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Bagging PredictorsLeo Breiman1Department of StatisticsUniversity of California at BerkeleyAbstractBagging predictors is a method for generating multiple versions of a pre-dictor and using these to get an aggregated predictor. The aggregation av-erages over the versions when predicting a numerical outcome and does aplurality vote when predicting a class. The multiple versions are formedby making bootstrap replicates of the learning set and using these as newlearning sets. Tests on real and simulated data sets using classi�cation andregression trees and subset selection in linear regression show that baggingcan give substantial gains in accuracy. The vital element is the instability ofthe prediction method. If perturbing the learning set can cause signi�cantchanges in the predictor constructed, then bagging can improve accuracy.1. IntroductionA learning set of L consists of data f(yn;xn), n = 1; : : : ; Ng where the y'sare either class labels or a numerical response. We have a procedure for usingthis learning set to form a predictor '(x;L) | if the input is x we predicty by '(x;L). Now, suppose we are given a sequence of learnings sets fLkgeach consisting of N independent observations from the same underlyingdistribution as L. Our mission is to use the fLkg to get a better predictorthan the single learning set predictor '(x;L). The restriction is that all weare allowed to work with is the sequence of predictors f'(x;Lk)g.If y is numerical, an obvious procedure is to replace '(x;L) by the averageof '(x;Lk) over k. i.e. by 'A(x) = EL'(x;L) where EL denotes theexpectation over L, and the subscript A in 'A denotes aggregation. If '(x;L)1partially supported by NSF grant DMS-9212419.1



predicts a class j 2 f1; : : : ; Jg, then one method of aggregating the '(x;Lk)is by voting. Let Nj = #fk;'(x;Lk) = jg and take 'A(x) = argmaxjNj.Usually, though, we have a single learning set L without the luxury ofreplicates of L. Still, an imitation of the process leading to 'A can be done.Take repeated bootstrap samples fL(B)g from L, and form f'(x;L(B))g. Ify is numerical, take 'B as'B(x) = avB'(x;L(B)):If y is a class label, let the f'(x;L(B))g vote to form 'B(x). We call thisprocedure \bootstrap aggregating" and use the acronym bagging.The fL(B)g form replicate data sets, each consisting of N cases, drawn atrandom, but with replacement, from L. Each (yn;xn) may appear repeatedtimes or not at all in any particular L(B). The fL(B)g are replicate dataset drawn from the bootstrap distribution approximating the distributionunderlying L. For background on bootstrapping, see Efron and Tibshirani[1993]. A critical factor in whether bagging will improve accuracy is thestability of the procedure for constructing '. If changes in L, i.e. a replicateL, produces small changes in ', then 'B will be close to '. Improvement willoccur for unstable procedures where a small change in L can result in largechanges in '. Unstability was studied in Breiman [1994] where it was pointedout that neural nets, classi�cation and regression trees, and subset selectionin linear regression were unstable, while k-nearest neighbor methods werestable.For unstable procedures bagging works well. In Section 2 we bag clas-si�cation trees on a variety of real and simulated data sets. The reductionin test set missclassi�cation rates ranges from 20% to 47%. In section 3 re-gression trees are bagged with reduction in test set mean squared error ondata sets ranging from 22% to 46%. Section 4 goes over some theoreticaljusti�cation for bagging and attempts to understand when it will or will notwork well. This is illustrated by the results of Section 5 on subset selection inlinear regression using simulated data. Section 6 gives concluding remarks.These discuss how many bootstrap replications are useful, bagging nearestneighbor classi�ers and bagging class probability estimates.The evidence, both experimental and theoretical, is that bagging canpush a good but unstable procedure a signi�cant step towards optimality.On the other hand, it can slightly degrade the performance of stable proce-dures. There has been recent work in the literature with some of the 
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of bagging. In particular, there has been some work on averaging and votingover multiple trees. Buntine [1991] gave a Bayesian approach, Kwok andCarter [1990] used voting over multiple trees generated by using alternativesplits, and Heath et. al. [1993] used voting over multiple trees generated byalternative oblique splits. Dieterrich [1991] showed that a method for cod-ing many class problems into a large number of two class problems increasesaccuracy. There is some commonality of this idea with bagging.2. Bagging Classi�cation Trees2.1. ResultsBagging was applied to classi�cation trees using the following data sets:waveform (simulated)heartbreast cancer (Wisconsin)ionospherediabetesglasssoybeanAll of these except the heart data are in the UCI repository (ftp ics.uci.edu/pub/machine-learning-databases). The data are brie
y described in Section2.2.Testing was done using random divisions of each data set into a learningand test set, constructing the usual tree classi�er using the learning set, andbagging this tree using 50 bootstrap replicates. This was repeated 100 timesfor each data set (speci�cs are given in Section 2.3). The average test setmissclassi�cation rate using a single tree is denoted by �eS and the baggingrate by �eB. The results are: 3



