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Course Information

Lectures: This course consists of 36 one hour lectures (three per week) and 11 practice

classes (one per week). The lectures are at

• 2:15pm - 3:15pm on Tuesdays, in MSLE Lower Theatre

• 2:15pm - 3:15pm on Thursdays, in the Russell Love Theatre, Richard Berry, and

• 11am - 12pm on Fridays, in the Russell Love Theatre, Richard Berry.

Dr. Norman Do will teach the first week of classes. Practice classes start on the Monday of

Week 2. They are at 4:15pm - 5:15pm on Mondays, in the Russell Love Theatre, Richard

Berry. There is a non-teaching period from Monday 17 September to Sunday 30 September.

Assessment: Assessment will be based on a 3-hour end-of-semester written examination

[X marks out of 80] and three written assignments during semester [A marks out of 20].

The final mark M out of 100 will be M = X + A.

Problem Sheets: There are six problem sheets for this course. These relate to the basic

skills to be acquired from the course. It is important to do most of the problems on these

problem sheets. The problems marked with an asterisk are more difficult or theoretical.

Subject Web Page: A web page will be maintained for this subject on the LMS:

http://www.lms.unimelb.edu.au

Lecture notes and supplementary materials will be available from this site.
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Prerequisites and Textbooks

Prerequisites:

One of

• Real Analysis with Applications

• Accelerated Mathematics 2 (620-158 Mathematics 2 prior to 2009)

and

• any other second year level subject from the Department of Mathematics and Statistics.

Recommended Reference:

• J. E. Marsden and M. J. Hoffman, Basic Complex Analysis Freeman (Third Edition) 1998.

Useful References:

Almost any book with Complex Analysis/Variables/Functions in the title including:

• A. David Wunsch, Complex Variables with Applications, Second Edition (Addison-Wesley).

• E. B. Saff and A. D. Snider, Fundamentals of Complex Analysis for Mathematics, Science

and Engineering (Prentice Hall).

• Stephen D. Fisher, Complex Variables, Second Edition (Wadsworth and Brooks/Cole).

• Murray R. Spiegel, Theory and Problems of Complex Variables, Schaum’s Outline Series

(McGraw-Hill).
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Subject Overview and Objectives

• Complex analysis is a core subject in pure and applied mathematics, as well as the physical

and engineering sciences. While it is true that physical phenomena are given in terms of

real numbers and real variables, it is often too difficult and sometimes not possible, to solve

the algebraic and differential equations used to model these phenomena without introducing

complex numbers and complex variables and applying the powerful techniques of complex

analysis.

• Topics include: the topology of the complex plane; convergence of complex sequences and

series; analytic functions, the Cauchy-Riemann equations, harmonic functions and applica-

tions; contour integrals and the Cauchy Integral Theorem; singularities, Laurent series, the

Residue Theorem, evaluation of integrals using contour integration, conformal mapping; and

aspects of the gamma function.

• At the completion of this subject, students should understand the concepts of analytic

function and contour integral and should be able to:

• apply the Cauchy-Riemann equations

• use the complex exponential and logarithm

• apply Cauchy’s theorems concerning contour integrals

• apply the residue theorem in a variety of contexts

• understand theoretical implications of Cauchy’s theorems such as the maximum modulus

principle, Liouvilles Theorem and the fundamental theorem of algebra.
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Generic Skills

In addition to learning specific skills that will assist students in their future careers in science,

they will have the opportunity to develop generic skills that will assist them in any future

career path. These include:

• problem-solving skills: the ability to engage with unfamiliar problems and identify relevant

solution strategies

• analytical skills: the ability to construct and express logical arguments and to work in

abstract or general terms to increase the clarity and efficiency of analysis

• collaborative skills: the ability to work in a team

• time-management skills: the ability to meet regular deadlines while balancing competing

commitments.

0-5



MAST30021: Lecture Outline

Week 1. Complex Numbers and Complex Plane

1. Complex numbers, polar form, principal argument

2. Complex plane, topology of planar sets, including open and closed sets

3. Functions of a complex variable, limits, point at infinity

Week 2. Complex Derivatives and Analytic Functions

4. Complex derivative, Cauchy-Riemann equations

5. Analytic functions, entire functions

6. Harmonic functions, singularities

Week 3. Complex Transcendental Functions

7. Complex exponential, complex logarithm

8. Branches, complex powers

9. Trigonometric/hyperbolic functions, inverse trigonometric functions

Week 4. Complex Sequences and Series

10. Complex sequences, Cauchy convergence

11. Power series, radius of convergence and its calculation

12. Statement of Taylor’s theorem, term-by-term integration and differentiation
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Week 5. Line and Contour Integrals

13. Line and contour integrals, paths and curves, path dependence

14. Cauchy-Goursat theorem and applications

15. Fundamental theorem of calculus, path independence

Week 6. Cauchy’s Integral Formula

16. Deformation of contours about simple poles

17. General Cauchy integral formula

18. Trigonometric integrals

Week 7. Singularities and Laurent Series

19. Isolated zeros and poles, removable and essential singularities

20. Laurent series, definition of residues

21. Analytic continuation

Week 8. Meromorphic Functions and Residues

22. Meromorphic functions, residue theorem

23. Calculation of residues

24. Evaluation of integrals involving rational functions

Week 9. Residue Calculus

25. Evaluation of integrals involving trigonometric functions

26. Evaluation of integrals using indented contours

27. Summation of series using the residue calculus
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Week 10. Applications of the Cauchy Integral theorems

28. Mean value theorem, maximum modulus principle, applications to harmonic functions

29. Liouville’s theorem, the fundamental theorem of algebra

30. The identity theorem and analytic continuation

Week 11. Conformal Transformations

31. Analytic functions as conformal mappings

32. Möbius transformations and basic properties

33. Conformal transformations from Möbius transformations

Week 12 Gamma and Zeta Functions

34. The Gamma function

35. General discussion of the Zeta function

36. Revision
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Week 1: Complex Numbers

1. Complex numbers, polar form, principal argument
2. Complex plane, topology of planar sets, including open and closed sets
3. Functions of a complex variable, limits, point at infinity

Abraham de Moivre (1667–1754) Leonhard Euler (1707–1783)

Photographs c⃝ MacTutor Mathematics Archive (http://www-history.mcs.st-andrews.ac.uk)
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Complex Numbers

• Some simple equations do not admit solutions in the field of real numbers:

z2 = −1, z ∈ R

If z ∈ R, then z2 ≥ 0 and hence z2 ̸= −1.

Definition: The imaginary unit i is a number such that

i = +
√
−1, i2 = −1, i /∈ R

A complex number z is a number of the form

z = x + iy, x, y ∈ R

The real and imaginary parts of z are

Re z = x ∈ R, Im z = y ∈ R

• Two complex numbers are equal if and only if they have the same real and imaginary parts:

z1 = z2 ⇔ Re z1 = Re z2 and Im z1 = Im z2

x1 + iy1 = x2 + iy2 ⇔ x1 = x2 and y1 = y2
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Field of Complex Numbers

Definition: The set of all complex numbers is denoted

C := {x + iy : x, y ∈ R}

• This is the set of numbers obtained by appending i to the real numbers. A number of the

form iy is called pure imaginary.

• The field of complex numbers is the set C equipped with the arithmetic operations of

addition, subtraction, multiplication and division defined by

(x1 + iy1) + (x2 + iy2) := (x1 + x2) + i(y1 + y2), x1, x2, y1, y2 ∈ R

(x1 + iy1) − (x2 + iy2) := (x1 − x2) + i(y1 − y2), x1, x2, y1, y2 ∈ R

(x1 + iy1)(x2 + iy2) := (x1x2 − y1y2) + i(x1y2 + y1x2), x1, x2, y1, y2 ∈ R

x1 + iy1

x2 + iy2
:=

x1 + iy1

x2 + iy2

x2 − iy2

x2 − iy2
=

(x1x2 + y1y2)

x2
2 + y2

2

+ i
(y1x2 − x1y2)

x2
2 + y2

2

, x2
2 + y2

2 ̸= 0

Definition: The conjugate z of z = x + iy is

z := x − iy
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Laws of Complex Arithmetic

Laws of Complex Algebra: z1, z2, z3 ∈ C

0. Closure:

z1 + z2 ∈ C, z1 z2 ∈ C

1. Additive and multiplicative identity:

z + 0 = z, 1 z = z, for all z ∈ C

2. Commutative laws:

z1 + z2 = z2 + z1, z1 z2 = z2 z1

3. Associative laws:

(z1 + z2) + z3 = z1 + (z2 + z3) = z1 + z2 + z3

(z1 z2)z3 = z1(z2 z3) = z1 z2 z3

4. Distributive laws:

z1(z2 + z3) = z1 z2 + z1 z3

5. Inverses:

z1 + z2 = 0 ⇒ z2 = −z1, z1 z2 = 1 ⇒ z2 = z−1
1 =

1

z1
, z1 ̸= 0

6. Zero factors:

z1 z2 = 0 ⇒ z1 = 0 or z2 = 0

1-3



Algebraic Construction of Complex Numbers

• The complex numbers C can be constructed formally from the set of real numbers R:

Definition: A complex number is defined algebraically as the ordered pair [x, y] of real num-

bers x, y ∈ R. The complex operations on C := {[x, y] : x, y ∈ R} are defined by

1 Equality. [x, y] = [x′, y′] ⇔ x = x′ and y = y′

2 Addition. [x, y] + [x′, y′] := [x + x′, y + y′]

3 Multiplication. [x, y][x′, y′] := [xx′ − yy′, xy′ + x′y]

Exercise: Show that the operations of addition and multiplication are commutative,

associative and distributive.

• Numbers of the form [x,0] behave like real numbers so we identify x ≡ [x,0]:

1 Addition. [x,0] + [x′,0] := [x + x′,0]

2 Multiplication. [x,0][x′,0] := [xx′,0]

• We prove that [x, y]2 = [−1,0] ≡ −1

has a solution in C. Identifying i ≡ [0,1], we verify

i2 = (i)(i) ≡ [0,1][0,1] := [(0)(0) − (1)(1), (0)(1) + (1)(0)] = [−1,0] ≡ −1

• It follows that every complex number can be written in the form [x, y] ≡ x + iy since

[x, y] = [x,0] + [0, y] = [x,0] + [0,1][y,0] ≡ x + iy
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Solving Equations

Example: Solve z2 = −1

z2 = −1 ⇒ z = ±i since (±i)2 = i2 = −1 !

Example: Solve z2 + 2z + 2 = 0

z2 + 2z + 2 = 0 ⇒ z =
−2 ±

√
−4

2
= −1 ± i

Check: LHS = z2 + 2z + 2

= (−1 ± i)(−1 ± i) + 2(−1 ± i) + 2

= (1 ∓ 2i − 1) + (−2 ± 2i) + 2 = 0

= RHS !

Example: Solve z2 = z

z2 = z ⇒ (x + iy)2 = x − iy

⇒ x2 − y2 + 2ixy = x − iy

Equating real and imaginary parts

⇒ x2 − y2 = x and 2xy = −y

⇒ x = −1
2 and y2 = 3

4

or y = 0 and x = 0,1

Hence there are four solutions:

z = 0,1, −
1

2
± i

√
3

2
!
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Complex Plane

• A complex number z = x + iy ∈ C can be represented as a point (x, y) in the plane R2.

Such diagrams using cartesian or polar coordinates are called Argand diagrams:

• The complex number z can be viewed as a vector in R2.

Addition of complex numbers satisfies the parallellogram rule.

0

z
(x, y)

x

yr

θ
1

i
z1

z2

z1

z2
z1+z2
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Polar Form

• The use of polar coordinates (r, θ) in R2: (x, y) = (r cos θ, r sin θ)

gives the polar form z = x + iy = r(cos θ+ i sin θ)

Definition: The absolute value or modulus of z = x + iy is

|z| :=
√

x2 + y2 = r

• By Pythagoras, this is the distance of the point z or (x, y) from the origin 0.

Definition: The argument of z ̸= 0 is

arg z = θ, where cos θ =
x

|z|
, sin θ =

y

|z|

The argument θ is multi-valued

arg z = θ = θ0 + 2kπ, k ∈ Z, −π < θ0 ≤ π

The principal argument

Arg z = θ0 = {principal value}, −π < θ0 ≤ π

is single-valued but discontinuous across the branch cut along (−∞,0].

• Sometimes it is convenient to choose another principal branch such as 0 ≤ θ0 < 2π.
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Conjugate, Modulus and Argument

The conjugate, modulus and argument satisfy the following propertries:

1. z = x − iy; z = z; z + z = 2 Re z; z − z = 2i Im z

2. z1 + z2 = z1 + z2; z1 z2 = z1 z2;
(

z1
z2

)

=
z1

z2
, z2 ̸= 0

3. Re z ≤ |Re z| ≤ |z|; Im z ≤ | Im z| ≤ |z|

|z| = |−z| = |z|; |z|2 = z z; |z1z2| = |z1||z2|;
∣

∣

∣

∣

∣

z1
z2

∣

∣

∣

∣

∣

=
|z1|
|z2|

, z2 ̸= 0

4. z1z2 = |z1||z2|
[

cos(θ1 + θ2) + i sin(θ1 + θ2)
]

5. If z ̸= 0, z1 ̸= 0, z2 ̸= 0 then arg z1z2 = arg z1 + arg z2, arg z = −arg z

Arg z1z2 = Arg z1 + Arg z2 + 2kπ, k = 0,±1

6. z1 = z2 ⇔ |z1| = |z2| and Arg z1 = Arg z2, z1 ̸= 0, z2 ̸= 0

7. Unlike real numbers, the complex numbers are not ordered. So inequalities, such as z1 ≥ z2
or z1 > z2, only make sense if z1, z2 ∈ R.
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Triangle Inequality

• Triangle Inequality: |z1 + z2| ≤ |z1| + |z2|

Proof:

|z1 + z2|2 = (z1 + z2)(z1 + z2) = (z1 + z2)(z1 + z2)

= z1z1 + (z1z2 + z2z1) + z2z2

= |z1|2 + (z1z2 + z1z2) + |z2|2

= |z1|2 + 2 Re(z1z2) + |z2|2

≤ |z1|2 + 2 |z1z2| + |z2|2

= |z1|2 + 2 |z1||z2| + |z2|2

= |z1|2 + 2 |z1||z2| + |z2|2

= (|z1| + |z2|)2

Now take positive square root. !

• Triangle Inequality Variant:
∣

∣

∣|z1|− |z2|
∣

∣

∣ ≤ |z1 − z2|
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Complex Number: Examples

Example: Simplify (2 + i)(1 + 3i) − 2 + 4i

(2 + i)(1 + 3i) − 2 + 4i = (2 + i)(1 − 3i) − 2 + 4i

= (2 − 3i2 + i − 6i) − 2 + 4i = (2 + 3 − 5i) − 2 + 4i

= 5 − 5i − 2 + 4i = 3 − i !

Example: Simplify
i(3 − 2i)

1 + i

i(3 − 2i)

1 + i
=

2 + 3i

1 + i

1 − i

1 − i
=

2 + 3 + 3i − 2i

1 + 1 + i − i
=

5 + i

2
!

Example: Simplify

∣

∣

∣

∣

∣

(3 − 4i)(2 − i)

1 + 3i

∣

∣

∣

∣

∣

. Since |z| = |z|,

∣

∣

∣

∣

∣

(3 − 4i)(2 − i)

1 + 3i

∣

∣

∣

∣

∣

=
|3 − 4i||2 − i|

|1 + 3i|
=

√
9 + 16

√
4 + 1√

1 + 9
=

√
25

√
5√

10
=

√

25

2
!

Example: Put z = 2 − 2i in polar form and find Arg z

z = |z|(cos θ+ i sin θ), |z| =
√

4 + 4 =
√

8 = 2
√

2

cos θ =
x

|z|
=

2

2
√

2
=

1√
2

, sin θ =
y

|z|
=

−2

2
√

2
= −

1√
2

Hence θ = −π/4 + 2kπ, k ∈ Z (fourth quadrant) and Arg z = −π
4 ∈ (−π,π] so

z = 2
√

2 e−πi/4
!
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Complex Exponential

Definition: The complex exponential is defined as

ez := ex+iy = exeiy = ex(cos y + i sin y)

In particular, this yields Euler’s equation

eiy = cos y + i sin y, y ∈ R

The exponential polar form is thus

z = |z|eiθ, θ = arg z

• Special Unimodular Values: |eiθ| = 1, θ ∈ R

eπi/2 = i, e−πi/2 = −i, ekπi =

⎧

⎨

⎩

1, k even

−1, k odd

• Exponent Laws:

ez1+z2 = ez1ez2, (ez)n = enz, n ∈ Z
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De Moivre and Complex Trigonometry

• De Moivre’s Formula:

(cos θ+ i sin θ)n = (eiθ)n = einθ = cosnθ+ i sinnθ, θ ∈ R, n ∈ Z

• Trigonometric Functions: θ ∈ R

cos θ = Re eiθ =
eiθ + e−iθ

2
, sin θ = Im eiθ =

eiθ − e−iθ

2i

• Complex Hyperbolic/Trigonometric Functions: z ∈ C

cos z :=
eiz + e−iz

2
, cosh z :=

ez + e−z

2
, cos z = cosh iz

sin z :=
eiz − e−iz

2i
, sinh z :=

ez − e−z

2
, sin z = −i sinh iz

Exercise: Prove the fundamental trigonometric identity

cos2 z + sin2 z = 1, z ∈ C
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Binomial Theorem

Theorem 1 (Binomial Theorem) For z1, z2 ∈ C and n ∈ N

(z1 + z2)
n = zn

1 +
(

n

1

)

zn−1
1 z2 + · · · +

(

n

k

)

zn−k
1 zk

2 + · · · + zn
2

=
n
∑

k=0

(

n

k

)

zn−k
1 zk

2

Factorials and binomial coefficients are

n! := n(n − 1) . . .1, 0! := 1;
(

n

k

)

:=

⎧

⎨

⎩

n!
(n−k)! k!, 0 ≤ k ≤ n

0, otherwise

Example: Find (1 + i)6, (a) by using the binomial theorem and (b) by using exponential

polar form:

(1 + i)6 = 1 + 6i + 15i2 + 20i3 + 15i4 + 6i5 + i6

= 1 + 6i − 15 − 20i + 15 + 6i − 1 = −8i

(
√

2eπi/4)6 = 8e3πi/2 = −8i !
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Proof of Binomial Theorem

Proof: By induction. True for n = 0,1 so assume true for n and show true for n + 1:

(z1 + z2)
n+1 = (z1 + z2)(z1 + z2)

n

= (z1 + z2)
n
∑

k=0

(

n

k

)

zn−k
1 zk

2

=
n
∑

k=0

(

n

k

)

zn+1−k
1 zk

2 +
n
∑

k=0

(

n

k

)

zn−k
1 zk+1

2

=
n+1
∑

k=0

(

n

k

)

zn+1−k
1 zk

2 +
n+1
∑

k=1

(

n

k − 1

)

zn+1−k
1 zk

2

=
n+1
∑

k=0

[(

n

k

)

+
(

n

k − 1

)]

zn+1−k
1 zk

2

=
n+1
∑

k=0

(

n + 1

k

)

zn+1−k
1 zk

2 !

• In the last step we have used the binomial identity
(

n

k

)

+
(

n

k − 1

)

=
(

n + 1

k

)
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Trigonometric Identity I

Exercise: Sum the geometric series

n
∑

k=0

zk = 1 + z + · · · + zn =
1 − zn+1

1 − z
, n ∈ N, z ∈ C, z ̸= 1

Example: Use the geometric series to sum the trigonometric series

n
∑

k=0

cos kθ =
cos nθ

2 sin (n+1)θ
2

sin θ
2

, 0 < θ < 2π

Use geometric series with z = eiθ and 0 < θ < 2π so z ̸= 1

n
∑

k=0

cos kθ = Re
( n
∑

k=0

ekiθ
)

= Re
(

1 − e(n+1)iθ

1 − eiθ

)

= Re
(

e(n+1
2)iθ − e−iθ/2

eiθ/2 − e−iθ/2

)

=
Re

[

1
2i(e

(n+1
2)iθ − e−iθ/2)

]

sin θ
2

=

1
2

[

sin(n + 1
2)θ+ sin θ

2

]

sin θ
2

=
cos n θ

2 sin (n+1)θ
2

sin θ
2

!
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Trigonometric Identity II

Example: Prove the trigonometric identity

sin z1 + sin z2 = 2cos 1
2(z1 − z2) sin 1

2(z1 + z2), z1, z2 ∈ C

RHS =
1

2i

(

ei(z1−z2)/2 + e−i(z1−z2)/2
) (

ei(z1+z2)/2 − e−i(z1+z2)/2
)

=
1

2i

(

eiz1 − e−iz1 + eiz2 − e−iz2
)

= LHS

In this way all trigonometric identities in z are reduced to algebraic identities in e±iz. !

• The previous identity follows by choosing

z1 = (n + 1
2)θ, z2 =

θ

2

1-16



Roots of Unity

Roots of Unity: Solve zn = 1: Write zn and 1 in exponential polar form and equate

modulus and argument

zn = (|z|eiθ)n = |z|neniθ, 1 = e2kπi, k ∈ Z

⇒ |z|n = 1 and arg(zn) = n arg z = nθ = 2kπ

⇒ |z| = 1 and Arg z = θ =
2kπ

n
, k = 0,1, . . . , n − 1

⇒ z = e2kπi/n = ωk, k = 0,1, . . . , n − 1

where we have chosen the branch 0 ≤ Arg z < 2π and

ω = 11/n = e2πi/n = {primitive nth root of unity}

Example: Solve wn = z, that is, find w = z1/n: Write w, z in exponential form and equate

modulus and argument

wn = |w|neniφ, z = |z|eiθ+2kπi, k ∈ Z; argw = φ, arg z = θ

⇒ |w|n = |z| and nφ = θ+ 2kπ

⇒ |w| = |z|1/n and φ = (θ+ 2kπ)/n

⇒ w = z1/n = |z|1/nei(θ+2kπ)/n = ωk|z|1/neiθ/n,

k = 0,1, . . . , n − 1 !
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Example: Roots of Unity

Example: Find the cube roots of
√

2 + i
√

2 in the cartesian form x + iy:

(
√

2 + i
√

2)1/3 = (2eπi/4+2kπi)1/3 = 21/3eπi/12+2kπi/3, k = 0,1,2

= 21/3eπi/12, 21/3e9πi/12, 21/3e17πi/12

= 21/3(cos
π

12
+ i sin

π

12
), 21/3(cos

3π

4
+ i sin

3π

4
),

21/3(cos
17π

12
+ i sin

17π

12
) !
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Fractional Powers

Exercise: Show that the sets of numbers (z1/n)m and (zm)1/n are the same. We denote this

common set by zm/n.

