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Abstract: The intersection of thermodynamics, quantum theory and gravity has revealed many
profound insights, all the while posing new puzzles. In this article, we discuss an extension of
equilibrium statistical mechanics and thermodynamics potentially compatible with a key feature
of general relativity, background independence; and we subsequently use it in a candidate
quantum gravity system, thus providing a preliminary formulation of a thermal quantum spacetime.
Specifically, we emphasise an information-theoretic characterisation of generalised Gibbs equilibrium
that is shown to be particularly suited to background independent settings, and in which the status
of entropy is elevated to being more fundamental than energy. We also shed light on its intimate
connections with the thermal time hypothesis. Based on this, we outline a framework for statistical
mechanics of quantum gravity degrees of freedom of combinatorial and algebraic type, and apply it
in several examples. In particular, we provide a quantum statistical basis for the origin of covariant
group field theories, shown to arise as effective statistical field theories of the underlying quanta of
space in a certain class of generalised Gibbs states.
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1. Introduction

Background independence is a hallmark of general relativity that has revolutionised our
conception of space and time. The picture of physical reality it paints is that of an impartial dynamical
interplay between matter and gravitational fields. Spacetime is no longer a passive stage on which
matter performs; it is an equally active performer in itself. Coordinates are gauge, thus losing their
physical status of non-relativistic settings. In particular, the notion of time is modified drastically. It is
no longer an absolute, global, external parameter uniquely encoding the full dynamics. It is instead a
gauge parameter associated with a Hamiltonian constraint.

On the other hand, the well-established fields of quantum statistical mechanics and
thermodynamics have been of immense use in the physical sciences. From early applications to
heat engines and study of gases, to modern day uses in condensed matter systems and quantum optics,
these powerful frameworks have greatly expanded our knowledge of physical systems. However,
a complete extension of them to a background independent setting, such as for a gravitational field,
remains an open issue [1–3]. The biggest challenge is the absence of an absolute notion of time, and thus
of energy, which is essential to any statistical and thermodynamical consideration. This issue is
particularly exacerbated in the context of defining statistical equilibrium, for the natural reason that the
standard concepts of equilibrium and time are tightly linked. In other words, the constrained dynamics
of a background independent system lacks a non-vanishing Hamiltonian in general, which makes
formulating (equilibrium) statistical mechanics and thermodynamics, an especially thorny problem.
This is a foundational issue, and tackling it is important and interesting in its own right, and even
more so because it could provide deep insights into the nature of (quantum) gravitational systems.
This paper is devoted to addressing precisely these points.

Universe 2019, 5, 187; doi:10.3390/universe5080187 www.mdpi.com/journal/universe

http://www.mdpi.com/journal/universe
http://www.mdpi.com
https://orcid.org/0000-0002-3515-4355
http://dx.doi.org/10.3390/universe5080187
http://www.mdpi.com/journal/universe
https://www.mdpi.com/2218-1997/5/8/187?type=check_update&version=2


Universe 2019, 5, 187 2 of 22

The importance of addressing these issues is further intensified in light of the deep interplay
between thermodynamics, gravity and the quantum theory, first uncovered for black holes. The laws of
black hole mechanics [4] were a glimpse into a curious intermingling of thermodynamics and classical
gravity, even if originally only at a formal level of analogy. The discovery of black hole entropy and
radiation [5–7] further brought quantum mechanics into the mix. This directly led to a multitude of
new conceptual insights along with many puzzling questions which continue to be investigated still
after decades. The content of the discovery, namely that a black hole must be assigned physical entropy
and that it scales with the area of its horizon in Planck units, has birthed several distinct lines of
thoughts, in turn leading to different (even if related) lines of investigations, such as thermodynamics
of gravity, analogue gravity and holography. Moreover, early attempts at understanding the physical
origin of this entropy [8] made evident the relevance of quantum entanglement, thus also contributing
to the current prolific interest in fascinating connections between quantum information theory and
gravitational physics.

This discovery further hinted at a quantum microstructure underlying a classical spacetime.
This perspective is shared, to varying degrees of details, by various approaches to quantum gravity
such as loop quantum gravity (and related spin foams and group field theories), string theory
and AdS/CFT, simplicial gravity and causal set theory to name a few. Specifically within discrete
non-perturbative approaches, spacetime is replaced by more fundamental entities that are discrete,
quantum, and pre-geometric in the sense that no notion of smooth metric geometry and spacetime
manifold exists yet. The collective dynamics of such quanta of geometry, governed by some theory
of quantum gravity is then hypothesised to give rise to an emergent spacetime, corresponding to
certain phases of the full theory. This would essentially entail identifying suitable procedures to
extract a classical continuum from a quantum discretuum, and to reconstruct general relativistic
gravitational dynamics coupled with matter (likely with quantum corrections). This emergence in
quantum gravity is akin to that in condensed matter systems in which also coarse-grained macroscopic
(thermodynamic) properties of the physical systems are extracted from the microscopic (statistical and)
dynamical theories of the constituent atoms. In this sense our universe can be understood as an unusual
condensed matter system, brought into the existing smooth geometric form by a phase transition of a
quantum gravity system of pre-geometric ‘atoms’ of space; in particular, as a condensate [9].

This brings our motivations full circle, and to the core of this article: to illustrate, the potential of
and preliminary evidence for, a rewarding exchange between a background independent generalisation
of statistical mechanics and discrete quantum gravity; and show that ideas from the former are vital to
investigate statistical mechanics and thermodynamics of quantum gravity, and that its considerations
in the latter could in turn provide valuable insights into the former.

These are the two facets of interest to us here. In Section 2, we discuss a potential background
independent extension of equilibrium statistical mechanics, giving a succinct yet complete discussion of
past works in Section 2.1.1, and subsequently focussing on a new thermodynamical characterisation for
background independent equilibrium in Section 2.1.2, which is based on a constrained maximisation
of information entropy. In Section 2.2, we detail further crucial properties of this characterisation,
while placing it within a bigger context of the issue of background independent statistical equilibrium,
also in comparison with the previous proposals. Section 2.3 is more exploratory, remarking on
exciting new connections between the thermodynamical characterisation and the thermal time
hypothesis, wherein information entropy and observer dependence are seen to play instrumental roles.
In Section 2.4, we discuss several aspects of a generalised thermodynamics based on the generalised
equilibrium statistical mechanics derived above, including statements of the zeroth and first laws.
Section 3 is devoted to statistical mechanical considerations of candidate quantum gravity degrees of
freedom of combinatorial and algebraic type. After clarifying the framework for many-body mechanics
of such atoms of space in Section 3.1, we give an overview of examples in Section 3.2, thus illustrating
the applicability of the generalised statistical framework in quantum gravity. The one case for which
we give a slightly more detailed account is that of deriving a generic covariant group field theory



Universe 2019, 5, 187 3 of 22

as an effective statistical field theory starting from a particular class of quantum Gibbs states of the
underlying microscopic system. Finally, we conclude and offer some outlook.

2. Background Independent Equilibrium Statistical Mechanics

Covariant statistical mechanics [1–3] broadly aims at addressing the foundational issue of defining
a suitable statistical framework for constrained systems. This issue, especially in the context of
gravity, was brought to the fore in a seminal work [1], and developed subsequently in [2,3,10,11].
Valuable insights from these studies on spacetime relativistic systems [1–3,11–13] have also formed
the conceptual backbone of first applications to discrete quantum gravity [14–16]. In this section,
we present extensions of equilibrium statistical mechanics to background independent1 systems,
laying out different proposals for a generalised statistical equilibrium, but emphasising on one in
particular, and based on which further aspects of a generalised thermodynamics are considered.
The aim here is thus to address the fundamental problem of formulating these frameworks in settings
where the conspicuous absence of time and energy is particularly tricky.