Table 1 Missclassi�cation Rates (Percent)Data Set �eS �eB Decreasewaveform 29.0 19.4 33%heart 10.0 5.3 47%breast cancer 6.0 4.2 30%ionosphere 11.2 8.6 23%diabetes 23.4 18.8 20%glass 32.0 24.9 22%soybean 14.5 10.6 27%For the waveform data it's known that the minimal attainable rate (BayesRate) is 14.0%. Using this as a base, the excess error drops from 15.0% to5.4%.2.2. Data SetsTable 2 gives a summary of the data sets and the test set sizes used.Table 2Data Set SummaryData Set # Samples # Variables # Classes # Test Setwaveform 300 21 3 1500heart 1395(823) 16(18) 2 250breast cancer 699 9 2 100ionosphere 351 34 2 25diabetes 1036(768) 8 2 250glass 214 9 6 20soybean 307 35 19 25The �gures in parentheses are for the original data sets. These were modi�edfor reasons described below to give the as-used numbers. In all but thesimulated waveform data, the data set was randomly divided into a test setand learning set. So, for instance, in the glass data, the size of the learningset in each iteration was 194 = 214 � 20. For the simulated waveform data,a learning set of 300 and a test set of 1500 were generated for each iteration.Brief descriptions of the data sets follows. More extended background isavailable in the UCI repository. 4



Waveform This is simulated 21 variable data with 300 cases and 3 classeseach having probability 1=3. It is described in Breiman et al [1984] (a Csubroutine for generating the data is in the UCI repository subdirectory/waveform).Heart This is data from the study referred to in the opening paragraphs ofthe CART book (Breiman et. al. [1984]). To quote:At the University of California, San Diego Medical Center, when aheart attack patient is admitted, 19 variables are measured duringthe �rst 24 hours. These include blood pressure, age, and 17 otherordered and binary variables summarizing the medical symptomsconsidered as important indicators of the patient's condition.The goal of a recent medical study (see Chapter 6) was the devel-opment of a method to identify high risk patients (those who willnot survive at least 30 days) on the basis of the initial 24-hourdata.The data base has also been studied in Olshen et al [1985]. It was gath-ered on a project (SCOR) headed by John Ross Jr. Elizabeth Gilpin andRichard Olshen were instrumental in my obtaining the data. The data usedhad 18 variables. Two variables with high proportions of missing data weredeleted, together with a few other cases that had missing values. This left779 complete cases | 77 deaths and 702 survivors. To equalize class sizes,each case of death was replicated 9 times giving 693 deaths for a total of1395 cases.Breast Cancer This is data given to the UCI repository by William H. Wol-berg, University of Wisconsin Hospitals, Madison (see Wolberg and Man-gasariam [1990]). It is two class data with 699 cases, (458 benign and 241malignant). It has 9 variables consisting of cellular characteristics. (subdi-rectory /breast-cancer-wisconsin)Ionosphere This is radar data gathered by the Space Physics Group at JohnsHopkins University (see Sigillito et. al. [1989]). There are 351 cases with 34variables, consisting of 2 attributes for each at 17 pulse numbers. There aretwo classes: good = some type of structure in the ionosphere (226); bad =no structure (125). (subdirectory /ionosphere)5