Fractional Powers: The fractional power zm/n of the complex number z = |z|eiθ is given

by

zm/n = |z|m/nemi(θ+2kπ)/n, k = 0,1, . . . , n − 1

Example: Find i2/3 in the cartesian form x + iy:

i2/3 = (eπi/2+2kπi)2/3 = eπi/3+4kπi/3, k = 0,1,2

= eπi/3, e5πi/3, e3πi = eπi/3, e−πi/3,−1

= −1,
1

2
± i

√
3

2
= (i2)1/3 = (−1)1/3

!
0 1−1

i
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Argand Diagrams

Example: Indicate graphically, on a single Argand diagram, the sets of values of z determined

by the following relations:

(a) Point z = 1 − 2i (b) Line |z+1+i| = |z−1−i|
(c) Circle |z − 1 − i| = 1 (d) Disk |z − 1 − i| < 1

(e) Ellipse |z + i| + |z + 2i| = 2 (f) Annulus 1 ≤ |z + 3| ≤ 2

(g) Strip 3 ≤ Re z ≤ 5 (h) Ray Arg z = −3π/4

(a)

(b)

(c)

(d)

(e)

(f)
(g)

(h)

−3

1−2i

1 2

i

2i

3i
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Open and Closed Planar Sets

• Open Disks: The set of points

Open Disk: |z − z0| < r

inside the circle of radius r about z = z0 is called an open disk or neighbourhood of z0. The

set |z| < 1 is the open unit disk.

• Open Sets: A point z0 in a set S ⊂ C is an interior point of S if there is some open disk

about z0 which is completely contained in S. If every point of S is an interior point of S we

say S is open. The empty set ∅ and C are open sets.

• Closed Disks: The set of points

Closed Disk: |z − z0| ≤ r

is the closed disk of radius r about z = z0.

• Closed Sets: A point z0 is said to be a boundary point of S ⊂ C if every open disk about z0
contains at least one point in S and at least one point not in S. Note that a boundary point

z0 may or may not be in S. The set ∂S of all boundary points of S is called the boundary of

S. A set which contains all of its boundary points is called closed. A set S is closed if and

only if its complement C\S is open. A point which is not an interior point or boundary point

of S is an exterior point. The empty set ∅ and C are both open and closed sets.
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Bounded and Connected Planar Sets

• Bounded Sets: A set S ⊂ C is called bounded if there exists a real number R such that

|z| < R for every z ∈ S. A set S ⊂ C which is both closed and bounded is called compact.

• Connectedness: An open set S ⊂ C is said to be connected if every pair of points in S can

be joined by a path (of finite or infinite length) that lies entirely in S. An open set S ⊂ C

is said to be polygonally-connected if every pair of points in S can be joined by a polygonal

path (finite number of straight line segments) that lies entirely in S. A region is an open

polygonally-connected set S together with all, some or none of its boundary points. We

assume polygonal-connectedness to avoid infinite length paths and fractal-like open sets.
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Examples of Planar Sets

• Open and Closed Disks:
Disk (d) |z − 1 − i| < 1 is an open disk. The Disk (i) |z − 1 − i| ≤ 1 is a closed disk. Disk (d)
is the interior of Disk (i). The exterior of Disk (d) |z − 1 − i| ≥ 1 is closed.

• Regions:
The Disk (d), Annulus (f) and Strip (g) are regions. So is the open Elliptical Disk (j)
|z − i| + |z − 2i| < 2.

• Boundaries:
The boundary of Disk (d) is the Circle (c). The boundary of Annulus (f) is the union of the
circles |z + 3| = 1 and |z + 3| = 2. The boundary of the Strip (g) is the union of the lines
Re z = 3 and Re z = 5.

• Open and Closed Sets:
The planar sets (d) and the Elliptical Disk (j) |z − i| + |z − 2i| < 2 are open. The sets (a),
(b), (c), (e), (f), (g) are closed. The Ray (h) and the strip 3 < Re z ≤ 5 are neither open
nor closed. Note the Ray (h) does not contain the boundary point at the origin since Arg z
is not defined there.

• Bounded and Compact Sets:
The sets (a), (c), (d), (e), (f) are bounded. The sets (b), (g), (h) are unbounded. The sets
(a), (c), (e), (f) are compact.

• Connected Open Sets
The Disk (d), the open Elliptical Disk (j) |z − i|+ |z −2i| < 2 and the interiors of the Annulus
(f) and Strip (g) are connected. The disjoint union of the open sets (d) and (j) is not
connected. Likewise the set C\{|z| = 1} is not connected. The Annulus (f) is connected but
not simply connected because loops around the hole cannot be continuously shrunk to zero.
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Week 2: Derivatives and Analytic Functions

4. Complex derivative, Cauchy-Riemann equations
5. Analytic functions, entire functions
6. Harmonic functions, singularities

Augustin Louis Cauchy (1789–1857) Georg Friedrich Bernhard Riemann (1826–1866)

Photographs c⃝ MacTutor Mathematics Archive (http://www-history.mcs.st-andrews.ac.uk)
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Functions of a Complex Variable

Definition: A function of a complex variable z is an assignment or rule

f : D → R, f : z = x + iy 1→ w = f(z) = u(x, y) + iv(x, y)

which assigns to each z in the domain D ⊂ C a unique image w = f(z) in the range R ⊂ C so

that f(z) is single-valued.

• It is not possible to represent a complex function f(z) by a graph. The complex function

f(z) is however determined by the pair of real functions u(x, y), v(x, y) of two real variables

x and y. D and R are usually regions in C:

0 x

y

0 u

v

w = f(z)

D R
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Example Functions of a Complex Variable

Example: Functions of the complex variable z:

1. f(z) = z2 + 1 = (x + iy)2 + 1 = (x2 − y2 + 1) + i(2xy)

2. f(z) = cosh z = cosh(x + iy) = cosh x cos y + i sinh x sin y

3. f(z) = z z = (x + iy)(x − iy) = x2 + y2

4. f(z) = (Re z)2 + i = x2 + i

5. f(z) = z1/2 = ±|z|1/2eiθ0/2 with θ0 = Arg z is multi-valued unless it is restricted to the

branch f+(z) = +|z|1/2eiθ0/2. It has a branch cut along (−∞,0] and a branch point at z = 0.

!
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Limits of Complex Functions

Definition: Suppose f(z) is defined in an open disk about z = z0 with the possible exception
of the point z0 itself. We say that the limit of f(z) as z approaches z0 is w0 and write

lim
z→z0

f(z) = w0

if for any ϵ > 0 there exists a positive number δ(ϵ) such that

|f(z) − w0| < ϵ whenever 0 < |z − z0| < δ(ϵ)

• Unlike a function of a real variable, z can approach z0 along many different paths in the
complex plane. If the limit exists, it is independent of the way in which z approaches z0.

Example: Show from the limit definition that lim
z→i

z2 = −1:

|z2 − (−1)| = |z2 + 1| = |(z − i)(z + i)| = |z − i||(z − i) + 2i|

≤ |z − i|(|z − i| + 2) <
ϵ

3
(1 + 2) = ϵ

whenever |z − i| < δ(ϵ) = Min(1, ϵ3) !

Example: Show that lim
z→0

z

z
does not exist:

For the limit to exist, it must be independent of the path along which z = x + iy approaches
z0 = 0. We show that the limits z → 0 along the x- and y-axes are different

lim
z→0
y=0

z

z
= lim

x→0

x

x
= 1 ̸= lim

z→0
x=0

z

z
= lim

y→0

iy

(−iy)
= −1, so the limit does not exist !
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Limit Theorems

Theorem 2 (Limit Theorems) If a, b ∈ C are constants (independent of z) and lim
z→z0

f(z),

lim
z→z0

g(z) exist then

1. Linear: lim
z→z0

(

af(z) + b g(z)
)

= a lim
z→z0

f(z) + b lim
z→z0

g(z)

2. Product: lim
z→z0

(

f(z) g(z)
)

=
(

lim
z→z0

f(z)
)(

lim
z→z0

g(z)
)

3. Quotient: lim
z→z0

f(z)

g(z)
=

lim
z→z0

f(z)

lim
z→z0

g(z)
if lim

z→z0
g(z) ̸= 0

Theorem 3 (Limits Using Real Variables)

Let f(z) = u(x, y) + iv(x, y), z0 = x0 + iy0 and w0 = u0 + iv0. Show that

lim
z→z0

f(z) = w0

if and only if

lim
x→x0
y→y0

u(x, y) = u0 and lim
x→x0
y→y0

v(x, y) = v0

Proof: Exercise using |Re w| ≤ |w|, | Im w| ≤ |w| and the triangle inequality. Note, for these

two variable limits to exist they must be independent of the path along which (x, y) → (x0, y0)

in R2. !
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Limit Theorems: Examples

Example: Find the limit lim
z→2

z2 + 3

iz
;

lim
z→2

z2 + 3

iz
=

lim
z→2

(z2 + 3)

lim
z→2

iz
=

7

2i
= −

7

2
i !

Example: Find the limit lim
z→i

z2 + 1

z4 − 1
;

lim
z→i

z2 + 1

z4 − 1
= lim

z→i

(z2 + 1)

(z2 − 1)(z2 + 1)
= lim

z→i

1

(z2 − 1)
= −1

2 !
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Extended Complex Plane

• There are many directions or paths along which 1
z can approach infinity as z → 0. We

identify these “limits” with a single number and extend the complex plane by adding a point

at infinity denoted by the symbol ∞. This forms the Riemann sphere Ĉ = C ∪ {∞}.

• The extended complex plane is closed and identified with the stereographic projection of

a sphere (Riemann sphere) of radius r = 1
2 onto the horizontal plane C passing through the

south pole (z = 0). A line drawn from the north pole of the sphere through the point z′

on the sphere maps to the point z ∈ C. The equator maps onto the unit circle |z| = 1, the

southern hemisphere maps onto |z| < 1 and the northern hemisphere maps onto |z| > 1. The

south pole corresponds to the origin z = 0 and the north pole to the point z = ∞ at infinity.

Stereographic Projection:

lim
z→0

1

z
= ∞
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Limit z → ∞

Definition: We define

lim
z→∞ f(z) := lim

z→0
f
(

1

z

)

An open disk about the point at infinity is |z| > M, for M > 0.

Example:

lim
z→∞

iz2 − z

z2 − 1
= lim

z→0

i
z2 − 1

z
1
z2 − 1

= lim
z→0

i − z

1 − z2
=

lim
z→0

(i − z)

lim
z→0

(1 − z2)
= i !

Example:

lim
z→∞

z2 + iz

z3 + 1
= lim

z→0

1
z2 + i

z
1
z3 + 1

= lim
z→0

z + iz2

1 + z3

=
lim
z→0

(z + iz2)

lim
z→0

(1 + z3)
=

0

1
= 0 !

Example:

lim
z→∞

z2 + 1

z
= lim

z→0

1
z2 + 1

1
z

= lim
z→0

(
1

z
+ z) = ∞

since

lim
z→0

1
1
z + z

= lim
z→0

z

1 + z2
=

0

1 + 0
= 0 !
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Continuity

Definition: Suppose the function f(z) is defined in an open disk about z = z0 and f(z0) is

defined at z = z0. Then f(z) is continuous at z0 if

lim
z→z0

f(z) = f(z0) = f
(

lim
z→z0

z
)

• To be continuous at z0, (i) the function f(z) must be defined at z = z0, (ii) the limit

lim
z→z0

f(z) must exist and (iii) the limit must equal the function value f(z0).

• A function f(z) is continuous in a region if it is continuous at all points in the region.

Theorem 4 (Continuity Theorems)

If a, b ∈ C are constants and f(z) and g(z) are continuous at z = z0 so also are the functions

1. Linear: a f(z) + bg(z)

2. Product: f(z) g(z)

3. Quotient:
f(z)

g(z)
provided g(z0) ̸= 0

4. Composite: f(g(z)) if f(w) is continuous at w0 = g(z0)

Proof: Follows from the Limit Theorems. !
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Continuity Examples

Example: Show that f(z) = ez is continuous in C:

f(z) = ez = exeiy = ex cos y + iex sin y

is continuous in C since

u(x, y) = ex cos y, v(x, y) = ex sin y

are continuous functions of two real variables in R2 being products of the continuous functions

ex, cos y and sin y. !

Example: Show that f(z) = |z| is continuous in C:

lim
z→z0

f(z) = lim
z→z0

|z| = lim
x→x0
y→y0

√

x2 + y2 =
(

lim
x→x0
y→y0

(x2 + y2)
)1/2

=
√

x2
0 + y2

0 = |z0| = f(z0)

for any z0 ∈ C since the function of one real variable g(r) =
√

r is continuous for r ≥ 0 where

here r = x2 + y2. !
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Complex Derivative and Analyticity

Definition: Suppose the function f(z) is defined in an open disk about z = z0 and f(z0) is

defined at z = z0. Then f(z) is differentiable at z0 if the limit

df

dz
(z0) = f ′(z0) = lim

∆z→0

f(z0 + ∆z) − f(z0)

∆z

defining the derivative exists.

• The function f(z) is analytic (regular or holomorphic) in an open simply-connected region

R if it has a derivative at every point of R. More precisely, the function is analytic in any open

region R that does not encircle a branch point. The function f(z) is entire if it is analytic

everywhere in C.

• The concept of an analytic function on an open region is very powerful, much more

powerful than the concept of an analytic real function on an open interval. For example, we

will show later, that if a function f(z) is analytic then its derivatives f(n)(z) of all orders exist

and are also analytic. This is not the case for real functions:

f(x) = sgn(x)x2, f ′(x) = 2|x|, x ∈ (−ϵ, ϵ) but f ′′(x) does not exist at x = 0

• Note that the real function

f(x) =

⎧

⎨

⎩

e−1/x, x > 0

0, x ≤ 0

is C∞ (has derivatives of all orders) but is not analytic since f(n)(0) = 0 for all n and the

Taylor expansion about x = 0 converges to zero and not to f(x).
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Complex Derivatives from First Principles

Example: Show by first principles that
d

dz
zn = nzn−1.

Solution: Using the binomial theorem

(z + ∆z)n − zn

∆z
=

nzn−1∆z +
(

n
2

)

zn−2(∆z)2 + · · · + (∆z)n

∆z

= nzn−1 +
(

n

2

)

zn−2(∆z) + · · · + (∆z)n−1

So
d

dz
zn = lim

∆z→0

(z + ∆z)n − zn

∆z
= nzn−1

The function f(z) = zn is thus analytic in C. !

Example: The function f(z) = z is nowhere differentiable:

lim
∆z→0

f(z0 + ∆z) − f(z0)

∆z
= lim

∆z→0

(z0 + ∆z) − z0

∆z
= lim

∆z→0

∆z

∆z

but we saw this limit is path dependent and so does not exist. At first this result is surprising

but it says that z = x − iy cannot be expressed as an analytic function of the indivisible unit

z = x + iy. !

Exercise: Show that the functions f(z) = Re z, f(z) = Im z and f(z) = |z| are continuous

but nowhere differentiable.

• Examples of continuous but nowhere differentiable functions of a single real variable

abound. These include fractals such as the Koch curve and the Katsuura function.

2-11



Koch Curve

• Consider the curve defined iteratively starting with the real line segment [0,1] according

to the replacement:

1→

• Iterating gives:

• The limiting curve is a fractal called the Koch (snowflake) curve. This curve is continuous

but nowhere differentiable (there are no tangents to the curve). It has an infinite length but

the area under the curve is finite. Its fractal dimension is

dfractal =
log4

log3
≈ 1.26

Johan Thim, Continuous Nowhere Differentiable Functions, Master’s Thesis, Lulea (2003).
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Katsuura Function

• Consider the function defined iteratively starting with the function K0(x) = x on [0,1]

according to the replacements:

1→ 1→

• Iterating gives

K2(x) = K3(x) =

K4(x) = K5(x) =

• The Katsuura function K(x) = lim
n→∞Kn(x) is continuous but nowhere differentiable on [0,1].

H. Katsuura, American Mathematical Monthly 98 (1991) 411–416.

Johan Thim, Continuous Nowhere Differentiable Functions, Master’s Thesis, Lulea (2003).
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Differentiable Implies Continuous

Theorem 5 (Differentiable Implies Continuous)

If f(z) is differentiable at z = z0 it must be continuous at z0.

Proof: Let h = ∆z ̸= 0. Then

f(z0 + h) − f(z0) =
f(z0 + h) − f(z0)

h
h

So using the product limit theorem and the fact that the derivative f ′(z0) exists

lim
h→0

[f(z0 + h) − f(z0)] = lim
h→0

f(z0 + h) − f(z0)

h
lim
h→0

h

= f ′(z0) · 0 = 0

This shows that

lim
h→0

f(z0 + h) = f(z0) or lim
z→z0

f(z) = f(z0)

that is, f(z) is continuous at z = z0. !

• The converse is not true. The function f(z) = z = x − iy is continuous everywhere

because the functions u(x, y) = x and v(x, y) = −y are continuous. But we saw that f(z) = z

is nowhere differentiable.
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Differentiation Rules

Theorem 6 (Differentiation Rules) If a, b are constants and f(z) and g(z) are differentiable

in an open region R, then in this region

1. Linear:
d

dz

(

af(z) + bg(z)
)

= a f ′(z) + bg′(z)

2. Product:
d

dz

(

f(z) g(z)
)

= f ′(z) g(z) + f(z) g′(z)

3. Quotient:
d

dz

(

f(z)

g(z)

)

=
g(z) f ′(z) − f(z) g′(z)

g(z)2
if g(z) ̸= 0

4. Chain:
d

dz

(

f(g(z))
)

=
df

dg

dg

dz
= f ′(g(z0))g

′(z0) if f(w) is

differentiable in an open region about w = g(z0)

5. Inverse:
d

dw
f−1(w) =

1

f ′(z)
with w = f(z), z = f−1(w)
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Proof of Differentiation Rules

Proof: We prove 2 and 5. Others are exercise (or see text).

• 2. Derivative of a product:

d

dz

(

f(z) g(z)
)

= lim
∆z→0

f(z + ∆z)g(z + ∆z) − f(z)g(z)

∆z

= lim
∆z→0

f(z + ∆z)[g(z + ∆z) − g(z)] + [f(z + ∆z) − f(z)]g(z)

∆z

= lim
∆z→0

f(z + ∆z)
g(z + ∆z) − g(z)

∆z
+ lim

∆z→0

f(z + ∆z) − f(z)

∆z
g(z)

= f(z) g′(z) + f ′(z) g(z) (by limit theorems)

because f(z) is differentiable and therefore continuous

lim
∆z→0

f(z + ∆z) = f(z) !

• 5. If w = f(z) is a bijection, then f−1(w) exists, f−1(f(z)) = z,

f(f−1(w)) = w and f−1(w) is analytic near w0 with derivative

df−1

dw
(w0) = lim

w→w0

f−1(w) − f−1(w0)

w − w0
= lim

z→z0

z − z0
f(z) − f(z0)

=
1

f ′(z0)
!
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Continuity of Rational Functions

Example: Show that rational functions of the form

R(z) =
Pn(z)

Qm(z)
=

a0 + a1z + · · · + anzn

b0 + b1z + · · · + bmzm
, aj, bj ∈ C

are continuous in C except at the zeros of the denominator:

Solution: This rational function is not defined at the zeros of Qm(z). Away from these points

the polynomials are differentiable, e.g.

d

dz
(a0 + a1z + a2z2 + · · · + anzn) = a1 + 2a2z + · · · + nanzn−1

The quotient is therefore differentiable for g(z) = Qm(z) ̸= 0 by the quotient rule:

d

dz

(

f(z)

g(z)

)

=
g(z) f ′(z) − f(z) g′(z)

g(z)2
if g(z) ̸= 0 !

Since differentiable implies continuous, it follows that R(z) is continuous at any point z where

the denominator does not vanish.
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L’Hôpital’s Rule

Theorem 7 (L’Hôpital’s Rule) If f(z) and g(z) are differentiable at z = z0 and f(z0) = 0,

g(z0) = 0 but g′(z0) ̸= 0 then

lim
z→z0

f(z)

g(z)
=

f ′(z0)

g′(z0)

Proof: Using the quotient limit theorem

lim
z→z0

f(z)

g(z)
= lim

z→z0

f(z)−f(z0)
z−z0

g(z)−g(z0)
z−z0

=
lim

z→z0

f(z)−f(z0)
z−z0

lim
z→z0

g(z)−g(z0)
z−z0

=
f ′(z0)

g′(z0)
!

Theorem 8 (General l’Hôpital’s Rule)

If f(z) and g(z) are analytic at z = z0 and f(z), g(z) and their first n−1 derivatives all vanish

at z = z0 but the nth derivative g(n)(z0) ̸= 0 then

lim
z→z0

f(z)

g(z)
=

f(n)(z0)

g(n)(z0)
= lim

z→z0

f(n)(z)

g(n)(z)

Proof: Consequence of Taylor’s theorem proved later. !
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Examples of L’Hôpital’s Rule

Example: Evaluate the limit lim
z→i

z10 + 1

z6 + 1

Solution: Since f(z0) = g(z0) = 0 the limit is indeterminate so we use l’Hôpital’s rule with

f ′(z) = 10z9 and g′(z) = 6z5

lim
z→i

z10 + 1

z6 + 1
= lim

z→i

10z9

6z5
=

10i9

6i5
=

10i

6i
=

5

3
!

Example: Evaluate the limit lim
z→0

ez − 1 − z

z2

Solution: Since f(0) = g(0) = f ′(0) = g′(0) = 0 and f ′′(z) = ez, g′′(z) = 2 ̸= 0

lim
z→0

ez − 1 − z

z2
= lim

z→0

ez − 1

2z
= lim

z→0

ez

2
=

e0

2
= 1

2 !

• Here we have assumed that

d

dz
ez = ez

To prove this we need the Cauchy-Riemann theorem.
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Cauchy-Riemann Equations

• Differentiability of f(z) = u(x, y) + iv(x, y) implies strong constraints on u(x, y), v(x, y).

If f(z) is differentiable the limit

f ′(z) = lim
∆z→0

f(z + ∆z) − f(z)

∆z

= lim
∆x→0
∆y→0

u(x +∆x, y +∆y)+ iv(x +∆x, y + ∆y)− u(x, y)− iv(x, y)

∆x + i∆y

must exist independent of the path. We conclude that the limit along the x- and y-axes must

agree

f ′(z) = lim
∆x→0
∆y=0

[

u(x +∆x, y) − u(x, y)

∆x
+ i

v(x +∆x, y) − v(x, y)

∆x

]

= lim
∆x=0
∆y→0

[

u(x, y +∆y) − u(x, y)

i∆y
+

v(x, y +∆y) − v(x, y)

∆y

]

• Hence necessary conditions for f(z) to be differentiable are given by the Cauchy-Riemann

equations

f ′(z) =
∂u

∂x
+ i

∂v

∂x
= −i

∂u

∂y
+
∂v

∂y

∂u

∂x
=
∂v

∂y
,

∂v

∂x
= −

∂u

∂y
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Cauchy-Riemann Theorem

Theorem 9 (Cauchy-Riemann Theorem)

Suppose f(z) = u(x, y) + iv(x, y) is defined in an open region R containing z0. If u(x, y)

and v(x, y) and their first partial derivatives exist and are continuous at z0 (that is u(x, y)

and v(x, y) are C1 at (x0, y0)) and satisfy the Cauchy-Riemann equations at z0, then f(z) is

differentiable at z0. Consequently, if u(x, y) and v(x, y) are C1 and satisfy the Cauchy-Riemann

equations at all points of R then f(z) is analytic in R.