Section 2.1 discusses background independent characterisations of equilibrium Gibbs states, of the
general form e−∑a βaOa . In Section 2.1.1, we touch upon various proposals for equilibrium put forward
in past studies on spacetime covariant systems [1,3,11,17,18]. From Section 2.1.2 onwards, we focus on
Jaynes’ information-theoretic characterisation [19,20] for equilibrium. This was first suggested as a
viable proposal for background independent equilibrium, and illustrated with an explicit example in
the context of quantum gravity, in [14]. Using the terminology of [14], we call this a ‘thermodynamical’
characterisation of equilibrium, to contrast with the customary Kubo–Martin–Schwinger (KMS) [21]
‘dynamical’ characterisation2.

We devote Section 2.2 to discussing various aspects of the thermodynamical characterisation,
including highlighting many of its favourable features, also compared to the other proposals. In fact,
we point out how this characterisation can comfortably accommodate the other proposals for
Gibbs equilibrium.

Further, as is evident shortly, the thermodynamical characterisation hints at the idea that
entropy is a central player, which has been a recurring theme across modern theoretical physics.
In Section 2.3, we present a tentative discussion on some of these aspects. In particular, we notice
compelling new relations between the thermodynamical characterisation and the thermal time
hypothesis, which further seem to hint at intriguing relations between entropy, observer dependence
and thermodynamical time. We further propose to use the thermodynamical characterisation as a
constructive criterion of choice for the thermal time hypothesis.

Finally, in Section 2.4, we define the basic thermodynamic quantities which can be derived
immediately from a generalised equilibrium state, without requiring any additional physical
and/or interpretational inputs. We clarify the issue of extracting a single common temperature
for the full system from a set of several of them, and end with the zeroth and first laws of a
generalised thermodynamics.

1 In the original works mentioned above, the framework is usually referred to as covariant or general relativistic statistical
mechanics. However, we choose to call it background independent statistical mechanics as our applications to quantum
gravity are evident of the fact that the main ideas and structures are general enough to be used in radically background
independent systems devoid of any spacetime manifold or associated geometric structures.

2 For a more detailed discussion of the comparison between these two characterisations, we refer the reader to [14].
The main idea is that the various proposals for generalised Gibbs equilibrium can be divided into these two categories.
Which characterisation one chooses to use in a given situation depends on the information/description of the system
that one has at hand. For instance, if the description includes a one-parameter flow of physical interest, then using the
dynamical characterisation, i.e., satisfying the KMS condition with respect to it, will define equilibrium with respect to it.
The procedures defining these two categories can thus be seen as ‘recipes’ for constructing a Gibbs state, and which one is
more suitable depends on our knowledge of the system.
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2.1. Generalised Equilibrium

Equilibrium states are a cornerstone of statistical mechanics, which in turn is the theoretical basis
for thermodynamics. They are vital in the description of macroscopic systems with a large number of
microscopic constituents. In particular, Gibbs states e−βE have a vast applicability across a broad range
of fields such as condensed matter physics, quantum information and tensor networks, and (quantum)
gravity, to name a few. They are special, being the unique class of states in finite systems satisfying
the KMS condition3. Furthermore, usual coarse-graining techniques also rely on the definition of
Gibbs measures. In treatments closer to hydrodynamics, one often considers the full (non-equilibrium)
system as being composed of many interacting subsystems, each considered to be at local equilibrium.
While in the context of renormalisation group flow treatments, each phase at a given scale, for a
given set of coupling parameters is also naturally understood to be at equilibrium, each described by
(an inequivalent) Gibbs measure.

Given this physical interest in Gibbs states, the question then is how to define them for background
independent systems. The following are different proposals, all relying on different principles
originating in standard non-relativistic statistical mechanics, extended to a relativistic setting.

2.1.1. Past Proposals

The first proposal [1,12] was based on the idea of statistical independence of arbitrary (small,
but macroscopic) subsystems of the full system. The notion of equilibrium is taken to be characterised
by the factorisation property of the state, ρ12 = ρ1ρ2, for any two subsystems 1 and 2; and the full
system is at equilibrium if any one of its subsystems satisfies this property with all the rest. We notice
that the property of statistical independence is related to an assumption of weak interactions [22].

This same dilute gas assumption is integral also to the Boltzmann method of statistical mechanics.
It characterises equilibrium as the most probable distribution, that is one with maximum entropy4.
This method is used in [11] to study a gas of constrained particles5.

The work in [3] puts forward a physical characterisation for an equilibrium state. The suggestion
is that ρ (itself a well-defined state on the physical, reduced state space) is said to be a physical
Gibbs state if its modular Hamiltonian h = − ln ρ, is a well-defined function on the physical state
space; and, is such that there exists a (local) clock function T(x) on the extended state space (with
its conjugate momentum pT(x)), such that the (pull-back) of h is proportional to (the negative of) pT .
Importantly, when this is the case the modular flow (‘thermal time’, see Section 2.2) is a geometric
(foliation) flow in spacetime, in which sense ρ is said to be ‘physical’. Notice that the built-in strategy
here is to define KMS equilibrium in a deparameterised system (thus it is an example of using the
dynamical characterisation), since it basically identifies a state’s modular Hamiltonian with a (local)
clock Hamiltonian on the base spacetime manifold.

Another strategy [17] is based on the use of the ergodic principle and introduction of clock
subsystems to define (clock) time averages. Again, this characterisation, similar to a couple of the
previous ones, relies on the validity of a postulate, even if traditionally a fundamental one.

Finally, the proposal of [18] interestingly characterises equilibrium by a vanishing information
flow between interacting histories. The notion of information used is that of Shannon (entropy),
I = ln N, where N is the number of microstates traversed in a given history during interaction.

3 The algebraic KMS condition [21] is well known to provide a comprehensive characterisation of statistical equilibrium
in systems of arbitrary sizes, as long as there exists a well-defined one-parameter dynamical group of automorphisms of
the system. This latter point, of the required existence of a preferred time evolution of the system, is exactly the missing
ingredient in our case, thus limiting its applicability.

4 Even though this method relies on maximising the entropy similar to the thermodynamical characterisation, it is more
restrictive than the latter, as is made clear in Section 2.2.

5 We remark that except for this one work, all other studies in spacetime covariant statistical mechanics are carried out from
the Gibbs ensemble point of view.
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Equilibrium between two histories 1 and 2 is encoded in a vanishing information flow, δI = I2− I1 = 0.
This characterisation of equilibrium is evidently information-theoretic, even if relying on an assumption
of interactions. Moreover, it is much closer to our thermodynamical characterisation, because the
condition of vanishing δI is nothing but an optimisation of information entropy.

These different proposals, along with the thermal time hypothesis [1,2], have led to some
remarkable results, such as recovering the Tolman–Ehrenfest effect [13,23], relativistic Jüttner
distribution [23] and Unruh effect [24]. However, they all assume the validity of one or more principles,
postulates or assumptions about the system. Moreover, none (at least presently) seems to be general
enough, as with the proposal below, to be implemented in a full quantum gravity setup, while also
accommodating within it the rest of the proposals.

2.1.2. Thermodynamical Characterisation

This brings us to the proposal of characterising a generalised Gibbs state based on a constrained
maximisation of information (Shannon or von Neumann) entropy [14–16], along the lines advocated
by Jaynes [19,20] purely from the perspective of evidential statistical inference. Jaynes’ approach
is fundamentally different from other more traditional ones of statistical physics, as is the
thermodynamical characterisation, compared with the others outlined above, which is exemplified in
the following. It is thus a new proposal for background independent equilibrium [14,25], which has
the potential of incorporating also the others as special cases, from the point of view of constructing a
Gibbs state.

Consider a macroscopic system with a large number of constituent microscopic degrees of freedom.
Our (partial) knowledge of its macrostate is given in terms of a finite set of averages {〈Oa〉 = Ua}
of the observables we have access to. Jaynes suggests that a fitting probability estimate (which,
once known, will allow us to infer also the other observable properties of the system) is not only one
that is compatible with the given observations, but also that which is least-biased in the sense of not
assuming any more information about the system than what we actually have at hand (namely, {Ua}).
In other words, given a limited knowledge of the system (which is always the case in practice for any
macroscopic system), the least-biased probability distribution compatible with the given data should
be preferred. As shown below, this turns out to be a Gibbs distribution with the general form e−∑a βaOa .