Diabetes This is a data base gathered among the Pima Indians by the Na-tional Institute of Diabetes and Digestive and Kidney Diseases. (See Smithet. al. [1988]). The data base consists of 768 cases, 8 variables and twoclasses. The variables are medical measurements on the patient plus age andpregnancy information. The classes are: tested positive for diabetes (268)or negative (500). To equalize class sizes, the diabetes cases were duplicatedgiving a total sample size of 1036. (subdirectory /pima-indians-diabetes)Glass This data base was created in the Central Research Establishment,HomeO�ce Forensic Science Service Aldermaston, Reading, Berkshire. Eachcase consists of 9 chemical measurements on one of 6 types of glass. Thereare 214 cases.Soybean The soybean learning set consists of 307 cases, 35 variables and19 classes. The classes are various types of soybean diseases. The vari-ables are observation on the plants together with some climatic variables.All are categorical. Some missing values were �lled in. (subdirectory /soy-bean/soybean large.data)(subdirectory /glass)2.2. ComputationsIn all runs, the following procedure was used:i). The data set was randomly divided into a test set T and learning set L.The test sets sizes selected in the real data sets are ad hoc, mostly chosen sothat L would be reasonably large. In simulated data, test set size was chosencomfortably large.ii). A classi�cation tree was constructed from L, with selection done by10-fold cross-validation. Running the test set T down this tree gives themissclassi�cation rate eS(L;T )iii). A bootstrap sample LB is selected from L, and a tree grown using LBand 10-fold cross-validation. This is repeated 50 times giving tree classi�ers'1(x); : : : ; '50(x).iv). If (jn;xn) 2 T , then the estimated class of xn is that class having theplurality in '1(xn); : : : ; '50(xn). The proportion of times the estimated class6



di�ers from the true class is the bagging missclassi�cation rate eB(L;T ).v) The random division of the data is repeated 100 times and the reported�eS, �eB are the averages over the 100 iterations.3. Bagging Regression Trees3.1. ResultsBagging trees was used on 5 data sets with numerical responses.Boston HousingOzoneFriedman #1 (simulated)Friedman #2 (simulated)Friedman #3 (simulated)The computing scheme was similar to that used in classi�cation. Learningand test sets were randomly selected, 25 bootstrap replications used, and 100iterations. The results are: Table 3Mean Squared Test Set ErrorData Set �eS �eB DecreaseBoston Housing 19.1 11.7 39%Ozone 23.1 18.0 22%Friedman #1 11.4 6.2 46%Friedman #2 30,800 21,700 30%Friedman #3 .0403 .0249 38%3.2. Data Sets Table 4Summary of Data SetsData Set #Cases # Variables # Test SetBoston Housing 506 12 25Ozone 330(366) 8(9) 15Friedman #1 200 10 1000Friedman #2 200 4 1000Friedman #3 200 4 10007



Boston Housing This data became well-known through its use in the bookby Belsley, Kuh, and Welsch [1980]. It has 506 cases corresponding to censustracts in the greater Boston area. The y-variable is median housing price inthe tract. There are 12 predictor variables, mainly socio-economic. The datahas since been used in many studies. (UCI repository/housing).Ozone The ozone data consists of 366 readings of maximum daily ozone at ahot spot in the Los Angeles basin and 9 predictor variables | all meteorlogi-cal, i.e. temperature, humidity, etc. It is described in Breiman and Friedman[1985] and has also been used in many subsequent studies. Eliminating onevariable with many missing values and a few other cases leaves a data setwith 330 complete cases and 8 variables.Friedman #1 All three Friedman data sets are simulated data that appear inthe MARS paper (Friedman [1991]). In the �rst data set, there are ten inde-pendent predictor variables x1; : : : ; x10 each of which is uniformly distributedover [0; 1]. The response is given byy = 10 sin(�x1x2) + 20(x3 � :5)2 + 10x4 + 5x5 + �where � is N(0; 1). Friedman gives results for this model for sample sizes 50,100, 200. We use sample size 200.Friedman #2, #3 These two examples are taken to simulate the impedanceand phase shift in an alternating current circuit. They are 4 variable datawith#2 y = (x21 + (x2x3 � (1=x2x4))2)1=2 + �2#3 y = tan�1 �x2x3 � (1=x2x4)x1 �+ �3where x1, x2, x3, x4 are uniformly distributed over the ranges0 � x1 � 10020 � (x2=2�) � 2800 � x3 � 11 � x4 � 118