Proof: See a textbook such as Saff and Snider. The proof uses the mean-value theorem. !

• The Cauchy-Riemann equations can be understood informally using functions of two

variables and the chain rule which is valid for C1 functions:

z(x, y) = x + iy, f(z) = f(z(x, y)), f(x, y) = u(x, y) + iv(x, y)

∂f

∂x
=

df

dz

∂z

∂x
=

df

dz
,

∂f

∂y
=

df

dz

∂z

∂y
= i

df

dz

df

dz
=

∂f

∂x
=

∂u

∂x
+ i

∂v

∂x
,

df

dz
= −i

∂f

∂y
= −i

∂u

∂y
+
∂v

∂y
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Cauchy-Riemann and Derivatives

Example: Show that the function f(z) = ez = ex cos y + iex sin y is entire with derivative

d

dz
ez = ez

Solution: The first partial derivatives are continuous and satisfy the Cauchy-Riemann equa-

tions everywhere in C

∂u

∂x
=
∂v

∂y
= ex cos y,

∂v

∂x
= −

∂u

∂y
= ex sin y

Hence by the Cauchy-Riemann theorem f(z) = ez is entire and

f ′(z) =
∂u

∂x
+ i

∂v

∂x
= ex(cos y + i sin y) = ez

!

Example: Discuss where the function f(z) = (x2 + y) + i(y2 − x) is (a) differentiable and

(b) analytic.

Solution: Since u(x, y) = x2 + y and v(x, y) = y2 − x, we have

∂u

∂x
= 2x,

∂v

∂y
= 2y,

∂v

∂x
= −

∂u

∂y
= −1

These partial derivatives are continuous everywhere in C. They satisfy the Cauchy-Riemann

equations on the line y = x but not in any open region. It follows by the Cauchy-Riemann

theorem that f(z) is differentiable at each point on the line y = x but nowhere analytic. !
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Harmonic Functions

Definition: A real function of two variables φ(x, y) is harmonic in an open connected domain

D if it is C2 (that is continuous with continuous first and second partial derivatives) in D and

satisfies the Laplace equation

∇2φ :=
∂2φ

∂x2
+
∂2φ

∂y2
= 0

• The Laplace equation occurs in many areas of two-dimensional physics including continuum

and fluid mechanics, aerodynamics and the heat equation. We see that the solutions to these

equations (harmonic functions) are naturally associated with analytic functions.

Theorem 10 (Harmonic Functions) If f(z) = u(x, y) + iv(x, y) is analytic in an open

connected domain D, then u(x, y) and v(x, y) are harmonic in D.

Proof: Since f(z) is analytic, u(x, y) and v(x, y) are C∞ (possess continuous partial derivatives

of all orders). We will prove this later. In particular, since they are C2, the mixed second

derivatives are equal

∂

∂y

∂u

∂x
=

∂

∂x

∂u

∂y
,

∂

∂y

∂v

∂x
=

∂

∂x

∂v

∂y

Substituting for the first partial derivatives from the Cauchy-Riemann equations give

∂2v

∂y2
= −

∂2v

∂x2
, −

∂2u

∂y2
=

∂2u

∂x2
!
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Harmonic Conjugates

Theorem 11 (Harmonic Conjugates)

If u(x, y) is harmonic in a simply-connected open domain D then there exists another harmonic

function v(x, y) on D (called the harmonic conjugate of u) such that f(z) = u(x, y)+ iv(x, y)

is analytic in D. The conjugate is obtained by solving the Cauchy-Riemann equations.

Example: Find an analytic function f(z) by finding the conjugate of the harmonic function

u(x, y) = x3 − 3xy2 + y.

Solution: First check that u(x, y) is harmonic in C

∇2u =
∂2u

∂x2
+
∂2u

∂y2
= 6x − 6x = 0

From the Cauchy-Riemann equations, the conjugate v(x, y) must satisfy

∂v

∂y
=
∂u

∂x
= 3x2 − 3y2,

∂v

∂x
= −

∂u

∂y
= 6xy − 1

Integrating gives

v(x, y) = 3x2y − y3 + g(x) = 3x2y − x + h(y)

where the real functions g(x) and h(y) are arbitrary. It follows that g(x) = −x + const,

h(y) = −y3 + const, and

v(x, y) = 3x2y − y3 − x + c, c = const

Hence the analytic function is

f(z) = (x3 − 3xy2 + y) + i(3x2y − y3 − x + c) = z3 − iz + ic !
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Singular Points

Definition: A point at which f(z) fails to be analytic is called a singular point of f(z).

Types of singularities:

1. Isolated Singularities: The point z = z0 is an isolated singularity of f(z) if there is an open

neighbourhood that encloses no other singular point.

2. Poles: If there is a positive integer n such that

lim
z→z0

(z − z0)
nf(z) = ρ ̸= 0

exists then z = z0 is a pole of order n. If n = 1, z0 is a simple pole

3. Branch Points: Multi-valued functions like f(z) = log(z − z0) and f(z) = (z − z0)
1/n have

a branch point at z = z0.

4. Removable Singularities: An apparent singular point z0 of f(z) is removable if limz→z0 f(z)

exists.

5. Essential Singularities: A singularity which is not a pole, branch point or removable

singularity is an essential singularity.

6. Singularities at Infinity: The type of singularity at infinity of f(z) is the same as that of

f(1
z) at z = 0.
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Example Singular Points

Examples:

1. The singularities at z = ±i of
z4 − 1

z2 + 1
are removable.

2. The function e1/(z−2) has an essential singularity at z = 2.

3. The function
z

(z2 + 1)(z + i)
has a simple pole at z = i and

a pole of order 2 at z = −i.

4. The function f(z) = z3 has a pole of order 3 at z = ∞. !
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Week 3: Complex Transcendental Functions

7. Complex exponential, complex logarithm
8. Branches, complex powers
9. Trigonometric/hyperbolic functions, inverse trigonometric functions

Vincenzo Riccati (1707–1775) Georg Friedrich Bernhard Riemann (1826–1866)

Photographs c⃝ MacTutor Mathematics Archive (http://www-history.mcs.st-andrews.ac.uk)
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Exponential Function

Definition: The complex exponential is defined by

exp : C → C, exp(z) ≡ ez := ex(cos y + i sin y)

We have seen that this function is entire with derivative

d

dz
ez = ez

• Unlike the real exponential ex, the complex exponential function ez is not one-to-one

ez = 1 ⇔ z = 2kπi, ez1 = ez2 ⇔ z1 = z2 + 2kπi, k ∈ Z

Consequently, the inverse function log z is multi-valued.

• On the complex domain the exponential function is periodic

ez+2πi = ez, complex period = 2πi

We can restrict the domain to one of the fundamental strips

Sk : (2k − 1)π < Im z ≤ (2k + 1)π

Then exp: S0 → C\{0}, is one-to-one on the principal domain

S0 and admits an inverse.

πi

3πi

5πi

−πi

−3πi

−5πi

S2

S1

S0

S−1

S−2
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Logarithm Function

Definition: For z ̸= 0 we define the logarithm as the inverse

of the exponential function

z = ew ⇔ w = log z

Since ew is not one-to-one, log z is multi-valued taking infinitely

many values

log z := Log |z| + iarg z = Log |z| + i Arg z + 2kπi, k ∈ Z

To obtain a single-valued function (bijection), we define the

principal value of the logarithm

πi

3πi

5πi

−πi

−3πi

−5πi

S2

S1

S0

S−1

S−2

Log : C\{0} → S0 Log z := Log |z| + iArg z

z = eLog z, z ∈ C\{0} Log(ew) = w, w ∈ S0

Exercise: Show that

Log(z1z2) = Log z1 + Log z2 + 2kπi, k = 0,±1
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Derivative of Logarithm

Theorem 12 (Derivative of Log)

The function Log z is analytic in the cut plane C\(−∞,0] with derivative

d

dz
Log z =

1

z
, z ∈ C\(−∞,0]

Proof: Since Log z is the inverse of ew which is analytic in S0, Log z is analytic in the cut

plane C\(−∞,0]. There is a jump discontinuity across the branch cut along the negative real

axis:

0branch cut

branch point

Applying the chain rule to Log(ew) = w gives the derivative

d

dw
Log(ew) =

d

dz
Log z

d

dw
ew = z

d

dz
Log z = 1

Hence

d

dz
Log z =

1

z
, z ̸= 0 !
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Branches and Branch Cuts

Definition: F(z) is a branch of a multi-valued function f(z) in an open domain D if F(z) is

single-valued and analytic in D and is such that, for each z ∈ D, the value F(z) is one of the

values of f(z). A line used to create a domain of analyticity D is called a branch cut. The

end points of branch cuts are called branch points.

Example: Determine the domain of analyticity of Log(3z − i):

Solution: This function is analytic by the chain rule except where

Re(3z − i) = 3 Re z ≤ 0 and Im(3z − i) = 3 Im z − 1 = 0

corresponding to a branch cut with branch point at z = i/3

z = x + iy, x ≤ 0, y =
1

3

i/3

The branch cut can be rotated about the branch point. !
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Complex Powers

Definition: If a, z ∈ C and z ̸= 0, we define the complex power

za := ea log z

so that each value of log z gives a value of za. The principal branch of za is

za := eaLog z, z ̸= 0

• Notice that, if a is independent of z,

d

dz
za =

d

dz
eaLog z =

a

z
eaLog z = a e(a−1)Log z =

a

z
za = aza−1

provided the same branch is used for the logarithm defining za and za−1.

Example: Find the principal value of z = i2i:

By definition with z = i and a = 2i, the principal value is

i2i = e2iLog i = e2i(Log |i| + iArg i) = e2i(Log1 + πi/2) = e−π !

Example: If z1 = −1 + i, z2 = i and a = 1
2, show that for principal values (z1z2)

a ̸= za
1 za

2:

We have z1z2 = −1 − i =
√

2e−3πi/4 and

(z1z2)
1/2 = (−1 − i)1/2 = e

1
2

Log(−1 − i) = e
1
2

Log
√

2 + 1
2

iArg(−1 − i)

= e
1
4

Log2 − 3πi/8 = 21/4e−3πi/8

z
1/2
1 z

1/2
2 = (−1 + i)1/2 i1/2 = (

√
2e3πi/4)1/2(eπi/2)1/2

= 21/4e3πi/8eπi/4 = 21/4e5πi/8 = −21/4e−3πi/8
!
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Square Root Function

• The square root function is two-valued

w =
√

z = z1/2 = e
1
2
log z = e

1
2
Log |z| + 1

2
iarg z = |z|1/2 e

1
2

iarg z

In particular, argw = 1
2 arg z and

−
π

2
< argw ≤

3π

2
for − π < arg z ≤ 3π

Consequently, increasing arg z by 2π (which brings you back to the same point in the complex

z-plane) changes the sign of w

w = z1/2 =

⎧

⎪

⎨

⎪

⎩

+|z|1/2 e
1
2

iArg z, −π < arg z ≤ π (branch 1)

−|z|1/2 e
1
2

iArg z, π < arg z ≤ 3π (branch 2)

These branches cover the complex plane C twice except at the branch point.

• The principal value is the branch 1 value which has the same branch cut as the logarithm

on C\(−∞,0]

0branch cut

branch point
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Riemann Surfaces

• The square root function is in fact single-valued and analytic on a Riemann surface of two

sheets

Riemann surface = C\{0} ∪ C\{0}

where it is understood that each time we cross the cut we move continuously from one to

the other branch (sheet).

0branch cut

branch point

• More generally, zm/n is analytic on a Riemann surface with n sheets and log z is analytic

on a Riemann surface with an infinite number of sheets (winding once anti-clockwise around

the branch point z = 0 increases the imaginary part by 2π).
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Square Root Riemann Surface

• To visualize the square root Riemann surface, let z = x + iy and plot

u(x, y) = ±Re
√

z, v(x, y) = ± Im
√

z

3-8



Example Branch Cuts

Example: Determine a branch of
√

z2 + 1:

Solution: Using the definition of the square root
√

z2 + 1 = (z − i)1/2(z + i)1/2 = exp[12 log(z − i) +1
2 log(z + i)]

Clearly, there are branch points at z = ±i. Two possible choices of branch cuts are:

i

−i

i

−i
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Trigonometric/Hyperbolic Derivatives

• The trigonometric and hyperbolic functions are defined in terms of the complex exponential

cos z :=
eiz + e−iz

2
, cosh z :=

ez + e−z

2
, cos z = cosh iz

sin z :=
eiz − e−iz

2i
, sinh z :=

ez − e−z

2
, sin z = −i sinh iz

• These functions are all entire. Their derivatives are easily obtained using the derivative of

the exponential and the rules for differentiation. For example,

d

dz
sin z =

d

dz

(

eiz − e−iz

2i

)

= −1
2 i(ieiz + ie−iz) = 1

2(e
iz + e−iz) = cos z

• The other standard trigonometric and hyperbolic functions are defined by

tan z =
sin z

cos z
, cot z =

cos z

sin z
, tanh z =

sinh z

cosh z
, coth z =

cosh z

sinh z

sec z =
1

cos z
, cosec z =

1

sin z
, sech z =

1

cosh z
, cosech z =

1

sinh z

These functions are not entire — they are meromorphic (exhibit poles).

• The familiar formulas for derivatives of these functions carry over to the complex functions.

For example, away from poles

d

dz
tan z = sec2 z,

d

dz
sec z = sec z tan z
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Inverse Sine

Exercise: Show sin : −π
2 < Re z < π

2 → C\{(−∞,−1] ∪ [1,∞)}

Example: Show that the inverse sine function is the multi-valued function

arcsin z = −i log[iz + (1 − z2)1/2]

z = sinw =
1

2i
(eiw − e−iw)

⇒ e2iw − 2iz eiw − 1 = 0

⇒ eiw = iz + (1 − z2)1/2

⇒ w = arcsin z = −i log[iz + (1 − z2)1/2]

where the square root is multivalued. !

Definition: The principal value of the inverse sine function is

Arcsin z = −i Log[iz + e
1
2
Log(1 − z2)]

where the branch cuts for e
1
2
Log(1 − z2) are

−1 1
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Inverse Trigonometrics/Hyperbolics

• The principal branch inverse trigonometric and hyperbolic functions are defined by

Arcsin z = −iLog(iz +
√

1 − z2), Arcsinh z = Log(z +
√

1 + z2)

Arccos z = −iLog(z + i
√

1 − z2), Arccosh z = Log(z +
√

z − 1
√

z + 1)

Arctan z = 1
2 i [Log(1 − iz) − Log(1 + iz)], Arctanh z = 1

2 [Log(1 + z) − Log(1 − z)]

• The multi-valued inverse functions are obtained by replacing the Log with log and the

principal branch square root functions with with the multi-valued square root.

• The derivatives of the inverse multi-valued trigonometric functions are

d

dz
arcsin z = (1 − z2)−1/2, z ̸= ±1

d

dz
arccos z = −(1 − z2)−1/2, z ̸= ±1

d

dz
arctan z = (1 + z2)−1, z ̸= ±i

Exercise: Find the derivatives of the inverse multi-valued hyperbolic functions

(a) arcsinh z (b) arccosh z (c) arctanh z

3-12



Exercises: Complex Powers and Inverses

Exercise: Show that the following identities hold when each complex power is given by its

principal value

(a) z−a =
1

za
(b) za zb = za+b (c)

za

zb
= za−b

Exercise: Show that in the case z is real

−
π

2
< Arcsinx <

π

2
, x ∈ (−1,1)

Exercise: Show using the chain rule that

d

dz
Arcsin z = (1 − z2)−1/2, z ̸= ±1

where the same branches are used on either side.
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Week 4: Complex Sequences and Series

10. Complex sequences, Cauchy convergence
11. Power series, radius of convergence and its calculation
12. Statement of Taylor’s theorem, term-by-term integration and differentiation

Brook Taylor (1685–1731) Colin Maclaurin (1698–1746)

Photographs c⃝ MacTutor Mathematics Archive (http://www-history.mcs.st-andrews.ac.uk)
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Complex Sequences

Definition: We say that a complex sequence {an} = {an}∞n=1 = {a1, a2, . . .} converges to a

limit L in C and write

lim
n→∞ an = L or an → L as n → ∞

if for any ϵ > 0 there is an N = N(ϵ) such that

|an − L| < ϵ whenever n > N(ϵ)

If the sequence {an} does not converge we say it diverges.

Theorem 13 (Limit Theorems for Sequences)

If an and bn are convergent complex sequences, A, B ∈ C and f(z) is continuous then

1. Linear: lim
n→∞(Aan + Bbn) = A lim

n→∞ an + B lim
n→∞ bn

2. Product: lim
n→∞(an bn) =

(

lim
n→∞ an

)(

lim
n→∞ bn

)

3. Quotient: lim
n→∞

an

bn
=

lim
n→∞ an

lim
n→∞ bn

if lim
n→∞ bn ̸= 0

4. Continuity: lim
n→∞ f(an) = f

(

lim
n→∞ an

)
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Complex Sequences Exercises

Example: (Geometric Sequence) Use the ϵ-N definition to show that, for |z| < 1, the sequence

an = zn converges to the limit L = 0:

Solution:

|an − L| = |z|n < ϵ whenever n > N(ϵ) =
Log ϵ

Log |z|
, z ̸= 0 !

Exercise: Show that a complex sequence converges if and only if the real and imaginary

parts converge, that is, if an = xn + iyn

lim
n→∞ an = L = A + iB ⇔ lim

n→∞xn = A and lim
n→∞ yn = B

Also show that an → L as n → ∞ implies

(i) lim
n→∞ an = L (ii) lim

n→∞ |an| = |L|
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Cauchy Convergence

Definition: A complex sequence an is a Cauchy sequence if for any ϵ > 0 there is an N(ϵ)

such that |an − am| < ϵ for all m, n > N(ϵ)

• Terms of a Cauchy sequence are arbitrarily close together for n and m sufficiently large.

Theorem 14 (Completeness of R)

(i) A Cauchy sequence of real numbers converges to a limit in R. (ii) A bounded (|an| ≤ M)

monotonic sequence (an+1 ≥ an or an+1 ≤ an) of real numbers converges to a limit in R.

• See text — deep properties of R related to closure.

Theorem 15 (Completeness of C)

A complex sequence an converges to a limit in C if and only if it is Cauchy.

Proof: (i) Suppose an → L as n → ∞ then given ϵ > 0 there is an N(ϵ) such that

|an − L| <
ϵ

2
whenever n > N(ϵ)

Hence an is Cauchy

|an − am| = |(an − L) − (am − L)| ≤ |an − L| + |am − L| <
ϵ

2
+
ϵ

2
= ϵ whenever m, n > N(ϵ)

(ii) Conversely, suppose an is Cauchy. Then using the inequality |Re z| ≤ |z|:

|Re an − Re am| = |Re(an − am)| ≤ |an − am| < ϵ for all m, n > N(ϵ)

which implies xn = Re an is a real Cauchy sequence. Similarly, yn = Im an is a real Cauchy

sequence. So xn → x and yn → y are convergent sequences by the completeness of R and so

an = xn + iyn → x + iy is a convergent sequence. !
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Euler’s Number

Theorem 16 (Euler’s Number e)

e := lim
n→∞(1 +

1

n
)n =

∞
∑

n=0

1

n!
= 1 + 1 +

1

2!
+

1

3!
+ · · · := η

Proof: (i) By the binomial theorem and geometric series

an = (1 +
1

n
)n = 1 + n

1

n
+

n(n − 1)

2!

1

n2
+ · · · +

n(n − 1) . . .1

n!

1

nn

= 1 + 1 +
1

2!
(1 −

1

n
) +

1

3!
(1 −

1

n
)(1 −

2

n
) +

1

n!
(1 −

1

n
)(1 −

2

n
) . . . (1 −

n − 1

n
)

≤ 1 + 1 +
1

2!
+

1

3!
+ · · · +

1

n!
= bn ≤ 1 + 1 +

1

2
+

1

22
+ · · · +

1

2n−1
< 1 +

1

1 − 1
2

= 3

Now an, bn are bounded increasing sequences, so they converge to limits e, η with e ≤ η.

(ii) Now suppose m < n and keep the first m terms of an

an > 1 + 1 +
1

2!
(1 −

1

n
) + · · · +

1

m!
(1 −

1

n
)(1 −

2

n
) . . . (1 −

m − 1

n
)

Holding m fixed and letting n → ∞ gives

e ≥ 1 + 1 +
1

2!
+

1

3!
+ · · · +

1

m!
= bm

Taking m → ∞ we have both e ≥ η and e ≤ η so e = η. !

• Like π, Euler’s number e is a transcendental number. A decimal approximation to e is

e = 2.71828182845904 . . .
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Complex Exponential

Theorem 17 (Complex Exponential)

ew = lim
n→∞

(

1 +
w

n

)n
, w ∈ C

Proof: Let w = 1/z and h = 1/n then

d

dz
Log z =

1

z
= lim

h→0+

Log(z + h) − Log z

h
= lim

h→0+

Log(1 + h
z)

h
= lim

n→∞Log(1 +
w

n
)n = w

By continuity of ew, it follows that

ew = elimn→∞Log(1+w
n)n

= lim
n→∞ eLog(1+w

n)n
= lim

n→∞(1 +
w

n
)n

!

• Using the binomial expansion and expanding suggests

ew = lim
n→∞(1 +

w

n
)n = lim

n→∞

[

1 + n
w

n
+

n(n − 1)

2!

w2

n2
+ · · · +

n(n − 1) . . .1

n!

wn

nn

]

= 1 + w + lim
n→∞

n(n − 1)

n2

w2

2!
+ lim

n→∞
n(n − 1)(n − 2)

n3

w3

3!
+ · · ·

= 1 + w +
w2

2!
+

w3

3!
+ · · · =

∞
∑

n=0

wn

n!

The result is true. But this derivation cannot be justified — it is not a proof!

• We will prove this exponential series later when we consider complex Taylor series. But

first we need to consider the convergence of complex series.
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Complex Series

Definition: A complex series is an infinite sum of the form
∞
∑

n=1

an where {an} is a complex

sequence. Each series is associated with a sequence of partial sums {Sn}

Sn =
n
∑

k=1

ak = a1 + a2 + · · · + an

We say that a complex series converges to a sum S and write

S =
∞
∑

n=1

an

if the sequence of partial sums converges to S. Otherwise, the series is said to diverge.