Let Γ be a finite-dimensional phase space (be it extended or reduced), and on it consider a finite set
of smooth real-valued functions Oa. Denote by ρ a smooth statistical density (real-valued, positive and
normalised function) on Γ, to be determined. Then, the prior on the macrostate gives a finite number
of constraints,

〈Oa〉ρ =
∫

Γ
dλ ρOa = Ua (1)

where dλ is a Liouville measure on Γ, and the integrals are taken to be well-defined. Further, ρ has an
associated Shannon entropy

S[ρ] = −〈ln ρ〉ρ . (2)

By understanding S to be a measure of uncertainty quantifying our ignorance about the details of
the system, the corresponding bias is minimised (compatibly with the prior data) by maximising S
(under the set of constraints in Equation (1), plus the normalisation condition for ρ) [19]. The method
of Lagrange multipliers then gives a generalised Gibbs distribution of the form,

ρ{βa} =
1

Z{βa}
e−∑a βaOa (3)
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where the partition function Z{βa} encodes all thermodynamic properties in principle, and is assumed
to be convergent. This can be done analogously for a quantum system [20], giving a Gibbs density
operator on a representation Hilbert space

ρ̂{βa} =
1

Z{βa}
e−∑a βaÔa . (4)

A generalised Gibbs state can thus be defined, characterised fully by a finite set of observables of
interest Oa, and their conjugate generalised “inverse temperatures” βa, which have entered formally
as Lagrange multipliers. Given this class of equilibrium states, it should be evident that some
thermodynamic quantities (e.g., generalised “energies” Ua) can be identified immediately. Aspects of a
generalised thermodynamics are discussed in Section 2.4.

Finally, we note that the role of entropy is shown to be instrumental in defining (local6) equilibrium
states: “...thus entropy becomes the primitive concept with which we work, more fundamental even
than energy...” [19]. It is also interesting to notice that Bekenstein’s arguments [6] can be observed to
be influenced by Jaynes’ information-theoretic insights surrounding entropy, and these same insights
have now guided us in the issue of background independent statistical equilibrium.

2.2. Remarks

1. There are two key features of this characterisation. The first is the use of evidential (or epistemic,
or Bayesian) probabilities, thus taking into account the given evidence {Ua}; and second is
a preference for the least-biased (or most “honest”) distribution out of all the different ones
compatible with the given evidence. It is not enough to arbitrarily choose any that is compatible
with the prior data. An aware observer must also take into account their own ignorance, or lack
of knowledge honestly, by maximising the information entropy.

2. This notion of equilibrium is inherently observer-dependent because of its use of the macrostate
thermodynamic description of the system, which in itself is observer-dependent due to having to
choose a coarse-graining, that is the set of macroscopic observables.

3. Given a generalised Gibbs state, the question arises as to which flow it is stationary with respect
to. Any density distribution or operator satisfies the KMS condition (which implies stationarity)
with respect to its own modular flow. In fact, by the Tomita–Takesaki theorem [21], any faithful
algebraic state over a von Neumann algebra is KMS with respect to its own one-parameter
modular (Tomita) flow.7 Given this, then ρ{βa} is clearly KMS with respect to the flow Xρ ∼ ∂/∂t

(or Ûρ(t) ∼ eiĥt) generated by its modular Hamiltonian h = ∑a βaOa. In particular, ρ{βa} is
not stationary with respect to the individual flows Xa generated by Oa, unless they satisfy
[Xa, Xa′ ] = 0 for all a, a′ [15]. In fact, this last property shows that the proposal in [1,12] based
on statistical independence (that is, [Xρ1 , Xρ2 ] = 0) can be understood as a special case of this
one, when the state is defined for a pair of observables that are defined on mutually exclusive
subspaces of the state space. In this case, their respective flows will automatically commute and
the state will be said to satisfy statistical independence.

4. To be clear, the use of the “most probable” characterisation for equilibrium is not new in
itself. It was used by Boltzmann in the late 19th century, and utilised (also within a Boltzmann
interpretation of statistical mechanics) in a constrained system in [11]. The fact that equilibrium
configurations maximise the system’s entropy is also not new: it was well known already
in the time of Gibbs8. The novelty here is: in the revival of Jaynes’ perspective, of deriving

6 Local, in the sense of being observer-dependent (see Section 2.2).
7 This is also the main ingredient of the thermal time hypothesis [1,2], which we return to below.
8 However, as Jaynes points out in [19], these properties were relegated to side remarks in the past, not really considered to be

fundamental to the theory or to the justifications for the methods of statistical mechanics.
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equilibrium statistical mechanics in terms of evidential probabilities, solely as a problem of
statistical inference without depending on the validity of any further conjectures, physical
assumptions or interpretations; and in the suggestion that it is general enough to apply to
genuinely background independent systems, including quantum gravity. Below, we list some of
these more valuable features.

• The procedure is versatile, being applicable to a wide array of cases (both classical and
quantum), relying only on a sufficiently well-defined mathematical description in terms of a
state space, along with a set of observables with dynamically constant averages Ua defining
a suitable macrostate of the system9.

• Evidently, this manner of defining equilibrium statistical mechanics (and from it,
thermodynamics) does not lend any fundamental status to energy, nor does it rely on
selecting a single, special (energy) observable out of the full set {Oa}. It can thus be crucial
in settings where concepts of time and energy are dubious at the least, or not defined at all
as in non-perturbative quantum gravity.

• It has a technical advantage of not needing any (one-parameter) symmetry (sub-)groups
of the system to be defined a priori, unlike the dynamical characterisation based on the
standard KMS condition.

• It is independent of any additional physical assumptions, hypotheses or principles that are
common to standard statistical physics, and, in the present context, to the other proposals of
generalised equilibrium recalled in Section 2.1. Some examples of these extra ingredients
(not required in the thermodynamical characterisation) that we have already encountered
are ergodicity, weak interactions, statistical independence, and often a combination of them.

• It is independent of any physical interpretations attached (or not!) to the quantities and
setup involved. This further amplifies its appeal for use in quantum gravity where the
geometrical (and physical) meanings of the quantities involved may not necessarily be clear
from the start.

• One of the main features (which helps accommodate the other proposals as special cases
of this one) is the generality in the choice of observables Oa allowed naturally by this
characterisation. In principle, they need only be mathematically well-defined in the given
description of the system (regardless of whether it is kinematic i.e., working at the extended
state space level, or dynamic, i.e., working with the physical state space), satisfying convexity
properties so that the resultant Gibbs state is normalisable. More standard choices include
a Hamiltonian in a non-relativistic system, a clock Hamiltonian in a deparameterised
system [3,14], and generators of kinematic symmetries such as rotations, or more generally
of one-parameter subgroups of Lie group actions [26,27]. Some of the more unconventional
choices include geometric observables such as volume [14,28], (component functions of
the) momentum map associated with geometric closure of classical polyhedra [15,16],
half-link gluing (or face-sharing) constraints of discrete gravity [15], a projector in group
field theory [15,29], and generic gauge-invariant observables (not necessarily symmetry
generators) [11]. We refer to [14] for a more detailed discussion.

In Section 3.2, we outline some examples of using this characterisation in quantum gravity, while a
detailed investigation of its consequences in particular for covariant systems on a spacetime manifold
is left to future studies.

9 In fact, in hindsight, we could already have anticipated a possible equilibrium description in terms of these constants,
whose existence is assumed from the start.
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2.3. Relation to Thermal Time Hypothesis

This section outlines a couple of new intriguing connections between the thermodynamical
characterisation and the thermal time hypothesis, which we think are worthwhile to be explored
further. Thermal time hypothesis [1,2] states that the (geometric) modular flow of the (physical,
equilibrium) statistical state that an observer happens to be in is the time that they experience. It thus
argues for a thermodynamical origin of time [30].

