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Preface

Slides are in two parts and are available at:

http://www.utdallas.edu/ m.vidyasagar/Talks/Tut-1.pdf

http://www.utdallas.edu/ m.vidyasagar/Talks/Tut-2.pdf

Please feel free to download and follow along!
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Notation

If x ∈ Cn, then [n] denotes {1, . . . , n},

supp(x) = {i ∈ [n] : xi 6= 0}, ‖x‖0 = |supp(x)|.

Three different norms are defined on matrices. Let σ(A) ∈ Rm+
denote the vector of singular values of A. Then

‖A‖S = ‖σ(A)‖∞, ‖A‖F = ‖σ(A)‖2, ‖A‖N = ‖σ(A)‖1

denote respectively the spectral norm, Frobenius norm, and
nuclear norm of A.
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Another Hardness Result

Theorem

Given a linear map A : Cr×s → Cm and y ∈ Cm, the problem

min
Z∈Cr×s

rank(Z) s.t. A(Z) = y

is NP-hard.

Sketch of proof: Choose r = s and X = Diag(x), x ∈ Cr. Then
rank(X) = ‖x‖0. So this problem is at least as hard as minimizing
‖ · ‖0 subject to linear constraints. The latter is NP-hard.
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Problem Formulation

Recall the problem: Fix integers r and s, and assume without loss
of generality that r ≤ s. Suppose k < r, and let M(k) denote the
subset of matrices of Cr×s of rank k or less. If X ∈ Cr×s, define
its k-rank sparsity index θk(X, ‖ · ‖) as

θk(X, ‖ · ‖) := min
Z∈M(k)

‖X − Z‖.
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Problem Formulation (Cont’d)

Suppose A : Cr×s → Cm is a linear measurement map, and that
∆ : Cm → Cr×s is a decoder map. Then the pair (A,∆) is said to
achieve robust rank recovery of order k if there exist constants
C and D such that

‖∆(A(X) + η)−X‖F ≤ Cθk(X, ‖ · ‖N ) + ε

whenever ‖η‖2 ≤ ε.

Challenge: Choosing the maps A and ∆.

Because the convex envelope of the rank function X 7→ rank(X)
(over the unit ball in the spectral norm ‖ · ‖S) is the nuclear norm
‖ · ‖N , let y = A(X) + η and define

X̂ := argmin
Z
‖Z‖N s.t. ‖y −A(Z)‖2 ≤ ε.
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A Meta Theorem and a Corollary

Oymak et al. (2011) present a “meta-theorem” that allows one to
convert sufficient conditions for vector recovery into sufficient
conditions for matrix recovery. Detailed and specific statement
found in my notes. We will state only one useful corollary here.

Definition

A linear map A : Cr×s → Cm is said to satisfy the rank restricted
isometry property (RRIP) of rank k and constant δk if

(1− δk)‖X‖2F ≤ ‖A(X)‖22 ≤ (1 + δk)‖X‖2F , ∀X ∈M(k).
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A Meta Theorem and a Corollary (Cont’d)

Theorem

Suppose A : Cr×s → Cm is linear and satisfies the RRIP of rank tk
with constant δtk <

√
(t− 1)/t. Suppose y = A(X) + η where

‖η‖2 ≤ ε, and define

X̂ := argmin
Z
‖Z‖N s.t. ‖y −A(Z)‖2 ≤ ε.

Then there exist constants C and D such that

‖∆(A(X) + η)−X‖F ≤ Cθk(X, ‖ · ‖N ) + ε

Moreover, these are the same constants as in the corresponding
theorem for vector recovery.
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A Meta Theorem and a Corollary (Cont’d)

Theorem

(Cai-Zhang(2014)) If t ≥ 4/3, then the above bound is tight.

Advantage: Approach works even for matrices that are “nearly”
of low rank (in contrast with next set of methods).

Open Problem: How to construct linear maps that satisfy the
RRIP?
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Problem Formulation: Reprise

Recall the earlier problem formulation: Suppose X ∈ Cr×s and
that Ω ⊆ [r]× [s]. Say Ω = {(i1, j1), . . . , (il, jl)}. Define
Q ∈ {0, 1}r×s by

qij =

{
1, if (i, j) ∈ Ω,
0, if (i, j) 6∈ Ω.