• The index for a series need not start at n = 1. For example, the geometric series is
∞
∑

n=0

zn.

Example: (Geometric Series) Show, for |z| < 1, the geometric series converges with the sum

∞
∑

n=0

zn =
1

1 − z
, |z| < 1

Solution: If |z| < 1 then since zn+1 → 0 as n → ∞

Sn = 1 + z + · · · + zn =
1 − zn+1

1 − z
→

1

1 − z
as n → ∞ !
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Limit Theorems and Divergence Test

Theorem 18 (Limit Theorems for Series)

If
∞
∑

n=1

an and
∞
∑

n=1

bn are convergent complex series and A, B ∈ C then

1. Linear:
∞
∑

n=1

(Aan + Bbn) = A
∞
∑

n=1

an + B
∞
∑

n=1

bn

2. Parts:
∞
∑

n=1

an = S ⇔
∞
∑

n=1

Re an = Re S and
∞
∑

n=1

Im an = Im S

Theorem 19 (Divergence Test) If
∞
∑

n=1

an is convergent then lim
n→∞ an = 0. Equivalently,

if lim
n→∞ an ̸= 0 or if lim

n→∞ an does not exist then
∞
∑

n=1

an diverges.

Proof: If
∞
∑

n=1

an is convergent then Sn =
n
∑

k=1

ak → S as n → ∞. So

an = Sn − Sn−1 → S − S = 0 as n → ∞ !

Example: The geometric series
∞
∑

n=0

zn with an = zn converges for |z| < 1. For |z| > 1 it is

clear that |an| = |z|n diverges. Similarly, for |z| = 1, |an| = |z|n = 1 ̸→ 0. Since limn→∞ an ̸= 0

or does not exist in these cases we conclude from the divergence test that the series diverges.

In summary, the geometric series converges for |z| < 1 and diverges for |z| ≥ 1. !
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Example Complex Series

• The comparison, ratio and root tests (familiar from real analysis) can be used to establish

convergence of complex series. See the supplementay material at the end of the slides for

this week.

Example: Compare use of the ratio and root tests to show the exponential series ez =
∞
∑

n=0

zn

n!

converges for all z ∈ C:

Solution: Ratio test is easy
∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

=
|z|

n + 1
→ 0 as n → ∞

But the root test requires Stirling’s approximation

n! ∼
√

2πn (n/e)n

|an|1/n =
|z|

(n!)1/n
∼

e|z|
n

→ 0 as n → ∞ !

Example:
∞
∑

n=1

(−2)3n+1zn

nn
converges absolutely for all z ∈ C since:

ρ = lim
n→∞ |an|1/n = lim

n→∞
23+1/n|z|

n
= 0 < 1 !

• It is usually easier to use the ratio test (rather than the root test) when it applies.
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More Example Complex Series

Example: Determine the largest region in which the following series is convergent and find

its sum:

∞
∑

n=0

1

(4 + 2z)n

This is a geometric series
∞
∑

n=0

wn with w = (4 + 2z)−1

∞
∑

n=0

1

(4 + 2z)n
=

1

1 − 1
4+2z

=
4 + 2z

3 + 2z
, |z + 2| > 1

2

since |w| < 1 ⇔ |z + 2| > 1
2. !

Example: Show that the series
∞
∑

n=0

cosnθ

2n
is convergent for all θ ∈ R and find its sum:

Since |e
iθ

2 | = 1
2 < 1 we have a convergent geometric series

∞
∑

n=0

(

eiθ

2

)n
=

1

1 − eiθ

2

=
2

2 − eiθ

2 − e−iθ

2 − e−iθ
=

4 − 2cos θ+ 2i sin θ

5 − 4 cos θ

⇒
∞
∑

n=0

cosnθ

2n
= Re

∞
∑

n=0

(

eiθ

2

)n
=

4 − 2 cos θ

5 − 4 cos θ
!
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Harmonic Series

Theorem 20 (Harmonic Series) The harmonic series, given by the Riemann zeta

function ζ(p) with p ∈ R, converges if p > 1 and diverges if p ≤ 1

ζ(p) =
∞
∑

n=1

1

np
, p > 1

Proof: (i) For p = 1 the series diverges since

S2k = 1 +
1

2
+
(

1

3
+

1

4

)

+
(

1

5
+

1

6
+

1

7
+

1

8

)

+ · · · +
(

1

2k−1 + 1
+ · · · +

1

2k

)

≥ 1 +
1

2
+
(

1

2

)

+
(

1

2

)

+ · · · +
(

1

2

)

= 1 +
k

2
→ ∞

(ii) For p < 1 the series diverges by comparison to p = 1

Sn =
n
∑

k=1

1

kp
>

n
∑

k=1

1

k
→ ∞ as n → ∞

(iii) For p > 1 we have by the geometric series since
∣

∣

∣

1
2p−1

∣

∣

∣ < 1

S2k−1 = 1 +
(

1

2p
+

1

3p

)

+
(

1

4p
+

1

5p
+

1

6p
+

1

7p

)

+ · · · +
(

1

(2k−1)p
+ · · · +

1

(2k − 1)p

)

≤ 1 +
2

2p
+

4

4p
+ · · · +

2k−1

(2k−1)p
= 1 +

1

2p−1
+

1

4p−1
+ · · · +

1

(2k−1)p−1
<

1

1 − 1
2p−1

So the increasing sequence of partial sums Sn converges by the completeness of R. !

• We will show later that ζ(2) =
∞
∑

n=1

1

n2
=
π2

6
, ζ(4) =

∞
∑

n=1

1

n4
=
π4

90
, etc.
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Power Series

Definition: A series of the form

∞
∑

n=0

an(z) =
∞
∑

n=0

an (z − a)n

with coefficients an ∈ C is called a power series around z = a.

Theorem 21 (Radius of Convergence)

A power series has a radius of convergence R such that either:

(i) The series converges only at a and R = 0.

(ii) The series converges absolutely on |z − a| < R and diverges if |z − a| > R > 0.

(iii) The series converges for all z and R = ∞.

Proof: See text. !

Theorem 22 (Analytic Power Series)

A power series converges to an analytic function inside its circle of convergence |z − a| = R.

Proof: See text. !

• A power series may converge at some, all or no points on the circle of convergence

|z−a| = R. The largest disk on which a power series converges is called its disk of convergence.

This is either an open or closed disk of the form |z − a| < R or |z − a| ≤ R.
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Radius of Convergence

• The radius of convergence R is actually defined by the Cauchy-Hadamard formula

1

R
= limsup

n→∞
|an|1/n

In practice, however, the radius of convergence is usually determined by applying the ratio or

root test:

ρ = lim
n→∞

∣

∣

∣

∣

an+1(z)

an(z)

∣

∣

∣

∣

= |z−a| lim
n→∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

< 1 ⇒
1

R
= lim

n→∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

ρ = lim
n→∞ |an(z)|1/n = |z−a| lim

n→∞ |an|1/n < 1 ⇒
1

R
= lim

n→∞ |an|1/n

Example: Find the radius of convergence of the power series

∞
∑

n=0

zn

(n + 1)2
= 1 +

z

4
+

z2

9
+

z3

16
+ · · ·

Solution: The convergence is determined by the ratio test with

1

R
= lim

n→∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

= lim
n→∞

(n + 1)2

(n + 2)2
= 1

So R = 1. In fact the series converges absolutely for |z| < 1. !
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Taylor and Maclaurin Series

Definition: If f(z) is analytic at z = a then the power series

∞
∑

n=0

f(n)(a)

n!
(z−a)n = f(a) + f ′(a)(z−a) +

f ′′(a)

2!
(z−a)2 + · · ·

is called the Taylor series of f(z) around a. If a = 0, it is called the Maclaurin series for f(z).

Example: Find Maclaurin series for ez, eiz, cosh z, sinh z, cos z, sin z and Log(1 + z) giving

the disk of convergence:

Solution: These can be obtained using the formulas

dn

dzn
ez
∣

∣

∣

∣

z=0
= 1,

dn

dzn
eiz
∣

∣

∣

∣

z=0
= in

dn

dzn
cosh z

∣

∣

∣

∣

z=0
= 1

2

dn

dzn
(ez + e−z)

∣

∣

∣

∣

z=0
= 1

2[1 + (−1)n], etc

dn

dzn
Log(1 + z)

∣

∣

∣

∣

z=0
= (−1)n−1(n − 1)!

and the ratio test for convergence. !
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Standard Maclaurin Series

ez =
∞
∑

n=0

zn

n!
= 1 + z +

z2

2!
+

z3

3!
+ · · · +

zn

n!
+ · · · |z| < ∞

eiz =
∞
∑

n=0

(iz)n

n!
= 1 + iz −

z2

2!
− i

z3

3!
+ · · · +

(iz)n

n!
+ · · · |z| < ∞

cosh z =
∞
∑

n=0

z2n

(2n)!
= 1 +

z2

2!
+

z4

4!
+ · · · +

z2n

(2n)!
+ · · · |z| < ∞

sinh z =
∞
∑

n=0

z2n+1

(2n + 1)!
= z +

z3

3!
+

z5

5!
+ · · · +

z2n+1

(2n + 1)!
+ · · · |z| < ∞

cos z =
∞
∑

n=0

(−1)n z2n

(2n)!
= 1 −

z2

2!
+

z4

4!
− · · · + (−1)n z2n

(2n)!
+ · · · |z| < ∞

sin z =
∞
∑

n=0

(−1)n z2n+1

(2n + 1)!
= z −

z3

3!
+

z5

5!
− · · · + (−1)n z2n+1

(2n + 1)!
+ · · · |z| < ∞

Log(1+z) =
∞
∑

n=1

(−1)n+1 zn

n
= z −

z2

2
+

z3

3
− · · · + (−1)n+1 zn

n
+ · · · |z| < 1

• Note that Log(1+z) has a branch point at z = −1.
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Taylor’s Theorem

Theorem 23 (Taylor’s Theorem)

If f(z) is analytic in the disk |z − a| < R then the Taylor series converges to f(z) for all z in

this disk. The convergence is uniform in any closed subdisk |z − a| ≤ R′ < R. Specifically,

f(z) =
n
∑

k=0

f(k)(z)

k!
(z − a)k + Rn(z)

where the remainder satisfies

sup
|z−a|≤R′

|Rn(z)| → 0 as n → ∞

Proof: Given later after Cauchy’s integral theorems. !

a
z

w

C

R
R′′

R′
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General l’Hôpital’s Rule

Theorem 24 (General l’Hôpital’s Rule) If f(z) and g(z) are analytic at z = a and f(z),

g(z) and their first n−1 derivatives all vanish at z = a but the nth derivative g(n)(a) ̸= 0 then

lim
z→a

f(z)

g(z)
=

f(n)(a)

g(n)(a)
= lim

z→a

f(n)(z)

g(n)(z)

Proof: Since f(z) and g(z) are both analytic in an open disk around z = a we can represent

them by their Taylor series

lim
z→a

f(z)

g(z)
= lim

z→a

∞
∑

k=0

f(k)(a)

k!
(z−a)k

∞
∑

k=0

g(k)(a)

k!
(z−a)k

= lim
z→a

∞
∑

k=n

f(k)(a)

k!
(z−a)k−n

∞
∑

k=n

g(k)(a)

k!
(z−a)k−n

=

lim
z→a

∞
∑

k=n

f(k)(a)

k!
(z−a)k−n

lim
z→a

∞
∑

k=n

g(k)(a)

k!
(z−a)k−n

=
f(n)(a)

g(n)(a)
= lim

z→a

f(n)(z)

g(n)(z)

and use the quotient rule, uniform convergence and continuity of the series and continuity of

the nth derivatives. !
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Example: General l’Hôpital’s Rule

Example: Evaluate (i) lim
z→0

2 cosh z−2−z2

z4
, (ii) lim

z→0
(
1

z
− cot z) :

(i) The first three derivatives vanish at z = 0 so by l’Hôpital

lim
z→a

f(z)

g(z)
=

f(4)(a)

g(4)(a)
=

2cosh0

4!
=

1

12

(ii) Alternatively you can use Taylor series

lim
z→0

(
1

z
− cot z) = lim

z→0

sin z − z cos z

z sin z

= lim
z→0

(z − z3/6+· · · ) − z(1 − z2/2 + · · · )
z(z − z3/6 + · · · )

= lim
z→0

z3/3 + · · ·
z2 + · · ·

= 0 !
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Taylor with Removable Singularity

Example: Find the Taylor expansion about z = 0 of

f(z) =
sin z

z
Solution: Note that f(z) has a removable singularity at z = 0 and that f(z) is in fact entire.

Indeed,

f(z) =
sin z

z
=

z − z3

3! + z5

5! − · · ·
z

= 1 −
z2

3!
+

z4

5!
− · · · =

∞
∑

n=0

(−1)n z2n

(2n + 1)!

The derivatives f(n)(z) are undefined at z = 0, so the coefficients in the Taylor series must

be interpreted as limits

f(n)(0)

n!
1→ lim

z→0

f(n)(z)

n!

Hence the Taylor coefficients are

lim
z→0

f(z) = lim
z→0

sin z

z
= 1

lim
z→0

f ′(z) = lim
z→0

z cos z−sin z

z2
= lim

z→0

z(1− z2

2 + · · · )−(z− z3

6 + · · · )
z2

= lim
z→0

−z3

3 + · · ·
z2

= 0

lim
z→0

f ′′(z)

2!
= lim

z→0

(2 − z2) sin z−2z cos z

2z3

= lim
z→0

(2 − z2)(z− z3

6 + · · · )−2z(1− z2

2 + · · · )
2z3

= lim
z→0

−z3

3 + · · ·
2z3

= −
1

6
= −

1

3!
and so on. !
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Real Taylor with Essential Singularity

Example: Find the Taylor series expansion about x = 0 of the function of the real variable x

f(x) = e−1/x2

Solution: Note that f(x) is C∞ (it has continuous partial derivatives of all orders) but it is

not analytic — it has an essential singularity at x = 0. Again since the derivatives f(n)(x)

are undefined at x = 0 we must interpret the coefficients in the Taylor series as limits

f(n)(0)

n!
1→ lim

x→0

f(n)(x)

n!

Hence the Taylor coefficients are

lim
x→0

f(x) = lim
x→0

e−1/x2
= 0, lim

x→0
f ′(x) = lim

x→0

2e−1/x2

x3
= 0

lim
x→0

f ′′(x)

2!
= lim

x→0

(4 − 6x2)e−1/x2

2x6
= 0, lim

x→0

f ′′′(x)

3!
= lim

x→0

4(2 − 9x2 + 6x4)e−1/x2

6x9
= 0

and so on since for n ≥ 0

∣

∣

∣

∣

e−1/x2

xn

∣

∣

∣

∣

=
|x|−n

e1/x2 ≤
|x|−n

(1/x2)n+1

(n+1)!

=
(n+1)! x2n+2

|x|n
→ 0 as x → 0

We conclude that the Taylor series of f(x) about x = 0 vanishes identically and so it does

not converge to f(x) in any open neighbourhood of x = 0. Existence of the Taylor series is

not sufficient to guarantee convergence to the function — we need analyticity! !
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Manipulation of Series

Theorem 25 (Adding Series)

Let A and B be constants and let f(z), g(z) be analytic with Taylor series

f(z) =
∞
∑

n=0

an(z − a)n, g(z) =
∞
∑

n=0

bn(z − a)n

Then the Taylor series of Af(z) + Bg(z) is

Af(z) + Bg(z) =
∞
∑

n=0

(Aan + Bbn)(z − a)n

Proof: Use
dn

dzn
[Af(z) + Bg(z)] = Af(n)(z) + Bg(n)(z). !

Theorem 26 (Cauchy Product)

Let f(z), g(z) be analytic with Taylor series

f(z) =
∞
∑

n=0

an(z − a)n, g(z) =
∞
∑

n=0

bn(z − a)n

then the Taylor series of f(z)g(z) around a is given by the Cauchy product

f(z)g(z) =
∞
∑

n=0

cn(z − a)n, cn =
n
∑

k=0

an−kbk

Proof: The coefficients cn are given by Leibnitz formula evaluated at z = a

1

n!

dn

dzn

[

f(z)g(z)
]

=
n
∑

k=0

f(n−k)(z)

(n − k)!

g(k)(z)

k!
!

• When series are added or multiplied, the resultant series converges in the smaller of the
two disks of convergence.
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Example of Manipulating Series

Example: Use the Cauchy product of series to show that

ez1ez2 = ez1+z2

Solution: For |z| < ∞, use the exponential series around z = 0

f(z) = ezz1 =
∞
∑

n=0

zn
1

n!
zn, an =

f(n)(z)

n!

∣

∣

∣

∣

z=0
=

zn
1

n!

g(z) = ezz2 =
∞
∑

n=0

zn
2

n!
zn, bn =

g(n)(z)

n!

∣

∣

∣

∣

z=0
=

zn
2

n!

f(z)g(z) = ezz1ezz2 =
( ∞
∑

n=0

zn
1

n!
zn
)( ∞

∑

n=0

zn
2

n!
zn
)

=
∞
∑

n=0

cnzn = ez(z1+z2)

since by the binomial expansion

cn =
n
∑

k=0

an−kbk =
n
∑

k=0

zn−k
1 zk

2

(n − k)!k!
=

(z1 + z2)
n

n!

The result follows by taking z → 1 in ezz1ezz2 = ez(z1+z2) using continuity which follows from

uniform convergence of the series on |z| ≤ r for any r > 0. !
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Another Example of Manipulating Series

Example: Use the Cauchy product to show

tanh z =
∞
∑

n=0

anzn = z −
z3

3
+

2z5

15
− · · ·

Solution:

cosh z tanh z = (1+
z2

2!
+

z4

4!
+· · · )(a0+a1z+a2z2+a3z3+· · · )

= a0 + a1z + (a2+
a0

2
)z2 + (a3+

a1

2
)z3 + (a4+

a2

2
+

a0

4!
)z4 + (a5+

a3

2
+

a1

4!
)z5 + · · ·

= sinh z = z +
z3

3!
+

z5

5!
+ · · ·

⇒ a0 = 0, a1 = 1, a2 = 0, a3 = −
1

3
, a4 = 0, a5 =

2

15
, . . . !
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Limits of Integrals

Lemma 27 (Limits of Integrals)

Let {an(z)} be a sequence of continuous functions on a region S and let γ be a curve inside

S. If an(z) converges uniformly to a(z) on γ then

lim
n→∞

∫

γ
an(z)dz =

∫

γ
lim

n→∞ an(z)dz =
∫

γ
a(z)dz

Proof: Using integral bounds we find
∣

∣

∣

∣

∫

γ
an(z)dz −

∫

γ
a(z)dz

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

γ
(an(z) − a(z))dz

∣

∣

∣

∣

≤
∫ b

a
|an(z(t)) − a(z(t))||z′(t)|dt

≤ sup
z∈γ

|an(z) − a(z)|
∫ b

a
|z′(t)|dt

= sup
z∈γ

|an(z) − a(z)| Length(γ) → 0 as n → ∞

since an(z) converges uniformly to a(z) on γ. !

4-23



Term-By-Term Integration

Theorem 28 (Term-By-Term Integration)

Let {an(z)} be a sequence of continuous functions on a region S and let γ be a curve inside

S. If a(z) =
∞
∑

n=1

an(z) converges uniformly on γ then

∫

γ
a(z)dz =

∫

γ

∞
∑

n=1

an(z)dz =
∞
∑

n=1

∫

γ
an(z)dz

Proof: Apply the previous lemma to the sequence of partial sums. !

Example: Use term-by-term integration to find the Maclaurin series of Log(1 + z): On

|z| ≤ r < 1 we have

Log(1+z) =
∫ z

0

dw

1+w
=
∫ z

0

∞
∑

n=0

(−1)nwndw =
∞
∑

n=0

(−1)n
∫ z

0
wndw =

∞
∑

n=0

(−1)n zn+1

n + 1
!

Uniform and absolute convergence follows by Weierstrass test.
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Term-by-Term Differentiation

Lemma 29 (Term-by-Term Differentiation)

If a′n(z) exists in S ⊂ C,
∞
∑

n=1

an(z) converges in S and
∞
∑

n=1

a′n(z) converges uniformly in S,

then the series can be differentiated term-by-term

d

dz

∞
∑

n=1

an(z) =
∞
∑

n=1

a′n(z) for all z ∈ S

Proof: See text — similar to term-by-term integration. !

Theorem 30 (Differentiation of Taylor Series)

If f(z) is analytic at z = a so that

f(z) =
∞
∑

n=0

f(n)(a)

n!
(z − a)n

the Taylor series for f ′(z) is given by term-by-term differentiation of the Taylor series for f(z).

Proof: The derived series obtained by term-by-term differentiation is

f ′(z) =
∞
∑

n=1

f(n)(a)

(n − 1)!
(z − a)n−1

Since this is the Taylor series of the analytic function f ′(z) it converges uniformly in any
closed subdisk of the disk of convergence. So the result follows from the lemma. !

• The derived series for f ′(z) converges with the same disk of convergence as for f(z).

Example: Use term-by-term differentiation to find the Maclaurin series of (1 − z)−2:

1

(1 − z)2
=

d

dz

(

1

1 − z

)

=
d

dz

∞
∑

n=0

zn =
∞
∑

n=0

d

dz
(zn) =

∞
∑

n=1

n zn−1, |z| ≤ r < 1 !
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Suplementary Material on Complex Series

• The remaining slides of Week 4 are supplementary material on complex series. For the

most part, this material involves results and concepts obtained by relatively straightforward

extensions of the corresponding results and concepts for real series previously encountered in

real analysis.

• Knowledge of most of this material will be assumed for completing problems on the problem

sheets and assignments as well as in the exams. In particular, you should be familiar with the

following topics:

• conditional and absolute convergence

• comparison, ratio and root test

• uniform convergence

• Weierstrass M-test

• This material we not be included in lectures. Please see the recommended textbooks for

more details on this material.
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Absolute and Conditional Convergence

Definition: A complex series
∞
∑

n=1

an is absolutely convergent if
∞
∑

n=1

|an| is convergent. A

complex series that is convergent but not absolutely convergent is called conditionally con-

vergent.

Theorem 31 (Absolute Convergence Implies Convergence)

If
∞
∑

n=1

an is absolutely convergent then it is convergent.

Proof: Let Sn =
n
∑

k=1

ak, Tn =
n
∑

k=1

|ak|. Since {Tn} converges it is a Cauchy sequence. The

sequence of partial sums Sn is also Cauchy and therefore converges since for n > m > N(ϵ)

|Sn − Sm| =
∣

∣

∣

∣

n
∑

k=m+1

ak

∣

∣

∣

∣

≤
n
∑

k=m+1

|ak| = |Tn − Tm| < ϵ !
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Example: Conditional Convergence

Example: The series
∞
∑

n=1

(−1)n−1

n
converges conditionally:

1/2 1

S2 S4 S6S8 S7S5 S3 S1

(i) No absolute convergence since
∞
∑

n=1

1

n
diverges.