The noise �2, �3 are distributed as N(0; �22), N(0; �23) with �2, �3 selected togive 3:1 signal/noise ratios. In each example, the sample sizes are 200.3.2. ComputationsThe two real data sets were divided at random in a learning set L andtest set T . For each of the simulated data sets, a learning set L of 200 caseswas generated and a test set of 1000 cases. A regression tree was grownusing L and 10-fold cross-validation. The test set T was run down L andgave mean-squared-error eS(L;T ).Then 25 bootstrap replicates L(B) of L were generated. For each one,a regression tree was grown using L(B) and 10-fold cross-validation. Thisgave 25 predictors '1(x); : : : ; '25(x). For each (yn;xn) 2 T , the predictedŷB value was taken as avk 'k(xn). Then eB(L;T ) is the mean-squared-errorbetween the ŷB and the true y-values in T . This procedure was repeated 100times and the errors averaged to give the single tree error �eS and the baggederror �eB.4. Why Bagging WorksLet each (y;x) case in L be independently drawn from the probabilitydistribution P . Suppose y is numerical and '(x;L) the predictor. Then theaggregated predictor is 'A(x; P ) = EL'(x;L):Take Y ,X to be random variables having the distribution P and independentof L. The average prediction error e in '(x;L) ise = ELEY;X(Y � '(X;L))2:De�ne the error in the aggregated predictor 'A to beeA = EY;X(Y � 'A(X; P ))2:Using the inequality (EZ)2 � EZ2 givese = EY 2 � 2EY 'A + EY;XEL'2(X;L)� E(Y � 'A)2 = eA9



Thus, 'A has lower mean-squared prediction error than '. How muchlower depends on how unequal the two sides of[EL'(x;L)]2 � EL'2(x;L)are. The e�ect of instability is clear. If '(x;L) does not change too muchwith replicate L the two sides will be nearly equal, and aggregation willnot help. The more highly variable the '(x;L) are, the more improvementaggregation may produce. But 'A always improves on '.Now, the bagged estimate is not 'A(x; P ), but rather'B(x) = 'A(x; PL);where PL is the distribution that concentrates mass 1=N at each point(yn;xn) 2 L, (PL is called the bootstrap approximation to P ). Then 'Bis caught in two currents: on the one hand, if the procedure is unstable, itcan give improvement through aggregation. On the other side, if the proce-dure is stable, then 'B = 'A(x; PL) will not be as accurate for data drawnfrom P as 'A(x; P ) ' '(x;L).There is a cross-over point between instability and stability at which 'Bstops improving on '(x;L) and does worse. This has a vivid illustration inthe linear regression subset selection example in the next section. There isanother obvious limitation of bagging. For some data sets, it may happenthat '(x;L) is close to the limits of accuracy attainable on that data. Thenno amount of bagging will do much improving. This is also illustrated in thenext section.In classi�cation, a predictor '(x;L) predicts a class label j 2 f1; : : : ; Jg.If L is drawn from the distribution P , and Y , X are from P independent ofL, then the probability of correct classi�cation for L �xed is;r(L) = P (Y = '(X;L))= Xj P ('(X ;L) = jjY = j)P (Y = j):Denote Q(jjx) = PL('(x;L) = j):Then, averaged over L, the probability of correct classi�cation isr = Xj E(Q(jjX)jY = j)P (Y = j)10



= Xj Z Q(jjx)P (jjx)PX(dx)where PX(dx) is the overall x distribution.Since 'A(x) = arg maxiQ(ijx),rA =Xj Z I(argmaxi Q(ijx) = j)P (jjx)PX(dx)where I(�) is the indicator function. Consider the setC = fx; argmaxj P (jjx) = argmaxj Q(jjx)g:For x 2 C Xj I(argmaxi Q(ijx) = j)P (jjx) = maxj P (jjx)so thatrA = Zx2C maxj P (jjx)PX(dx) + Zx2C0 Xj I('A(x) = j)P (jjx)PX(dx):The highest attainable correct classi�cation rate is given by the predictorQ�(x) = arg maxj P (jjx)and has the correct classi�cation rater� = Z maxj P (jjx)PX(dx):If x 2 C, the sum Pj Q(jjx)P (jjx) can be less than maxj P (jjx). Thus,even if PX(C) ' 1, the unaggregated predictor ' can be far from optimal.But 'A is nearly optimal. Aggregating can therefore transform good pre-dictors into nearly optimal ones. On the other hand, unlike the numericaly situation, poor predictors can be transformed into worse ones. The samebehavior regarding stability holds. Bagging unstable classi�ers usually im-proves them. Bagging stable classi�ers is not a good idea.11