What is this state? Pragmatically, the state of a macroscopic system is that which an observer is
able to observe and assigns to the system. It is not an absolute property since one can never know
everything there is to know about the system. In other words, the state that the observer “happens
to be in” is the state that they are able to detect. This leads us to suggest that the thermodynamical
characterisation can provide a suitable criterion of choice for the thermal time hypothesis.

What we mean by this is the following. Consider a macroscopic system that is observed to be
in a particular macrostate in terms of a set of (constant) observable averages. The thermodynamical
characterisation then provides the least biased choice for the underlying (equilibrium) statistical state.
Given this state then, the thermal time hypothesis would imply that the (physical) time experienced by
this observer is the (geometric) modular flow of the observed state.

Jaynes [19,20] turned the usual logic of statistical mechanics upside-down to stress on entropy
and the observed macrostate as the starting point, to define equilibrium statistical mechanics in its
entirety from it (and importantly, a further background independent generalisation, as shown above).
Rovelli [1], later with Connes [2], turned the usual logic of the definition of time upside-down to
stress on the choice of a statistical state as the starting point to identify a suitable time flow from it.
The suggestion here is to merge the two and get an operational way of implementing the thermal
time hypothesis.

It is interesting to see that the crucial property of observer-dependence of relativistic time arises
as a natural consequence of our suggestion, directly because of the observer-dependence of any state
defined using the thermodynamical characterisation. This way, thermodynamical time is intrinsically
“perspectival” [31] or “anthropomorphic” [32].

To be clear, this criterion of choice will not single out a preferred state, by the very fact that it is
inherently observer-dependent. It is thus compatible with the basic philosophy of the thermal time
hypothesis, namely that there is no preferred physical time.

Presently the above suggestion is rather conjectural, and certainly much work remains to be done
to understand it better, and explore its potential consequences for physical systems. Here, it may be
helpful to realise that the thermal time hypothesis can be sensed to be intimately related with (special
and general) relativistic systems, and so might the thermodynamical characterisation when considered
in this context. Thus, for instance, Rindler spacetime or stationary black holes might offer suitable
settings to begin investigating these aspects in more detail.

The second connection that we observe is much less direct, and is via information entropy.
The generator of the thermal time flow [1], − ln ρ, can immediately be observed to be related to
Shannon entropy in Equation (2). Moreover, in the general algebraic (quantum) field theoretic setting,
the generator is the log of the modular operator ∆ of von Neumann algebra theory [2]. A modification
of it, the relative modular operator, is known to be an algebraic measure of relative entropy [33],
which in fact has seen a recent revival in the context of quantum information and gravity. This is a
remarkable feature in our opinion, which compels us to look for deeper insights it may have to offer,
in further studies.

2.4. Generalised Thermodynamic Potentials, Zeroth and First Laws

Traditional thermodynamics is the study of energy and entropy exchanges. However, what is
a suitable generalisation of it for background independent systems? This, as with the question of a
generalised equilibrium statistical mechanics which we have considered until now, is still open. In the
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following, we offer some insights gained from preceding discussions, including identifying certain
thermodynamic potentials, and generalised zeroth and first laws.

Thermodynamic potentials are vital, particularly in characterising the different phases of the
system. The most important one is the partition function Z{βa}, or equivalently the free energy

Φ({βa}) := − ln Z{βa} . (5)

It encodes complete information about the system from which other thermodynamic quantities
can be derived in principle. Notice that the standard definition of a free energy F comes with an
additional factor of a (single, global) temperature, that is we normally have Φ = βF. However, for now,
Φ is the more suitable quantity to define and not F since we do not (yet) have a single common
temperature for the full system. We return to this point below.

Next is the thermodynamic entropy (which by use of the thermodynamical characterisation has
been identified with information entropy), which is straightforwardly

S({Ua}) = ∑
a

βaUa −Φ (6)

for generalised Gibbs states of the form in Equation (3). Notice again the lack of a single β scaling the
whole equation at this more general level of equilibrium.

By varying S such that the variations dUa and 〈dOa〉 are independent [19], a set of generalised
heats can be defined

dS = ∑
a

βa(dUa − 〈dOa〉) =: ∑
a

βa dQa (7)

and, from it (at least part of the10) work done on the system dWa [15], can be identified

dWa := 〈dOa〉 =
1
βa

∫
Γ

dλ
δΦ
δOa

dOa . (8)

From the setup of the thermodynamical characterisation presented in Section 2.1.2, we can
immediately identify Ua as generalised “energies”. Jaynes’ procedure allows these quantities to
democratically play the role of generalised energies. None had to be selected as being the energy in
order to define equilibrium. This a priori democratic status of the several conserved quantities can be
broken most easily by preferring one over the others. In turn, if its modular flow can be associated
with a physical evolution parameter (relational or not), then this observable can play the role of a
dynamical Hamiltonian.

Thermodynamic conjugates to these energies are several generalised inverse temperatures βa.
By construction, each βa is the periodicity in the flow ofOa, in addition to being the Lagrange multiplier
for the ath constraint in Equation (1). Moreover, these same constraints can determine βa, by inverting
the equations

∂Φ
∂βa

= Ua ; (9)

or equivalently from
∂S

∂Ua
= βa . (10)

10 By this we mean that the term 〈dOa〉, based on the same observables defining the generalised energies Ua, can be seen as
reflecting some work done on the system. However, naturally, we do not expect or claim that this is all the work that is/can
be performed on the system by external agencies. In other words, there could be other work contributions, in addition to the
terms dWa. A better understanding of work terms in this background independent setup, will also contribute to a better
understanding of the generalised first law presented below.
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In general, {βa} is a multi-variable inverse temperature. In the special case when Oa are
component functions of a dual vector, then ~β ≡ (βa) is a vector-valued temperature. For example,
this is the case when ~O ≡ {Oa} are dual Lie algebra-valued momentum maps associated with
Hamiltonian actions of Lie groups, as introduced by Souriau [26,27], and appearing in the context of
classical polyhedra in [15].

As shown above, a generalised equilibrium is characterised by several inverse temperatures,
but an identification of a single common temperature for the full system is of obvious interest. This can
be done as follows [12,15]. A state of the form in Equation (3), with modular Hamiltonian

h = ∑
a

βaOa (11)

generates a modular flow (with respect to which it is at equilibrium), parameterised by

t = ∑
a

ta

βa
(12)

where ta are the flow parameters of Oa. The strategy now is to reparameterise the same trajectory by a
rescaling of t,

τ := t/β (13)

for a real-valued β. It is clear that τ parameterises the modular flow of a rescaled modular hamiltonian
h̃ = βh, associated with the state

ρ̃β =
1

Z̃β
e−h̃ =

1
Z̃β

e−βh (14)

characterised now by a single inverse temperature β.
In fact, this state can be understood as satisfying the thermodynamical characterisation for a

single constraint
〈h〉 = constant (15)

instead of several of them as in Equation (1). Clearly, this rescaling is not a trivial move. It corresponds
to the case of a weaker, single constraint which by nature corresponds to a different physical situation
wherein there is exchange of information between the different observables (so that they can thermalise
to a single β). This can happen for instance when one observable is special (e.g., the Hamiltonian)
and the rest are functionally related to it (e.g., the volume or number of particles). Whether such
a determination of a single temperature can be brought about by a more physically meaningful
technique is left to future work. Having said that, it will not change the general layout of the two cases
as outlined above.

One immediate consequence of extracting a single β is regarding the free energy, which can now
be written in the familiar form as

Φ = βF . (16)

This is most directly seen from the expression for the entropy,

S̃ = −〈ln ρ̃β〉ρ̃β
= β ∑

a
βaŨa + ln Z̃ ⇔ F̃ = Ũ − β−1S̃ (17)

where Ũ = ∑a βaŨa is a total energy, and tildes mean that the quantities are associated with the
state ρ̃β. Notice that the above equation clearly identifies a single conjugate variable to entropy,
the temperature β−1.

