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Abstract

Bagging predictors is a method for generating multiple versions of a pre-
dictor and using these to get an aggregated predictor. The aggregation av-
erages over the versions when predicting a numerical outcome and does a
plurality vote when predicting a class. The multiple versions are formed
by making bootstrap replicates of the learning set and using these as new
learning sets. Tests on real and simulated data sets using classification and
regression trees and subset selection in linear regression show that bagging
can give substantial gains in accuracy. The vital element is the instability of
the prediction method. If perturbing the learning set can cause significant
changes in the predictor constructed, then bagging can improve accuracy.

1. Introduction

A learning set of £ consists of data {(yn,®,), n =1,..., N} where the y’s
are either class labels or a numerical response. We have a procedure for using
this learning set to form a predictor ¢(@, L) — if the input is @ we predict
y by o(@®, L). Now, suppose we are given a sequence of learnings sets {L}
each consisting of N independent observations from the same underlying
distribution as £. Our mission is to use the {L;} to get a better predictor
than the single learning set predictor p(@, L£). The restriction is that all we
are allowed to work with is the sequence of predictors {¢(@, Ly)}.

If y is numerical, an obvious procedure is to replace ¢ (&, £) by the average
of o(®,Ly) over k. ie. by ga(®) = Epe(e,L) where E denotes the
expectation over £, and the subscript A in ¢4 denotes aggregation. If (@, L)
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predicts a class j € {1,...,.J}, then one method of aggregating the ¢(@, L)

is by voting. Let N; = #{k;o(x, L) = j} and take g 4(x) = argmax; N;.
Usually, though, we have a single learning set £ without the luxury of

replicates of £. Still, an imitation of the process leading to @4 can be done.

Take repeated bootstrap samples {£®)} from £, and form {c,o(a:,,C(B))}. If
y is numerical, take pp as

ep(x) = avpp(ex, ,C(B)).

If y is a class label, let the {c,o(a:,,C(B))} vote to form pp(x). We call this
procedure “bootstrap aggregating” and use the acronym bagging.

The {,C(B)} form replicate data sets, each consisting of N cases, drawn at
random, but with replacement, from L. Each (y,,®,) may appear repeated
times or not at all in any particular £®). The {,C(B)} are replicate data
set drawn from the bootstrap distribution approximating the distribution
underlying £. For background on bootstrapping, see Efron and Tibshirani
[1993]. A critical factor in whether bagging will improve accuracy is the
stability of the procedure for constructing . If changes in £, i.e. a replicate
L, produces small changes in @, then ¢p will be close to p. Improvement will
occur for unstable procedures where a small change in £ can result in large
changes in . Unstability was studied in Breiman [1994] where it was pointed
out that neural nets, classification and regression trees, and subset selection
in linear regression were unstable, while k-nearest neighbor methods were
stable.

For unstable procedures bagging works well. In Section 2 we bag clas-
sification trees on a variety of real and simulated data sets. The reduction
in test set missclassification rates ranges from 20% to 47%. In section 3 re-
gression trees are bagged with reduction in test set mean squared error on
data sets ranging from 22% to 46%. Section 4 goes over some theoretical
justification for bagging and attempts to understand when it will or will not
work well. This is illustrated by the results of Section 5 on subset selection in
linear regression using simulated data. Section 6 gives concluding remarks.
These discuss how many bootstrap replications are useful, bagging nearest
neighbor classifiers and bagging class probability estimates.

The evidence, both experimental and theoretical, is that bagging can
push a good but unstable procedure a significant step towards optimality.
On the other hand, it can slightly degrade the performance of stable proce-
dures. There has been recent work in the literature with some of the flavor



of bagging. In particular, there has been some work on averaging and voting
over multiple trees. Buntine [1991] gave a Bayesian approach, Kwok and
Carter [1990] used voting over multiple trees generated by using alternative
splits, and Heath et. al. [1993] used voting over multiple trees generated by
alternative oblique splits. Dieterrich [1991] showed that a method for cod-
ing many class problems into a large number of two class problems increases
accuracy. There is some commonality of this idea with bagging.

2. Bagging Classification Trees

2.1. Results
Bagging was applied to classification trees using the following data sets:

waveform (simulated)
heart

breast cancer (Wisconsin)
ionosphere

diabetes

glass

soybean

All of these except the heart data are in the UCI repository (ftp ics.uci.edu
/pub/machine-learning-databases). The data are briefly described in Section
2.2.