5. A Linear Regression Illustration5.1. Forward Variable SelectionSubset selection in linear regression gives an illustration of the pointsmade in the previous section. With data of the form L = f(yn;xn), n =1; : : : ; Ng where x = (x1; : : : ; xM) consists of M predictor variables, a popu-lar prediction method consists of forming predictors '1(x); : : : ; 'M (x) whereeach 'm is linear in x and depends on only m of the M x-variables. Thenone of the f'mg is chosen as the designated predictor. For more background,see Breiman and Spector [1993].A common method for constructing the f'mg, and one that is used inour simulation, is forward variable entry. If the variables used in 'k arexm1; : : : ; xmk , then for each m 62 fm1; : : : ;mkg form the linear regression of yon (xm1 ; : : : ; xmk ; xm), compute the residual sum-of-squares RSS(m) and takexmk+1 such that mk+1 minimizes RSS(m) and 'k+1(x) the linear regressionbased on (xm1 ; : : : ; xmk+1).There are other forms of variable selection i.e. best subsets, backwardsand variants thereof. What is clear about all of them is that they are unstableprocedures (see Breiman [1994]). The variables are competing for inclusionin the f'mg and small changes in the data can cause large changes in thef'mg.5.2. Simulation StructureThe simulated data used in this section are drawn from the model.y =Xm �mxm + �where � is N(0; 1). The number of variables M = 30 and the sample size is60. The fxmg are drawn from a mean-zero joint normal distribution withEXiXj = �ji�jj and at each iteration, � is selected from a uniform distributionon [0; 1].It is known that subset selection is nearly optimal if there are only a fewlarge non-zero �m, and that its performance is poor if there are many smallbut non-zero �m. To bridge the spectrum, three sets of coe�cients are used.Each set of coe�cients consists of three clusters; one is centered at m = 5,one at m = 15 and the other at m = 25. Each cluster is of the form�m = c[(h� jm� kj)+]2; m = 1; : : : ; 3012



where k is the cluster center, and h = 1; 3; 5 for the �rst, second and thirdset of coe�cients respectively. The normalizing constant C is taken so thatthe R2 for the data is ' :75. Thus, for h = 1, there are only three non-zerof�mg. For h = 3 there are 15 non-zero f�mg, and for h = 5, there are 27non-zero f�mg, all relatively small.For each set of coe�cients, the following procedure was replicated 250times:i). Data L = f(yn;xn), n = 1; : : : ; g was drawn from the modely =X�mxm + �where the fxmg were drawn from the joint normal distribution describedabove.ii). Forward entry of variables was done using L to get the predictors'1(x); : : : ; 'M(x). The mean-squared prediction error of each of these wascomputed giving e1; : : : ; eM .iii). Fifty bootstrap replicates fL(B)g of L were generated. For each of these,forward stepwise regression was applied to construct predictorsf'1(x;L(B)); : : : ; 'M(x;L(B))g. These were averaged over the L(B) to givethe bagged sequence '(B)1 (x); : : : ; '(B)M (x). The prediction errors e(B)1 ; : : : ; e(B)Mfor this sequence was computed.These computed mean-squared-errors were averaged over the 250 repeti-tions to give two sequences f�e(S)m g, f�e(B)m g. For each set of coe�cients, thesetwo sequences are plotted vs. m in Figure 1a,b,c.5.3. Discussion of Simulation ResultsFirst and most obvious is that the best bagged predictor is always at leastas good as the best subset predictor. When h = 1 and subset selection isnearly optimal, there is no improvement. For h = 3 and 5 there is substantialimprovement. This illustrates the obvious: bagging can improve only if theunbagged is not optimal.The second point is less obvious. Note that in all three graphs there is apoint past which the bagged predictors have larger prediction error than theunbagged. The explanation is this: linear regression using all variables is afairly stable procedure. The stability decreases as the number of variablesused in the predictor decreases. As noted in section 4, for a stable procedure'B = 'A(x; PL) is not as accurate as ' ' '(x; P ). The higher values of13
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�'(B)m for large m re
ect this fact. As m decreases, the instability increasesand there is a cross-over point of which '(B)m becomes more accurate than 'm6. Concluding Remarks6.1. Bagging Class Probability EstimatesSome classi�cation methods estimate probabilities p̂(jjx) that an objectwith prediction vector x belongs to class j. Then the class corresponding tox is estimated as arg maxj p̂(jjx). For such methods, a natural competitorto bagging by voting is to average the p̂(jjx) over all bootstrap replications,getting p̂B(jjx) and then use the estimated class arg maxj p̂B(jjx). Thisestimate was computed in every classi�cation example we worked on. Theresulting missclassi�cation rate was always virtually identical to the votingmissclassi�cation rate. In some applications, estimates of class probabilitiesare required, instead of, or along with, the classi�cations. The evidence so farindicates that bagged estimates are likely to be more accurate than the singleestimates. To verify this, it would be necessary to compare both estimateswith the true values p�(jjx) over the x in the test set. For real data the truevalues are unknown. But they can be computed for the simulated waveformdata, where they reduce to computing an expression involving error functions.Using the waveform data, we did a simulation similar to that in Section2 with learning and test sets both of size 300, and 25 bootstrap replications.In each iteration, we computed the average over the test set and classes ofjp̂(jjx) � p�(jjx)j and jp̂B(jjx) � p�(jjx)j. This was repeated 50 times andthe results averaged. The single tree estimates had an error of .189. Theerror of the bagged estimates was .124, a decrease of 34%.6.2. How Many Bootstrap Replicates Are Enough?In our experiments, 50 bootstrap replicates was used for classi�cationand 25 for regression. This does not mean that 50 or 25 were necessaryor su�cient, but simply that they seemed reasonable. My sense of it isthat fewer are required when y is numerical and more are required with anincreasing number of classes.The answer is not too important when procedures like CART are used,because running times, even for a large number of bootstraps, are very nomi-nal. But neural nets progress much slower and replications may require many15



