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Abstract

In wireless sensor networks, where energy is scarce, it is inefficient to have all nodes
active because they consume a non-negligible amount of battery. In this paper we consider
the problem of jointly selecting sensors, relays and links in a wireless sensor network
where the active sensors need to communicate their measurements to one or multiple
access points. Information messages are routed stochastically in order to capture the
inherent reliability of the broadcast links via multiple hops, where the nodes may be
acting as sensors or as relays. We aim at finding optimal sparse solutions where both,
the consistency between the selected subset of sensors, relays and links, and the graph
connectivity in the selected subnetwork are guaranteed. Furthermore, active nodes should
ensure a network performance in a parameter estimation scenario. Two problems are
studied: sensor and link selection; and sensor, relay and link selection. To solve such
problems, we present tractable optimization formulations and propose two algorithms that
satisfy the previous network requirements. We also explore an extension scenario: only
link selection. Simulation results show the performance of the algorithms and illustrate
how they provide a sparse solution, which not only saves energy but also guarantees the
network requirements.

1 Introduction

Nowadays, wireless sensor networks are developed to provide fast, cheap, reliable, and scalable
hardware solutions for a large number of industrial applications, ranging from surveillance [1,2]
and tracking [3,4] to exploration [5,6], monitoring [7,8], and other sensing tasks [9]. From the
software perspective, an increasing effort is spent on designing algorithms that can provide
high reliability with limited computation, communication, and energy requirements for the
sensor nodes.
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In this paper, we consider a network of battery-powered sensors that take measurements
related to some important environmental parameter and that need to communicate their mea-
surements to one or multiple access points (APs), or sinks, which are responsible for processing
the gathered information. Communication with the APs is achieved through multihop routes
defined via a connectivity graph which considers the sensors’ communication range.

Resources (mainly energy) in this network are scarce so it is inefficient to have all sensors
active. Some sensors may not be informative enough and hardly contribute to achieve a
minimum desired network performance; nonetheless, if active, they would consume a non-
negligible amount of resources. Moreover, communication efforts are among the most energy
demanding tasks in wireless sensor networks [10] and they should be minimized by properly
selecting not only the suitable sensors but also the proper active links. Knowledge of the
network topology should be exploited in order to make a better selection of the links that
are in charge of conveying the information because information may be degraded over long
distances and transmissions should be avoided to reduce energy expenditure.

With the reduction of energy expenditure in mind, in this paper we consider a distributed
estimation scenario in wireless sensor networks, where each sensor takes local measurements
of a phenomenon of interest at a particular rate and communicates them in a multihop way
to one or multiple APs. In this scenario, we study the problem of judiciously and consistently
selecting the optimal minimum set of sensors and links that ought to be active in the network,
so that a prescribed network performance (e.g., the mean squared error of the estimation of
the parameter of interest) as well as graph connectivity among the selected active sensors are
guaranteed. Only the measurements taken by the active sensors must be reported back to the
APs via the active sensors and active links. This is the reason for requiring graph connectivity
among the selected active sensors. Moreover, the optimal sensing rates supported by the
active sensors are calculated. We analyze the problem from a stochastic point of view, where
information messages are routed stochastically thereby capturing the inherent reliability of
the broadcast wireless links.

1.1 State of the art

The concept of sensor selection has been extensively studied in the context of parameter and
state estimation. The resulting minimum cardinality combinatorial problem has been tackled
by using different tools, from convex relaxations, e.g., [11–13], to sub-modularity [14–16] and
frame theory [17,18]. These tools have their pros and cons. More along the lines of this paper,
in [19] not only is the best subset of sensors selected that communicate with the fusion center
but also the collaboration scheme that allows each sensor to combine its raw measurements
with those coming from other sensors according to certain weights.

Stochastic routing in multihop networks has been introduced in the literature in order to
cope with the random nature of wireless links [20,21]. Transmissions are based on a reliability
matrix, where each element of the matrix reflects the probability of satisfactorily transmitting
and receiving a message between two given sensors. In [22], the authors define the concept
of connectivity within a context of mobile robotic networks in terms of communication rates,
and based on this definition, the authors propose a distributed algorithm to find the optimal
operating points of wireless networks when the link metric is the link reliability. The work
of [23] considers the problem of optimizing the routing and sensor selection given a total
budget constraint. Yet, the approach presented in [23] is heuristic and divides the estimation
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and routing problems, by tackling them in two separated phases, which could cause additional
suboptimality of the solution.

Often times, a distinction is made between sensor and relay nodes. Relay nodes help the
source nodes (sensing nodes) in forwarding the messages to the APs: they receive a message
from the source nodes, process it and forward it towards the intended APs. Relaying is
especially beneficial when there is no line-of-sight path between the source and the destination.
This distinction between sensor types may be motivated, for instance, by economical reasons
(relay devices may be cheaper than sensors given that their functionality is more limited),
or by design prerequisites (sensors need to achieve a certain performance while relays do not
because they are only limited to forwarding the information). Previous state-of-the-art works
are only based on proposing relay selection schemes (e.g., [24, 25], and references therein):
given a source sensor and a sink, they try to choose the best relays among a collection of
available ones based on different criteria. Other works are aimed at optimally placing wireless
relay nodes and sinks [26].

1.2 Our contributions

All the aforementioned state-of-the-art works either face the sensor selection problem or the
stochastic routing, but what has never been addressed in the literature before is the challenge
of jointly selecting the optimal minimum set of active sensors (and their corresponding sensing
rates) which satisfies a prescribed estimation performance metric and consistently finding the
optimal multihop routes so that the selected subgraph is connected. Hence, in this paper
we do not focus on devising new methods to solve selection problems or on comparing them,
instead we are mainly interested in formulating a stochastic framework for consistent sensor
and link selection. Even the closest prior work [19], which is a “dual” problem w.r.t. ours,
differs from this paper in several ways: in [19] all sensors can directly communicate with the
fusion center (i.e., it is not a multihop scenario so the graph connectivity is not a problem),
communication links are established based on inter-sensor collaboration before transmitting
a processed message to the fusion center, and the optimal transmission rates of transmitting
sensors are not determined.