Testing was done using random divisions of each data set into a learning
and test set, constructing the usual tree classifier using the learning set, and
bagging this tree using 50 bootstrap replicates. This was repeated 100 times
for each data set (specifics are given in Section 2.3). The average test set
missclassification rate using a single tree is denoted by es and the bagging
rate by eg. The results are:



Table 1 Missclassification Rates (Percent)

Data Set €g €B Decrease
waveform 29.0 19.4 33%
heart 10.0 5.3 47%
breast cancer 6.0 4.2 30%
ionosphere 11.2 8.6 23%
diabetes 23.4 18.8 20%
glass 32.0 24.9 22%
soybean 14.5 10.6 27%

For the waveform data it’s known that the minimal attainable rate (Bayes
Rate) is 14.0%. Using this as a base, the excess error drops from 15.0% to

5.4%.

2.2. Data Sets
Table 2 gives a summary of the data sets and the test set sizes used.

Table 2
Data Set Summary
Data Set # Samples # Variables # Classes # Test Set

waveform 300 21 3 1500
heart 1395(823) 16(18) 2 250
breast cancer 699 9 2 100
ionosphere 351 34 2 25
diabetes 1036(768) 8 2 250
glass 214 9 6 20
soybean 307 35 19 25

The figures in parentheses are for the original data sets. These were modified
for reasons described below to give the as-used numbers. In all but the
simulated waveform data, the data set was randomly divided into a test set
and learning set. So, for instance, in the glass data, the size of the learning
set in each iteration was 194 = 214 — 20. For the simulated waveform data,
a learning set of 300 and a test set of 1500 were generated for each iteration.
Briet descriptions of the data sets follows. More extended background is
available in the UCI repository.



Waveform This is simulated 21 variable data with 300 cases and 3 classes
each having probability 1/3. It is described in Breiman et al [1984] (a C
subroutine for generating the data is in the UCI repository subdirectory
/waveform).

Heart This is data from the study referred to in the opening paragraphs of
the CART book (Breiman et. al. [1984]). To quote:

At the University of California, San Diego Medical Center, when a
heart attack patient is admitted, 19 variables are measured during
the first 24 hours. These include blood pressure, age, and 17 other
ordered and binary variables summarizing the medical symptoms
considered as important indicators of the patient’s condition.

The goal of a recent medical study (see Chapter 6) was the devel-
opment of a method to identify high risk patients (those who will
not survive at least 30 days) on the basis of the initial 24-hour
data.

The data base has also been studied in Olshen et al [1985]. It was gath-
ered on a project (SCOR) headed by John Ross Jr. Elizabeth Gilpin and
Richard Olshen were instrumental in my obtaining the data. The data used
had 18 variables. Two variables with high proportions of missing data were
deleted, together with a few other cases that had missing values. This left
779 complete cases — 77 deaths and 702 survivors. To equalize class sizes,
each case of death was replicated 9 times giving 693 deaths for a total of
1395 cases.

Breast Cancer This is data given to the UCI repository by William H. Wol-
berg, University of Wisconsin Hospitals, Madison (see Wolberg and Man-
gasariam [1990]). It is two class data with 699 cases, (458 benign and 241
malignant). It has 9 variables consisting of cellular characteristics. (subdi-
rectory /breast-cancer-wisconsin )

lonosphere This is radar data gathered by the Space Physics Group at Johns
Hopkins University (see Sigillito et. al. [1989]). There are 351 cases with 34
variables, consisting of 2 attributes for each at 17 pulse numbers. There are
two classes: good = some type of structure in the ionosphere (226); bad =
no structure (125). (subdirectory /ionosphere)
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Diabetes This is a data base gathered among the Pima Indians by the Na-
tional Institute of Diabetes and Digestive and Kidney Diseases. (See Smith
et. al. [1988]). The data base consists of 768 cases, 8 variables and two
classes. The variables are medical measurements on the patient plus age and
pregnancy information. The classes are: tested positive for diabetes (268)
or negative (500). To equalize class sizes, the diabetes cases were duplicated
giving a total sample size of 1036. (subdirectory /pima-indians-diabetes)

Glass This data base was created in the Central Research Establishment,
Home Office Forensic Science Service Aldermaston, Reading, Berkshire. Fach
case consists of 9 chemical measurements on one of 6 types of glass. There
are 214 cases.