Then the measurements of A consist of the Hadamard product
A(X) = Q ◦X whereby

[Q ◦X]ij = qijxij .

So the measurements consist of specific elements of the unknown
matrix X, and the objective is to “complete” it.
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Motivation: “Netflix Problem”

Suppose there r clients and s movies. Each client assigns a rating
to some (in fact very few) movies. The objective is to infer the
entire “rating matrix” of how each client would rate each movie if
s/he had the chance.

Not possible in general, but what if the rating matrix is either
exactly or nearly of low rank?

Can the unknown matrix be recovered using measurements of
some components?
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Matrix Completion via Nuclear Norm Minimization

Problem is
min rank(Z) s.t. A(Z) = y,

where A : Cr×s → Cm is a linear operator and y = A(X).

Approach: Because ‖ · ‖N is the convex envelope of the rank
function, change the NP-hard problem above to the convex
optimization problem

min ‖Z‖N s.t. A(Z) = y.

Problem formulation and initial solution by Candès and Recht
(2008); follow-up work by Candè and Tao, Keshavan-et-al (2010a,
2010b), Recht, Fazel, and others. Highly recommend survey paper
by Davenport and Romberg (2016).
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Alternatives to Nuclear Norm Minimization

While in theory matrix completion can (sometimes) be achieved
via nuclear norm minimization, algorithms for this problem are still
evolving.

Other algorithms are being developed, not all of them taking
advantage of the convexity of the nuclear norm! Example: Method
of alternating projections.
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Not All Matrices Can be Completed

Why can (in principle) low rank matrices be recovered from a few
observations? Because the low rank property implies algebraic
relationships between various elements.

But elements of one row or column need not always tell us much
about other rows or columns!

Suppose X is of rank one and has a 1 in position (1, 1) and zeros
elsewhere. Then almost all samples of X will equal zero!

There is a need for the singular vectors to have low coherence!
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Low Coherence SVDs

Suppose the unknown matrix X is in Cn×n (is square), has the
SVD X = UΣV † and rank r. Let PU denote the orthogonal
projection of Cn onto the range of U . Then define

µ(U) :=
n

r
max
i∈[n]
‖PUei‖22,

where ei is the i-th canonical basis element. Easy to show that

1 ≤ µ(U) ≤ n/r.

Upper bound occurs when some ei belongs to the range of U (e.g.
when X has one element of 1 and the rest zero).

Matrices with high coherence cannot be completed!
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Typical Results on Matrix Completion

Low coherence SVD + nuclear norm minimization implies matrix
recovery.

Candès and Recht (2008), Candès and Tao (2010: For each
X ∈ Cn×n of rank r and low coherence, it is possible to recover X
by choosing a set S ⊆ [n]× [n] of cardinality Cn1.2r log n
(compare with n2 elements of X).

Keshavan-et-al (2010a), Bhojanapalli and Jain (2014) invert the
order of the quantifiers. There exists a set S of cardinality O(rn)
such that it can every matrix of rank r (and sufficiently low
coherence) can be recovered from measuring xij , (i, j) ∈ S.

Keshavan-et-al (2010b) also permit noisy measurements.
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Hankel Matrices

Suppose {ft}t≥1 is a sequence of real numbers. The associated
infinite and finite Hankel matrices are defined as

Hf,∞ :=

 f1 f2 f3 . . .
f2 f3 f4 . . .
...

...
...

. . .

 ,

Hf,n :=


f1 f2 . . . fn−1 fn
f2 f3 . . . fn fn+1
...

...
. . .

...
...

fn fn+1 . . . f2n−2 f2n−1

 ∈ Rn×n.
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An Old Theorem

Theorem

(Kronecker (1881)) Suppose {ft}t≥1 is an `1 sequence. Then
rank(Hf,∞) is finite if and only if the power series

f(z) =
∞∑
t=1

ftz
t−1

defines a rational function of z. If so the rank of Hf,∞ is the
degree of the rational function.
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A Basic Fact

Consider a linear discrete-time SISO system

xt+1 = Axt +But, yt = Cxt,

where the pairs (A,B) and (C,A) are controllable and observable
respectively. Define the unit pulse response and transfer function
of the system as

ht = CAt−1B, t ≥ 1, h̃(z) =

∞∑
t=1

htz
t−1.