(ii) The even and odd partial sums are monotone and bounded

S2n =
(

1 −
1

2

)

+
(

1

3
−

1

4

)

+
(

1

5
−

1

6

)

+ · · · +
(

1

2n − 1
−

1

2n

)

= 1 −
(

1

2
−

1

3

)

− · · ·−
(

1

2n − 2
−

1

2n − 1

)

−
1

2n
< 1 −

1

2n
≤ 1

S2n−1 = 1 −
(

1

2
−

1

3

)

−
(

1

4
−

1

5

)

− · · ·−
(

1

2n − 2
−

1

2n − 1

)

=
1

2
+
(

1

3
−

1

4

)

+ · · · +
(

1

2n − 3
−

1

2n − 2

)

+
1

2n − 1
≥

1

2

By completeness, they converge, and to the same limit since

lim
n→∞(S2n−1 − S2n) = lim

n→∞
1

2n
= 0 ⇒ lim

n→∞S2n−1 = lim
n→∞S2n !
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Rearranging Series

Theorem 32 (Rearranging Absolutely Convergent Series)

The terms of an absolutely convergent series can be arbitrarily rearranged.

Proof: See text. !

• Since the previous series is absolutely convergent for |z| < 1, we can rearrange its terms

Log(1 + z) =
∞
∑

n=0

(−1)n zn+1

n + 1
= z + z3

3 − z2

2 + z5

5 + z7

7 − z4

4 + · · · |z| < 1

=
∞
∑

n=1

(

z4n−3

4n − 3
+

z4n−1

4n − 1
−

z2n

2n

)

, |z| < 1

But this is not a power series, Abel’s theorem does not apply and the result does not hold

at z = 1. In fact for n ≥ 1 we have the identity

1
4n−3 + 1

4n−1 − 1
2n =

(

1
4n−3 − 1

4n−2 + 1
4n−1 − 1

4n

)

+ 1
2

(

1
2n−1 − 1

2n

)

This implies that

∞
∑

n=1

(

1

4n − 3
+

1

4n − 1
−

1

2n

)

= 1 +
1

3
−

1

2
+

1

5
+

1

7
−

1

4
+ · · · = Log2 + 1

2 Log2 = 3
2 Log2 !

• Rearranging the terms of a conditionally convergent series is thus invalid.
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Comparison Test

Theorem 33 (Comparison Test)

(i) If |an| ≤ bn for n ≥ n0 and
∞
∑

n=n0

bn = T is convergent, then
∞
∑

n=n0

an is absolutely convergent.

(ii) If 0 ≤ ck ≤ dk for k ≥ n0 and
∞
∑

n=n0

cn diverges then
∞
∑

n=n0

dn diverges.

Proof: (i) Let Sn =
n
∑

k=n0

|ak|, Tn =
n
∑

k=n0

bk. Then

Sn ≤ Tn < T

and the increasing sequence of partial sums Sn converges by the completeness of R. So
∞
∑

n=n0

an is absolutely convergent and so is

∞
∑

n=1

an =
n0−1
∑

n=1

an +
∞
∑

n=n0

an

(ii) The partial sums are bounded from below

Un =
n
∑

k=n0

dk ≥
n
∑

k=n0

ck

So Un → ∞ as n → ∞ since
n
∑

k=n0

ck → ∞. !
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Ratio Test

Theorem 34 (Ratio Test) Suppose that

ρ = lim
n→∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

Then the complex series
∞
∑

n=1

an converges absolutely if ρ < 1 and diverges if ρ > 1. The test

is inconclusive if ρ = 1.

Proof: (i) If ρ < 1 and r is such that 0 ≤ ρ < r < 1 then

|an+1| < |an|r, n ≥ N

⇒ |aN+1| < |aN |r, |aN+m| < |aN |rm, m > 0

⇒ |aN+1| + |aN+2| + · · · < |aN |(r + r2 + r3 + · · · )

and the series is absolutely convergent by comparison with the geometric series.

(ii) If ρ > 1 and r is such that 1 < r < ρ then

|an+1| > |an|r > |an|, n ≥ N

So lim
n→∞ |an| ̸= 0 and the series diverges.

(iii) ρ = 1 for the absolutely convergent series
∞
∑

n=1

(−1)n

n2
, the conditionally convergent series

∞
∑

n=1

(−1)n

n
and the divergent series

∞
∑

n=1

1

n
. !
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Examples: Comparison and Ratio Test

Example: Show that the series
∞
∑

n=1

zn

n(n + 1)
is absolutely convergent for |z| ≤ 1 :

|an| =
∣

∣

∣

∣

zn

n(n + 1)

∣

∣

∣

∣

=
|z|n

n(n + 1)
≤

1

n(n + 1)
≤

1

n2
= bn

So the series converges absolutely for |z| ≤ 1 by comparison to the convergent harmonic series
with p = 2 > 1. !

Example: (i)
∞
∑

n=1

(−3)n

n!
converges absolutely (ii)

∞
∑

n=1

(3)n

n2
diverges since:

ρ = lim
n→∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

lim
n→∞

3

n + 1
= 0 < 1 (i)

lim
n→∞

3n2

(n + 1)2
= 3 > 1 (ii) !

Example: Show that the series
∞
∑

n=1

(z + 2)n−1

4n(n + 1)3
converges absolutely for all |z + 2| ≤ 4:

Using the ratio test for |z + 2| < 4

ρ = lim
n→∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

= lim
n→∞

|z + 2|
4

(n + 1)3

(n + 2)3
=

|z + 2|
4

< 1

so the series converges absolutely for |z+2| < 4. If |z+2| = 4, the series converges absolutely
by comparison to the harmonic series with p = 3 > 1:

|an| =
|z + 2|n−1

4n(n + 1)3
=

1

4(n + 1)3
≤

1

n3
!
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Root Test

Theorem 35 (Root Test) Suppose that

ρ = lim
n→∞ |an|1/n

Then the complex series
∞
∑

n=1

an converges absolutely if ρ < 1 and diverges if ρ > 1. The test

is inconclusive if ρ = 1.

Proof: (i) if ρ < 1 and r is such that 0 ≤ ρ < r < 1 then

|an|1/n < r or |an| < rn, n ≥ N

∞
∑

n=N

|an| ≤
∞
∑

n=N

rn

So the series is absolutely convergent by comparison with the geometric series. (ii) and (iii)

are similar to the ratio test. !
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Uniform Convergence

Definition: The sequence {an(z)} converges uniformly to a(z) on a subset S ⊂ C if for any
ϵ > 0 there is an N(ϵ) (independent of z ∈ S) such that

sup
z∈S

|an(z) − a(z)| < ϵ whenever n > N(ϵ)

The series
∞
∑

n=1

an(z) converges uniformly to a(z) on S if the sequence of partial sums converges

uniformly to a(z) on S.

• For pointwise convergence N = N(ϵ, z) can depend on z ∈ C.

Theorem 36 (Uniform Convergence Implies Convergence)

(i) If the sequence {an(z)} converges uniformly to a(z) on a subset S ⊂ C then {an(z)}
converges pointwise on S.

(ii) If the series
∞
∑

n=1

an(z) converges uniformly to a(z) on a subset S ⊂ C then the series

converges pointwise on S.

Proof: (i) We need to show that for each z ∈ S

|an(z) − a(z)| < ϵ whenever n > N(ϵ, z)

But now for any z ∈ S, by uniform convergence

|an(z) − a(z)| ≤ sup
z∈S

|an(z) − a(z)| < ϵ whenever n > N(ϵ)

So pointwise convergence holds on S with N(ϵ, z) = N(ϵ) independent of z ∈ S.

(ii) Apply (i) to the sequence of partial sums. !
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Uniform Convergence and Continuity

Theorem 37 (Uniform Convergence and Continuity)

(i) If an(z) converges uniformly to a(z) on S ⊂ C and an(z) is continuous on S for each n
then a(z) is continuous.

(ii) If S(z) =
∞
∑

n=1

an(z) converges uniformly on S and an(z) is continuous for each n then S(z)

is continuous on S, that is,

lim
z→z0

∞
∑

n=1

an(z) =
∞
∑

n=1

lim
z→z0

an(z) =
∞
∑

n=1

an(z0), z0 ∈ S

Proof: (i) We are given that (a) {an(z)} converges uniformly to a(z) on S, (b) an(z) is

continuous at z0, that is,

(a) sup
z∈S

|an(z)−a(z)| <
ϵ

3
whenever n > N(ϵ)

(b) |an(z)−an(z0)| <
ϵ

3
whenever |z − z0| < δ(ϵ, z0)

We show a(z) is continuous at z = z0. Suppose z ∈ S, n > N(ϵ) and use the triangle inequality

|a(z) − a(z0)| ≤ |a(z)−an(z) + an(z)−an(z0) + an(z0)−a(z0)|

≤ |a(z)−an(z)| + |an(z)−an(z0)| + |an(z0)−a(z0)|

≤ sup
z∈S

|a(z)−an(z)| + |an(z)−an(z0)| + sup
z∈S

|an(z)−a(z)|

<
ϵ

3
+
ϵ

3
+
ϵ

3
= ϵ whenever |z − z0| < δ(ϵ, z0) by (a) and (b)

(ii) Follows by applying (i) to the sequence of continuous partial sums. !
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Example of Non-Uniform Convergence

Example: The sequence of real functions an(x) = xn converges pointwise on the interval

x ∈ [0,1] to a(x) given by

a(x) = lim
n→∞xn =

⎧

⎨

⎩

0, x ∈ [0,1)

1, x = 1

The sequence converges uniformly and absolutely on any closed interval [0, r] with r < 1 but

does not converge uniformly on the closed interval [0,1]:

Solution: On the interval [0, r] the convergence is uniform

and absolute

sup
x∈[0,r]

|xn − a(x)| = sup
x∈[0,r]

|xn| = rn → 0 as n → ∞

But on the interval [0,1] the convergence is not uniform

sup
x∈[0,1]

|xn − a(x)| = sup
x∈[0,1]

|xn| = 1 ̸→ 0 as n → ∞ !

• Notice that the limit function a(x) is continuous on any

interval [0, r] but not continuous on [0,1] where uniform

convergence fails.
0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Exercise: Discuss the convergence, uniform or otherwise, of an(z) = |z|n on the square

0 ≤ Re z ≤ 1, 0 ≤ Im z ≤ 1. !
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Weierstrass M-Test

Theorem 38 (Weierstrass M-Test)

Suppose (i) |an(z)| ≤ Mn for all z ∈ S and (ii)
∞
∑

n=1

Mn converges. Then
∞
∑

n=1

an(z) converges

uniformly and absolutely on S.

Proof: The absolute (pointwise) convergence of S(z) =
∞
∑

n=1

an(z) follows by comparison with

the series T =
∞
∑

n=1

Mn. For m > n ≥ 1, consider the partial sums

Sn(z) =
n
∑

k=1

ak(z), Tn =
n
∑

k=1

Mk

|Sm(z) − Sn(z)| =

∣

∣

∣

∣

m
∑

k=n+1

ak(z)
∣

∣

∣

∣

≤
m
∑

k=n+1

|ak(z)|

≤
m
∑

k=n+1

Mk = |Tm − Tn|

Letting m → ∞ and taking the supremum (maximum), we find

sup
z∈S

|S(z) − Sn(z)| ≤ |T − Tn| < ϵ for n > N(ϵ)

where N(ϵ) is independent of z ∈ S and uniform convergence follows. !
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Examples of Uniform Convergence

Example: The Riemann zeta function ζ(z) =
∞
∑

n=1

1

nz
converges uniformly and absolutely for

Re z ≥ p > 1 :

|an(z)| = |n−z| =
∣

∣

∣e−(x+iy)Logn
∣

∣

∣ = e−xLogn

≤ e−pLogn = n−p = Mn

Since the harmonic series
∞
∑

n=1

1

np
is convergent for p > 1, the result follows from the Weier-

strass M-test. !

Example: Show that the series
∞
∑

n=1

zn

n2
converges uniformly and absolutely on |z| ≤ 1.

Solution: For |z| ≤ 1, we apply the Weierstrass M-test with

|an(z)| =
|z|n

n2
≤

1

n2
= Mn

Since the harmonic series
∞
∑

n=1

n−p with p = 2 > 1 converges, the series converges uniformly

and absolutely on |z| ≤ 1. !
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More Examples of Uniform Convergence

Example: Show that the series
∞
∑

n=1

zn

n
converges uniformly and absolutely on |z| ≤ r for any

r < 1.

Solution: For |z| ≤ r < 1, we apply the Weierstrass M-test with

|an(z)| =
|z|n

n
≤

rn

n
≤ rn = Mn

Since the geometric series
∞
∑

n=1

rn with r < 1 converges, the series converges uniformly and

absolutely on |z| ≤ r < 1. !

• In fact, using Taylor series, we will see later that

∞
∑

n=1

zn

n
= −Log(1 − z), |z| < 1

Notice that the series
∞
∑

n=1

zn

n
diverges at z = 1 but converges on |z| < 1. However, this

convergence is not uniform on |z| < 1. The convergence is only uniform on the closed sub-

disks |z| ≤ r < 1. !
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Abel’s Continuity Theorem

Theorem 39 (Abel’s Continuity Theorem)

Suppose the power (Taylor) series

f(z) =
∞
∑

n=0

an (z − a)n

has the disk of convergence |z − a| < R and converges at z = w on the circle of convergence

|z − a| = R. Then

f(w) = lim
z→w

f(z) =
∞
∑

n=0

an (w − a)n

where the limit is taken from inside the circle of convergence.

Proof: See text. !

Example: From the Taylor series

Log(1 + z) =
∞
∑

n=0

(−1)n zn+1

n + 1
, |z| < R = 1

where the power series is conditionally convergent at z = 1. Hence, by Abel’s theorem,

Log2 = lim
z→1
|z|<1

Log(1 + z) =
∞
∑

n=0

(−1)n

n + 1
=

∞
∑

n=1

(

1

2n − 1
−

1

2n

)

= 1 −
1

2
+

1

3
−

1

4
+ · · · !
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Week 5: Line and Contour Integrals

13. Line and contour integrals, paths and curves
14. Properties of line integrals, path dependence
15. Cauchy-Goursat theorem and applications

Marie Ennemonde Camille Jordan (1838–1922) Edouard Jean-Baptiste Goursat (1858–1936)

Photographs c⃝ MacTutor Mathematics Archive (http://www-history.mcs.st-andrews.ac.uk)

5



Complex Integrals

Definition: Consider a complex-valued function of a real variable t

z : [a, b] → C z(t) = x(t) + iy(t)

where x(t), y(t) are continuous on [a, b]. Then we define the complex integral

∫ b

a
z(t)dt :=

∫ b

a
(x(t) + iy(t))dt =

∫ b

a
x(t)dt + i

∫ b

a
y(t)dt

where the real integrals giving the real and imaginary parts

Re
∫ b

a
z(t)dt =

∫ b

a
Re z(t)dt, Im

∫ b

a
z(t)dt =

∫ b

a
Im z(t)dt

exist by continuity as the limits of Riemann sums where {tj} is a partition of [a, b] with t0 = a,

tn = b and ∆tj = tj − tj−1

∫ b

a
x(t)dt := lim

n→∞
∆tj→0

n
∑

j=1

x(tj)∆tj
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Complex Primitives

Theorem 40 (Complex Primitives)

If the complex-valued function z(t) is continuous on [a, b] and has a primitive Z(t) such that

Z ′(t) = z(t) then

∫ b

a
z(t)dt = [Z(t)]ba = Z(b) − Z(a)

Example: Evaluate the integral
∫ 1

0
(t2 + it) dt

∫ 1

0
(t2 + it) dt =

[

t3

3
+ i

t2

2

]1

0

=
1

3
+

1

2
i !

Example: Evaluate the integral
∫ 2π

0
eit dt

∫ 2π

0
eit dt =

∫ 2π

0
(cos t + i sin t) dt =

[

sin t − i cos t
]2π

0
= 0

Or better
∫ 2π

0
eit dt =

[

1

i
eit
]2π

0
=

1

i
(e2πi − 1) = 0 !
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Primitives

Definition: If f(z) and F(z) are analytic in an open connected domain D and F ′(z) = f(z)

then F(z) is called a primitive (antiderivative or indefinite integral) of f(z) and denoted

F(z) =
∫

f(z) dz + constant

Theorem 41 (Primitives) If F(z), G(z) are both primitives of f(z) in a connected open

domain D so that F ′(z) = G′(z) = f(z) everywhere in D, then F(z) − G(z) is constant in D.

Proof: Let H(z) = F(z)−G(z) = u+iv. Since H ′(z) = 0 it follows from the Cauchy-Riemann

equations that in D

∂u

∂x
=
∂u

∂y
=
∂v

∂x
=
∂v

∂y
= 0

Integrating gives

u = const, v = const ⇒ H = u + iv = const in D !

• Note that f ′(z) = 0 in D implies f(z) is constant in D.

• Note also that connectedness is essential since

f(z) =

⎧

⎨

⎩

1, |z| < 1

0, |z| > 1

is analytic and f ′(z) = 0 on its domain of definition D but f is not constant on the discon-

nected domain D.
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Smooth Curves

We want to define contour integrals along curves or contours which generalize straight line

segments and arcs of circles. To do this we define the notion of smooth curves.

Definition: A smooth curve γ is a function z : [a, b] ⊂ R → C such that z(t) = x(t) + iy(t)

where x(t), y(t) are C1 and hence differentiable. The curve is simple (non-self-intersecting)

if z(t1) ̸= z(t2) for a ≤ t1 < t2 < b and is closed if z(a) = z(b). A smooth curve is directed or

oriented with initial point z(a) and endpoint z(b).

Definition: A contour Γ =
∑n

j=1 γj consists of a finite sequence of smooth curves γj,

j = 1,2, . . . , n with endpoints joined to initial points. A contour is thus piecewise smooth

(differentiable) and allows for self-intersections, corners and cusps (corners with common

tangents).

smooth
curve

cusp

not
simple

closed
contour

t

t = a

t = b

γ

γ1 γ2

Γ

γ1

γ2

γ4

γ3

γ5γ6

γ1

γ2

Γ

Γ
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Jordan Theorem

Theorem 42 (Jordan Theorem) A simple closed curve Γ divides the plane C into two open

regions having the curve as their common boundary. The bounded region is the interior of

Γ and the unbounded region the exterior. The curve Γ is positively oriented if the interior

always lies to the left.

Proof: Very difficult — see textbook.

smooth
curve

cusp

not
simple

closed
contour

t

t = a

t = b

γ

γ1 γ2

Γ

γ1

γ2

γ4

γ3

γ5γ6

γ1

γ2

Γ

Γ
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Contour Integrals

Definition: Let f(z) = u(x, y) + iv(x, y) be continuous in an open region containing the

smooth curve γ. Then we define the contour integral of f(z) along γ by

∫

γ
f(z)dz :=

∫ b

a
f(z(t))

dz

dt
dt =

∫ b

a
(u + iv)(x′(t) + iy′(t))dt

=
∫ b

a

[

u(x(t), y(t))x′(t) − v(x(t), y(t))y′(t)
]

dt

+ i
∫ b

a

[

u(x(t), y(t))y′(t) + v(x(t), y(t))x′(t)
]

dt

The real Riemann integrals exist because the integrands are continuous. In terms of line

integrals in vector analysis
∫

γ
f(z)dz =

∫

γ
(u + iv)(dx + idy) =

∫

γ
udx − vdy + i

∫

γ
vdx + udy

A contour integral over Γ =
∑n

j=1 γj is defined by

∫

Γ
f(z)dz :=

n
∑

j=1

∫

γj

f(z)dz

A contour integral over a simple closed contour in the positive (counter-clockwise) sense is

denoted
∮

Γ
f(z)dz = closed contour integral
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Properties of Line Integrals

Theorem 43 (Properties of Line Integrals)

If A, B are constants, f(z) and g(z) are continuous in an open region containing Γ, and −Γ

denotes the contour Γ traversed in the opposite direction then

1. Linear:
∫

Γ

(

Af(z) + Bg(z)
)

dz = A
∫

Γ
f(z)dz + B

∫

Γ
g(z)dz

2. Orientation:
∫

−Γ
f(z)dz = −

∫

Γ
f(z)dz

3. Additivity:
∫

Γ1+Γ2

f(z)dz =
∫

Γ1

f(z)dz +
∫

Γ2

f(z)dz

4. Bound:

∣

∣

∣

∣

∫

γ
f(z)dz

∣

∣

∣

∣

≤
∫ b

a
|f(z)||z′(t)|dt, γ : z = z(t), t ∈ [a, b]

5. Change of Variables:
∫

Γ
f(z)dz =

∫

Γ′
f(g(w))g′(w)dw

where z = g(w), Γ is the image of Γ′ under the change of variables and g(w) is analytic in a

region containing Γ′.
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Example Line Integrals

Example: Evaluate the line integral
∫

γ
zdz where γ is the straight line segment from 0 to

1 + i:

Solution: We parametrize the curve by z = x + iy = (1 + i)t = t + it so that x(t) = t and

y(t) = t with 0 ≤ t ≤ 1. Hence x′(t) = 1, y′(t) = 1, z′(t) = 1 + i and
∫

γ
zdz =

∫ 1

0
z

dz

dt
dt =

∫ 1

0
(1 + i)t(1 + i)dt

= 2i
∫ 1

0
tdt = 2i

[

t2

2

]1

0
= i !