Soybean The soybean learning set consists of 307 cases, 35 variables and
19 classes. The classes are various types of soybean diseases. The vari-
ables are observation on the plants together with some climatic variables.
All are categorical. Some missing values were filled in. (subdirectory /soy-
bean /soybean _large.data)

(subdirectory /glass)

2.2. Computations
In all runs, the following procedure was used:

i). The data set was randomly divided into a test set 7 and learning set L.
The test sets sizes selected in the real data sets are ad hoc, mostly chosen so
that £ would be reasonably large. In simulated data, test set size was chosen
comfortably large.

ii). A classification tree was constructed from L, with selection done by
10-fold cross-validation. Running the test set 7 down this tree gives the
missclassification rate eg(L, 7 )

iii). A bootstrap sample Lg is selected from L, and a tree grown using Lp
and 10-fold cross-validation. This is repeated 50 times giving tree classifiers

o1(x),. .., os50(@).

iv). If (jn,®,) € T, then the estimated class of @, is that class having the
plurality in ¢1(@,,), ..., pso(®,). The proportion of times the estimated class



differs from the true class is the bagging missclassification rate eg(L, 7).

v) The random division of the data is repeated 100 times and the reported
€s, ep are the averages over the 100 iterations.

3. Bagging Regression Trees

3.1. Results
Bagging trees was used on 5 data sets with numerical responses.

Boston Housing

Ozone

Friedman #1 (simulated)
Friedman #2 (simulated)
Friedman #3 (simulated)

The computing scheme was similar to that used in classification. Learning
and test sets were randomly selected, 25 bootstrap replications used, and 100
iterations. The results are:

Table 3
Mean Squared Test Set Error
Data Set €s €R Decrease
Boston Housing 19.1 11.7 39%
Ozone 23.1 18.0 22%
Friedman #1 11.4 6.2 46%
Friedman #2 30,800 21,700 30%
Friedman #3 0403 .0249 38%
3.2. Data Sets
Table 4
Summary of Data Sets
Data Set #Cases # Variables # Test Set
Boston Housing 506 12 25
Ozone 330(366) 8(9) 15
Friedman #1 200 10 1000
Friedman #2 200 4 1000
Friedman #3 200 4 1000



Boston Housing This data became well-known through its use in the book
by Belsley, Kuh, and Welsch [1980]. It has 506 cases corresponding to census
tracts in the greater Boston area. The y-variable is median housing price in
the tract. There are 12 predictor variables, mainly socio-economic. The data
has since been used in many studies. (UCI repository/housing).

Ozone The ozone data consists of 366 readings of maximum daily ozone at a
hot spot in the Los Angeles basin and 9 predictor variables — all meteorlogi-
cal, i.e. temperature, humidity, etc. It is described in Breiman and Friedman
[1985] and has also been used in many subsequent studies. Eliminating one
variable with many missing values and a few other cases leaves a data set
with 330 complete cases and 8 variables.

Friedman #1 All three Friedman data sets are simulated data that appear in
the MARS paper (Friedman [1991]). In the first data set, there are ten inde-
pendent predictor variables 1, ..., x19 each of which is uniformly distributed
over [0, 1]. The response is given by

y = 10sin(rzi22) + 20(x3 — .5)* + 1024 + das + ¢

where € is N(0,1). Friedman gives results for this model for sample sizes 50,

100, 200. We use sample size 200.

Friedman #2, #3 These two examples are taken to simulate the impedance
and phase shift in an alternating current circuit. They are 4 variable data
with

#2 y = (2% + (z2ws — (1/a224)))? + &
#3 y = tan_l <$2$3 _w(ll/xQx‘l)) —|— €3

where 1, x9, 23, x4 are uniformly distributed over the ranges

0 < 2 <100
20 < (aq/27) <280
0 < x23<1
< ay <11



The noise €3, €3 are distributed as N(0,03), N(0,03) with o4, o3 selected to

give 3:1 signal/noise ratios. In each example, the sample sizes are 200.

3.2. Computations

The two real data sets were divided at random in a learning set £ and
test set 7. For each of the simulated data sets, a learning set £ of 200 cases
was generated and a test set of 1000 cases. A regression tree was grown
using £ and 10-fold cross-validation. The test set 7 was run down £ and
gave mean-squared-error es(L, 7).