It is important to remark that, in the above method to get a single β, we still do not need to
choose a special observable, say O′, out of the given set of Oa. If one were to do this, i.e., select O′
as a dynamical energy (so that by extension the other Oa are functions of this one), then by standard
arguments, the rest of the Lagrange multipliers will be proportional to β′, which in turn would then be
the common inverse temperature for the full system. The point is that this latter instance is a special
case of the former.
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We end this section with zeroth and first laws of generalised thermodynamics. The crux of the
zeroth law is a definition of equilibrium. Standard statement refers to a thermalisation resulting in a
single temperature being shared by any two systems in thermal contact. This can be extended by the
statement that at equilibrium, all inverse temperatures βa are equalised. This is in exact analogy with
all intensive thermodynamic parameters, such as the chemical potential, being equal at equilibrium.

The standard first law is basically a statement about conservation of energy. In the generalised
equilibrium case corresponding to the set of individual constraints in Equation (1), the first law is
satisfied ath-energy-wise,

dUa = dQa + dWa . (18)

The fact that the law holds a-energy-wise is not surprising because the separate constraints in
Equation (1) for each a mean that observablesOa do not exchange any information amongst themselves.
If they did, then their Lagrange multipliers would no longer be mutually independent and we would
automatically reduce to the special case of having a single β after thermalisation.

On the other hand, for the case with a single β, variation of the entropy in Equation (17) gives

dS̃ = β ∑
a

βa(dUa − 〈dOa〉) =: βdQ̃ (19)

giving a first law with a more familiar form, in terms of total energy, total heat and total work variations

dŨ = dQ̃ + dW̃ . (20)

As before, in the even more special case where β is conjugate to a single preferred energy, then this
reduces to the traditional first law. We leave the verification of the second law for the generalised
entropy to future work. Further, the quantities introduced above and the consequences of this setup
also need to be investigated in greater detail.

3. Equilibrium Statistical Mechanics in Quantum Gravity

Emergence of spacetime is the outstanding open problem in quantum gravity that is being
addressed from several directions. One such is based on modelling quantum spacetime as a
many-body system [34], which further complements the view of a classical spacetime as an effective
macroscopic thermodynamic system. This formal suggestion allows one to treat extended regions of
quantum spacetime as built out of discrete building blocks whose dynamics is dictated by non-local,
combinatorial and algebraic mechanical models. Based on this mechanics, a formal statistical mechanics
of the quanta of space can be studied [14,15]. Statistical mixtures of quantum gravity states are better
suited to describe generic boundary configurations with a large number of quanta. This is in the sense
that given a region of space with certain known macroscopic properties, a more reasonable modelling
of its underlying quantum gravity description would be in in terms of a mixed state rather than a
pure state, essentially because we cannot hope to know precisely all microscopic details to prefer one
particular microstate. A simple example is having a region with a fixed spatial volume and wanting to
estimate the underlying quantum gravity (statistical) state [11,14].

In addition to the issue of emergence, investigating the statistical mechanics and thermodynamics
of quantum gravity systems would be expected to contribute towards untangling the puzzling knot
between thermodynamics, gravity and the quantum theory, especially when applied to more physical
settings, such as cosmology [28].

In the rest of this article, we use results from the previous sections to outline a framework
for equilibrium statistical mechanics for candidate quanta of geometry (along the lines presented
in [14,15], but generalising further to a richer combinatorics based on [35]), and within it give an
overview of some concrete examples. In particular, we show that a group field theory can be
understood as an effective statistical field theory derived from a coarse-graining of a generalised
Gibbs configuration of the underlying quanta. In addition to providing an explicit quantum statistical
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basis for group field theories, it further reinforces their status as being field theories for quanta of
geometry [36–39]. As expected, we see that even though the many-body viewpoint makes certain
techniques available that are almost analogous to standard treatments, there are several non-trivialities
such as that of background independence, and physical (possible pre-geometric and effective geometric)
interpretations of the statistical and thermodynamic quantities involved.

3.1. Framework

The candidate atoms of space considered here are geometric (quantum) d-polyhedra (with d
faces), or equivalently open d-valent nodes with its half-links dressed by the appropriate algebraic
data [40]. This choice is motivated strongly by loop quantum gravity [41], spin foam [42],
group field theory [36–39] and lattice quantum gravity [43] approaches in the context of 4d models.
Extended discrete space and spacetime can be built out of these fundamental atoms or “particles”,
via kinematical compositions (or boundary gluings) and dynamical interactions (or bulk bondings),
respectively. In this sense, the perspective innate to a many-body quantum spacetime is a constructive
one, which is naturally also extended to the statistical mechanics based on this mechanics.

Two types of data specify a mechanical model, combinatorial and algebraic. States and processes
of a model are supported on combinatorial structures, here abstract11 graphs and 2-complexes,
respectively; and algebraic dressings of these structures adds discrete geometric information.
Thus, different choices of combinatorics and algebraic data gives different mechanical models.
For instance, the simplest spin foam models (and their associated group field theories) for 4d gravity
are based on: boundary combinatorics based on a 4-valent node (or a tetrahedron), bulk combinatorics
based on a 4-simplex interaction vertex, and algebraic (or group representation) data of SU(2) labelling
the boundary 4-valent graphs and bulk 2-complexes.

Clearly, this is not the only choice, in fact far from it. The vast richness of possible
combinatorics, compatible with our constructive point of view, is comprehensively illustrated in [35]12.
The various choices for variables to label the discrete structures with (so that they may encode
a suitable notion of discrete geometry, which notion depending exactly on the variables chosen
and constraints imposed on them) have been an important subject of study, starting all the way
from Regge [45–50]. Accommodation of these various different choices is yet another appeal of the
constructive many-body viewpoint and this framework. After clarifying further some of these aspects
in the following, we choose to work with simplicial combinatorics and SU(2) holonomy-flux data for
the subsequent examples.

3.1.1. Atoms of Quantum Space and Kinematics

In the following, we make use of some of the combinatorial structures defined in [35]. However we
are content with introducing them in a more intuitive manner, and not recalling the rigorous definitions
as that would not be particularly valuable for the present discussion. The interested reader can refer
to [35] for details13.

11 Thus, not necessarily embedded into any continuum spatial manifold.
12 In fact, the work in [35] is phrased in a language closer to the group field theory approach, but the structures are general

enough to apply elsewhere, such as in spin foams, as evidenced in [44].
13 For clarity, we note that the terminology used here is slightly different from that in [35]. Specifically, the dictionary

between here↔ there is: combinatorial atom or particle↔ boundary patch; interaction/bulk vertex↔ spin foam atom;
boundary node↔ boundary multivalent vertex v̄; link or full link↔ boundary edge connecting two multivalent vertices
v̄1, v̄2; half-link↔ boundary edge connecting a multivalent vertex v̄ and a bivalent vertex v̂. This minor difference is mainly
due to a minor difference in the purpose for the same combinatorial structures. Here, we are in a setup where the accessible
states are boundary states, for which a statistical mechanics is defined; and the case of interacting dynamics is considered as
defining a suitable (amplitude) functional over the the boundary state space. On the other hand, the perspective in [35] is
more in a spin foam constructive setting, so that modelling the 2-complexes as built out of fundamental spin foam atoms is
more natural there.
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The primary objects of interest to us are boundary patches, which we take as the combinatorial
atoms of space. To put simply, a boundary patch is the most basic unit of a boundary graph, in the
sense that the set of all boundary patches generates the set of all connected bisected boundary graphs.
A bisected boundary graph is simply a directed boundary graph with each of its full links bisected
into a pair of half-links, glued at the bivalent nodes (see Figure 1). Different kinds of atoms of space
are then the different, inequivalent boundary patches (dressed further with suitable data), and the
choice of combinatorics basically boils down to a choice of the set of admissible boundary patches.
Moreover, a model with multiple inequivalent boundary patches can be treated akin to a statistical
system with multiple species of atoms.