The problem at hand becomes even more challenging when there is a distinction between
sensor and relay nodes. In a scenario where there are the two types of nodes, we want to
consistently determine which of the nodes, placed at well-determined positions, should play
the role of sensors (and hence their sensing rate should be determined) and which ones the
role of relays while guaranteeing both a prescribed network performance and connectivity in
the selected subgraph. To find an optimal solution, a joint source and relay selection should
be performed, which implicitly implies to activate suitable links.

The main contributions of this paper can be summarized as follows.
1) From a stochastic point of view and in a multihop scenario, we formulate a tractable

optimization problem to select consistently the optimal subsets of sensors (with their sensing
rates) and links that guarantee both, a required network performance and graph connectivity
in the selected subnetwork. To solve this problem, we propose a sparsity-aware algorithm
based on a convex relaxation (Section 2 to Section 4).

2) The previous framework is also well-suited for the joint selection of sensors, relays
and links (which is not the case for other approaches in the literature, e.g., [23]). Under a
slight modification of the previous optimization problem and applying a convex relaxation
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Consistent sensor and link selection

Problem (8), Algorithm 1, Sections II, III, IV

Parameters α1, α2

Consistent sensor, relay, and link selection

Problem (18), Algorithm 2, Sections V, VI

Parameters α1, α2, α3

Link selection

Problem (20), Section VII

Parameters α + utility function

generalizes to

can be specified into

Figure 1: General structure of the paper with the three problem formulations and relations
among them.

technique, we propose another sparsity-aware consistent sensor-relay-and-link selection algo-
rithm. This algorithm assigns the optimal sensing rates to the active sensors and ensures
network connectivity as well as a prescribed network performance (Sections 5 and 6).

3) Finally, we also extend the work to a special case where only link selection is considered
(Section 7).

Contributions 1)-3) rely on a reformulation of the problems as `1 convex optimization
problems. This allows for efficient and well performing algorithms. Different approaches,
e.g. [27], would yield more complex problem formulations, which rely on dedicated non-convex
solvers. This is avoided here. In addition, based on the fact that a `1 relaxation is leveraged,
distributed algorithms can be envisioned (See Remark 1).

Numerical simulation results support our claims and illustrate a satisfactory performance
of the proposed algorithms. As a last note, we highlight that the presented algorithms are
exposed in a static framework, i.e., given a certain network, we provide a selection strategy.
Yet, they could be implemented in a dynamical way, by repeating their execution, so to
balance the energy level of the active and non-active sensors and relays (See Remark 3).

Notation. Notation is where possible standard: we indicate with boldfaced small letters,
such as x, real vectors, whereas capital boldfaced letters, e.g. A, represent real matrices.
Vector p-norms are indicated with }¨}p, while p-norms for matrices are intended element-wise,
e.g., }A}1 is the sum of the absolute values of the elements of the matrix A. Pseudo-norms,
such as the 0-norm, follow the same notation.

2 Problem Formulation

High-level problem description. In this paper, we are facing the problem of consistently
selecting the smallest subset of sensors and links out of all available ones such that a certain
performance measure and network connectivity (which ensures a path from the active sensors
to the APs) is guaranteed. The motivation behind selecting a low number of sensors (and
subsequently, an appropriate reduced amount of links) comes from the need of minimizing the
economical and communication costs in wireless sensor networks. Clearly, this saving should
not jeopardize the performance or the network connectivity. Communication between the
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active sensors and the APs as well as a network performance must be guaranteed.

We consider a static wireless sensor network composed of J sensor nodes and K access
points (APs) or sinks. At this point, we don not consider any relays yet. We denote with
V “ t1, 2, ..., J, J`1, ..., J`Ku the set of sensors and access points, where i P Vs “ t1, ..., Ju are
the indexes corresponding to the sensor nodes and i P VAP “ tJ`1, ..., J`Ku are the indexes
corresponding to the APs. The network topology is determined by the physical locations of
the sensors and APs, collected in the stacked vector x “ rxT

1 , ...,x
T
J ,x

T
J`1, . . . ,x

T
J`KsT, where

the vector xi indicates the position of sensor or AP i.

2.1 Communication Network

Sensors need to communicate their measurement to the APs in a multi-hop fashion (due to
energy/power constraints). An important feature of this paper is that we can only use active
sensors to transmit messages. We model the communication quality among sensors and APs
using a link reliability metric, denoted as Rip :“ Rp}xi´xp}q, which represents the probability
that sensor p (if p ď J) or an AP (otherwise) receives successfully a message sent from sensor
i. We model this probability as a smooth non-increasing function with compact support, and
in particular, Rp0q “ 1 and Rpdq “ 0 for all d ě d̄, for a predefined cut-off distance d̄.

The link reliability metric induces a specific undirected communication graph on the wire-
less sensor network: whenever Rip is nonzero, there is a possible link between sensor i and
sensor or AP p. We describe this communication graph in terms of the edge set E , given by
E “ tpi, pq, i P Vs, p P V|i ‰ p,Rip ą 0u, and we denote the graph as G “ pV, Eq.

2.2 Sensing

Sensors take measurements of a parameter θ P Rm, m ! J , according to the linear measure-
ment model,

yi “ aTi θ ` ni, i P Vs, (1)

where the vectors ai P Rm represent the regressors, while ni is a Gaussian noise term with
mean 0 and covariance σ2i . Sensor i acquires measurements yi with a rate rir̄i (we assume
that the maximum relative rate r̄i is known and fixed, while the relative rate ri P r0, 1s is a
design parameter). If ri “ 0, the node will not take any measurements and will not be active.

As we mentioned, the collected measurements need to be communicated back to the APs
in a multi-hop fashion. The APs are in charge of combining the measurements yi, coming from
different sensors at different rates, to estimate the value of the parameter θ. The quality of
the estimate can be evaluated a priori based on which sensors are measuring (more specifically
their regressors ai and noise variances σ2i ) and their rates. Examples of such quality metrics
are rate versions of the mean square error (MSE), the worst case error variance, or the volume
of the confidence ellipsoid [11]. For instance, if we select the MSE-rate as quality metric and
assume that the noise experienced at different sensors is uncorrelated, then we would have

fprq :“ tr
´

ÿ

iPVs

rir̄iaia
T
i {σ2i

¯´1
, (2)

where we have collected the relative rates in r “ rr1, . . . , rJ sT. Remark that if a sensor is
not active, its relative rate is zero. The higher the value of fprq, the higher the MSE-rate of

5



the estimate, and vice versa. Other types of function fprq can be found in [11, 13], both for
uncorrelated and correlated noise. In order to keep the presentation as general as possible, we
will not specify which quality metric we select: we will simply write the metric as the function
fprq.