Then 25 bootstrap replicates £B) of £ were generated. For each one,
a regression tree was grown using £%) and 10-fold cross-validation. This
gave 25 predictors ¢1(@®), ..., v5(x). For each (y,,2,) € 7, the predicted
yp value was taken as avy pr(@,). Then eg(L,T) is the mean-squared-error
between the g and the true y-values in 7. This procedure was repeated 100
times and the errors averaged to give the single tree error €5 and the bagged
error epg.

4. Why Bagging Works

Let each (y,®) case in £ be independently drawn from the probability
distribution P. Suppose y is numerical and ¢(@, L) the predictor. Then the
aggregated predictor is

oal®, P) = Epp(z,L).

Take Y, X to be random variables having the distribution P and independent
of L. The average prediction error e in ¢(@, L) is

e=EpEyx(Y — o(X, L))
Define the error in the aggregated predictor ¢4 to be
€A = EY,X(Y - ‘PA(XvP))Z-

Using the inequality (EZ)* < EZ? gives

€

EY? —2BEY ¢4+ Eyx Epo* (X, L)
E(Y — 99,4)2 = €4

Y



Thus, ¢4 has lower mean-squared prediction error than ¢. How much
lower depends on how unequal the two sides of

[Epe(e, L) < Epp*(e, L)

are. The effect of instability is clear. If ¢(@, L) does not change too much
with replicate £ the two sides will be nearly equal, and aggregation will
not help. The more highly variable the ¢(&, £) are, the more improvement
aggregation may produce. But ¢4 always improves on .

Now, the bagged estimate is not ¢ 4(@, P), but rather

pr(T) = @A(vaﬁ)v

where P, is the distribution that concentrates mass 1/N at each point
(Yn,®,) € L, (Pp is called the bootstrap approximation to P). Then ¢p
is caught in two currents: on the one hand, if the procedure is unstable, it
can give improvement through aggregation. On the other side, if the proce-
dure is stable, then ¢p = wa(2, Pr) will not be as accurate for data drawn
from P as pa(@, P) ~ o(x, L).

There is a cross-over point between instability and stability at which ¢p
stops improving on ¢(@, L) and does worse. This has a vivid illustration in
the linear regression subset selection example in the next section. There is
another obvious limitation of bagging. For some data sets, it may happen
that (@, £) is close to the limits of accuracy attainable on that data. Then
no amount of bagging will do much improving. This is also illustrated in the
next section.

In classification, a predictor ¢(@, £) predicts a class label 57 € {1,...,.J}.
It £ is drawn from the distribution P, and Y, X are from P independent of
L, then the probability of correct classification for £ fixed is;

HL) = PY =¢(X.L))
= LX) =Y =D =)

Denote
QUle) = Pelo(x, L) = j).

Then, averaged over L, the probability of correct classification is

ZE QUIX)Y =j)P(Y =)
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= Z/Q(ﬂw)P(jlw)PX(dw)

where Px(dx) is the overall @ distribution.
Since w4(x) = arg max; Q(i|x),

ra=3 [ HargmaxQ(ila) = j) P(jle) Px (dz)

where [(-) is the indicator function. Consider the set
C = {wsargmas P(jle) = argmax Q(jla)}.
j j
Forx c C

S Iarg max Qile) = )P(jlx) = max P(jle)

J
so that

r4 = /:Bec m]aXP(j|a3)Px(da3) —I_/a:eO'Z](LpA(w) = j)P(j|z)Px(d=).

The highest attainable correct classification rate is given by the predictor
@(z) = argmax P(je)
and has the correct classification rate
= /m]axP(j|w)PX(dw).

If x € C, the sum )7, Q(j|2)P(j|2) can be less than max; P(j|e). Thus,
even if Px(C) =~ 1, the unaggregated predictor ¢ can be far from optimal.
But @4 is nearly optimal. Aggregating can therefore transform good pre-
dictors into nearly optimal ones. On the other hand, unlike the numerical
y situation, poor predictors can be transformed into worse ones. The same
behavior regarding stability holds. Bagging unstable classifiers usually im-
proves them. Bagging stable classifiers is not a good idea.
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5. A Linear Regression Illustration

5.1. Forward Variable Selection

Subset selection in linear regression gives an illustration of the points
made in the previous section. With data of the form £ = {(yn;®,), n =
l,...,N} where @ = (21,...,25) consists of M predictor variables, a popu-
lar prediction method consists of forming predictors ¢1(@), ..., o (x) where
each ¢, is linear in & and depends on only m of the M x-variables. Then
one of the {¢,,} is chosen as the designated predictor. For more background,
see Breiman and Spector [1993].

