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Abstract

Scenes filled with moving objects are often hierarchically or-
ganized: the motion of a migrating goose is nested within the
flight pattern of its flock, the motion of a car is nested within
the traffic pattern of other cars on the road, the motion of body
parts are nested in the motion of the body. Humans perceive
hierarchical structure even in stimuli with two or three moving
dots. An influential theory of hierarchical motion perception
holds that the visual system performs a “vector analysis” of
moving objects, decomposing them into common and relative
motions. However, this theory does not specify how to resolve
ambiguity when a scene admits more than one vector analysis.
We describe a Bayesian theory of vector analysis and show that
it can account for classic results from dot motion experiments.
Our theory takes a step towards understanding how moving
scenes are parsed into objects.
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Introduction

Motion is a powerful cue for understanding the organization
of a visual scene. Infants use motion to individuate objects,
even when it contradicts property/kind information (Kellman
& Spelke, 1983; Xu et al., 1999). The primacy of motion in-
formation is also evident in adult object perception (Mitroff
& Alvarez, 2007). In addition to individuating and tracking
objects, motion is used by the visual system to decompose
objects into parts. In biological motion, for example, the mo-
tion of body parts are nested in the motion of the body. Object
motion may be hierarchically organized into multiple layers:
an arm’s motion may be further decomposed into jointed seg-
ments, including the hand, which can itself be decomposed
into fingers, and so on.

The hierarchical organization of motion presents a
formidable challenge to current models of motion process-
ing. It is widely accepted that the visual system balances
motion integration over space and time (necessary for solv-
ing the aperture problem) and motion segmentation in order
to perceive multiple objects simultaneously (Braddick, 1993).
However, it is unclear how simple segmentation mechanisms
can be used to build a hierarchically structured representation
of a moving scene. Segmentation lacks a notion of nesting:
when an object moves, its parts should move with it. To un-
derstand nesting, it is crucial to represent the underlying de-
pendencies between objects and their parts.

The experimental and theoretical foundations of hierarchi-
cal motion perception were laid by the pioneering work of
Johansson (1950), who demonstrated that surprisingly com-
plex percepts could arise from simple dot motions. Johansson
proposed that the visual system performs a “vector analysis”
of moving scenes into common and relative motions between

objects. In the example of biological motion (see Johans-
son, 1973), the global motion of the body is subtracted from
the image, revealing the relative motions of body parts; these
parts are further decomposed by the same subtraction opera-
tion.

While the vector analysis theory provides a compelling
explanation of numerous motion phenomena (we describe
several below), it is incomplete from a computational point
of view, since it relies on the theorist to provide the un-
derlying motion components and their organization; it lacks
a mechanism for discovering a hierarchical decomposition
from sensory data. This is especially important in complex
scenes where many different vector analyses are consistent
with the scene. Various principles have been proposed for
how the visual system resolves this ambiguity. For exam-
ple, Restle (1979) proposed a “minimum principle,” accord-
ing to which simpler motion interpretations (i.e., those with a
shorter description length) are preferred over more complex
ones. Gogel (1974) argued for an “adjacency principle,” ac-
cording to which the motion interpretation is determined by
relative motion cues between nearby points. However, there
is still no unified computational theory that can encompass all
these ideas.

In this paper, we recast Johansson’s vector analysis the-
ory in terms of a Bayesian model of motion perception. The
model discovers the hierarchical structure of a moving scene,
resolving the ambiguity of multiple vector analyses using a
set of probabilistic constraints. We show that this model can
account for several classic phenomena in the motion percep-
tion literature that are challenging for existing models.

Bayesian vector analysis

In this section, we describe our computational model for-
mally. We start by describing a probabilistic generative model
of motion—a set of assumptions about the environment that
we impute to the observer. The generative model can be
thought of as stochastic “recipe” for generating moving im-
ages. We then describe how Bayesian inference can be used
to invert this generative model and recover the underlying hi-
erarchical structure from observations of moving images.