2.3 Connectivity Modeling

Before formalizing the problem mathematically, we need to introduce how we will model the
communication links and the induced connectivity. In this paper, we use a stochastic point
of view and we use the stochastic routing framework of [22].

In our multihop wireless network, messages will be routed stochastically, i.e., sensor nodes
select a neighbor, either a sensor or an AP, to forward the message according to a certain
probability. A set of variables Tip P r0, 1s will denote the probability that node i selects node
p, either a sensor or an AP, as a destination of the transmitted messages. In this sense, the
variables Tip can be seen as the probability that node i selects the link that joins sensors i
and p. The matrix T , of size J ˆ pJ `Kq, gathers all these probability values. Further, the
matrix T needs to satisfy a certain number of constraints. First, if either one of the sensors
i or p is not active, then Tip must be zero: this models the fact that if a sensor is not active
then it cannot send or receive messages. This can be formulated as

Tip “ 0 iff rirp “ 0, i P Vs, p P V, (3)

since Tip will be nonzero if and only if both ri and rp are nonzero, meaning that the sensors
are active (we can fix rp “ 1 for APs, without loss of generality). Second, since we are dealing
with link probability values, the sum of all link probabilities of an active sensor should be at
most 1:

ÿ

pPV
Tip ď 1, i P Vs. (4)

We notice that we can use i P Vs in the condition (4), since non-active sensors have Tip “ 0
due to condition (3), and therefore (4) is automatically satisfied.

To complete the formulation, we want to ensure the delivery of messages to the APs,
which is achieved by guaranteeing network connectivity among the active sensors and APs.
To that aim, let R0 be the transmission rate of the sensors. Then the effective transmission
rate in the active link between nodes i and p is R0Rip (recall that Rip :“ Rpxi,xpq is the link
reliability between sensors or APs). We consider normalized rates by making R0 “ 1, and we
further assume that all sensors have the same transmission rate R0, which is an easy-to-lift
constraint.

Each sensor stores messages in a queue between the generation or arrival from other sensors
and their transmission. An active sensor i, apart from generating messages locally at rate rir̄i,
also receives messages from other sensors p with an active link TpiRpi. Thus, the aggregate
rate at which messages arrive at sensor node i is

rini “ rir̄i `
ÿ

pPVs

TpiRpi. (5)

In a similar way, the rate at which sensor i sends messages to other nodes p, which may be
sensors or APs, is given by

routi “
ÿ

pPV
TipRip. (6)
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If we consider that the average rate at which messages leave the sensor’s queue is higher than
the rate at which messages arrive at a sensor, i.e., routi ě rini , i.e.,

rir̄i `
ÿ

pPVs

TpiRpi ď
ÿ

pPV
TipRip, i P Vs, (7)

then the queue empties often with probability one and there is an almost sure guarantee that
the messages are delivered to the AP [22] (a formal statement of this fact will be given in the
following).

Problem statement: Given the measurement model for the different sensors and a pre-
scribed performance measure value γ ą 0, we want to find the relative rates r P r0, 1sJ , which
select the minimum subset of sensors, and the probabilistic routing matrix T P r0, 1sJˆpJ`Kq,
which selects the minimum subset of links, so that the performance measure fprq ď γ is
satisfied and the messages are delivered to the APs. This can be stated as

minimize
r,T

α1}r}0 ` α2}T }0 (8a)

subject to ri P r0, 1s, Tip P r0, 1s, i P Vs, p P V (8b)

(3), (4), (7) (8c)

fprq ď γ, (8d)

where the non-negative scalars α1 and α2 determine the importance of the sensors and the
links. If α1 “ 0, then the problem becomes link selection with stochastic routing, while for
α2 “ 0, the problem is sensor selection. We denote as pr˚,T ˚q any optimal couple determined
by the solution of the problem (8).

We can readily notice that (8) is a nonconvex program, which makes finding any optimal
couple pr˚,T ˚q computationally expensive in practice. In this paper, we are interested in
finding an approximate solution of (8) by a suitable convex relaxation.

3 Convex relaxation

We relax the nonconvex program (8) by substituting the `0-pseudo norm, with the `1 norm,
and by substituting the nonconvex constraint (3) with the convex surrogate

Tip ď mintri, rpu, i P Vs, p P V. (9)

These operations transform the original problem (8) into

minimize
r,T

α1}r}1 ` α2}T }1 (10a)

subject to ri P r0, 1s, Tip P r0, 1s, i P Vs, p P V (10b)

(9), (4), (7) (10c)

fprq ď γ. (10d)

With the assumption that the now continuous function f : RJ Ñ R is convex in r (as it hap-
pens with all the aforementioned quality measurement examples [11]), then the program (10)
is convex. In addition, for the mentioned examples of fprq, (10) is a semidefinite program,
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which makes its solution efficient to compute polynomially with off-the-shelf software. We
indicate with pr̂, T̂ q any possible solution of (10).

It is important to note that the couple pr̂, T̂ q is only an approximation of the sought
solution pr˚,T ˚q. However, we will see in the simulation section that pr̂, T̂ q is usually a
sparsely enough approximate solution. An additional feature of the approximate couple pr̂, T̂ q
is that it is feasible w.r.t. the constraint set of the original problem (8), and therefore it does
not have to be mapped into a different set (as it usually happens in relaxed sensor selection
problems). The reason for this is that we are working with rates and not Boolean variables.