Then the dimension of A is the degree of h̃(z), which is in turn the
dimension of Hh,∞.
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Partial Realization: Problem Formulation

Original: Given a finite sequence {ht}mt=1, find an infinite
sequence {ft}t≥1 such that (i) f(t) = h(t) for t = 1, . . . ,m, and
(ii) rank(Hf,∞) is minimized.

Realistic: Given a finite sequence {ht}mt=1, and an integer n� m,
find a finite sequence {ft}2n−1t=1 such that (i) f(t) = h(t) for
t = 1, . . . , n, and (ii) rank(Hf,n) is minimized.
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A Simple Observation

Suppose {ht}mt=1 is a subsequence of an infinite sequence {ht}t≥1
such that Hh,∞ has finite rank, say d. Then, for each integer
n ≥ 2m− 1,{

min
f∈R2n−1

rank(Hf,n) s.t. f[1:m] = h[1:m]

}
≤ d.

Note:{
min

f∈R2n−1
rank(Hf,n) s.t. f[1:m] = h[1:m]

}
≤ rank(Hh,n)

≤ rank(Hh,∞) = d,

because Hh,n is a submatrix of Hh,∞.
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Modified Problem Formulation

Unfortunately (as we have already seen), minimizing the rank
subject to linear constraints is NP-hard. So we replace the rank
function by its convex envelope, namely the nuclear norm.

Modified Problem: Given {ht}mt=1, and n� m,

min
f∈R2n−1

‖Hf,n‖N s.t. f[1:m] = h[1:m].

This approach seems to work surprisingly well!
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Nonstandard Partial Realization Problem

Why specify only first m elements of the unit pulse response? Why
not specify some m elements?

Note: Many results break down if specifications are not contiguous.
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Nehari’s Theorem

Recall H∞ is the Hardy space consisting of functions that are
analytic over the open unit disk and essentially bounded on the
unit circle. Define

‖f‖∞ := sup
θ∈[0,2π]

|f(exp(iθ)|.

Problem: Given constants c0, . . . , cm, find

min
f∈H∞

‖f‖∞ s.t. f(0) = c0,
djf

dzj

∣∣∣∣
z=0

= ci, i = 1, . . . ,m.

Equivalently, choose h ∈ H∞ so as to minimize∥∥∥∥∥∥
m∑
j=0

cjz
j + zm+1h(z)

∥∥∥∥∥∥
∞

.
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Nehari’s Theorem (Cont’d)

Theorem

(Nehari (1951)) Define the Hankel matrix

H =


cm cm−1 . . . c1 c1
cm−1 cm−2 . . . c0 0

...
...

. . .
...

...
c0 0 . . . 0 0

 .
Then

min
h∈H∞

∥∥∥∥∥∥
m∑
j=0

cjz
j + zm+1h(z)

∥∥∥∥∥∥
∞

= ‖H‖S .

The theorem does not work at all unless first m+ 1 values are
specified.
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Example No. 1

A fourth-order system defined by

A =


0 1.0000 0 0
0 0 1.0000 0
0 0 0 1.0000

0.3528 0.0490 0.2300 0.1000

 ,
B = [ 0 0 0 1 ]>, C = [ 1 3 2 0 ],

The system poles are at 0.9,−0.8,±0.7i.
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Recovery Using First m Samples

The system is of order 4. Using the first m elements of the unit
pulse response, identify the rest using nuclear norm minimization.

With n = 50 (so that 2n− 1 = 99), the unit pulse response was
recovered.

Results are shown on next few slides.
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Recovery Using 15 Samples
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Error in Recovery Using 15 Samples
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Example No. 2

A fourth-order system defined by

A =


0 1.0000 0 0
0 0 1.0000 0
0 0 0 1.0000

0.6498 0.0902 −0.1825 0.1000

 ,
B = [ 0 0 0 1 ]>C = [ 1 3 2 0 ].