Example: Evaluate the closed contour integral
∮

Γ

dz

z
where Γ is the circle |z| = 1 traversed

twice in the counter-clockwise direction:

Solution: We parametrize the circle |z| = 1 as z(t) = eit with t ∈ [0,2π] so that

z(0) = z(2π) = 1 and z′(t) = ieit

∮

Γ

dz

z
=

∮

|z|=1

dz

z
+
∮

|z|=1

dz

z
= 2

∮

|z|=1

dz

z

= 2
∫ 2π

0
z−1 dz

dt
dt = 2

∫ 2π

0
e−it(ieit)dt

= 2i
∫ 2π

0
dt = 4πi !
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Path Dependence

Example: Evaluate the line integral
∫

Γ
zdz along the curve Γ where

(a) Γ = γ is the straight line segment from z = 0 to z = 1 + i, (b)

Γ = γ1 + γ2 is the sum of two straight line segments from 0 to 1

and 1 to 1 + i and (c) where Γ = γ1 + γ2 − γ is a closed contour. 0 1

γ

γ1

γ2

1+i

(a) We parametrize the straight line segment by z = (1 + i)t with z′(t) = 1 + i, z = (1 − i)t

and t ∈ [0,1]

∫

γ
z dz =

∫ 1

0
z

dz

dt
dt =

∫ 1

0
(1 − i)t(1 + i)dt = 2

∫ 1

0
tdt = 2

[

t2

2

]1

0
= 1

(b) We parametrize (i) γ1 : z = t with z′(t) = 1 and t ∈ [0,1] and (ii) γ2 : z = 1 + it with

z′(t) = i and t ∈ [0,1]

∫

γ1
z dz =

∫ 1

0
z

dz

dt
dt =

∫ 1

0
tdt =

[

t2

2

]1

0
= 1

2

∫

γ2
z dz =

∫ 1

0
z

dz

dt
dt =

∫ 1

0
(1 − it) i dt =

∫ 1

0
(t + i)dt = 1

2 + i

∫

γ1+γ2
z dz =

∫

γ1
+
∫

γ2
z dz = 1

2 + (1
2 + i) = 1 + i

(c) By additivity, the closed contour integral is
∮

Γ
z dz =

∫

γ1
+
∫

γ2
−
∫

γ
z dz = 1

2 + (1
2 + i) − 1 = i !
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Path Independence

Example: Evaluate the line integral
∫

Γ
z2dz along the curve Γ

where (a) Γ = γ is the arc of the unit circle from z = 1 to z = i,

(b) Γ = γ1 + γ2 is the sum of two straight line segments from 1

to 0 and 0 to i and (c) where Γ = γ−γ1−γ2 is a closed contour. 0 1

γ

γ1

γ2

i

(a) Parametrize the quarter circle |z| = 1 by z = eit with z′(t) = ieit and t ∈ [0,π/2]
∫

γ
z2 dz =

∫ π/2

0
z2 dz

dt
dt =

∫ π/2

0
e2itieitdt = i

∫ π/2

0
e3itdt

= i
[

1

3i
e3it

]π/2

0
=

1

3
(e3πi/2 − 1) = −

1

3
(1 + i)

(b) We parametrize (i) −γ1 : z = t with z′(t) = 1 and t ∈ [0,1] and (ii) γ2 : z = it with

z′(t) = i and t ∈ [0,1]

−
∫

γ1
z2 dz =

∫

−γ1
z2 dz =

∫ 1

0
z2 dz

dt
dt =

∫ 1

0
t2dt =

[

t3

3

]1

0
=

1

3
∫

γ2
z2 dz =

∫ 1

0
z2 dz

dt
dt =

∫ 1

0
(it)2 i dt = −i

∫ 1

0
t2dt = −

i

3
∫

γ1+γ2
z2 dz =

∫

γ2
−
∫

−γ1
z2 dz = −

i

3
−

1

3
= −

1

3
(1 + i)

(c) By additivity, the closed contour integral is
∮

Γ
z2 dz =

∫

γ
−
∫

γ1
−
∫

γ2
z2 dz = −

1

3
(1 + i) +

1

3
(1 + i) = 0 !
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Green’s Theorem

Theorem 44 (Green’s Theorem) If R is a closed region of the xy plane bounded by a

simple closed curve Γ and if M and N are C1 in R then

∮

Γ=∂R

Mdx + Ndy =
∫

R

∫

(

∂N

∂x
−
∂M

∂y

)

dxdy

1 2 3 4 5 6

1

2

3

4

1 2 3 4 5 6

1

2

3

4

• Generally, by Green’s theorem, if Γ is a simple closed curve
∮

Γ
z dz =

∮

Γ
xdx+ydy + i

∮

Γ
xdy−ydx = 2i{area enclosed by Γ}
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Proof of Green’s Theorem

Proof: Assume first that R is convex (so that any

straight lines parallel to coordinate axes cut R in at

most two points) with lower (AEB), upper (AFB), left

(EAF) and right (EBF) curves y = Y1(x), y = Y2(x),

x = X1(y) and x = X2(y).

1 2 3 4 5 6

1

2

3

4

1 2 3 4 5 6

1

2

3

4

∮

Γ

M dx =
∫ b

a
M(x, Y1(x))dx +

∫ a

b
M(x, Y2(x))dx

= −
∫ b

a
[M(x, Y2)−M(x, Y1)] dx

= −
∫ b

a

[

∫ y=Y2(x)

y=Y1(x)

∂M(x, y)

∂y
dy

]

dx = −
∫

R

∫ ∂M

∂y
dxdy

∮

Γ

N dy =
∫ f

e
N(X2, y)dy +

∫ e

f
N(X1, y)dy

=
∫ f

e

[

∫ x=X2(y)

x=X1(y)

∂N(x, y)

∂x
dx

]

dy =
∫

R

∫ ∂N

∂x
dxdy

Adding gives the required result. If R is not convex (or is multi-connected), we can subdivide

R into two or more convex regions by cuts and use additivity. !
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Cauchy’s Theorem

Theorem 45 (Cauchy’s Theorem) If f(z) is analytic in a simply-connected open domain
D and f ′(z) is continuous in D then for any simple closed curve Γ in D

∮

Γ
f(z)dz = 0

Proof: Let R be the union of Γ and its interior so that Γ = ∂R. The result then follows from
Green’s theorem (which requires Γ simple and f ′(z) continuous)

∮

Γ
f(z)dz =

∮

Γ
(u+iv)(dx+idy) =

∮

Γ
udx−vdy + i

∮

Γ
vdx+udy

=
∫

R

∫

(

−
∂v

∂x
−
∂u

∂y

)

dxdy + i
∫

R

∫

(

∂u

∂x
−
∂v

∂y

)

dxdy = 0

since by Cauchy-Riemann equations

∂u

∂x
=
∂v

∂y
,

∂v

∂x
= −

∂u

∂y
!

Theorem 46 (Cauchy-Goursat Theorem)

If f(z) is analytic in a simply-connected open domain D then for any closed contour Γ in D
∮

Γ
f(z)dz = 0

Proof: Difficult — see text. Removes requirements that Γ is simple and f ′(z) is continuous in
R. Note Γ = ∂R must be positively oriented so that R is always on the left. Also the region R
need not be simply-connected provided all of the boundary of R is included in Γ = ∂R. !
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Examples of Cauchy’s Theorem

Example: Verify Cauchy’s theorem for
∮

Γ
cos z dz where the closed contour traverses counter-

clockwise the square with vertices at z = 0,1,1 + i, i.

Solution: Since f(z) is entire, all closed contour integrals must vanish. We parametrize the

four edges by (i) γ1: z = t, t ∈ [0,1], (ii) γ2: z = 1+ it, t ∈ [0,1], (iii) −γ3: z = i+ t, t ∈ [0,1],

(iv) −γ4: z = it, t ∈ [0,1]:

∫

γ1
cos z dz =

∫ 1

0
cos t dt =

[

sin t
]1

0
= sin 1

∫

γ2
cos z dz = i

∫ 1

0
cos(1+it)dt =

[

sin(1+it)
]1

0
=sin(1+i)−sin 1

∫

−γ3
cos z dz =

∫ 1

0
cos(i+t) dt =

[

sin(i+t)
]1

0
= sin(1+i) − sin i

∫

−γ4
cos z dz = i

∫ 1

0
cos(it) dt =

[

sin(it)
]1

0
= sin i

∮

Γ
cos z dz =

∫

γ1
+
∫

γ2
−
∫

−γ3
−
∫

−γ4
cos z dz

= sin 1 + [sin(1+i) − sin 1] − [sin(1+i) − sin i] − sin i = 0 !

0 1γ1

γ4

γ3

γ2

i 1+i

Example: Evaluate the contour integral
∮

|z|=2

ez dz

(z2 − 9)
:

The integrand is analytic except at the poles z = ±3, so it is analytic in and on the circle

|z| = 2. The closed contour integral therefore vanishes by Cauchy’s theorem. !
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Conservative Vector Fields

Theorem 47 (Conservative Vector Fields)

If f(z) = u(x, y) + iv(x, y) is analytic in a simply-connected open domain D, then the vector

fields A1 = (u,−v) = ∇ϕ1 and A2 = (v, u) = ∇ϕ2 are conservative in D ⊂ R2 and
∫

f(z) dz is

independent of path.

Proof: Recall that, in vector analysis, a C1 vector field A on a simply-connected open domain

D is conservative and can be written as A = ∇ϕ if and only its curl, ∇× A, vanishes. So let

A1 = (u,−v,0), A2 = (v, u,0) and use the Cauchy-Riemann equations to show that in R3

∇× A1 =

∣

∣

∣

∣

∣

∣

∣

∣

i j k
∂
∂x

∂
∂y

∂
∂z

u −v 0

∣

∣

∣

∣

∣

∣

∣

∣

= −
(∂u

∂y
+
∂v

∂x

)

k = 0

∇× A2 =

∣

∣

∣

∣

∣

∣

∣

∣

i j k
∂
∂x

∂
∂y

∂
∂z

v u 0

∣

∣

∣

∣

∣

∣

∣

∣

=
(∂u

∂x
−
∂v

∂y

)

k = 0

Then restrict to R2 since u, v are functions of x, y only. !

• Note that if dr = (dx, dy, dz) then since A1 and A2 are conservative
∫

f(z)dz =
∫

(u + iv)(dx + idy) =
∫

u dx − v dy + i
∫

v dx + u dy

=
∫

(u,−v,0) · dr + i
∫

(v, u,0) · dr =
∫

A1 · dr + i
∫

A2 · dr

= path independent integral
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Week 6: Cauchy’s Integral Formula

16. Fundamental theorem of calculus, path independence
17. Deformation of contours about simple poles
18. General Cauchy integral formula

Augustin Louis Cauchy (1789–1857)

Photographs c⃝ MacTutor Mathematics Archive (http://www-history.mcs.st-andrews.ac.uk)
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Fundamental Theorem of Calculus

Theorem 48 (Fundamental Theorem of Calculus) Suppose f(z) is analytic in a simply-

connected open domain D then

∫ z2

z1
f(z)dz = F(z)

∣

∣

∣

∣

z2

z1
= F(z2) − F(z1)

is independent of the path in D joining z1 and z2. Here

F(z) =
∫ z

z0
f(w)dw, z0 ∈ D

is a primitive of f(z) and is thus analytic in D

F ′(z) = f(z), z ∈ D

6-1



Proof of Fundamental Theorem of Calculus

Proof: Suppose Γ1 and Γ2 are two contours joining z1 and z2 in D. Then Γ = Γ1 − Γ2 is a

closed contour and path independence follows from Cauchy’s theorem

0 =
∮

Γ
f(z)dz =

∫

Γ1−Γ2

f(z)dz =
∫

Γ1

f(z)dz −
∫

Γ2

f(z)dz

Since f(z) must be analytic everywhere between Γ1 and Γ2, this region must be simply

connected so that Γ1 can be continuously deformed into Γ2. By path independence, F(z) is

well-defined in D with derivative

F ′(z) = lim
∆z→0

F(z + ∆z) − F(z)

∆z

= lim
∆z→0

1

∆z

[
∫ z+∆z

z0
−
∫ z

z0
f(w)dw

]

= lim
∆z→0

1

∆z

∫ z+∆z

z
f(w)dw = f(z)

This last limit follows, since f(z) is continuous, by the following Lemma. !
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Estimating Integrals

Lemma 49 (Continuity Lemma) If f(z) is continuous in an open domain containing z and

z + ∆z then

lim
∆z→0

1

∆z

∫ z+∆z

z
f(w)dw = f(z)

Proof: Since f(z) is continuous we have

|f(w) − f(z)| < ϵ whenever |w − z| < δ(ϵ)

Choose |∆z| sufficiently small so that |w − z| ≤ |∆z| < δ(ϵ) then
∣

∣

∣

∣

1

∆z

∫ z+∆z

z
f(w)dw − f(z)

∣

∣

∣

∣

=
∣

∣

∣

∣

1

∆z

∫ z+∆z

z
[f(w) − f(z)]dw

∣

∣

∣

∣

≤
1

|∆z|

∫ t+∆t

t

∣

∣

∣

∣

f(w) − f(z)
∣

∣

∣

∣

∣

∣

∣

∣

dw

dt

∣

∣

∣

∣

dt ≤
ϵ

|∆z|

∫ t+∆t

t

∣

∣

∣

∣

dw

dt

∣

∣

∣

∣

dt =
ϵ

|∆z|
Length(Γ) = ϵ

Here we used the path independence of the contour integral to choose Γ to be the straight

line segment between z and z + ∆z so that Length(Γ) = |∆z|. !

Theorem 50 (Integral Estimate) If f(z) is continuous in an open domain containing Γ and

|f(z)| ≤ M on Γ, then

∣

∣

∣

∣

∫

Γ
f(z)dz

∣

∣

∣

∣

≤
∫ t2

t1

∣

∣

∣

∣

f(z)
∣

∣

∣

∣

∣

∣

∣

∣

dz

dt

∣

∣

∣

∣

dt ≤ M Length(Γ)

Proof: The proof of this useful estimate is left as an exercise. !

6-3



Examples of Fundamental Theorem

Example: Evaluate the line integrals
∫ z2

z1
zndz, n ∈ Z around the unit circle from z1 = e−i(π−ϵ)

to z2 = ei(π−ϵ), 0 < ϵ < π and hence obtain
∮

|z|=1
zndz:

For n ≥ 0, f(z) = zn is entire whereas, for n ≤ −1, f(z) = zn is analytic in the punctured

plane C\{0}. Since this is not simply-connected we introduce a cut and work in C\(−∞,0]:

∫ z2

z1
zndz =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

[

zn+1

n+1

]z2

z1
, n ̸= −1

[

Log z
]z2

z1
, n = −1

∮

|z|=1
zndz = lim

ϵ→0

∫ z2

z1
zndz =

⎧

⎨

⎩

0, n ̸= −1

2πi, n = −1
!

0

z2

z1

|z| = 1

Exercise: Verify this directly by evaluating the line integrals.

Example: Evaluate the closed contour integral
∮

|z+2|=1

dz

z
:

F(z) = Log z is not a primitive since it is not analytic at z = −1,−3 on the contour. However,

the branch Log(−z) with 0 ≤ arg z < 2π is a primitive and is analytic in C\[0,∞). Now it

follows as in the previous example that the closed contour integral vanishes
∮

|z+2|=1

dz

z
= lim

z2→z1

[

Log(−z)
]z2

z1
= 0 !
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Trigonometric Integrals

Example: Show that

∫ 2π

0
cos2n t dt =

1 · 3 · 5 · · · (2n − 1)

2 · 4 · · · · (2n)
2π, n = 1,2,3, . . .

Solution: Let z = eit so that dz = ieitdt = izdt and dt = dz/iz. Then cos t = 1
2(z + z−1) and

by the binomial theorem

∫ 2π

0
cos2n t dt =

∮

|z|=1

[

1
2(z + z−1)

]2n dz

iz
=

1

22ni

∮

|z|=1

2n
∑

k=0

(

2n

k

)

z2n−2k dz

z

=
1

22n i

(

2n

n

)
∮

|z|=1

dz

z
=

1

22n i

(

2n

n

)

2πi

=
1

22n

(2n)!

n!n!
2π =

(2n)(2n − 1)(2n − 2) · · ·1
(2nn!)(2nn!)

2π

=
(2n − 1)(2n − 3) · · ·3 · 1

(2n)(2n − 2) · · ·4 · 2
2π

where we used the previous result

∮

|z|=1
zndz =

⎧

⎨

⎩

0, n ̸= −1

2πi, n = −1
!

Exercise: Establish the previous cosine integrals using the methods of real analysis, that is,

integration by parts and recursion relations. !
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Closed Contours About Simple Poles

Theorem 51 (Closed Contours About Simple Poles)

If Γ is any closed contour not passing through z = a

∮

Γ

dz

z − a
=

⎧

⎨

⎩

0, a outside Γ

2πi, a inside Γ

a

Γγ

Γ1

R

Proof: The integrand f(z) =
1

z − a
is analytic in C\{a}. Hence if a lies outside Γ the integral

vanishes by Cauchy’s theorem. If a lies inside Γ, the contour can be deformed into a small

circle γ of radius ϵ > 0 centered on a with z − a = ϵeit, z′(t) = iϵeit and 0 ≤ t ≤ 2π so that

∮

Γ

dz

z − a
=
∮

|z−a|=ϵ

dz

z − a
=
∫ 2π

0

i ϵ eit

ϵ eit
dt = i

∫ 2π

0
dt = 2πi

Note that the analyticity domain of f(z) between Γ and γ is not simply-connected but that

introducing a cut Γ1 gives a simply-connected domain R. Then Cauchy’s theorem implies
∮

∂R
f(z)dz =

∮

Γ
+
∫

−Γ1

+
∮

−γ
+
∫

Γ1

f(z)dz = 0

and hence the deformation is valid
∮

Γ
f(z)dz =

∮

γ
f(z)dz !
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Deforming Closed Contour Integrals

Example: Evaluate
∮

Γ

3z − 2

z2 − z
dz where the closed contour Γ is the ellipse |z| + |z − 1| = 3:

0 1

Γ

γ1 γ2

Γ1 Γ2

R

Solution: By partial fractions, f(z) =
3z − 2

z2 − z
=

2

z
+

1

z − 1
is analytic in C\{0,1}.

We introduce small circles centered at z = 0,1 and two cuts Γ1,Γ2 so that the region R

between Γ and the circles is simply-connected. Cauchy’s theorem then tells us that we can

deform the contour

∮

∂R
f(z)dz =

∮

Γ
+
∫

Γ1

+
∮

−γ1
+
∫

−Γ1

+
∫

−Γ2

+
∮

−γ2
+
∫

Γ2

f(z)dz = 0

⇒
∮

Γ
f(z)dz =

∮

γ1
+
∮

γ2
f(z)dz =

∮

γ1
+
∮

γ2

[

2

z
+

1

z − 1

]

dz

= 2(2πi) + 0 + 2 · 0 + 2πi = 6πi

where each of the four integrals is evaluated using the previous theorem. !

• This method easily generalizes to evaluate closed contour integrals of any rational function

of z with only simple poles.
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Cauchy Integral Formula

Theorem 52 (Cauchy Integral Formula) Let Γ be a positively oriented simple closed con-

tour. If f(z) is analytic in a simply-connected open domain D containing Γ then

f(a) =
1

2πi

∮

Γ

f(z)

z − a
dz, a inside Γ

a

Γγ

Γ1

R

Proof: The integrand is analytic in D\{a}. We introduce a small circle γ of radius ϵ > 0

centered on z = a and a cut Γ1 so that the region R between Γ and γ is simply-connected.

We parametrize γ by z − a = ϵeit with z′(t) = iϵeit. By deforming the contour we find
∮

Γ

f(z)

z − a
dz =

∮

γ

f(z)

z − a
dz

Since the LHS is independent of ϵ we can take ϵ→ 0
∮

Γ

f(z)

z − a
dz = lim

ϵ→0

∮

γ

f(z)

z − a
dz = i lim

ϵ→0

∫ 2π

0
f(a + ϵ eit)dt

= i
∫ 2π

0
lim
ϵ→0

f(a + ϵ eit)dt = i
∫ 2π

0
f(a)dt = 2πif(a)

where we have used the continuity of f(z). !
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A Trigonometric Integral

Example: Evaluate the integral I =
∫ 2π

0

dθ

3 − 2cos θ
:

|z| = 1

z+z−

Let z = eiθ so that z′(θ) = ieiθ = iz and dθ = −idz/z. Then

I =
∫ 2π

0

dθ

3 − 2 cos θ
= −i

∮

|z|=1

dz

z(3 − z − z−1)

= i
∮

|z|=1

dz

z2 − 3z + 1
= i

∮

|z|=1

dz

(z − z+)(z − z−)

where z± = (3 ±
√

5)/2 = 2.618..,0.381..

So setting

f(z) = (z − z+)−1

which is analytic inside |z| = 1, we have by the Cauchy integral formula

I = i
∮

|z|=1

f(z)

(z − z−)
dz = (i)(2πi)f(z−) = −

2π

z− − z+
=

2π√
5

!

Exercise: Evaluate I using the methods of systematic integration for real integrals, that is,

by using the substitution t = tan(θ/2). !
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General Cauchy Integral Formula

Theorem 53 (General Cauchy Integral Formula) Let Γ be a positively oriented simple

closed contour. If f(z) is analytic in a simply-connected open domain D containing Γ then

f(n)(a) =
n!

2πi

∮

Γ

f(z)

(z − a)n+1
dz, a inside Γ, n = 0,1,2, . . .

Proof: See text. This result is equivalent to

dn

dan
f(a) =

dn

dan

[

1

2πi

∮

Γ

f(z)

z − a
dz

]

=
1

2πi

∮

Γ

∂n

∂an

f(z)

z − a
dz

Example: Evaluate the integral
∮

|z|=4

ez dz

(z − 2)2
:

Let f(z) = ez which is entire, then by the general Cauchy integral formula with n = 1
∮

|z|=4

ez dz

(z − 2)2
= 2πif ′(2) = 2πie2 !

Corollary 54 (Analyticity of Derivatives) If f(z) is analytic in an open simply-connected

domain D, then f ′(z), f ′′(z), . . . , f(n)(z), . . . are all analytic in D.

Proof: Follows from the general Cauchy integral formula since, for a suitably chosen closed

contour Γ, the derivatives exist and are given by

f(n)(z) =
n!