A strategy to increase the sparsity of the approximate couple pr̂, T̂ q, which has been
proposed in [28], is to use a reweighted `1 minimization mechanism. In this paper, we also
use this strategy, which goes as follows. Consider the relaxed problem (10), with the different
cost function α1}w d r}1 ` α2}W d T }1, where w P RJ and W P RJˆpJ`Kq are a weighting
vector and matrix, respectively. The weights can be determined so to push small components
of r and T to zero, and boost big ones to one. In particular, initialize w0

i “ 1 and W 0
ip “ 1,

then for each τ ě 0 solve the problem

minimize
r,T

α1}wτ d r}1 ` α2}W τ d T }1 (11a)

subject to ri P r0, 1s, Tip P r0, 1s, i P Vs, p P V (11b)

(9), (4), (7) (11c)

fprq ď γ, (11d)

whose solution is pr̂τ , T̂ τ q, and whose weights for τ ě 1 are wτi “ wτ´1i {pε ` r̂τ´1i q and

W τ
ip “W τ´1

ip {pε` T̂ τ´1ip q, with ε a small positive constant.
This iterative (reweighted) procedure delivers sparser solutions, as we will show in the

simulation results. We have summarized the resulting sparse sensor and link selection (SSLS)
iterative algorithm in Algorithm 1.

Connectivity guarantees of Algorithm 1. We notice that due to (7), the solution
coming from Algorithm 1 guarantees that the measurements acquired at the sensors are
delivered at the APs, i.e., each of the active sensors has a path back to at least one AP. To
formally prove this statement, consider (7):

rir̄i `
ÿ

pPVs

TpiRpi ď
ÿ

pPV
TipRip, i P Vs,

this constraint has to be true for each active sensor (the one for which ri ą 0), and it reads
0 ď 0 for the not active ones (due to constraint (9), i.e., in this case also Tpi and Tip are 0).
Since it has to be true for all active sensors, each of them has to send out more rate than
what it receives (and the difference is given by its measurement rate), that is

ÿ

pPVs

TpiRpi ă
ÿ

pPV
TipRip, i P tj P Vs|rj ą 0u.

Therefore, first: no active sensor can be a sink (it has to send out more than it receives).
Second: there cannot be loops of active sensors not connected to a sink. In fact, if there were,
since the rate augments along the loop, constraint (7) would not be satisfied for at least a
pair of active sensors connected together. Thus, the only possibility is that eventually each
sensor has a path to a sink. This is also what we observe in simulations. l
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Algorithm 1 Sparse Sensor and Link Selection
Require: Number of iterations N , reweighting tolerance ε ą 0, sensor importance α1 ě 0, link importance

α2 ě 0.
1: Set the weighting vector and matrix as w0

i “ 1 and W 0
ip “ 1 for all i P Vs and p P V

2: for τ “ 0 to N ´ 1 do
3: Solve the convex program (11) with off-the-shelf interior point methods (e.g., SDPT3 [29] or Se-

DuMi [30]). Let the solution be pr̂τ , T̂ τ q.
4: Compute the new weights wτ`1 and W τ`1 as

wτ`1
i “ wτi

ε` r̂τi
, W τ`1

ip “ W τ
ip

ε` T̂ τip
5: end for
6: Output the solution couple pr̂N , T̂N q

Remark 1 (Distributed algorithms) Although the algorithms in this paper are centralized,
one could devise distributed algorithms in a standard fashion. For instance, Problem (10) and
(19) with the choice for fprq of (2) fit the general structure presented in [31]. In particular one
needs to consider the local decision variables xi as the vector pri, tTipupPVsq. In this case, with
the use of consensus-based dual decomposition each sensor could decide their on/off strategy
and to whom to communicate. Nonetheless, first, the re-weighting procedure is not trivial to
implement in this case, and second, the sensors could spend a considerable amount of battery
power to decide their on/off strategy. We believe that developing distributed and yet efficient
(i.e., power-aware) algorithms for sensor selection is still an open research area, which is left
for future investigations.

Remark 2 (Stochasticity of the reliability matrix Rip) Although here we assume to know
each element Rip in a deterministic sense, one could also think of estimating Rip online. If
then one possesses a pdf for Rip, one could replace the deterministic constraint (7) with a
stochastic variant of it. Another approach in the estimation would be the one of [32]. Finally,
a third approach would consider a time-varying online algorithm to track Rij as it (possibly)
varies in time, which is in line with the research proposed in [33].

Remark 3 (Energy efficiency) Energy efficiency can also be considered in the proposed ap-
proach. For instance, one could re-run the selection algorithm to take into account that the
battery charge of the devices has changed, so to keep a balance in the usage of the whole sensor
network. A way to include battery charge into the optimization problem is, e.g., to initialize
the weights w0

i ’s not to 1 but to the inverse of the battery level: 1 if fully charged, 8 if out of
charge.

4 Numerical Results for sensors and links

In this section, we assess the performance of the proposed SSLS algorithm in terms of the
amount of resources that are used, i.e., the number of both, active sensors and links. We also
verify the consistency and the subgraph connectivity.

We consider an estimation scenario where sensors are randomly deployed according to a
uniform distribution in a square area of side 5 units. The regression matrix, A “ ra1, ¨ ¨ ¨ ,aJ sᵀ
A P RJxm, is drawn from a zero-mean Gaussian distribution with variance 1. The variance
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Figure 2: Active links and sensors in a one-AP network for J “ 100 nodes.

of the noise is the same at all sensors, σi “ 1{?SNR, where SNR is set to 0 dB. We use the
cost fprq of (2) and set the parameter γ in (11d) to 0.5. The link reliability metric that we
use in the simulations is given by:

Rip “

$

’

&

’

%

1´ 1
2p‖xi´xp‖d q2β if 0 ď‖ xi ´ xp ‖ă d

1
2p2´ ‖xi´xp‖

d q2β if d ď‖ xi ´ xp ‖ă 2d
0 otherwise

(12)

with β the power attenuation factor (2 ď β ď 6) and d the communication radius. We have
considered β “ 2 and d “ 1.74 [34].

The number of iterations in the reweighted `1 minimization is empirically set to 30 to trade-
off sparsity of the solution and computational time. Due to the application of the reweighted `1
minimization mechanism, only the sensors and links with relatively high acquisition rate and
link probability are active. We round off to 0 the link probabilities and sensor rates lower than
a sufficiently small constant δ, which is set to δ “ 2 ¨ 10´4. Further, we consider α1 “ α2 “ 1.
Notice that rounding off the probabilities to 0 could incur in a loss of connectivity. This is
however not likely in practice, due to the reweighting procedure that makes sure that the non-
zero probabilities have values well above the selected threshold δ. The experimental results
support this claim, since we have not witnessed any loss in connectivity.