The most general types of boundary graphs are those with nodes of arbitrary valence,
and including loops. A common and natural restriction is to consider loopless structures, as they can
be associated with combinatorial polyhedral complexes [35]. As the name suggests, loopless boundary
patches are those with no loops, i.e., each half-link is bounded on one end by a unique bivalent
node (and on the other by the common, multivalent central node). A loopless patch is thus uniquely
specified by the number of incident half-links (or equivalently, by the number of bivalent nodes
bounding the central node). A d-patch, with d number of incident half-links, is simply a d-valent
node. Importantly for us, it is the combinatorial atom that supports (quantum) geometric states of a
d-polyhedron [40,51,52]. A further common restriction is to consider graphs with nodes of a single,
fixed valence, that is to consider d-regular loopless structures.

Let us take an example. Consider the boundary graph of a 4-simplex as shown in Figure 1.
The fundamental atom or boundary patch is a 4-valent node. This graph can be constructed starting
from five open 4-valent nodes (denoted m, n, ..., q), and gluing the half-links, or equivalently the faces
of the dual tetrahedra, pair-wise, with the non-local combinatorics of a complete graph on five 4-valent
nodes. The result is ten bisected full links, bounded by five nodes. It is important to note here that a
key ingredient of constructing extended boundary states from the atoms are precisely the half-link
gluing, or face-sharing conditions on the algebraic data decorating the patches. For instance, in the
case of standard loop quantum gravity holonomy-flux variables of T∗(SU(2)), the face-sharing gluing
constraints are area matching [48], thus lending a notion of discrete classical twisted geometry to
the graph. This is much weaker than a Regge geometry, which could have been obtained for the
same variables if instead the so-called shape-matching conditions [47] are imposed on the pair-wise
gluing of faces/half-links. Thus, kinematic composition (boundary gluings) that creates boundary
states depends on two crucial ingredients, the combinatorial structure of the resultant boundary graph,
and face-sharing gluing conditions on the algebraic data.

From here on, we restrict ourselves to a single boundary patch for simplicity, a (gauge-invariant)
4-valent node dressed with SU(2) data, i.e., a quantised tetrahedron [40,51]. However, it should be
clear from the brief discussion above (and the extensive study in [35]) that a direct generalisation
of the present (statistical) mechanical framework is possible also for these more enhanced
combinatorial structures.

The phase space of a single classical tetrahedron, encoding both intrinsic and extrinsic degrees of
freedom (along with an arbitrary orientation in R3) is

Γ = T∗(SU(2)4/SU(2)) (21)

where the quotient by SU(2) imposes geometric closure of the tetrahedron. The choice of domain space
is basically the choice of algebraic data. For instance, in Euclidean 4d settings a more apt choice would
be the group Spin(4), and SL(2,C) for Lorentzian settings. Then, states of a system of N tetrahedra
belong to ΓN = Γ×N , and observables would be smooth (real-valued) functions defined on ΓN [14,15].

The quantum counterparts are,

H = L2(SU(2)4/SU(2)) (22)
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for the single-particle Hilbert space, and HN = H⊗N for an N-particle system. In the quantum setting,
we can go a step further and construct a Fock space based on the above single-particle Hilbert space,

HF =
⊕
N≥0

symHN (23)

where the symmetrisation of N-particle spaces implements a choice of bosonic statistics for the quanta,
mirroring the graph automorphism of node exchanges. One choice for the algebra of operators onHF
is the von Neumann algebra of bounded linear operators. A more common choice though is the larger
*-algebra generated by ladder operators ϕ̂, ϕ̂†, which generate the fullHF by acting on a cyclic Fock
vacuum, and satisfy a commutation relations algebra

[ϕ̂(~g1), ϕ̂†(~g2)] =
∫

SU(2)
dh

4

∏
I=1

δ(g1Ihg−1
2I ) (24)

where ~g ≡ (gI) ∈ SU(2)4 and the integral on the right ensures SU(2) gauge invariance. In fact, this is
the Fock representation of an algebraic bosonic group field theory defined by a Weyl algebra [14,29,53].

Figure 1. Bisected boundary graph of a 4-simplex, as a result of non-local pair-wise gluing of half-links.
Each full link is bounded by two 4-valent nodes (denoted here by m, n, ...), and bisected by one bivalent
node (shown here in green).

3.1.2. Interacting Quantum Spacetime and Dynamics

Coming now to dynamics, the key ingredients here are the specifications of propagators and
admissible interaction vertices, including both their combinatorics, and functional dependences on the
algebraic data, i.e., their amplitudes.

The combinatorics of propagators and interaction vertices can be packaged neatly within two
maps defined in [35], the bonding map and the bulk map, respectively. A bonding map is defined
between two bondable boundary patches. Two patches are bondable if they have the same number of
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nodes and links. Then, a bonding map between two bondable patches identifies each of their nodes
and links, under the compatibility condition that if a bounding bivalent node in one patch is identified
with a particular one in another, then their respective half-links (attaching them to their respective
central nodes) are also identified with each other. Thus, a bonding map basically bonds two bulk
vertices via (parts of) their boundary graphs to form a process (with boundary). This is simply a bulk
edge, or propagator.

The set of interaction vertices can themselves be defined by a bulk map. This map augments the
set of constituent elements (multivalent nodes, bivalent nodes, and half-links connecting the two) of
any bisected boundary graph, by one new vertex (the bulk vertex), a set of links joining each of the
original boundary nodes to this vertex, and a set of two-dimensional faces bounded by a triple of the
bulk vertex, a multivalent boundary node and a bivalent boundary node. The resulting structure is
an interaction vertex with the given boundary graph14. The complete dynamics is then given by the
chosen combinatorics, supplemented with amplitude functions that reflect the dependence on the
algebraic data.

The interaction vertices can in fact be described by vertex operators on the Fock space in terms of
the ladder operators. An example vertex operator, corresponding to the 4-simplex boundary graph
shown in Figure 1, is

V̂4sim =
∫

SU(2)20
[dg] ϕ̂†(~g1)ϕ̂†(~g2)V4sim(~g1, ...,~g5)ϕ̂(~g3)ϕ̂(~g4)ϕ̂(~g5) (25)

where the interaction kernel V4sim = V4sim({gijg−1
ji }i<j) (for i, j = 1, ..., 5) encodes the combinatorics of

the boundary graph. There are of course other vertex operators associated with the same graph (that is
with the same kernel), but including different combinations of creation and annihilation operators15.

Thus, a definition of kinematics entails: defining the state space, which includes specifying
the combinatorics (choosing the set of allowed boundary patches, which generate the admissible
boundary graphs), and the algebraic data (choosing variables to characterise the discrete geometric
states supported on the boundary graphs); and defining the algebra of observables acting on the state
space. A definition of dynamics entails: specifying the propagator and bulk vertex combinatorics and
amplitudes. Together, they specify the many-body mechanics.

3.1.3. Generalised Equilibrium States

Outlined below is a generalised equilibrium statistical mechanics for these systems [14,15],
along the lines laid out in Section 2. For a system of many classical tetrahedra (in general, polyhedra),
a statistical state ρN can be formally defined on the state space ΓN . If it satisfies the thermodynamical
characterisation with respect to a set of functions on ΓN , then it will be an equilibrium state.
Further, a configuration with a varying number of tetrahedra can be described by a grand-canonical
type state [15] of the form

Z = ∑
N≥0

eµN ZN (26)

where ZN =
∫

ΓN
dλ ρN , and µ is a chemical potential. Similarly, for a system of many quantum

tetrahedra, a generic statistical state ρ̂ is a density operator onHF; and generalised equilibrium states
with a varying number of quanta are

Z = TrHF (e
−∑a βaÔa+µN̂) (27)

14 An interesting aspect is that the bulk map is one-to-one, so that for every distinct bisected boundary graph, there is a unique
interaction vertex which can be defined from it.