2πi

∮

Γ

f(w)

(w − z)n+1
dw !
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Taylor’s Theorem

Theorem 55 (Taylor’s Theorem)

If f(z) is analytic in the disk |z − a| < R then the Taylor series converges to f(z) for all z in

this disk. The convergence is uniform in any closed subdisk |z − a| ≤ R′ < R. Specifically,

f(z) =
n
∑

k=0

f(k)(z)

k!
(z − a)k + Rn(z)

where the remainder satisfies

sup
|z−a|≤R′

|Rn(z)| → 0 as n → ∞

a
z

w

C

R
R′′

R′
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Proof of Taylor’s Theorem

Proof: Let C be the circle |z − a| = R′′ with R′ < R′′ < R. Then by Cauchy’s integral formula

with n = 0,1,2, . . . for z inside C

f(z) =
1

2πi

∮

C

f(w)

w − z
dw,

f(n)(a)

n!
=

1

2πi

∮

C

f(w)

(w − a)n+1
dw

If we substitute

1

w − z
=

1

(w − a) − (z − a)
=

1

w − a

1

1 − z−a
w−a

=
1

w − a

⎡

⎢

⎢

⎣

1 +
z − a

w − a
+

(z − a)2

(w − a)2
+ · · · +

(z − a)n

(w − a)n
+

(z−a)n+1

(w−a)n+1

1 − z−a
w−a

⎤

⎥

⎥

⎦

into the first formula, integrate term-by-term and use the second formula we find

f(z) =
n
∑

k=0

f(k)(a)

k!
(z − a)k + Rn(z)

where the remainder Rn(z) is uniformly bounded on |z − a| ≤ R′ by

|Rn(z)| =
1

2π

∣

∣

∣

∣

∫

C

f(w)

(w − z)

(z − a)n+1

(w − a)n+1
dw
∣

∣

∣

∣

≤
2πR′′

2π(R′′ − R′)

(

R′

R′′

)n+1
max
w∈C

|f(w)| → 0 as n → ∞ !
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Evaluation of Integrals

Example: Show that

1

2πi

∮

|z|=2

eztdz

z2 + 1
= sin t, t ∈ C

|z| = 2

γ1

γ2

i

−i

Solution: The integrand is analytic except at the simple poles z = ±i. We place circles γ1
and γ2 of radius ϵ around these poles so that by deformation of contours

∮

|z|=2

eztdz

z2 + 1
=

∮

γ1
+
∮

γ2

eztdz

z2 + 1
=

∮

γ1

f1(z)dz

z − i
+
∮

γ2

f2(z)dz

z + i

where

f1(z) =
ezt

z + i
, f2(z) =

ezt

z − i

Hence by the Cauchy integral formula

1

2πi

∮

|z|=2

eztdz

z2 + 1
= f1(i) + f2(−i) =

1

2i
eit −

1

2i
e−it = sin t !
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Another Trigonometric Integral

Example: Use the general Cauchy integral formula to evaluate the integral

I =
∫ 2π

0

dθ

(2 + cos θ)3

Solution: Let z = eiθ so that z′(θ) = ieiθ = iz and

dθ = −idz/z. Then

I =
∫ 2π

0

dθ

(2 + cos θ)3
= −i

∮

|z|=1

8dz

z(4 + z + z−1)3

= −i
∮

|z|=1

8z2 dz

(z2 + 4z + 1)3
= −i

∮

|z|=1

f(z)dz

(z − z+)3

|z| = 1

z+z−

where z± = (−2 ±
√

3) = −0.26..,−3.73.. and

f(z) =
8z2

(z − z−)3

which is analytic inside |z| = 1. Note that

z+ + z− = −4, z+ − z− = 2
√

3, z+z− = 1

So, by the general Cauchy integral formula with n = 2

I = (−i)(2πi)f ′′(z+)/2! = π
[

16[(z + z−)2 + 2zz−]

(z − z−)5

]

z=z+
= 16π

16 + 2

(2
√

3)5
=

π√
3

!

Exercise: Evaluate I using the substitution t = tan(θ/2). !
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Week 7: Singularities and Laurent Series
19. Isolated zeros and poles, removable and essential singularities
20. Laurent series
21. Residues

Charles Emile Picard (1856–1941)

Photographs c⃝ MacTutor Mathematics Archive (http://www-history.mcs.st-andrews.ac.uk)
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Order m Zeros

Definition: A point z = a is a zero of order m of f(z) if f(z) is analytic at z = a and f(z)

and its first m − 1 derivatives vanish at z = a but f(m)(a) ̸= 0. A zero of order 1 is a simple

zero.

Lemma 56 (Order m Zero)

Let f(z) be analytic at z = a. Then f(z) has a zero of order m at z = a if and only if

f(z) = (z − a)mg(z)

where g(z) is analytic at z = a with g(a) ̸= 0.

Proof: Using Taylor series

f(z) =
∞
∑

n=m

f(n)(a)

n!
(z − a)n ⇒ f(z) = (z − a)mg(z)

with g(z) =
∞
∑

n=0

f(n+m)(a)

(n + m)!
(z − a)n analytic at z = a

Conversely,

g(z) =
∞
∑

n=0

an(z − a)n ⇒ f(z) = (z − a)m
∞
∑

n=0

an(z − a)n

and since a0 ̸= 0, f(z) has a zero of order m at z = a. !

7-1



Isolated Zeros

Theorem 57 (Isolated Zeros)

Zeros of an analytic function which is not identically zero are isolated, that is, if z = a is a

zero then there are no zeros in a punctured disk about z = a.

Proof: The Taylor series about z = a with Taylor coefficients an converges to f(z) on some

open disk about z = a. If an = 0 for all n then f(z) ≡ 0. Otherwise, there is a smallest m ≥ 1

such that am ̸= 0 and f(z) = (z − a)mg(z) has an order m zero. Now g(z) is analytic and

therefore continuous at z = a with g(a) ̸= 0. Hence g(z) ̸= 0 in an open disk about z = a

and the result follows. !
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Isolated Singularities

Definition: Let f(z) have an isolated singularity at z = a and Laurent expansion

f(z) =
∞
∑

n=−∞
an(z − a)n, 0 < |z − a| < R

(i) If an = 0 for all n < 0 then we say z = a is a removable singularity.

(ii) If a−m ̸= 0 for some m > 0 but an = 0 for all n < −m, we say z = a is a pole of order m.

(iii) If a−n ̸= 0 for an infinite number of n > 0, we say z = a is an essential singularity.

Examples: From Laurent expansions we find

(i) f(z) = sin z/z has a removable singularity at z = 0.

(ii) f(z) = ez/z3 has a pole of order 3 at z = 0.

(iii) f(z) = e1/z has an essential singularity at z = 0

e1/z = 1 +
1

z
+

1

2! z2
+

1

3! z3
+ · · · !

Theorem 58 (Isolated Singularities) If f(z) has an isolated singularity at z = a then

(i) z = a is a removable singularity ⇔ |f(z)| is bounded near z = a ⇔ f(z) has a limit as

z → a ⇔ f(z) can be redefined at z = a so that f(z) is analytic at z = a.

(ii) z = a is a pole ⇔ |f(z)| → ∞ as z → a ⇔ f(z) = g(z)(z − a)−m with m > 0 and g(a) ̸= 0.

(iii) z = a is an essential singularity ⇔ |f(z)| is neither bounded nor goes to infinity as z → a

⇔ f(z) assumes every complex value, with possibly one exception, in every neighbourhood

of z = a.

Proof: See text: (i) is easy, (ii) is similar to previous theorem, (iii) is hard (Picard). !
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Laurent Series

Definition: A series of the form

∞
∑

n=−∞
an(z − a)n =

∞
∑

n=0

an(z − a)n +
∞
∑

n=1

a−n(z − a)−n

convergent in some open annulus r < |z − a| < R is called a Laurent series around z = a.

• A Laurent series is the sum of two Taylor series, the first in positive powers of w = z − a

and the second in positive powers of w = (z − a)−1, that is, in negative powers of z − a. The

first series converges for |z−a| < R and the second series converges for |z−a| > r or
∣

∣

∣

1
z−a

∣

∣

∣ < 1
r .

The Laurent series therefore converges in the intersection of these two regions given by the

open annulus or ring r < |z − a| < R.

• In practice, a Laurent series is usually obtained by combining suitable Taylor series. For

example, the Laurent series for f(z) = z2e1/z about z = 0 is

z2
(

1 +
1

z
+

1

2!z2
+

1

3!z3
+ · · ·

)

= z2 + z +
1

2!
+

1

3!z
+

1

4!z2
+ · · ·

• The inner and outer radii of convergence r, R are defined by the Cauchy-Hadamard formulas

r = limsup
n→∞

|a−n|1/n,
1

R
= limsup

n→∞
|an|1/n

In practice, however, r and R are usually determined by applying the ratio or root test.
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Laurent Theorem

Theorem 59 (Laurent Theorem)

(i) Suppose f(z) is analytic in an open annulus r < |z − a| < R and let C be any circle with

center at a lying in this annulus. Then the Laurent series with coefficients

an =
1

2πi

∮

C

f(w)

(w − a)n+1
dw, n = 0,±1,±2, . . . , a is inside C

converges uniformly to f(z) in any closed subannulus r < ρ1 ≤ |z − a| ≤ ρ2 < R.

(ii) Conversely, If r < R and
∞
∑

n=0

an(z − a)n converges for |z − a| < R,
∞
∑

n=1

a−n(z − a)−n converges for |z − a| > r

then there is a unique function f(z) analytic in r < |z − a| < R with the Laurent series
∞
∑

n=−∞
an(z − a)n.

Proof: Similar to Taylor’s theorem — see text. !

• If f(z) is analytic in |z − a| < R then by Cauchy’s theorem an = 0 for n ≤ −1 and the

series reduces to the Taylor series. In practice, the coefficients are typically obtained by

manipulating Taylor expansions about z − a = 0 and z − a = ∞.
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Example of Laurent Series

Example: Find the Laurent series of f(z) =
1

(z − 1)(z − 2)
in the annulus 1 < |z| < 2:

Solution: Since the only singularities are at z = 1,2, f(z) is analytic in 1 < |z| < 2. Using

partial fractions

1

(z − 1)(z − 2)
=

1

(z − 2)
−

1

(z − 1)
= −

∞
∑

n=0

zn

2n+1
−

∞
∑

n=0

1

zn+1

since, by the geometric series, for |z| < 2 or
∣

∣

∣

z
2

∣

∣

∣ < 1

1

(z − 2)
= −

1

2

1

1 − z
2

= −
∞
∑

n=0

zn

2n+1

and for 1 < |z| or
∣

∣

∣

1
z

∣

∣

∣ < 1

1

(z − 1)
=

1

z

1

1 − 1
z

=
∞
∑

n=0

1

zn+1
!
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Further Examples of Laurent Series

Example: Find the Laurent series of f(z) =
z2 − 2z + 3

z − 2
in the region |z − 1| > 1:

Solution: Since the region |z − 1| > 1 excludes the singularity at z = 2, f(z) is analytic in

|z − 1| > 1. We now use the geometric series and expand for
∣

∣

∣

1
z−1

∣

∣

∣ < 1

z2 − 2z + 3

z − 2
=

(z − 1)2 + 2

(z − 1) − 1
=

(z − 1)2 + 2

(z − 1)

1

1 − 1
(z−1)

=
[

(z − 1) +
2

(z − 1)

][

1 +
1

(z − 1)
+

1

(z − 1)2
+ · · ·

]

=
[

(z − 1) + 1 +
1

(z − 1)
+

1

(z − 1)2
+ · · ·

]

+
[

2

(z − 1)
+

2

(z − 1)2
+ · · ·

]

= (z − 1) + 1 +
∞
∑

n=1

3

(z − 1)n
!

Exercise: Find the Laurent series of

f(z) =
1

z(z − 1)

in each of the regions (i) 0 < |z| < 1, (ii) |z| > 1, (iii) 0 < |z − 1| < 1 and (iv) |z − 1| > 1.
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Residues

Definition: If f(z) has an isolated singularity at the point z = a, so it is analytic in a punctured

neighbourhood of a, then the coefficient a−1 of (z−a)−1 in the Laurent series for f(z) around

a is called the residue of f(z) at a and denoted Res(f ; a)

f(z) =
∞
∑

n=−∞
an(z − a)n ⇒ Res(a) = Res(f ; a) = a−1

If f(z) is analytic at the point z = a then f(z) has a Taylor expansion around a and

Res(a) = Res(f ; a) = a−1 = 0

Lemma 60 (Order m Pole) If f(z) has a pole of order m at z = a then

Res(f ; a) = lim
z→a

1

(m − 1)!

dm−1

dzm−1
[(z − a)mf(z)]

In particular, if f(z) has a simple pole (m = 1) at z = a then

Res(f ; a) = lim
z→a

(z − a)f(z)

Proof: Starting with the Laurent expansion

f(z) =
a−m

(z − a)m
+ · · · +

a−2

(z − a)2
+

a−1

(z − a)
+ a0 + a1(z − a) + · · ·

⇒
dm−1

dzm−1
[(z − a)mf(z)] = (m − 1)! a−1 + m! a0(z − a) + · · · → (m − 1)! a−1 as z → a !

• If f(z) has an essential singularity then the residue is obtained from the Laurent series of

f(z) in the punctured neighbourhood of a using Res(f ; a) = a−1.
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Examples of Residues

Example: Find the residues of f(z) =
z2

(1 − z)2(2 − z)
:

Solution: There is a simple pole at z = 2 and a double pole at z = 1

Res(2) = lim
z→2

(z − 2)
z2

(1 − z)2(2 − z)
= lim

z→2

−z2

(1 − z)2
= −4

Res(1) = lim
z→1

d

dz

[

(z − 1)2
z2

(1 − z)2(2 − z)

]

= lim
z→1

d

dz

[

z2

(2 − z)

]

= lim
z→1

[

2z

2 − z
+

z2

(2 − z)2

]

= 2 + 1 = 3 !

Example: If f(z) = P(z)/Q(z) is rational and the polynomial Q(z) has a simple zero at z = a,

use l’Hôpital’s rule to show that

Res(f ; a) =
P(a)

Q′(a)
, Q′(a) ̸= 0

Solution: Using l’Hôpital’s rule

Res(f ; a) = lim
z→a

(z − a)P(z)

Q(z)
= lim

z→a

P(z) + (z − a)P ′(z)

Q′(z)
=

P(a)

Q′(a)
, Q′(a) ̸= 0 !
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More Residues

Example: Find the residue

Res
( sin z

z2 − z
; 1
)

Solution: Using the previous result

Res
( sin z

z2 − z
; 1
)

=
sin z

2z − 1

∣

∣

∣

∣

z=1
= sin 1 !

Example: Find the residue

Res
(

z2 sin
1

z
; 0
)

Solution: There is no pole, rather z = 0 is an essential singularity. The Laurent expansion is

z2
(

1

z
−

1

3!z3
+

1

5!z5
− · · ·

)

= z −
1

3!z
+

1

5!z3
− · · ·

Hence

Res
(

z2 sin
1

z
; 0
)

= a−1 = −
1

6
!
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Residues as Integrals

Exercise: If C is any closed contour and m ∈ Z, use deformation of contours and a change

of integration variable to evaluate the contour integral to show that

1

2πi

∮

C
(z − a)mdz = Res

(

(z − a)m; a
)

= δm,−1, a inside C

The contour integral does not exist if m < 0 and the contour passes through a.

Example: If f(z) is analytic at z = a or has an isolated singularity at z = a, show that

Res(f ; a) = lim
ϵ→0

[

1

2πi

∮

|z−a|=ϵ
f(z)dz

]

This gives an alternative definition of residues.

Solution: Using the Laurent series gives

lim
ϵ→0

[

1

2πi

∮

|z−a|=ϵ
f(z)dz

]

= lim
ϵ→0

[

1

2πi

∮

|z−a|=ϵ

∞
∑

n=−∞
an(z − a)ndz

]

= lim
ϵ→0

[ ∞
∑

n=−∞

an

2πi

∮

|z−a|=ϵ
(z − a)ndz

]

= a−1 = Res(f ; a)

The term-by-term integration is justified because the Laurent series is absolutely and uni-

formly convergent in any closed sub-annulus within the open annulus of convergence. If z = a

is an isolated singularity, the limit ϵ → 0 ensures that there are no other singularities inside

the circle |z − a| = ϵ. If f(z) is analytic at z = a, the integral vanishes for sufficiently small ϵ

by Cauchy’s theorem.
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Week 8: Meromorphic Functions/Residues

22. Meromorphic functions, residue theorem
23. Improper integrals, evaluation of integrals involving rational functions
24. Meromorphic partial fractions

Magnus Göste Mittag-Leffler (1846–1927)

Photographs c⃝ MacTutor Mathematics Archive (http://www-history.mcs.st-andrews.ac.uk)
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Meromorphic Functions

Definition: A function f(z) is meromorphic in the domain D if at every point of D it is either

analytic or has a pole.

• Clearly, a meromorphic function has zeros and (isolated) poles but no other singularities.

• We have seen that an entire (analytic everywhere) function can be expanded into an infinite

Taylor series. In this sense an entire function is like an infinite polynomial — it has zeros but

no poles. Typical entire functions are cos z and sin z. A meromorphic function, such as cot z,

can always be written as the ratio of two entire functions — its zeros are the zeros of the

numerator and its poles are the zeros of the denominator. Thus

cot z =
cos z

sin z

In this sense a meromorhic function is a generalization of a rational function allowing for

infinite polynomials in the numerator and denominator and thus an infinite number of zeros

and poles.

Exercise: Find all of the zeros and poles of the meromorphic functions cot z and tan z.
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Residue Theorem

Theorem 61 (Residue Theorem)

If Γ is a simple closed contour and f(z) is analytic inside and on Γ except at the isolated

points z1, z2, . . . , zm inside Γ then

∮

Γ
f(z)dz = 2πi

m
∑

k=1

Res(f ; zk)

Proof: Let Ck be small circles about each isolated singularity z = zk so that on Ck we have

the Laurent expansion

f(z) =
∞
∑

n=−∞
a(k)

n (z − zk)
n

Then by deformation of contours

∮

Γ
f(z)dz =

m
∑

k=1

∮

Ck

f(z)dz =
m
∑

k=1

∮

Ck

∞
∑

n=−∞
a(k)

n (z − zk)
ndz

=
m
∑

k=1

∞
∑

n=−∞
a(k)

n

∮

Ck

(z − zk)
ndz = 2πi

m
∑

k=1

a(k)
−1

= 2πi
m
∑

k=1

Res(f ; zk) !

The term-by-term integration is justified by the uniform convergence of the Laurent expan-

sions. !
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Residue Theory and Integrals

Residue theory can be used to evaluate many types of integrals. For example,

I =
∫ 2π

0
U(cos t, sin t)dt

where U(x, y) is a continuous real rational function on [0,2π].

Example: Evaluate I =
∫ π

0

dt

2 − cos t
= 1

2

∫ 2π

0

dt

2 − cos t

Solution: Let z = eit so that dz = ieitdt = izdt and dt = dz/iz. Then cos t = 1
2(z + z−1) and

2I =
∮

|z|=1

1

2 − 1
2(z + z−1)

dz

iz
=

−2

i

∮

|z|=1

dz

z2 − 4z + 1

The integrand has simple poles at z± = 2 ±
√

3 but only z− lies inside the unit circle with

residue

Res(z−) = lim
z→z−

(z − z−)

(z − z−)(z − z+)
= lim

z→z−

1

(z − z+)
= −

1

2
√

3

Hence

2I =
−2

i
2πi

(

−
1

2
√

3

)

=
2π√
3

⇒ I =
π√
3

!
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Improper Integrals

Definition: If f(x) is continuous over [a,∞), its improper integral is defined by

∫ ∞

a
f(x)dx := lim

R→∞

∫ R

a
f(x)dx

provided this limit exists. If f(x) is continuous on (−∞,∞) we define the double improper

integral

∫ ∞

−∞
f(x)dx := lim

R→∞

∫ R

0
f(x)dx + lim

R′→∞

∫ 0

−R′
f(x)dx

provided both limits exist. If these limits exist then
∫ ∞

−∞
f(x)dx := lim

R,R′→∞

∫ R

−R′
f(x)dx

independent of how the limit is taken.

• The (Cauchy) principle value of the integral is defined by

PV
∫ ∞

−∞
f(x)dx := lim

R→∞

∫ R

−R
f(x)dx

provided this limit exists. If the double improper integral exists it must equal its principal

value, but the principal value integral can exist when the double integral does not exist.
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Examples: Improper Integrals

Example: Evaluate the improper integral
∫ ∞

0
e−2xdx :

∫ ∞

0
e−2xdx = lim

R→∞

∫ R

0
e−2xdx = lim

R→∞

[

−
e−2x

2

]R

0

= lim
R→∞

[

−
e−2R

2
+

1

2

]

= 1
2 !

Example: Evaluate the principal value integral PV
∫ ∞

−∞
xdx :

PV
∫ ∞

−∞
x dx = lim

R→∞

∫ R

−R
x dx = lim

R→∞

[

x2

2

]R

−R
= lim

R→∞
0 = 0

even though the double integral
∫ ∞

−∞
x dx does not exist. !
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Improper Integrals and Residues

Lemma 62 Let CR be the semi-circular contour in the upper-half plane from z = R to

z = −R. If

|f(z)| ≤
K

|z|2
, |z| large

then

lim
R→∞

∣

∣

∣

∣

∫

CR

f(z)dz
∣

∣

∣

∣

= 0

Proof: We bound the integral
∣

∣

∣

∣

∫

CR

f(z)dz
∣

∣

∣

∣

≤
K

R2
Length(CR) =

K

R2
πR =

Kπ

R
→ 0 as R → ∞ !

CR

z1
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Principal Value Integrals

Theorem 63 (Principal Value Integrals)

Let f(z) = P(z)/Q(z) be rational and analytic on the real axis so it is analytic in the upper

half plane except at isolated poles. If in addition

degree Q ≥ 2 + degree P

so that f(z) satisfies the previous lemma, then residue theory can be used to evaluate the

principal value integral

PV
∫ ∞

−∞
f(x)dx = lim

R→∞

∫ R

−R
f(x)dx = lim

R→∞

∮

ΓR

f(z)dz

= 2πi
m
∑

k=1

Res(f ; zk)

by closing the contour in the upper half plane and summing over residues.

CR

z1
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A Principal Value Integral

Example: Use the previous theorem to compute the principal value integral

I = PV
∫ ∞

−∞

x2 dx

(x2 + 1)2

Solution: The integrand f(z) = P(z)/Q(z) is rational with degreeP = 2, degreeQ = 4 and

double poles at z = ±i. The previous theorem therefore applies. The residue at z = i is

Res(f ; i) = lim
z→i

d

dz
[(z − i)2f(z)] = lim

z→i

d

dz

[

z2

(z + i)2

]

= lim
z→i

[

2z

(z + i)2
−

2z2

(z + i)3

]

=
2i

4i2
+

2

8i3
=

1

4i

Therefore
∮

ΓR

f(z)dz = 2πi
1

4i
=
π

2
for all R > 1

and so

lim
R→∞

∮

ΓR

f(z)dz = lim
R→∞

[

∫ R

−R
f(x)dx +

∫

CR

f(z)dz
]

=
∫ ∞

−∞
f(x)dx =

π

2

The previous lemma applies since, for |z| ≥
√

2, we have using the triangle inequality

|z2 + 1| ≥
∣

∣

∣|z|2 − 1
∣

∣

∣ = |z|2 − 1 ≥ |z|2 − 1
2|z|

2 = 1
2|z|

2 and so

|f(z)| =
∣

∣

∣

∣

z2

(z2 + 1)2

∣

∣

∣

∣

=
|z|2

|z2 + 1|2
≤

|z|2

(1
2|z|2)2

≤
4

|z|2
!

• Note that in these cases the double improper integral exists so that

PV
∫ ∞

−∞

x2 dx

(x2 + 1)2
=
∫ ∞

−∞

x2 dx

(x2 + 1)2
= 2

∫ ∞

0

x2 dx

(x2 + 1)2
=
π

2

8-8



Meromorphic Partial Fractions

• It is often useful to expand rational functions into a finite number of partial fractions. For

example

2z

1 − z2
=

1

1 − z
−

1

1 + z

Similarly, meromorphic functions can be expanded into an infinite number of partial fractions.