Fig. 2 is an example of a 100-node sensor network with a single AP. The parameter to
estimate has dimension m “ 2 and the maximum rate is r̄ “ 0.7. Active sensors are colored
in green while the AP is in black. The results show the sparsity of the solution since only a
few sensors (4%) and links (0.072%) are active. It can be also seen that the selected subgraph
is connected and there is always a path between the active sensors and the AP. The solution
also satisfies the other constraints of the optimization problem. Fig. 3 shows the relative
rates of the active sensors.

Next, our purpose is to show average performance results. Hence, we run 250 Monte Carlo
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Figure 3: Relative rates of the active sensors.

simulations for each network configuration. The number of deployed sensors, J , varies from
30 to 100 and there is one AP. Two values of r̄ are considered, 0.4 and 0.7. Simulations are
run considering that r̄ is identical for all nodes in the sensor network. Also, we consider two
values for the dimension of the parameter to estimate, m “ 2 and m “ 4. Two metrics are
considered to assess the performance of the networks. They try to measure the amount of
resources that are used in the network.

Since we are dealing with acquisition rates, let us first define the total relative acquisition
rate of the whole network as the sum of the acquisition rates of the sensors in the network,
i.e.,

ř

iPVs
r̂Ni . In order to make the performance measurement independent of the number of

sensors in the network, we define the percentage of the total relative acquisition rate of the
whole network, Ptrr, as

Ptrr “
ř

iPVs
r̂Ni

J
¨ 100. (13)

Recall that the relative acquisition rate r̂Ni P r0, 1s. Note that only the active sensors con-
tribute to the sum since their acquisition rate is different from 0, so this measure gives us
information about the percentage of active sensors.

Considering that
ř

pPV T̂
N
ip ď 1 for i P Vs, we next define the percentage of the aggregate

network link probability, Palp, as

Palp “
ř

iPVs

ř

pPV T̂
N
ip

J
¨ 100. (14)

Note that only active sensors and APs contribute to the sum, since the remaining link
probabilities are 0. In this case, the metric is related to the percentage of active links in the
network. In both cases, the lower the metrics are, the fewer resources (in terms of active
sensors and links) are used.

Fig. 4 and Fig. 5 show the average performance and the standard deviation for m “ 2 and
m “ 4, respectively, for different amounts of deployed sensors and the two values of r̄. Even
for the worst case scenario, i.e., for r̄ “ 0.4 and a 30-node network, the Ptrr and Palp values

11
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Figure 4: Average performance and its standard deviation for m “ 2 and for different amount
of sensors and r̄.

are 8% and 5.5% for m “ 2 and 22% and 17% for m “ 4, respectively (which represents a
small percentage of used resources).

In order to verify if those metric values correspond to the activation of a low number of
sensors with high relative rate values or correspond to a high number of active sensors with
low relative rate values, Fig. 6 and Fig. 7 illustrate the average percentage of active sensors
and links. For networks of 30 nodes and r̄ “ 0.4, the average percentage of active sensors
and links is 12% (i.e., 3.6 sensors) and 0.55% for m “ 2 and 30% (i.e., 9 sensors) and 1.7%
for m “ 4, respectively. Thus, this result corroborates that the amount of used resources is
conservative, i.e., there is a low percentage of active sensors with high relative rates because
the Ptrr values are the highest in Fig. 4 and Fig. 5.

4.1 Case r̄ “ 0.7 (yellow and red bars)

From Fig. 4 and Fig. 5 it can be seen that the values of the two metrics decrease with the
increase of the number of sensors (regardless of m), reaching lower values than those of the
network of 30 nodes.

Let us examine the scenario withm “ 2 (analogous conclusions hold for networks withm “
4). If we also analyze the trend in the percentage of active sensors (Fig. 6), it first decreases
and later increases slightly starting from networks of 80 nodes. Even though networks with 80
to 100 nodes have between 6% to 8% of active nodes (i.e., 7 sensors), those networks have a
slightly higher amount of active resources than in networks of 30 nodes (10%, approximately
3 nodes). However, in general, the total number of active sensors stay low in comparison to
the total number of sensors, which corroborates the sparsity of the solution.
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Figure 5: Average performance and its standard deviation for m “ 4 and for different amount
of sensors and r̄.

4.2 Case r̄ “ 0.4 (dark and light blue bars)

Let us analyze the behavior of the metrics for r̄ “ 0.4 and m “ 2 (analogous conclusions are
raised for networks with m “ 4). In Fig. 4, Ptrr values decrease from 7.5% at networks of 30
nodes to 2.7% at networks of 70 nodes, and from that point increases slightly up to a value
of 3.2% at networks of 100 nodes. If we now have a look at Fig. 6, the percentage of active
sensors goes from 11.8% at 30-node networks (i.e., 3.5 sensors) to 8% at 50-node networks
(i.e., 4 sensors) and later increases until reaching a value of 22% at 90-node networks (i.e., 20
nodes). While the number of active nodes is similar in networks with a low amount of sensors
(30 to 50 nodes), it increases slightly for denser networks (60 to 100 nodes). In this latter
case, sensors are closer to each other so that the reliability values among sensors are similar
and more sensors may be activated. First, although not reported here, we have observed
that increasing the number of reweighting iterations does help in the latter case in reducing
the amount of active sensors, at the cost of increasing the computational time requirements.
Second, we will see how this is not an issue when relays are considered.

In case of the percentage of active links, the values are below 0.7% for m “ 2 and 2% for
m “ 4 for all the network sizes. Hence, the networks are sparse in the amount of active links.

From the Figures, it can be appreciated that, for a given number of nodes, the percentage
of used resources is lower in case of estimating a parameter of 2 dimensions than one of 4
dimensions (compare the metric values as well as the percentage of active sensors and links).
Furthermore, the percentage of used resources (active sensors and links) is lower in case of
considering r̄ “ 0.7.