15 This would generically be true for any second quantised operator [29].
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where N̂ =
∫

d~g ϕ̂†(~g)ϕ̂(~g) is the number operator on HF. Operators of natural interest here
are the ones encoding the dynamics, i.e. vertex (and kinetic) operators (see Section 3.2 below).
Such grand-canonical type boundary states are important because one would expect quantum gravity
dynamics to not be number conserving in general [15,29]. In addition, naturally, in both cases, what
the precise content of equilibrium is depends crucially on which observables Oa are used to define the
state. As pointed out in Section 2.2, and exemplified in the cases below in Section 3.2, there are many
choices and types of observables one could consider in principle. Which ones are the relevant ones in a
given situation is in fact a crucial part of the problem.

3.2. Applications

We briefly sketch below some examples of applying the above framework.
A couple of examples for a classical system are studied in [15]. In the process of applying the

thermodynamical characterisation, these cases introduce a statistical, effective manner of imposing a
given (set of) first class constraint(s), that is 〈C〉 = 0, instead of the exact, strong way C = 0. In one
case, the condition of closure of a classical d-polyhedron is relaxed in this statistical manner, while in
the other the boundary gluing constraints amongst the polyhedral atoms of space are relaxed in this
way to describe fluctuating twisted geometries. Brief summaries of these follow.

In the first example, starting from the extended state space Γex = I S2
AI

of intrinsic geometries of
a d-polyhedron with face areas {AI}I=1,...,d, closure is implemented via the following su(2)∗-valued
function on Γex,

J =
d

∑
I=1

xI (28)

which is the momentum map associated with the diagonal action of SU(2). Satisfying closure exactly is
to have J = 0. Then, applying the thermodynamic characterisation to the scalar component functions
of J, that is requiring 〈Ja〉 = 0 (a = 1, 2, 3), gives a Gibbs distribution on Γex of the form e−∑a βa Ja with
a vector-valued temperature (βa) ∈ su(2). Thus, we have a thermal state for a classical polyhedron
that is fluctuating in terms of its closure, with the fluctuations controlled by the parameter β. In fact,
this state generalises Souriau’s Gibbs states [26,27] to the case of Lie group (Hamiltonian) actions
associated with first class constraints.

In the other example, the set of half-link gluing (or face-sharing) conditions for a boundary
graph are statistically relaxed. It is known that an oriented (closed) boundary graph γ, with M nodes
and L links, labelled with (g, x) ∈ T∗(SU(2)) variables admits a notion of discrete (closed) twisted
geometry [48]. Twisted geometries are a generalisation of the more rigid Regge geometries, wherein the
shapes of the shared faces are left arbitrary and only their areas are constrained to match. From the
present constructive many-body viewpoint, one can understand these states instead as a result of
satisfying a set of SU(2)- and su(2)∗-valued gluing conditions (denoted, respectively, by {C} and
{D}) on an initially disconnected system of several labelled open nodes. That is, starting from a
system of M number of labelled open nodes, one ends up with a twisted geometric configuration
if the set of gluing constraints on the holonomy and flux variables corresponding to a given γ,
{C`,a(gn`g−1

m` ) = 0, D`,a(xn` − xm`) = 0}γ, are satisfied strongly (component-wise). Here, ` = 1, 2, ..., L
labels a full link, a = 1, 2, 3 is SU(2) component index, and subscripts n` refer to the half-link
(belonging to the full link) ` of node n. We can then choose instead to impose these constraints weakly
by requiring only its statistical averages in a state to vanish. This gives a γ-dependent state on ΓM,
written formally as

ρ{γ,α,β} ∝ e−∑` ∑a α`,aC`,a+β`,aD`,a ≡ e−Gγ(α,β) (29)

where α, β ∈ R3L are generalised inverse temperatures characterising this fluctuating twisted geometric
configuration. In fact, one can generalise this state to a probabilistic superposition of such internally
fluctuating twisted geometries for an N particle system (thus, defined on ΓN), which includes
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contributions from distinct graphs, each composed of a possibly variable number of nodes M. A state
of this kind can formally be written as,

ρN =
1

ZN(Mmax, λγ, α, β)
e−∑Mmax

M=2 ∑{γ}M
1

Aut(γ) λγ ∑N
i1 6=...neqiM=1 Gγ(~gi1

,~xi1
,...,~giM

,~xiM
;α,β) (30)

where i is the particle index, and Mmax ≤ N. The value of Mmax and the set {γ}M for a fixed M are
model-building choices. The first sum over M includes contributions from all admissible (depending
on the model, determined by Mmax) different M-particle subgroups of the full N particle system,
with the gluing combinatorics of various different boundary graphs with M nodes. The second sum is
a sum over all admissible boundary graphs γ, with a given fixed number of nodes M. Furthermore,
the third sum takes into account all M-particle subgroup gluings (according to a given fixed γ) of
the full N particle system. We note that the state in Equation (30) is a further generalisation of that
presented in [15]; specifically, the latter is a special case of the former for the case of a single term
M = Mmax = N in the first sum. Further allowing for the system size to vary, that is considering a
variable N, gives the most general configuration, with a set of coupling parameters linked directly to
the underlying microscopic model,

Z(Mmax, λγ, α, β) = ∑
N≥0

eµN ZN(Mmax, λγ, α, β) . (31)

A physically more interesting example is considered in [14], which defines a thermal state with
respect to a spatial volume operator,

ρ̂ =
1
Z

e−βV̂ (32)

where V̂ =
∫

d~g v(~g)ϕ̂†(~g)ϕ̂(~g) is a positive, self-adjoint operator onHF, and the state is a well-defined
density operator on the same. In fact, with a grand-canonical extension of it, this system can be shown
to naturally support Bose–Einstein condensation to a low-spin phase [14]. Clearly, this state encodes
thermal fluctuations in the volume observable, which is especially an important one in the context of
cosmology. In fact, the rapidly developing field of condensate cosmology [54] for atoms of space of the
kind considered here, is based on modelling the underlying system as a condensate, and subsequently
extracting effective physics from it. These are certainly crucial steps in the direction of obtaining
cosmological physics from quantum gravity [9]. It is equally crucial to enrich further the microscopic
quantum gravity description itself, and extract effective physics for these new cases. One such
important case is to consider thermal fluctuations of the gravitational field at early times, during which
our universe is expected to be in a quantum gravity regime. That is, to consider thermal quantum
gravity condensates using the frameworks laid out in this article (as opposed to the zero temperature
condensates that have been used till now), and subsequently derive effective physics from them.
This case would then directly reflect thermal fluctuations of gravity as being of a proper quantum
gravity origin. This is investigated in [28].

We end this section by making a direct link to the definition of group field theories using the above
framework. Group field theories (GFT) [37–39] are non-local field theories defined over (copies of) a
Lie group. Most widely studied (Euclidean) models are for real or complex scalar fields, over copies
of SU(2), Spin(4) or SO(4). For instance, a complex scalar GFT over SU(2) is defined by a partition
function of the following general form,

ZGFT =
∫
[Dµ(ϕ, ϕ̄)] e−SGFT[ϕ,ϕ̄] (33)

where µ is a functional measure which in general is ill-defined, and SGFT is the GFT action of the form
(for commonly encountered models),
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SGFT =
∫

G
dg1

∫
G

dg2 K(g1, g2)ϕ̄(g1)ϕ(g2) +
∫

G
dg1

∫
G

dg2 ... V(g1, g2, ...) f (ϕ, ϕ̄) (34)

where g ∈ G, and the kernel V is generically non-local, which convolutes the arguments of several
ϕ and ϕ̄ fields (written here in terms of a single function f ). It defines the interaction vertex of the
dynamics by enforcing the combinatorics of its corresponding (unique, via the inverse of the bulk map)
boundary graph.

ZGFT defines the covariant dynamics of the GFT model encoded in SGFT. Below we outline a
way to derive such covariant dynamics from a suitable quantum statistical equilibrium description
of a system of quanta of space defined previously in Section 3.1. The following technique of using
field coherent states is the same as in [15,29], but with the crucial difference that here we do not claim
to define, or aim to achieve any correspondence (even if formal) between a canonical dynamics (in
terms of a projector operator) and a covariant dynamics (in terms of a functional integral). Here we
simply show a quantum statistical basis for the covariant dynamics of a GFT, and in the process,
reinterpret the standard form of the GFT partition function in Equation (33) as that of an effective
statistical field theory arising from a coarse-graining and further approximations of the underlying
statistical quantum gravity system.