Generative model

Our model describes the process by which a sequence of two-
dimensional visual element positions {s, () }_, is generated,
where s, (1) = [s}(¢),sx(t)] is the x and y position of element n
at time step 7.! Elements can refer to objects, parts or features;

I This representation assumes that basic perceptual preprocessing
has taken place (e.g., the correspondence problem has been solved).



in this paper we will simply refer to them as objects. The ob-
ject positions are modeled as arising from a tree-structured
configuration of motion components; we refer to this repre-
sentation as the motion tree. Each motion component is a
transformation that maps the current object position to a new
position.

An illustration of a motion tree is shown in Figure 1. Each
node in the tree corresponds to a motion component. The mo-
tion of the train relative to the background is represented by
the top-level node. The motions of Spiderman and Dr. Oc-
topus relative to the train are represented at the second-level
nodes. Finally, the motions of each body part relative to the
body are represented at the third-level nodes. The observed
motion of Spiderman’s hand can then be modeled as the su-
perposition of the motions along the path that runs from the
top node to the hand-specific node. The aim for our model is
to get as inputs the retinal motion of pre-segmented objects—
in this example, the motion of hands, feet, torsos, windows,
etc.—and output a hierarchical grouping that reflects the com-
position of the moving scene.

The motion tree can capture the underlying motion struc-
ture of many real-world scenes, but inferring which motion
tree generated a particular scene is challenging because dif-
ferent trees may be consistent with the same scene. To ad-
dress this problem, we need to introduce a prior distribution
over motion trees that expresses our inductive biases about
what kinds of trees are likely to occur in the world. This prior
should be flexible enough to accommodate many different
structures while also preferring simpler structures (i.e., parsi-
monious explanations of the sensory data). These desiderata
are satisfied by a nonparametric distribution over trees known
as the nested Chinese restaurant process (nCRP; Blei et al.,
2010). The nCRP generates a motion tree by drawing, for
each object n, a sequence of motion components, denoted by
¢y, = [¢aly- - -,Cnp], Where D is the maximal tree depth.2 The
component assignments are drawn according to:
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Y
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P(Cnd = j|c1:n71) =

n—1+y

2 As described in Blei et al. (2010), trees drawn from the nCRP
can be infinitely deep, but we impose a maximal depth for simplicity.

Figure 1: Illustration of how a moving scene
is decomposed into a motion tree. Each node
in the tree corresponds to a motion component.
Each object in the scene traces a path through
the tree, and the observed motion of the object
is modeled as the superposition of motion com-
ponents along its path.

where j indexes motion components, M is the number of pre-
vious objects assigned to component j, and J is the number
of components currently in use (i.e., those for which M; > 0).
The assignment at depth d is restricted to a unique set of com-
ponents specific to the component assigned at depth d — 1.
In this way, the components form a tree structure, and ¢, is
a path through the tree. The parameter y > 0 controls the
branching factor of the motion tree. As 7y decreases, different
objects will tend to share the same motion components. Thus,
the nCRP exhibits a preference for trees that use a small num-
ber of motion components.

Note that so far we have generated a path through a poten-
tially very deep tree for each object. Each path has the same
length D. Remember that each node in the tree will represent
a motion component. We want each object n to be associ-
ated with a node in the tree and its overall motion to be the
sum of all the motion components above it (including itself).
Hence, for each object we need to sample an additional pa-
rameter d, € {1,...,D} that determines to which level on the
tree the object will be assigned. This depth specifies a trunca-
tion of ¢,, thereby determining which components along the
path contribute to the observations. The depth assignments

d=[dy,...,dy] are drawn from a Markov random field:
N N N
P(d)ecexpia ) Y Idn=dy)—pY dip. (2
m=1n>m n=1
where the indicator function I[-] = 1 if its argument is true and

0 otherwise. The parameter o controls the penalty for assign-
ing objects to different depths, and the parameter p controls a
penalty for deeper level assignments.