Subgraph connectivity and consistency have been also checked for every run. All the
activated sensors have a path to the AP. Furthermore, connectivity of the network in the
sense of (7) is guaranteed.
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5 Sensor and Relay Selection

When dealing with wireless sensor networks which are deployed in large areas, it is often
useful to employ relays to facilitate the transmission of measurements back to the APs. In
this spirit, we also consider the possible presence of relays. In particular, from here on, all
the nodes deployed in the sensor network may act as sensors or as relays. Note that sensors
can also act as a relay while sensing, as discussed in the previous section. Our goal is to
consistently determine which of the nodes, which are placed at well-defined positions, should

14



play the role of sensors and which ones the role of relays while guaranteeing both a prescribed
network performance and connectivity in the selected subgraph. Notice that relays have less
energy requirements that sensors, and therefore the distinction between sensors and relays is
beneficial to further reduce the overall energy consumption. Notice also that, as expressed in
the introduction, the proposed solution may be reiterated in time, to assign different roles at
different times.

In order to model the possibility for a node to be acting as a sensor or as a relay, we
introduce a new Boolean variable ν P t0, 1uJ`K , and we define that a node i P Vs, a sensor
or relay, is on if νi “ 1 and it is off, otherwise (νp “ 1 for APs). From the nodes that are on,
we will know they are sensors when their ri is strictly positive, while the others are acting as
relays.

We also reformulate the constraints accordingly. The constraint (3) gets reformulated as

Tip ď mintνi, νpu, i P Vs, p P V, (15)

as the relays can exchange information. Notice that the constraint has a simplified form
w.r.t. (3), since the variable ν is Boolean. In addition, we need a constraint that makes sure
that a sensor has a positive relative rate only when its node is activated, that is

ri ď νi, i P Vs. (16)

Finally, the constraint (7) can be carried over as it is,

rir̄i `
ÿ

pPVs

TpiRpi ď
ÿ

pPV
TipRip, i P Vs, (17)

With this in place, the problem we want to solve is how to consistently select minimum
rates, relays, and links so to guarantee a certain network performance and connectivity. We
can formulate this as

minimize
r,T ,ν

α1}r}0 ` α2}T }0 ` α3}ν}0 (18a)

subject to ri P r0, 1s, Tip P r0, 1s,
νi P t0, 1u, i P Vs, p P V (18b)

(4), (15), (16), (17), (18c)

fprq ď γ. (18d)

Any possible solution of this problem is indicated as the triplet pr˚,T ˚,ν˚q. This problem is a
nonconvex mixed-integer programming problem and therefore finding any triplet pr˚,T ˚,ν˚q
would be in general too computationally expensive. As done for the case where the relays
are not present, we relax the problem to a convex one. In particular, we substitute the `0
pseudo-norm with the convex surrogate `1 norm, and we let the boolean vector ν become real
and live in the set r0, 1sJ`K . With this, we arrive to the convex problem

minimize
r,T ,ν

α1}r}1 ` α2}T }1 ` α3}ν}1 (19a)

subject to ri P r0, 1s, Tip P r0, 1s,
νi P r0, 1s, i P Vs, p P V (19b)

(4), (15), (16), (17), (19c)

fprq ď γ, (19d)
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Algorithm 2 Sparse Sensor, Relay, and Link Selection
Require: Number of iterations N , reweighting tolerance ε ą 0, sensor importance α1 ě 0, link importance

α2 ě 0, relay importance α3 ě 0.
1: Set the weighting vectors and matrix as w0

i “ 1, v0i “ 1, and W 0
ip “ 1 for all i P Vs and p P V

2: for τ “ 0 to N ´ 1 do
3: Solve the convex program

minimize
r,T ,ν

α1}wτ d r}1 ` α2}W τ d T }1 ` α3}vτ d ν}1
subject to ri P r0, 1s, Tip P r0, 1s,

νi P r0, 1s, i P Vs, p P V
(4), (15), (16), (17),

fprq ď γ,

with off-the-shelf interior point methods (e.g., SDPT3 [29] or SeDuMi [30]). Let the solution be
pr̂τ , T̂ τ , ν̂τ q.

4: Compute the new weights wτ`1, vτ`1 and W τ`1 as

wτ`1
i “ wτi

ε` r̂τi
, W τ`1

ip “ W τ
ip

ε` T̂ τip
, vτ`1

i “ vτi
ε` ν̂τi

5: end for
6: Project ν̂Ni to 1, if ν̂Ni ą 0.
7: Output the solution triplet pr̂N , T̂N , ν̂N q

whose solution is indicated with pr̂, T̂ , ν̂q. Once again, the approximate triplet pr̂, T̂ , ν̂q is
going to be different in general from the sought one pr˚,T ˚,ν˚q. An important difference
with problem (8) and its relaxed version is the presence of the Boolean vector ν: this makes
the triplet pr̂, T̂ , ν̂q in general unfeasible w.r.t. the constraints of the nonconvex problem (18)
(the reason is that ν̂i does not have to be either 0 or 1). In this paper, we consider to project
ν̂i to 1 any time ν̂i ą 0. In this way, the new triplet becomes feasible w.r.t. constraints of the
nonconvex problem (18).

In Algorithm 2, we summarize the procedure for consistent sparse sensor, relay, and
link selection (SSRLS), where we have used once again the sparse-enhancement procedure
of reweighting.

Connectivity guarantees of Algorithm 2. We formalize now the claim that from
each active sensor there exists a path (formed by relays and other active sensors) that goes
to an AP. The argument that we use to prove this claim is the same as the one that we have
used to prove the connectivity guarantees of Algorithm 1 (where no relay were considered).
Consider (17): this constraint has to be true for each active sensor and active relay (the one for
which ri “ 0 and νi ą 0), and it reads 0 ď 0 for the not active ones (due to constraints (15)-
(16)). Since it has to be true for all active sensors and relays, the sensors have to send out
more rate than what they receive (and the difference is given by rir̄i), while the relays can
send out exactly what they receive. Therefore, first: no active sensor or relay can be a sink.
Second: there cannot be loops containing active sensors not connected to a sink, since the rate
augments along the loop and (17) would not be satisfied for at least one pair of connected
active elements (either sensor-sensor, sensor-relay, or relay-relay). Third: there cannot be
loops containing only active relays. The reason for the last claim is that, although (17) would
be satisfied along the loop for any Tip “ Tpi for all pairs of active relays pi, pq on the loop,
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Figure 8: Selected sensors, relays and links in a two-AP 50-sensor network where m “ 4.

the solution Tip “ 0 is the optimal one, given the selected cost function. Which induces all
the relays in the loop to become inactive. Thus, the only possibility is that eventually each
sensor has a path to a sink, and no relays are used without purpose. l

6 Numerical Results with Relays

Similarly to the sensor and link selection scenario, in this section we assess the performance
of the new SSRLS algorithm in terms of the amount of resources that are used. We also verify
the consistency and the subgraph connectivity.

