} \mathrm{d}S_{\perp} \, \varphi(\mathbf{k}_{\parallel})$$

$$P_{\alpha} = \frac{e(\varphi_{\text{el},\alpha} + \varphi_{\text{ion},\alpha})}{2\pi\Omega} R_{\alpha}$$

BerryPl

Need wien2k, wien2wannier, python 2.7.x and numpy [command line]\$ berrypi -p(\$pwd) -k6:6:6 completed SCF cycle generate k-mesh in the <u>full</u> BZ (kgen) prepare nearest-neighbour k-point list calculate wavefunctions (lapw1) calculate overlap matrix S_{mn} (w2w) **Polarization** vector determine electron. and ion. phases

Comput. Phys. Commun. **184**, 647 (2013)

Tuesday, 13 August, 13

Two cases: λ_0 and λ_1

- structure file must preserve the symmetry
- begin with the lowest symmetry (λ_1) case
- copy case λ_1 to case λ_0
- edit structure file for case λ_0
- do <u>not</u> initialize calculation (init_lapw)
- update density (x dstart)
- run SCF cycle (run_lapw)
- run BerryPI

Uncertainties

$$P_{\alpha} = \frac{e(\varphi_{\text{el},\alpha} + \varphi_{\text{ion},\alpha})}{2\pi\Omega} R_{\alpha}$$

$$\Delta \mathbf{P} = \mathbf{P}^{(0)} - \mathbf{P}^{(1)} \pm \frac{e}{\Omega} \mathbf{R}$$

 cannot determine large polarization difference

Solution: $\lambda_1 \Rightarrow \lambda_{1/2} \Rightarrow \lambda_1$

Non-orthogonal lattice vectors

2-atom primitive basis

Non-orthogonal lattice vectors

2-atom primitive basis

Non-orthogonal lattice vectors

Non-orthogonal lattice vectors

8-atom basis

Tutorial I: Spontaneous polarization

ferroelectric tetragonal

$$P_{\rm S} = P_{\rm nc} - P_{\rm c}$$

Tutorial 2: Born effective charge

displacement $-\delta r$

$$Z_{s,\alpha\beta}^* = \frac{\Omega}{e} \frac{\delta P_{\alpha}}{\delta r_{s,\beta}} = (2\pi)^{-1} \frac{\delta \Phi_{\alpha}}{\delta u_{s,\beta}}$$

Tutorial 3: Piezoelectricity

$$a_0 = b_0 \# c_0$$

tetragonal strained

$$a_0 = b_0 \# c_0(1+\varepsilon_3)$$

Acknowledgement

- S. Pichardo
- L. Curiel
- D. Hassan
- V. Xiao

Jon Kivinen

Sheikh J.Ahmed

Ben Zaporzhan

WIEN2k & W2W Developers

https://github.com/spichardo/BerryPI