Each motion component, i.e. each node in the motion
tree, is associated with a time-varying flow field, f;(s,7) =
[f1(s,1), f; (s,1)]. We place a prior on flow fields that en-
forces spatial smoothness but otherwise makes no assump-
tions about functional form. In particular we assume that f7
and f}' are spatial functions drawn independently at each time
discrete time step ¢ from a zero-mean Gaussian process with
covariance function

_J2
k(s,s') = Texp {—'25'} , 3)



where T is a global scaling parameter and A > 0 is a length-
scale parameter controlling the smoothness of the flow field.
When A is large, the flow field becomes rigid. Smoothness is
only enforced between objects covered by the same node in
the motion tree.

To complete the generative model, we need to specify how
the motion tree gives rise to observations, which in our case
are the positions of the N objects over time. For each object,
the dot position at the next time step is set by sampling a
displacement from a Gaussian whose mean is the sum of the
flow fields along path ¢, truncated at d,;:

dy,

sn(t+1) =s(t)+ Y £, (80 (2),0) + &4 (1), 4)
d=1

where €, (t) ~ N[(0,6°1).

This generative model contains a number of important spe-
cial cases under particular parameter settings. When 7= 0,
only one motion component will be generated; in this case,
the prior on flow-fields—favoring local velocities close to 0
that vary smoothly over the image—resembles the “slow and
smooth” model proposed by Weiss & Adelson (1998). When
v=0 and A — oo, we obtain the “slow and rigid” model of
Weiss et al. (2002). When D = 1, the model will generate
multiple motion components, but these will all exist at the
same level of the hierarchy (i.e., the motion tree is flat, with
no nesting), resulting in a form of transparent layered motion
(Wang & Adelson, 1993; Weiss, 1997).

Inference

The goal of inference is to compute the posterior over the mo-
tion tree given a set of observations.? Because we are mainly
interested in the highest probability tree, we use annealed
Gibbs sampling to search for the posterior mode. The algo-
rithm alternates between holding the depth assignments fixed
while sampling the node assignments, and holding the node
assignments fixed while sampling the depth assignments. By
raising the conditional probabilities to a power B > 1, the
posterior becomes peaked around the mode. We gradually
increase [, so that the algorithm eventually settles on a high
probability tree. We repeat this procedure 10 times (with 500
sampling iterations on each run) and pick the tree with the
highest posterior probability. Below, we derive the condi-
tional distributions used by the sampler.
The conditional distribution over ¢, is given by:

P(en|cn;s,d) o< P(ey]c—n)P(s|c,d), Q)

where c¢_,, denotes the set of all paths excluding ¢,. The first
factor in Eq. 5 is the nCRP prior (Eq. 1). The second factor
in Eq. 5 is the likelihood of the data, given by:

P(sle,d) =] [T A(s°(t+1):s°(), K(t) +6°T)  (6)

toze{xy}

3The latent motion components can be marginalized analytically
using properties of Gaussian processes.
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Figure 2: Johansson (1950) two dot experiment. (A) Veridi-
cal motion vectors. (B) Perceived motion. (C) Inferred mo-
tion vectors. Each color corresponds to a different component
in the motion tree (D), but note that a component will predict
different vectors depending on spatial location.

where

Ko (1) = k(3 (t),8,(1)) Y I[j € em A j € €. @)

J

Intuitively, the covariance between two points counts the
number of nodes shared between their paths, weighted by
their proximity in space.

The conditional distribution over d,, is given by:

P(d,lc,s,d_,) < P(dy|d_,)P(s|c,d_,,d,), (8)

where d_,, denotes the level assignments excluding d,, and

P(dy|d_,) o< exp {oc Y lldy =d,) - pd,,} . 9)
m#n

To visualize the motion components that are given by a
grouping through d, and c¢,, we can calculate the posterior
predictive mean for object n at each component j (shown here
for the x dimension):

E[f5(su(1),1)] = K;(K(t) + 671 7 (s (¢ + 1) —s*(1)), (10)

where k,; is the N-dimensional vector of covariances be-
tween s,(f) and the locations of all the objects whose paths
pass through node j (if an object does not pass through node
J then its corresponding entry in K, is 0).