Once again, we consider an estimation scenario, where the parameters are the same1 as
those used in the sensor and link selection case (Section 4). We consider α1 “ α2 “ α3 “ 1.
Fig. 8 is an example of a 50-node sensor network with two APs with m “ 4 and r̄ “ 0.4. The
active sensors are colored in green, the active relays in blue and the APs are colored in black.
Looking at the figure, it is evident that the obtained solution is sparse. From the 50 nodes
(excluding the APs), 5 are selected as sensors and 3 as relays. The amount of active links
(i.e., those that have a probability value higher than 0) is 8%. Observe the connectivity of the
selected subgraph, where there is a path from each active sensor to the APs via the relays,
where messages are routed stochastically according to the link probability. The solution also
satisfies the other constraints of the optimization problem.

Next, and following a parallel analysis to the one made in the sensor and link selection
scenario, we show average performance results. The number of sensors varies from 30 to 100,
r̄ is 0.4 or 0.7 and m is either 2 or 4. 250 Monte Carlo simulations are run for each network
configuration. The metrics to assess the network performance are the ones exposed in Section
4. To check the sparsity in the number of relays, we also evaluate the percentage of active
relays in the network.

1In particular, the number of iterations in the reweighted `1 minimization is set to 30 while δ “ 2 ¨ 10´4.
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Fig. 9 and Fig. 10 show the average performance and the standard deviation, for m “ 2
and m “ 4, respectively, for different numbers of deployed sensor nodes and the two values of
the maximum acquisition rate. From these figures it can be seen that the Ptrr and Palp values
decrease when the number of sensor nodes increases, going from a value of 6.3% (m “ 2,
r̄ “ 0.4) or 19% (m “ 4, r̄ “ 0.4) for networks of 30 nodes to values lower than 2% (m “ 2,
r̄ “ 0.4) or 5% (m “ 4, r̄ “ 0.4) for networks of 100 nodes. To verify if those metric values
correspond to the activation of a few sensors with high relative rate value, Fig. 11 and Fig.
12 illustrate the average percentage of active sensors and links. For r̄ “ 0.4, the average
percentage of sensors goes from approximately 8% (i.e., 2.4 sensors for m “ 2) or 22% (i.e.,
6.5 sensors for m “ 4) in 30-node networks to around 2% (i.e., 2 sensors for m “ 2) or 5%
(i.e., 5 sensors for m “ 4) in 100-node networks, respectively. Fig. 13 also illustrates the
percentage of active relays for sensor networks of different sizes, r̄ and m. For m “ 4 and
r̄ “ 0.4, 2 relays (or 5.5% of the nodes) are active in 30-sensor networks, while 1 relay (0.9%)
is active in 100-sensor networks.

The conclusions from these figures are two-fold: First, independently of the total number
of available nodes, the algorithm robustly selects a similar number of sensors, relays and
links to satisfy the constraint on the measurement errors. This strongly suggests that the
optimality of the sensing, given the constraints, is achieved. Second, the active sensors are
those with high relative rates. And even more, we obtain sparse solutions not only in the
amount of active sensors but also in the amount of active links and relays.

As observed for the sensor and link selection scenario, the demand of resources (percentage
of active sensors, links and relays) is less when considering higher maximum rates (See Fig.
11 , Fig. 12 and Fig. 13). Also, for a given number of nodes, the amount of used resources
grows whenever the dimension of the parameter to estimate increases. Besides, the variability
in the results of the sensor, relay and link selection problem is lower than in the sensor and
link selection problem. This can be observed by taking into account the standard deviation
in the figures. All in all, it appears that when one considers also the presence of relays, one
obtains better performance in terms of reduced active resources than in the case of no relays.
A more in depth characterization is left as future research.

Therefore, the SSRLS algorithm provides a consistent solution to the sensor and relay
selection problem by always finding a connected path among the active sensors, relays and
APs no matter the size of the network and the dimension m of the parameter to estimate,
and which satisfies the network performance constraint for the active sensors.

However, the following question may arise: are the active sensors obtained after solving
the SSRLS algorithm the same as those that would be active in a problem which aims at
selecting the minimum number of sensors and their corresponding acquisition rates to satisfy
a certain MSE-rate, i.e., solve the relaxed version of the following problem:

minimize
r

}r}0 subject to fprq ď γ,

where sensors that satisfy ri ą δ (have an acquisition rate different from 0) are selected?
Clearly, the answer is no. As an example, compare the active sensors in Fig.14 and Fig.

15, for a one-AP 100-sensor network where m “ 4 and r̄ “ 0.7. The solution provided by the
SSRLS algorithm not only takes into account the sensors with the highest acquisition rates
(to satisfy the MSE-rate constraint), but also selects in a robust, coherent and consistent way
relays and probability links such that the active sensors are connected to the APs (it considers
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Figure 9: Average performance and its standard deviation for m “ 2 and for different amount
of sensors and r̄.
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Figure 10: Average performance and its standard for m “ 4 and for different amount of
sensors and r̄.
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Figure 11: Average percentage of active sensors and links and its standard deviation for m “ 2
and for different amount of sensors and r̄.
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Figure 12: Average percentage of active sensors and links and its standard deviation for m “ 4
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of sensors, r̄ and m.
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Figure 14: Selected sensors, relays and links in a one-AP 100-sensor network where m “ 4
and r̄ “ 0.7.
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Figure 15: Selected sensors in a one-AP 100-sensor network where m “ 4 and r̄ “ 0.7.

the sensor deployment, too). On the contrary, the solution provided by the sensor selection
problem does not consider the spatial distribution of sensors, and the only issue that matters
is the selection of the sensors with the best acquisition rates. Obviously, this does not mean
that both solutions do not activate some common sensors. In the previous example, sensors
with indexes 26, 49, 74 and 93 are selected in both solutions.