A common method for constructing the {¢,,}, and one that is used in
our simulation, is forward variable entry. If the variables used in ¢ are
Ty ooy Tm,, then for each m & {mq, ..., my} form the linear regression of y
ON (Timyy -+ oy Tmys T ), compute the residual sum-of-squares RSS(m ) and take
Ty, such that myyy minimizes RSS(m) and @gyqi(2) the linear regression
based on (L, .., Ty, )

There are other forms of variable selection i.e. best subsets, backwards
and variants thereof. What is clear about all of them is that they are unstable
procedures (see Breiman [1994]). The variables are competing for inclusion
in the {¢,,} and small changes in the data can cause large changes in the

{om}-

5.2. Simulation Structure
The simulated data used in this section are drawn from the model.

Y= Buntm+e

where € is N(0,1). The number of variables M = 30 and the sample size is
60. The {x,,} are drawn from a mean-zero joint normal distribution with
EX;X; = pli=il and at each iteration, p is selected from a uniform distribution
on [0, 1].

It is known that subset selection is nearly optimal if there are only a few
large non-zero f3,,, and that its performance is poor if there are many small
but non-zero f,,. To bridge the spectrum, three sets of coefficients are used.
Each set of coefficients consists of three clusters; one is centered at m = 5,
one at m = 15 and the other at m = 25. Each cluster is of the form

B =cl(h—|m — k)T, m=1,...,30
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where k is the cluster center, and h = 1,3,5 for the first, second and third
set of coefficients respectively. The normalizing constant C' is taken so that
the R? for the data is ~ .75. Thus, for h = 1, there are only three non-zero
{Bn}. For h = 3 there are 15 non-zero {f3,,}, and for h = 5, there are 27
non-zero {3, }, all relatively small.

For each set of coefficients, the following procedure was replicated 250
times:
i). Data £ = {(yn,®,), n =1,...,} was drawn from the model

Y= Buim+e

where the {z,,} were drawn from the joint normal distribution described
above.

ii). Forward entry of variables was done using £ to get the predictors
o1(@),...,om(x). The mean-squared prediction error of each of these was
computed giving ey, ..., epr.

iii). Fifty bootstrap replicates {£L(P)} of £ were generated. For each of these,
forward stepwise regression was applied to construct predictors

{o1(2, LB, opr(, LB))). These were averaged over the £P) to give
the bagged sequence c,ogB)(a:), e c,og\]j)(x). The prediction errors egB) eg\]j)
for this sequence was computed.

9o ey

These computed mean-squared-errors were averaged over the 250 repeti-
tions to give two sequences {€®1, {elP)}. For each set of coefficients, these
two sequences are plotted vs. m in Figure la,b,c.

5.3. Discussion of Simulation Results

First and most obvious is that the best bagged predictor is always at least
as good as the best subset predictor. When h = 1 and subset selection is
nearly optimal, there is no improvement. For A = 3 and 5 there is substantial
improvement. This illustrates the obvious: bagging can improve only if the
unbagged is not optimal.

The second point is less obvious. Note that in all three graphs there is a
point past which the bagged predictors have larger prediction error than the
unbagged. The explanation is this: linear regression using all variables is a
fairly stable procedure. The stability decreases as the number of variables
used in the predictor decreases. As noted in section 4, for a stable procedure
©vB = pa(®, Pp) is not as accurate as ¢ ~ (&, P). The higher values of

13



FIGURE 1

Prediction Error for Subset Selection and Bagged Subset Selection
vs. Number of Variables
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@B for large m reflect this fact. As m decreases, the instability increases

(B)