The system poles are at 0.9,−0.8,±0.95i, So the system is stable
but highly oscillatory, as shown on next slide.
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True Unit Pulse Response
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Recovery Using First m Samples

The system is of order 4. Using the first m elements of the unit
pulse response, identify the rest using nuclear norm minimization.

With n = 50 (so that 2n− 1 = 99), the unit pulse response was
recovered.

Results are good, and are shown on next few slides.

Challenge: How can this approach be put on a firm theoretical
foundation?
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Recovery Using 20 Samples
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True and Recovered Singular Values of Hankel Matrix
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Recovery Using 25 Samples

0 20 40 60 80 100

Time Index

-0.5

0

0.5

1

1.5

2

2.5

3

3.5
T

ru
e

 a
n

d
 R

e
c
o

v
e

re
d

 U
n

it
 P

u
ls

e
 R

e
s
p

o
n

s
e

Recovery of Fourth-Order System Using 25 Samples

True

Recovered

M. Vidyasagar FRS Compressed Sensing and Control Theory



Matrix Recovery
Partial Realization

Maximum Hands-Off Control

Preliminaries
Solution via Nuclear Norm Minimization
Numerical Examples

True and Recovered Singular Values of Hankel Matrix
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Partial Realization with Missing Samples

Suppose that out of the first 30 samples, we miss out samples
3, 9, 12, 19, 22. Define

S := {1, . . . , 30} \ {3, 9, 12, 19, 22}.

We minimize the nuclear norm of H(f) subject to the constraint
that fS = ht for all t ∈ S.

Results shown on next page.
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Partial Realization with Missing Samples (Cont’d)
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Problem Formulation in Continuous-Time

(Nagahara, Quevedo and Nešić, T-AC March 2016) Consider a
system

ẋ = Ax(t) +Bu(t), x(0) 6= 0.

With T specified, choose a control u(·) such that

‖u(t)‖∞ ≤ 1 for all t ∈ [0, T ].

x(T ) = 0.

The “attention span”

A(u(·)) := λ[supp(u)], supp(u) := {t ∈ [0, T ] : u(t) 6= 0}

is minimized, where λ(·) denotes the Lebesgue measure of a
set and supp(u) is the support of the signal u(·).
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Solution Using Pontryagin’s Principle

Convexify the problem: Replace A(u(·)) by ‖u(·)‖1, and minimize
‖u(·)‖1 subject to ‖u(·)‖∞ ≤ 1 and x(T ) = 0.

This is a classical “fuel-optimal control” problem that can be
solved using Pontryagin’s minimum principle.

Therefore, under mild conditions, optimal control u∗(·) satisfies
u∗(t) ∈ {−1, 0, 1} for all t ∈ [0, T ].

Observe: If a function f : [0, T ]→ R satisfies f(t) ∈ {−1, 0, 1} for
all t ∈ [0, T ], then A(f(·)) = ‖f(·)‖1.

Ergo (with some technicalities) minimum fuel control is also a
minimum attention control.
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Smoothening the Solution

Fuel-optimal control is “bang-off-bang” and thus discontinuous.
Can we find a suboptimal continuous solution?

Approach: Substitute as below:

‖u(·)‖1 ← (1− µ)‖u(·)‖1 + ‖u(·)‖22.

Resulting optimal control is continuous for all µ close to zero
(Nagahara, Quevedo and Nešić, T-AC March 2016)

One could say that the “LASSO” penalty ‖u(·)‖1 is replaced by
the “Elastic Net” penalty (1− µ)‖u(·)‖1 + ‖u(·)‖22.
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CLOT: An Alternative to LASSO and Elastic Net

CLOT regularizer, proposed in Ahsen, Challapalli and MV (JMLR,
to appear):

RCLOT(v) := (1− µ)‖v‖1 + µ‖v‖2, µ ∈ (0, 1).

CLOT stands for “Combined L-One and Two.” Compare with

RLASSO(v) := ‖v‖1,REN(v) := (1− µ)‖v‖1 + µ‖v‖22, µ ∈ (0, 1).
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Benefits of CLOT Penalty

It is shown in Ahsen, Challapalli and MV (JMLR, to appear) that
CLOT combines the best features of LASSO and EN. Specifically

EN does not achieve robust sparse recovery in compressed
sensing.