7 Link selection

This last scenario is a particular case of the general one where we assume that all sensors are
active, acquire measurements with relative rate at least ri0, and communicate with the APs
in a multi-hop fashion. The problem that remains is to determine the probabilistic routing
matrix T , that selects the minimum subset of links so that a certain constraint is satisfied.
In particular, we want to ensure network integrity, defined according to [22] as the ability of
the network to support the desired communication rates in a certain network topology.

As in the general scenario, the network needs to satisfy the flow inequality constraint
given by (7) in order to guarantee that messages are delivered to the APs. Furthermore, it is
also required that sensors communicate their measurements with the APs at a nominal rate
of ri0 messages per time unit. This means that the relative acquisition rate should satisfy
the following inequality: ri ě ri0. Thus, we aim at finding the appropriate relative rates
r P r0, 1sJ and the sparse probabilistic routing matrix T .

The network’s objective function to be optimized is the social utility value of the optimiza-
tion variables, Uipriq for the relative rate ri, and VippTipq for the links Tip, which is defined as
řJ
i“1 Upriq `

řJ
i“1

řJ`K
p“1 VippTipq. Following [22], we measure the utility value associated to

the rate as Upriq “ logpriq, which penalizes small rates ri, and the utility value of the links
as VippTipq “ ´T 2

ip.
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Then, the optimization problem that we have to solve is given by2

maximize
r,T

ÿ

iPVs

Upriq `
ÿ

iPVs

ÿ

pPV
VippTipq ´ α}T }0 (20a)

subject to ri P r0, 1s, Tip P r0, 1s, i P Vs, p P V (20b)

(4), (7) (20c)

ri ě ri0, i P Vs, (20d)

The problem in (20) is not convex due to the `0-norm in the objective function. Thus,
we relax the non-convex term of (20) by substituting the `0-pseudo norm, with the `1 norm.
Then, the previous optimization problem is transformed into the following one

maximize
r,T

ÿ

iPVs

Upriq `
ÿ

iPVs

ÿ

pPV
VippTipq ´ α}T }1 (21a)

subject to ri P r0, 1s, Tip P r0, 1s, i P Vs, p P V (21b)

(4), (7) (21c)

ri ě ri0, i P Vs, (21d)

The objective function is strictly concave and the constraints are linear inequalities, so the
problem can be solved efficiently by using convex optimization tools. Note that the optimal
utility depends on the spatial configuration of the sensors, and consequently the optimal link
probabilities and rate variables do too, which are denoted as r˚x,i, and T ˚x,ip.

The amount of selected links depends on parameter α, which controls the sparsity level
(the higher it is, the fewer links are selected). In order to increase sparsity and avoid the
tuning of parameter α, we apply the iterative reweighted `1 minimization algorithm only to
the third term of the objective function (we call this partial reweighted `1 minimization),
which diminishes the influence of that parameter and helps in the link selection process. We
round off to 0 the link probabilities lower than a sufficiently small constant δ.

In the remaining of this section, we show the performance of the link selection scheme.
Fig. 16 is an example of a 50-node sensor network with one AP. Sensors are colored in red
and the AP in black. The nominal rate is ri0 “ 0.2, which is identical for all the sensor nodes;
another weighting parameter is α “ 1. δ and the rest of the parameters are identical to
those defined in Section 4. The color and the thickness of the links are related to the routing
probability values, which are graded into different ranges. Blue links have a probability value
between δ and 0.25 and their line is the finest. The red ones have a probability between 0.25
and 0.5, the black links between 0.5 and 0.75 and the green ones between 0.75 and 1, having
the thickest line.

Note that only 51 links are active (i.e., it is a sparse solution). Every sensor is connected
via multiple hops (links that connect the sensors) to the AP, where the links with higher
probabilities are always established between the AP and some of its neighboring nodes. This
is logical given that a message that has been routed through multiple sensors should have a
higher probability of arriving successfully to the AP. In general, the sensors which are placed
far from the AP tend to establish links with low probability values.

2Note that these utilities can be also incorporated in the objection functions of the previous optimization
problems. However, and for the sake of simplicity, we only consider them in this scenario.
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Figure 16: Selected links in a one-AP 50-node network or α “ 1, and using partial reweighted
l1 . Sensors are colored in red, the AP in black and different colors in the links represent the
different probability ranges.
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Figure 17: Average percentage of total active links and its standard deviation for different
number of sensor nodes, and when link probabilities are graded in different ranges.
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Fig. 17 illustrates the average percentage of active links (the total percentage and the
percentage by probability ranges) for sensor networks composed of a number of sensors whose
amount varies between 30 to 100 and ri0 “ 0.2. 250 Monte Carlo simulations are run for each
network configuration. First, the figure shows the low amount of active links, so that the
matrix T is sparse. For 30-node networks, the average percentage of active links is slightly
higher than 5 %. The percentage values decrease whenever the number of nodes in the network
increases. Regarding the different probability ranges, the highest percentage of active links
corresponds to values of Tij between δ and 0.25, and it is followed by links with probabilities
Tij between 0.75 and 1. As in the earlier example, most of those links are established between
the AP and its neighbors, which ensures that messages arrive to the AP.

8 Conclusions

In this paper we have proposed two optimization methods for selecting optimally and consis-
tently the minimum set of sensors (and their corresponding sensing rates) and links (and their
link probability values); or sensors, relays and links, in wireless sensor networks. The chosen
scenario has been parameter estimation, where the selected sensors have to guarantee a pre-
scribed network performance based on the MSE-rate. Numerical results showed the sparsity
of the solution, which translates into a smart use of the network resources. The proposed
algorithms have provided a consistent solution to the selection problem by always finding a
connected path among the selected set of sensors, relays and APs no matter the size of the
network and the dimension of the parameter to estimate. This ensures the compliance of the
network performance constraint by the selected sensors.

Future work will consider the study of these algorithms from a decentralized point of view,
eliminating the need of having an AP that collects all the measurements. The application of
these algorithms to other scenarios is also a matter of further studies.
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