days of computing. Still, bagging is almost a dream procedure for parallelcomputing. The construction of a predictor on each L(B) proceeds with nocommunication necessary from the other CPU's.To give some ideas of what the results are as connected with the numberof bootstrap replicates we ran the waveform data using 10, 25, 50 and 100replicates using the same simulation scheme as in Section 2. The results are:Table 5.1Bagged Missclassi�cation Rates (%)No. Bootstrap Replicates Missclassi�cation Rate10 21.825 19.550 19.4100 19.4The unbagged rate is 29.0, so its clear that we are getting most of the improve-ment using only 10 bootstrap replicates. More than 25 bootstrap replicatesis love's labor lost.6.3. Bagging Nearest Neighbor Classi�ersNearest neighbor classi�ers were run on all the data sets described insection 2 except for the soybean data whose variables were categorical. Thesame random division into learning and test sets was used with 100 bootstrapreplicates, and 100 iterations in each run. A Euclidean metric was used witheach coordinate standardized by dividing by its standard deviation over thelearning set. See Table 5 for the results:Table 5Missclassi�cation Rates for Nearest NeighborData Set �eS �eBwaveform 26.1 26.1heart 6.3 6.3breast cancer 4.9 4.9ionosphere 35.7 35.7diabetes 16.4 16.4glass 21.6 21.616



Nearest neighbor is more accurate than single trees in 5 of the 6 data sets,but bagged trees are more accurate in 5 of the 6 data sets.Cycles did not have to be expended to �nd that bagging nearest neighborsdoes not change things. Some simple computations show why. Given Npossible outcomes of a trial (the N cases (yn;xn) in the learning set) andN trials, the probability that the nth outcome is selected 0; 1; 2; : : : times isapproximately Poisson distributed with � = 1 for large N . The probabilitythat the nth outcome will occur at least once is 1� (1=e) ' :632.If there are NB bootstrap repetitions in a 2-class problem, then a testcase may change classi�cation only if its nearest neighbor in the learning setis not in the bootstrap sample in at least half of the NB replications. Thisprobability is given by the probability that the number of heads in NB tossesof a coin with probability .632 of heads is less than :5NB. As NB gets larger,this probability gets very small. Analogous results hold for J -class problems.The stability of nearest neighbor classi�cation methods with respect toperturbations of the data distinguishes them from competitors such as treesand neural nets.6.4. ConclusionsBagging goes a ways toward making a silk purse out of a sow's ear, es-pecially if the sow's ear is twitchy. It is a relatively easy way to improve anexisting method, since all that needs adding is a loop in front that selects thebootstrap sample and sends it to the procedure and back end that does theaggregation. What one loses, with the trees, is a simple and interpretablestructure. What one gains is increased accuracy.ReferencesBelsley, D., Kuh, E., and Welsch, R. (1980) \Regression Diagnostics", JohnWiley and Sons.Breiman, L. (1994) Heuristics of instability in model selection, TechnicalReport, Statistics Department, University of California at Berkeley.Breiman, L., Friedman, J., Olshen, R., and Stone, C. (1984) \Classi�cationand Regression Trees", Wadsworth. 17
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