Simulations

In this section, we show how the Bayesian vector analysis
model can account for several classic experimental phenom-
ena. These experiments all involve stimuli consisting of mov-
ing dots, so for present purposes s, (¢) corresponds to the posi-
tion of dot n at time ¢. In these simulations we use the follow-
ing parameters: D = 3,62 =0.01,1=1,A=100,a=1,p =
0.1. The interpretation of 6> and A depend on the spatial scale
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Figure 3: Johansson (1973) three dot experiment. (A)
Veridical motion vectors. (B) Perceived motion. (C) Inferred
motion vectors. (D) Inferred motion tree.

of the data; in general, we found that changing these param-
eters (within the appropriate order of magnitude) had little
influence on the posterior. We set A to be large enough so that
objects assigned to the same layer moved near-rigidly.

Johansson (1950) demonstrated that a hierarchical motion
percept can be achieved with as few as two dots. Figure 2A
shows the stimulus used by Johansson, consisting of two dots
translating orthogonally to meet at a single point. Observers,
however, do not perceive the orthogonal translation. Instead,
they perceive the two dots translating along a diagonal axis
towards each other, which itself translates towards the meet-
ing point (Figure 2B). Thus, observers perceive the stimulus
as organized into common and relative motions. This percept
is reproduced by the Bayesian vector analysis model (Figure
2C); the inferred motion tree (shown in Figure 2D) represents
the common motion as the top level component and the rel-
ative motions as subordinate components. The subordinate
components are not perfectly orthogonal to the diagonal mo-
tion, consistent with the findings of Wallach et al. (1985); this
arises in our model through a form of “explaining away”—
i.e., posterior coupling between the motion layers implied by
Eq. 10.

Another example studied by Johansson (1973) is shown in
Figure 3A. Here the bottom and top dot translate horizon-
tally while the middle dot translates diagonally such that all
three dots are always collinear. The middle dot is perceived
as translating vertically as all three dots translate horizontally
(Figure 3B). Consistent with this percept, the Bayesian vector
analysis assigns all three dots to a common horizontal motion
component, and additionally assigns the middle dot to a ver-
tical motion component (Figure 3C-D).

Duncker (1929) showed that if a light is placed on the rim
of a rolling wheel in a dark room, cycloidal motion is per-
ceived (Figure 4A), but if another light is placed on the hub
then rolling motion is perceived (Figure 4B). Simulations of
these experiments are shown in Figure 5. When a light is
placed only on the rim, there is strong evidence for a single
cycloidal motion component, whereas stronger evidence for a

A cycloid
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Figure 4: Duncker wheel. (A) A light on the rim of a rolling
wheel produces cycloidal motion. (B) Adding a light on the
hub produces rolling motion (translation + rotation).

Stimulus Model

Figure 5: Simulations of the Duncker wheel. (7op) A sin-
gle light on the rim produces one vector following a cy-
cloidal path. (Middle) Adding a light on the hub produces
two vectors: translation + rotation, giving rise to the percept
of rolling motion. (Bottom) Placing the light on the interior of
the wheel produces weaker rolling motion: the translational
component is no longer perfectly horizontal.

two-level hierarchy (translation + rotation) is provided by the
hub light.* It has also been observed that placing a light in
between the rim and the hub produces weaker rolling motion
(i.e., the translational component is no longer perfectly hori-
zontal; Proffitt et al., 1979), a phenomenon that is reproduced
by Bayesian vector analysis (Figure 5, bottom).

So far, we have been considering qualitative characteriza-
tions of various motion phenomena, but one advantage of a
computational model is its ability to make quantitative predic-
tions. We illustrate the quantitative power of Bayesian vec-
tor analysis for the case of motion transparency. When two
groups of randomly moving dots are superimposed, observers
may see either transparent motion (two planes of motion slid-
ing past each other) or non-transparent motion (all dots mov-
ing in the direction of the average motion of the two groups).
Which percept prevails depends on the relative direction of
the two groups (Braddick et al., 2002): as the direction differ-
ence increases, transparent motion becomes more percepti-
ble. We computed the probability of transparent motion (i.e.,

4Note that the model does not explicitly represent rotation but in-
stead represents the tangential motion component in each time step.
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Figure 6: Simulations of transparent motion. Transparency
increases as a function of direction difference between two
superimposed groups of dots.
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Figure 7. Motion contrast. (A) The velocity of the back-
ground (black) dots increases along the horizontal axis. Al-
though A and B have the same velocity, A is perceived as
moving faster than B. (B) Model simulation.

two layers in our model) for a range of relative directions us-
ing 20 dots. As the relative direction increases, the statistical
evidence in favor of two separate layers increases, resulting
in a smoothly changing probability (Figure 6).