For µ sufficiently small, CLOT achieves robust sparse recovery
in compressed sensing, like LASSO but unlike EN.

CLOT achieves the grouping effect in sparse regression, like
EN but unlike LASSO.

Can CLOT be applied to the problem of hands-off control, and if
so, does it lead to “lower attention” control signals than EN?
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Problem Formulation: Discrete-Time

Consider a discrete-time linear system

xt+1 = Axt +But, yt = Cxt, x0 6= 0.

Given a specified final time T , we wish to find a control sequence
{ut}N−1t=0 such that (i) ‖ut‖∞ ≤ 1 for t = 0, . . . , N − 1, (ii)
XN = 0, and (iii) the cardinality of the set

supp(u) = {t : ut 6= 0}

is small.
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CLOT Formulation

Rewrite problem as

min
u∈RN

(1− µ)‖u‖1 + µ‖u‖2

subject to the specified constraints, which are all linear. This is a
convex programming problem that can be solved efficiently.

The approach can also handle constraints on the state x(·), which
are not amenable to Pontrygin’s principle.
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Numerical Studies

Several systems, both without and state constraints, were studied,
with various initial conditions. In all the examples studied, the
“sparsity ratio” A(u(·)/T of the CLOT-optimal control is smaller
than that for the EN-optimal control.

A few typical results are shown in next several slides.
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Lightly Damped Harmonic Oscillator: State Trajectories

t
0 5 10 15 20

||
x
(t

)|
| 2

0

2

4

6

8

10

12
L2 norm of state

EN
LASSO
CLOT

M. Vidyasagar FRS Compressed Sensing and Control Theory



Matrix Recovery
Partial Realization

Maximum Hands-Off Control

Problem Formulation
Hands-Off Control Using CLOT
Numerical Examples

Lightly Damped Harmonic Oscillator: Control Trajectories
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Comparison of Sparsity Indices: No State Constraints

No. LASSO EN CLOT
1 0.1690 0.5915 0.4475

2 0.1690 0.3270 0.2480

3 0.0480 0.1155 0.0830

4 0.4055 0.5555 0.4225

5 0.1655 0.3050 0.2180

6 0.0040 0.0395 0.0805

7 0.0595 0.1100 0.0845

8 0.0568 0.1438 0.1125

9 0.0568 0.1438 0.1125

Table: Sparsity densities for optimal controllers produced by various
methods
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Maximum Hands-Off Control with State Constraints

Plant: Fourth-order integrator = 1/s4.

Constraints: |u(t)| ≤ 1, ‖x(t)‖2 ≤ θ for all t ∈ [0, T ] with T = 20.

Initial state: x(0) = [1, 0, 1, 1]>.

Sparsity densities for LASSO, CLOT and EN are shown in the
table.
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Sparsity Indices for Various Thresholds

Threshold on L2-norm of the state vector
6 7 8 9 10 11

S
p
a
rs

it
y
 D

e
n
s
it
y

0.05

0.1

0.15

0.2

0.25

0.3
For intial condition [1,0,1,1]

T

LASSO
EN
CLOT

Figure: Sparsity Density vs state threshold for 4th order integrator with
intial condition [1, 0, 1, 1]>
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Sparsity Indices with Different Initial Conditions

Intial State Sparsity Density
LASSO EN CLOT

[1, 0, 0, 1]> 0.0820 0.2150 0.1765

[1, 0, 0,−1]> 0.0790 0.2085 0.1720

[1, 0, 1, 1]> 0.1795 0.2855 0.2400

[1, 0, 1,−1]> 0.1075 0.2305 0.1855

[1, 0,−1, 1]> 0.0660 0.1715 0.1435

[1, 0,−1,−1]> 0.0640 0.1545 0.1320
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Some Questions Worth Exploring

Development of deterministic algorithms for matrix recovery
and matrix completion

Proofs that the approaches to partial realization and hands-off
control actually work

Thank You!
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