~2) becomes more accurate than ¢,

and there is a cross-over point of which ¢

6. Concluding Remarks

6.1. Bagging Class Probability Estimates

Some classification methods estimate probabilities p(j|®) that an object
with prediction vector @ belongs to class j. Then the class corresponding to
x is estimated as arg max; p(j|e). For such methods, a natural competitor
to bagging by voting is to average the p(j|a) over all bootstrap replications,
getting pp(j|®) and then use the estimated class arg max; pg(j|®). This
estimate was computed in every classification example we worked on. The
resulting missclassification rate was always virtually identical to the voting
missclassification rate. In some applications, estimates of class probabilities
are required, instead of, or along with, the classifications. The evidence so far
indicates that bagged estimates are likely to be more accurate than the single
estimates. To verify this, it would be necessary to compare both estimates
with the true values p*(j|@) over the @ in the test set. For real data the true
values are unknown. But they can be computed for the simulated waveform
data, where they reduce to computing an expression involving error functions.

Using the waveform data, we did a simulation similar to that in Section
2 with learning and test sets both of size 300, and 25 bootstrap replications.
In each iteration, we computed the average over the test set and classes of
Ip(jle) — p*(j|e)| and |ps(j|e) — p*(j]z)|. This was repeated 50 times and
the results averaged. The single tree estimates had an error of .189. The

error of the bagged estimates was .124, a decrease of 34%.

6.2. How Many Bootstrap Replicates Are Enough?

In our experiments, 50 bootstrap replicates was used for classification
and 25 for regression. This does not mean that 50 or 25 were necessary
or sufficient, but simply that they seemed reasonable. My sense of it is
that fewer are required when y is numerical and more are required with an
increasing number of classes.

The answer is not too important when procedures like CART are used,
because running times, even for a large number of bootstraps, are very nomi-
nal. But neural nets progress much slower and replications may require many

15



days of computing. Still, bagging is almost a dream procedure for parallel
computing. The construction of a predictor on each L®) proceeds with no
communication necessary from the other CPU’s.

To give some ideas of what the results are as connected with the number
of bootstrap replicates we ran the waveform data using 10, 25, 50 and 100
replicates using the same simulation scheme as in Section 2. The results are:

Table 5.1
Bagged Missclassification Rates (%)
No. Bootstrap Replicates Missclassification Rate

10 21.8
25 19.5
30 19.4
100 19.4

The unbagged rate is 29.0, so its clear that we are getting most of the improve-
ment using only 10 bootstrap replicates. More than 25 bootstrap replicates
is love’s labor lost.

6.3. Bagging Nearest Neighbor Classifiers

Nearest neighbor classifiers were run on all the data sets described in
section 2 except for the soybean data whose variables were categorical. The
same random division into learning and test sets was used with 100 bootstrap
replicates, and 100 iterations in each run. A Euclidean metric was used with
each coordinate standardized by dividing by its standard deviation over the
learning set. See Table 5 for the results:

Table 5
Missclassification Rates for Nearest Neighbor
Data Set €g €B
waveform 26.1 26.1
heart 6.3 6.3
breast cancer 4.9 4.9
ionosphere 35.7 35.7
diabetes 16.4 16.4
glass 21.6 21.6

16



Nearest neighbor is more accurate than single trees in 5 of the 6 data sets,
but bagged trees are more accurate in 5 of the 6 data sets.

Cycles did not have to be expended to find that bagging nearest neighbors
does not change things. Some simple computations show why. Given N
possible outcomes of a trial (the N cases (y,,®,) in the learning set) and
N trials, the probability that the nth outcome is selected 0,1,2, ... times is
approximately Poisson distributed with A = 1 for large N. The probability
that the nth outcome will occur at least once is 1 — (1/e) ~ .632.

If there are Np bootstrap repetitions in a 2-class problem, then a test
case may change classification only if its nearest neighbor in the learning set
is not in the bootstrap sample in at least half of the N replications. This
probability is given by the probability that the number of heads in N tosses
of a coin with probability .632 of heads is less than .5Ng. As Np gets larger,
this probability gets very small. Analogous results hold for J-class problems.

The stability of nearest neighbor classification methods with respect to
perturbations of the data distinguishes them from competitors such as trees
and neural nets.

6.4. Conclusions

Bagging goes a ways toward making a silk purse out of a sow’s ear, es-
pecially if the sow’s ear is twitchy. It is a relatively easy way to improve an
existing method, since all that needs adding is a loop in front that selects the
bootstrap sample and sends it to the procedure and back end that does the
aggregation. What one loses, with the trees, is a simple and interpretable
structure. What one gains is increased accuracy.
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