Inferences about the motion hierarchy may interact with
the spatial structure of the scene. The phenomenon of mo-
tion contrast, originally described by Loomis & Nakayama
(1973), provides an illustration: The perceived motion of a
dot depends on the motion of surrounding “background dots”
(the black dots in Figure 7A). If a set of dots moves on a
screen such that the dots on the left move more slowly than
dots on the right, they form a velocity gradient. Two “target”
dots that move with the same velocity and keep a constant
distance (the red dots in Figure 7A) can still be perceived
as moving with radically different speeds, depending on the
speed of the dots close by. In our model, most of the motion
of the velocity gradient is captured by the Gaussian process
on the top-level motion component. However, this top-level
component does not capture all of the motion of each dot.
The target dots (in red), in particular, are each endowed with
their own motion component and move relative to the top-
level node. This relative motion differs depending on where
along the gradient the target dot is located, resulting in motion
contrast (Figure 7B).

How does our model scale up to more complex displays?

An interesting test case is biological motion perception: Jo-
hansson (1973) showed that observers can recognize human
motions like walking and running from lights attached to the
joints. Later work has revealed that a rich variety of infor-
mation can be discriminated by observers from point light
displays, including gender, weight and even individual iden-
tity (Blake & Shiffrar, 2007). We trained our model (with
the same parameters) on point light displays derived from
the CMU human motion capture database.’ These displays
consisted of the 3-dimensional positions of 31 dots, includ-
ing walking, jogging and sitting motions. The resulting mo-
tion parse is illustrated in Figure 8: the first layer of motion
(not shown) captures the overall trajectory of the body, while
the second and third layers capture more fine-grained struc-
ture, such as the division into limbs and smaller jointed body
parts. Note that the model knows nothing about the underly-
ing skeletal structure; it infers body parts directly from the dot
positions. This demonstrates that Bayesian vector analysis
can scale up to more complex and realistic motion patterns.

Conclusion

How does the visual system parse the hierarchical struc-
ture of moving scenes? In this paper, we have developed a
Bayesian framework for modeling hierarchical motion per-
ception, building upon the seminal work of Johansson (1950).
The key idea of our theory is that a moving scene can
be interpreted in terms of an abstract graph—the motion
tree—encoding the dependencies between moving objects.
Bayesian vector analysis is the process of inferring the mo-
tion tree from a sequence of images. Our simulations demon-
strated that this formalism is capable of capturing a number
of classic phenomena in the literature on hierarchical motion
perception.

Two limitations of our theory need to be addressed. First,
the generative model assumes that motion components com-
bine through summation, but this is not adequate in general.
For example, a better treatment of the Duncker wheel would
entail modeling the composition of rotation and translation.
In its current form, the model approximates rotation by infer-
ring motion components that are tangent to the curve traced
by the rotation. We are currently investigating a version of
the generative model in which motion transformation com-
pose with one another, which would allow for nonlinear in-
teractions. Second, although we described an algorithm for
finding the optimal motion tree, Bayesian vector analysis is
really specified at the computational level; our simulations
are not illuminating about the mechanisms by which the vec-
tor analysis is carried out. Nor does it commit to any partic-
ular neural implementation. More work is needed to connect
all these levels of analysis. Grossberg et al. (2011) have de-
scribed a detailed theory of how vector analysis could be per-
formed by the visual cortex, and their efforts offer a possible
starting point.

We view hierarchical motion as a model system for study-

Shttp://mocap.cs.cmu.edu/
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ing more general questions about structured representations
in mind and brain. The simplicity of the stimuli makes them
amenable to rigorous psychophysical and neurophysiologi-
cal experimentation, offering hope that future work can iso-
late the neural computations underlying structured represen-
tations like motion trees.
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