We saw in Section 3.1 that the dynamics of the polyhedral atoms of space is encoded in the choices
of propagators and interaction vertices, which can be written in terms of kinetic and vertex operators in
the Fock description. In our present considerations with a single type of atom (SU(2)-labelled 4-valent
node), let us then consider the following generic kinetic and vertex operators,

K̂ =
∫

SU(2)8
[dg] ϕ̂†(~g1)K(~g1,~g2)ϕ̂(~g2) , V̂ =

∫
SU(2)4N

[dg] Vγ(~g1, ...,~gN) f̂ (ϕ̂, ϕ̂†) (35)

where N > 2 is the number of 4-valent nodes in the boundary graph γ, and f̂ is a function of the
ladder operators with all terms of a single degree N. For example, when N = 3, this function could be
f̂ = λ1 ϕ̂ϕ̂ϕ̂† + λ2 ϕ̂† ϕ̂ϕ̂†. As shown above, in principle, a generic model can include several distinct
vertex operators. Even though what we have considered here is the simple of case of having only one,
the argument can be extended directly to the general case.

Operators K̂ and V̂ have well-defined actions on the Fock spaceHF. Using the thermodynamical
characterisation then, we can consider the formal constraints16 〈K̂〉 = constant and 〈V̂〉 = constant,
to write down a generalised Gibbs state onHF,

ρ̂{βa} =
1

Z{βa}
e−β1K̂−β2V̂ (36)

where a = 1, 2 and the partition function17 is,

Z{βa} = TrHF (e
−β1K̂−β2V̂) . (37)

An effective field theory can then be extracted from the above by using a basis of coherent states
onHF [15,29,55]. Field coherent states give a continuous representation onHF where the parameter
labelling each state is a wave (test) function [55]. For the Fock description mentioned in Section 3.1,
the coherent states are

|ψ〉 = eϕ̂†(ψ)−ϕ̂(ψ) |0〉 (38)

16 A proper interpretation of these constraints is left for future work.
17 This partition function will in general be ill-defined as expected. One reason is the operator norm unboundedness of the

ladder operators.
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where |0〉 is the Fock vacuum (satisfying ϕ̂(~g) |0〉 = 0 for all ~g), ϕ̂(ψ) =
∫

SU(2)4 ψ̄ϕ̂ and its adjoint are
smeared operators, and ψ ∈ H. The set of all such states provides an over-complete basis for HF.
The most useful property of these states is that they are eigenstates of the annihilation operator,

ϕ̂(~g) |ψ〉 = ψ(~g) |ψ〉 . (39)

The trace in the partition function in Equation (37) can then be evaluated in this basis,

Z{βa} =
∫
[Dµ(ψ, ψ̄)] 〈ψ| e−β1K̂−β2V̂ |ψ〉 (40)

where µ here is the coherent state measure [55]. The integrand can be treated and simplified along the
lines presented in [15] (to which we refer for details), to get an effective partition function,

Z0 =
∫
[Dµ(ψ, ψ̄)] e−β1K[ψ̄,ψ]−β2V[ψ̄,ψ] = Z{βa} − ZO(h̄) (41)

where subscript 0 indicates that we have neglected higher order terms, collected inside ZO(h̄), resulting
from normal orderings of the exponent in Z{βa}, and the functions in the exponent are K = 〈ψ| : K̂ : |ψ〉
and V = 〈ψ| : V̂ : |ψ〉. It is then evident that Z0 has the precise form of a generic GFT partition function.
It thus defines a group field theory as an effective statistical field theory, that is

ZGFT := Z0 . (42)

From this perspective, it is clear that the generalised inverse temperatures (which are basically
the intensive parameters conjugate to the energies in the generalised thermodynamics setting of
Section 2.4) are the coupling parameters defining the effective model, thus characterising the phases of
the emergent statistical group field theory, as would be expected. Moreover, from this purely statistical
standpoint, we can understand the GFT action more appropriately as Landau–Ginzburg free energy
(or effective “Hamiltonian’, in the sense that it encodes the effective dynamics), instead of a Euclidean
action, which might imply having Wick rotated a Lorentzian measure, even in an absence of any such
notions as is the case presently. Lastly, deriving in this way the covariant definition of a group field
theory, based entirely on the framework presented in Section 3.1, strengthens the statement that a
group field theory is a field theory of combinatorial and algebraic quanta of space [38,39].

4. Conclusions and Outlook

We have presented an extension of equilibrium statistical mechanics for background independent
systems, based on a collection of results and insights from old and new studies. While various proposals
for a background independent notion of statistical equilibrium have been summarised, one in particular,
based on the constrained maximisation of information entropy, has been stressed upon. We have
argued in favour of its potential by highlighting its many unique and valuable features. We have
remarked on interesting new connections with the thermal time hypothesis, in particular suggesting
to use this particular characterisation of equilibrium as a criterion of choice for the application of
the hypothesis. Subsequently, aspects of a generalised framework for thermodynamics have been
investigated, including defining the essential thermodynamic potentials, and discussing generalised
zeroth and first laws.

We have then considered the statistical mechanics of a candidate quantum gravity system,
composed of many atoms of space. The choice of (possibly different types of) these quanta is
inspired directly from boundary structures in loop quantum gravity, spin foam and group field
theory approaches. They are combinatorial building blocks (or boundary patches) of graphs,
labelled with suitable algebraic data encoding discrete geometric information, with their constrained
many-body dynamics dictated by bulk bondings between interaction vertices and amplitude functions.
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Generic statistical states can then be defined on a many-body state space, and generalised Gibbs states
can be defined using the thermodynamical characterisation [14]. Finally, we have given an overview
of applications in quantum gravity [14–16,28]. In particular, we have derived the covariant definition
of group field theories as a coarse-graining using coherent states of a class of generalised Gibbs states
of the underlying system with respect to dynamics-encoding kinetic and vertex operators; and in this
way reinterpreted the GFT partition function as an effective statistical field theory partition function,
extracted from an underlying statistical quantum gravity system.

More investigations along these directions will certainly be worthwhile. For example,
the thermodynamical characterisation could be applied in a spacetime setting, such as for stationary
black holes with respect to the mass, charge and angular momentum observables, to explore further
its physical implications. The black hole setting could also help unfold how the selection of a single
preferred temperature can occur starting from a generalised Gibbs measure. Moreover, it could offer
insights into relations with the thermal time hypothesis, and help better understand some of our
more intuitive reasonings presented in Section 2.3, and similarly for generalised thermodynamics.
It requires further development, particularly for the first and second laws. For instance, in the first law
as presented above, the additional possible work contributions need to be identified and understood,
particularly in the context of background independence. For these, and other thermodynamical aspects,
we could benefit from Souriau’s generalisation of Lie group thermodynamics [26,27].

There are many avenues to explore also in the context of statistical mechanics and thermodynamics
of quantum gravity. In the former, for example, it would be interesting to study potential black hole
quantum gravity states [56]. In general, it is important to be able to identify suitable observables to
characterise an equilibrium state of physically relevant cases. On the cosmological side, for instance,
those phases of the complete quantum gravity system which admit a cosmological interpretation
will be expected to have certain symmetries whose associated generators could then be suitable
candidates for the generalised energies. Another interesting cosmological aspect to consider is that
of inhomogeneities induced by early time volume thermal fluctuations of quantum gravity origin,
possibly from an application of the volume Gibbs state [14] (or a suitable modification of it) recalled
above. The latter aspect of investigating thermodynamics of quantum gravity would certainly benefit
from confrontation with studies on thermodynamics of spacetime in semiclassical settings. We may
also need to consider explicitly the quantum nature of the degrees of freedom, and use insights from the
field of quantum thermodynamics [57], which itself has fascinating links to quantum information [58].
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