Exercise: Establish the partial fraction expansions of the following meromorphic functions

π cotπz =
1

z
+ 2z

∞
∑

n=1

1

z2 − n2

π cosec πz =
1

z
+ 2z

∞
∑

n=1

(−1)n

z2 − n2

π secπz =
∞
∑

n=1

(−1)n−1(2n − 1)

(2n−1
2 )2 − z2

π tanπz = 2z
∞
∑

n=1

1

(2n−1
2 )2 − z2

π tanhπz = 2z
∞
∑

n=1

1

(z2 + 2n−1
2 )2

π cothπz =
1

z
+ 2z

∞
∑

n=1

1

z2 + n2
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Partial Fraction Expansions

Theorem 64 (Partial Fraction Expansions)

Suppose f(z) is analytic at z = 0 and meromorphic in C with simple poles at z = a1, a2, a3 . . .

arranged in order of increasing modulus. Let b1, b2, b3, . . . be the residues of f(z) at z =

a1, a2, a3 . . .. Suppose further that

|f(z)| < M, on circles CN : |z| = RN → ∞ as N → ∞

where the circles do not pass through any poles and M is independent of N . Then

f(z) = f(0) +
∞
∑

n=1

bn

(

1

z − an
+

1

an

)

0

CN

a1

a2

a3

a4
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Proof of Partial Fraction Expansions

Proof: Consider F(z) =
f(z)

z − w
with residues

Res(F ; an) = lim
z→an

(z − an)
f(z)

z − w
=

bn

an − w

Res(F ;w) = lim
z→w

(z − w)
f(z)

z − w
= f(w)

So using the residue theorem and subtracting

1

2πi

∮

CN

f(z)dz

z − w
= f(w) +

∑

poles an in CN

bn

an − w

1

2πi

∮

CN

f(z)dz

z
= f(0) +

∑

poles an in CN

bn

an

f(w)−f(0) +
∑

poles an in CN

(

bn

an − w
−

bn

an

)

=
w

2πi

∮

CN

f(z)dz

z(z − w)

where

∣

∣

∣

∣

∮

CN

f(z)dz

z(z − w)

∣

∣

∣

∣

≤
2πRN M

RN(RN − |w|)
→ 0 as N → ∞

so the result follows provided the series converges. !
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Partial Fraction Expansion of cotπz

Example: Show that

π cotπz =
1

z
+

∑

n ̸=0

(

1

z − n
+

1

n

)

Solution: The meromorphic function f(z) = π cotπz −
1

z
has simple poles at z = an = n =

±1,±2, . . . with residues

bn = lim
z→n

(z−n)
(

πz cosπz−sinπz

z sinπz

)

= lim
z→n

(z−n)

sinπz

πz cosπz−sinπz

z
= 1

By l’Hôpital, f(z) has a removable singularity at z = 0

lim
z→0

(

π cotπz −
1

z

)

= lim
z→0

(

πz cosπz − sinπz

z sinπz

)

= lim
z→0

(

π cosπz − π2z sinπz − π cosπz

sinπz + πz cosπz

)

= − lim
z→0

(

π2z sinπz

sinπz + πz cosπz

)

= − lim
z→0

(

π2 sinπz

sinπz/z + π cosπz

)

= 0 = f(0)

The circles CN of the previous theorem can be replaced with the squares ΓN with vertices at

z = (N + 1
2)(±1 ± i) on which we can show

| cotπz| ≤ M = coth(π/2), independent of N

The required result then follows as in the previous theorem. !
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Bound on Squares ΓN

Let ΓN be the square with vertices at z = (N + 1
2)(±1 ± i).

Then on ΓN

| cotπz| ≤ M = coth(π/2), independent of N

(i) If z = x + iy and y > 1
2 or y < −1

2 respectively

| cotπz| =

∣

∣

∣

∣

e2πiz + 1

e2πiz − 1

∣

∣

∣

∣

≤
e−2πy + 1

|e−2πy − 1|
≤

1 + e−π

1 − e−π
= coth(π/2)

| cotπz| =

∣

∣

∣

∣

e2πiz + 1

e2πiz − 1

∣

∣

∣

∣

≤
e−2πy + 1

|e−2πy − 1|
=

1 + e2πy

1 − e2πy
≤

1 + e−π

1 − e−π

(ii) If x = ±(N + 1
2) and −1

2 ≤ y ≤ 1
2 then

|cotπz|= |cot(±π/2+πiy)|= | tanhπy|≤tanh(π/2)≤coth(π/2)

Hence
∣

∣

∣

∣

∮

ΓN

f(z)dz

z(z − w)

∣

∣

∣

∣

≤
4(2N + 1)M

(N + 1
2)(N + 1

2 − |w|)
→ 0, N → ∞ !

−N−1 −N −1 0 1 N N+1

ΓN

The Contour ΓN:

(showing poles of

cotπz)
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Alternative Partial Fraction Expansion of cotπz

Example: Establish the alternative form

π cotπz =
1

z
+

∑

n ̸=0

(

1

z − n
+

1

n

)

=
1

z
+ 2z

∞
∑

n=1

1

z2 − n2

Solution: The second form follows after rearranging the series

π cotπz =
1

z
+ lim

N→∞

[ −1
∑

n=−N

(

1

z − n
+

1

n

)

+
N
∑

n=1

(

1

z − n
+

1

n

)]

=
1

z
+ lim

N→∞

N
∑

n=1

(

1

z − n
+

1

z + n

)

=
1

z
+

∞
∑

n=1

2z

z2 − n2
!

This is allowed because the double series is absolutely (and uniformly) convergent in |z| ≤ R

by the Weierstrass M-test
∣

∣

∣

∣

1

z − n
+

1

n

∣

∣

∣

∣

=
∣

∣

∣

∣

z

n(n − z)

∣

∣

∣

∣

≤
R

n(n − R)
≤

2R

n2
= Mn, n ≥ 2R

since
∑

n ̸=0

1

n2
= 2

∞
∑

n=1

1

n2
is a convergent harmonic series.
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Infinite Product Form of sinπz

Example: Integrate the partial fraction expansion of π cotπz term-by-term to obtain the

infinite product

sinπz = πz
∞
∏

n=1

(

1 −
z2

n2

)

Solution: Since the partial fraction expansion converges absolutely and uniformly we can

integrate term-by-term

π cotπz −
1

z
=

∞
∑

n=1

2z

z2 − n2

⇒ Log
sinπz

πz
=

∞
∑

n=1

Log(1 −
z2

n2
) = Log

∞
∏

n=1

(1 −
z2

n2
)

where the constant of integration vanishes. The result follows by taking exponentials. !

• Putting z = 1
2 in the infinite product gives the Wallis product

π

2
=

∞
∏

n=1

2n

2n − 1

2n

2n + 1
=

2

1
·
2

3
·
4

3
·
4

5
·
6

5
·
6

7
· · ·

• The corresponding infinite product for cosine is

cosπz =
∞
∏

n=1

(

1 −
4z2

(2n − 1)2

)
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Week 9: Residue Calculus
25. Evaluation of integrals involving trigonometric functions
26. Evaluation of integrals using indented contours
27. Summation of series using the residue calculus

Augustin Louis Cauchy (1789–1857)

Photographs c⃝ MacTutor Mathematics Archive (http://www-history.mcs.st-andrews.ac.uk)
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Residues and Trigonometric Integrals

Residue theory can be used to evaluate many types of integrals. For example,

I =
∫ 2π

0
U(cos t, sin t)dt

where U(x, y) is a continuous real rational function of x, y on [−1,1] × [−1,1].

Example: Evaluate I =
∫ π

0

dt

2 − cos t
= 1

2

∫ 2π

0

dt

2 − cos t

Solution: Let z = eit so that dz = ieitdt = izdt and dt = dz/iz. Then cos t = 1
2(z + z−1) and

2I =
∮

|z|=1

1

2 − 1
2(z + z−1)

dz

iz
=

−2

i

∮

|z|=1

dz

z2 − 4z + 1

The integrand has simple poles at z± = 2 ±
√

3 but only z− lies inside the unit circle with

residue

Res(z−) = lim
z→z−

(z − z−)

(z − z−)(z − z+)
= lim

z→z−

1

(z − z+)
= −

1

2
√

3

Hence

2I =
−2

i
2πi

(

−
1

2
√

3

)

=
2π√
3

⇒ I =
π√
3

!
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A Trigonometric Integral by Residues

Example: Evaluate the integral I =
∫ 2π

0

dθ

3 − 2cos θ
:

This integral was evaluated previously using the

Cauchy integral formula.

|z| = 1

z+z−

Let z = eiθ so that z′(θ) = ieiθ = iz and dθ = −idz/z. Then

I =
∫ 2π

0

dθ

3 − 2 cos θ
= −i

∮

|z|=1

dz

z(3 − z − z−1)

= i
∮

|z|=1

dz

z2 − 3z + 1
= i

∮

|z|=1

dz

(z − z+)(z − z−)

where z± = (3 ±
√

5)/2 = 2.618..,0.381.. So setting

f(z) = (z − z+)−1

which is analytic inside |z| = 1, we have by the Cauchy integral formula

I = i
∮

|z|=1

f(z)dz

(z − z−)
= (i)(2πi)f(z−) = −

2π

z− − z+
=

2π√
5

We obtain the same result using residue calculus and summing over the poles inside |z| = 1

I = (i)(2πi)
∑

k

Res
(

f(z)

(z − z−)
; zk

)

= (i)(2πi)f(z−) =
2π√
5

!
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Another Trigonometric Integral

Exercise: For real p ̸= ±1, evaluate the real definite trigonometric integral

I =
∫ 2π

0

dt

1 − 2p cos t + p2

Solution: Let z = eit so that dz = ieitdt = izdt and dt = dz/iz. Then cos t = 1
2(z + z−1) and

I =
∮

|z|=1

dz

iz[1 + p2 − p(z + 1
z)]

=
i

p

∮

|z|=1

dz

(z − p)(z − 1
p)

There are now two situations to consider:

(i) |p| > 1: In this case there is a simple pole inside |z| = 1 at z = 1/p. So by the residue

theorem

I =
i

p
2πiRes

(

1

p

)

= −
2π

p

1
1
p − p

=
2π

p2 − 1

(ii) |p| < 1: In this case there is a simple pole at z = p so

I =
i

p
2πiRes(p) = −

2π

p

1

p − 1
p

=
2π

1 − p2

(iii) If |p| = 1, that is, p = ±1, the integral does not exist since there is a pole on the contour

of integration.

• The above results can be combined into the single formula
∫ 2π

0

dt

1 − 2p cos t + p2
=

2π

|1 − p2|
when p ̸= ±1 !
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Uniformity on an Arc

Definition: (Uniformity on an Arc) If along a circular arc of radius R, |f(z)| ≤ MR where

MR does not depend on (the polar angle) θ, and MR → 0 as R → ∞ (or R → 0) we say that

f(z) tends uniformly to zero on CR = {z : |z| = R} as R → ∞ (or R → 0).

Example: Consider the function

f(z) =
z

z2 + 1
on CR = {z : |z| = R}

We deduce that

|f(z)| ≤

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

R

R2 − 1
, R > 1

R

1 − R2
, R < 1

It follows that f(z) tends uniformly to zero when either R → ∞ or R → 0. !

• In general any rational function whose denominator is of higher degree than the numerator

tends uniformly to zero as R → ∞.

• The polar angle can be restricted to a closed interval θ0 ≤ θ ≤ θ0 + α. We then require

MR = max
z=Reiθ

θ0≤θ≤θ0+α

|f(z)| → 0 as R → ∞
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Limiting Contours I

Theorem 65 (Limiting Contours I) If on CR, zf(z) tends uniformly to zero as R → ∞ then

lim
R→∞

∫

CR

f(z) dz = 0

on the circular arc of radius R subtending an angle α at the origin

CR = {z : |z| = R, θ0 ≤ θ ≤ θ0 + α}

Proof: We have

|zf(z)| = R|f(z)| ≤ MR

where MR is independent of θ and MR → 0 as R → ∞. It follows that

0 ≤
∣

∣

∣

∣

∣

∫

CR

f(z) dz

∣

∣

∣

∣

∣

≤
∫

CR

|f(z)| |dz| ≤
MR

R

∫

CR

|dz| = αMR → 0 as R → ∞

since on CR, z = Reiθ, dz = Rieiθdθ, and hence

∫

CR

|dz| =
∫ θ0+α

θ0
R dθ = αR !
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Limiting Contours II — Jordan’s Lemma

Theorem 66 (Jordan’s Lemma) If f(z) tends uniformly to zero on CR = {z : z = Reiθ,

0 ≤ θ0 ≤ θ ≤ θ1 ≤ π} as R → ∞ then for k > 0:

lim
R→∞

∫

CR

eikzf(z) dz = 0 CR in 1st, 2nd quadrants

lim
R→∞

∫

CR

e−ikzf(z) dz = 0 CR in 3rd, 4th quadrants

lim
R→∞

∫

CR

ekzf(z) dz = 0 CR in 2nd, 3rd quadrants

lim
R→∞

∫

CR

e−kzf(z) dz = 0 CR in 1st, 4th quadrants

Proof: We prove the first case. The other cases are similar. Note that on CR

|dz| = R dθ and |f(z)| ≤ MR

It follows that

0 ≤
∣

∣

∣

∣

∫

CR

eikzf(z) dz
∣

∣

∣

∣

≤
∫

CR

|eikz||f(z)||dz| ≤ RMR

∫ θ1

θ0
e−kR sin θ dθ

≤ RMR

∫ π

0
e−kR sin θ dθ = 2RMR

∫ π/2

0
e−kR sin θ dθ

≤ 2RMR

∫ π/2

0
e−2kRθ/π dθ =

πMR

k
(1 − e−kR) → 0 as R → ∞

Here we used sin(π2 − θ) = sin(π2 + θ) and the inequality sin θ ≥ 2θ/π for 0 ≤ θ ≤ π/2. !
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Limiting Contours III

Theorem 67 (Limiting Contours III) If on a circular arc Cr of radius r and centre a,

|(z − a)f(z)| tends uniformly to zero as r → 0 then

lim
r→0

∫

Cr
f(z) dz = 0

Proof: On Cr = {z : z − a = reiθ, θ0 ≤ θ < θ0 + α} we have

|(z − a)f(z)| = r|f(z)| ≤ Mr

where Mr → 0 as r → 0. It follows that
∣

∣

∣

∣

∫

Cr
f(z) dz

∣

∣

∣

∣

≤
Mr

r

∫

Cr
|dz| = αMr

which gives the required result. !
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Limiting Contours IV

Theorem 68 (Limiting Contours IV) If f(z) has a simple pole at z = a with residue Res(a)

and if Cr is a circular arc of radius r and centre a subtending an angle α at z = a then

lim
r→0

∫

Cr
f(z) dz = iαRes(a)

Proof: The Laurent series for f(z) can be expressed as

f(z) =
Res(a)

z − a
+ φ(z)

where φ(z) is analytic at z = a. We then have

∫

Cr
f(z) dz =

∫

Cr

Res(a)

z − a
dz +

∫

Cr
φ(z) dz

The second integral vanishes as r → 0 from previous theorem (since φ(z) is bounded at

z = a). Furthermore, on Cr, we can write

z = a + reiθ where θ0 ≤ θ ≤ θ0 + α

It then follows that
∫

Cr

Res(a)

z − a
dz = Res(a)

∫ θ0+α

θ0

ireiθ

reiθ
dθ = iαRes(a) !

• Warning: This theorem only applies to the case of simple poles!
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Fourier Example

Exercise: Evaluate the Fourier integral

I =
∫ ∞

−∞
eikx(a2 + x2)−1 dx, a > 0, k ∈ R

Solution: The function f(z) = (a2 + z2)−1 has simple poles at z = ±ia.

(i) k ≥ 0: Close the contour in the upper half plane. Provided R > a, we have
∣

∣

∣

∣

∣

∫

CR

eikzf(z) dz

∣

∣

∣

∣

∣

≤
∫

CR

|a2 + z2|−1 |dz| ≤ (R2 − a2)−1
∫

CR

|dz|

= πR(R2 − a2)−1 → 0 as R → ∞

since |eikz| = |eik(x+iy)| = e−ky ≤ 1 in the upper half plane. It follows that

∫ ∞

−∞
eikx(a2 + x2)−1 dx = 2πiRes(eikzf(z); ia) = 2πi

eikz

z + ia

∣

∣

∣

∣

∣

z=ia
=

π

a
e−ka

(ii) k ≤ 0: Closing the contour in the lower half plane gives

∫ ∞

−∞
eikx(a2 + x2)−1 dx = −2πiRes(eikzf(z);−ia) = −2πi

eikz

z − ia

∣

∣

∣

∣

∣

z=−ia
=

π

a
eka

(iii) The two results combine into the single result
∫ ∞

−∞
eikx(a2 + x2)−1 dx =

π

a
e−|k|a

!

• Notice that taking real and imaginary parts gives
∫ ∞

−∞

cos(kx)

a2 + x2
dx =

π

a
e−|k|a,

∫ ∞

−∞

sin(kx)

a2 + x2
dx = 0

9-9



Indented Contours I
Example: Consider the contour integrals

I =
∫ ∞

−∞

sinx

x
dx =

∫ ∞

−∞
Im

[

eix

x

]

dx, I ′ =
∮

C

eiz

z
dz

where C is the standard upper-half-plane contour indented by a small semi-circle Cr around

the singularity at z = 0. Since f(z) = eiz/z is analytic inside C, Cauchy’s theorem gives

0 =
∮

C

eiz

z
dz =

∫ −r

−R

eix

x
dx +

∫

Cr

eiz

z
dz +

∫ R

r

eix

x
dx +

∫

CR

eiz

z
dz

By Jordan’s Lemma lim
R→∞

∫

CR

eiz

z
dz = 0

Similarly, from the previous theorem

lim
r→0

∫

Cr

eiz

z
dz = −iπRes(0) = −iπ

•–R R

C

C

R

-r r

r

where the negative sign comes from the fact that Cr is traversed clockwise. It follows that

lim
r→0, R→∞

{

∫ −r

−R

eix

x
dx +

∫ R

r

eix

x
dx

}

≡ ℘
∫ ∞

−∞

eix

x
dx = iπ

where the limit defines the Cauchy principal value. Equating real and imaginary parts gives

℘
∫ ∞

−∞

cos x

x
dx = 0, ℘

∫ ∞

−∞

sinx

x
dx =

∫ ∞

−∞

sinx

x
dx = π

The integral I is a conditionally (not absolutely) convergent improper integral. !
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Conditionally Convergent Improper Integrals

Theorem 69 (Conditionally Convergent Improper Integrals)

If f(x) has a bounded primitive

|F(x)| ≤ K < ∞, x ≥ a > 0

then
∫ ∞

a

f(x)

xp
dx converges for p > 0

Proof: Integration by parts gives

lim
R→∞

∫ R

a

f(x)

xp
dx = lim

R→∞
F(x)

xp

∣

∣

∣

∣

R

a
+ lim

R→∞
p
∫ R

a

F(x)

xp+1
dx = −

F(a)

ap
+ p

∫ ∞

a

F(x)

xp+1
dx

where the last improper integral is absolutely convergent by comparison with
∫ ∞

a

dx

xp+1
.

Example: The integral
∫ ∞

0

sin x

x
dx = 1

2

∫ ∞

−∞

sinx

x
dx is a convergent improper integral.

F(x) =
∫

f(x) dx =
∫

sin x dx = − cos x, |F(x)| ≤ 1, x ≥ a > 0

So
∫ ∞

0

sin x

x
dx =

∫ a

0
+
∫ ∞

a

sinx

x
dx

The first integral exists as a Riemann integral and the second is a convergent improper

integral by the theorem. !
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Indented Contours II

Example: Evaluate the contour integral

I =
∮

C

eiz dz

π2 − 4z2

where C is the standard upper-half-plane contour indented by small semi-circles around the

singularities at z = ±π/2.

x x
–π π
2 2

Solution: Following essentially the same steps as in the previous example

0 = ℘
∫ ∞

−∞

eix dx

π2 − 4x2
− iπ

[

Res
(

−
π

2

)

+ Res
(

π

2

) ]

= ℘
∫ ∞

−∞

eix dx

π2 − 4x2
− iπ

[

−
i

4π
−

i

4π

]

Equating real parts gives

℘
∫ ∞

−∞

cosx

π2 − 4x2
dx =

∫ ∞

−∞

cos x

π2 − 4x2
dx =

1

2

The Cauchy principal value of ℘
∫ ∞

−∞

eix dx

π2 − 4x2
must be retained since otherwise the integral

fails to exist due to divergences at x = ±π/2. !

• The technique of indented contours only works for simple poles on the real axis! For higher

order poles the Cauchy principal values do not exist.
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Series and Residues

Theorem 70 (Summing Series)

Residue theory can be used to sum the following types of series:

∞
∑

n=−∞
f(n) = −

∑

poles zj of f(z)

Res(π cotπz f(z); zj)

∞
∑

n=−∞
(−1)nf(n) = −

∑

poles zj of f(z)

Res(π cscπz f(z); zj)

∞
∑

n=−∞
f
(

2n + 1

2

)

=
∑

poles zj of f(z)

Res(π tanπz f(z); zj)

∞
∑

n=−∞
(−1)nf

(

2n + 1

2

)

=
∑

poles zj of f(z)

Res(π secπz f(z); zj)

where the residues are summed only over the poles zj of f(z).

The methods apply provided f(z) is analytic except at isolated

poles (zj /∈ Z) and decays sufficiently rapidly as |z| → ∞, for

example, |f(z)| ≤ K/|z|2.

−N−1 −N −1 0 1 N N+1

ΓN

The Contour ΓN:

(showing poles of

cotπz)
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Summing Series: Proof

Proof: We consider just the first type. The function F(z) = π cotπz f(z) has simple poles

at z = n ∈ Z with residues

Res(F ;n) = lim
z→n

(z − n)π cotπz f(z)

= lim
z→n

(z − n)

sinπz
π cosπz f(z) = f(n)

Let ΓN be the square with vertices at z = (N + 1
2)(±1 ± i). Then on ΓN

| cotπz| ≤ M = coth(π/2), independent of N

(i) If z = x + iy and y > 1
2 or y < −1

2 respectively

| cotπz| =

∣

∣

∣

∣

e2πiz + 1

e2πiz − 1

∣

∣

∣

∣

≤
e−2πy + 1

|e−2πy − 1|
≤

1 + e−π

1 − e−π
= coth(π/2)

| cotπz| =

∣

∣

∣

∣

e2πiz + 1

e2πiz − 1

∣

∣

∣

∣

≤
e−2πy + 1

|e−2πy − 1|
=

1 + e2πy

1 − e2πy
≤

1 + e−π

1 − e−π

(ii) If x = ±(N + 1
2) and −1

2 ≤ y ≤ 1
2 then

|cotπz|= |cot(±π/2+πiy)|= | tanhπy|≤tanh(π/2)≤coth(π/2)

Hence, since |z| ≥ N on ΓN
∣

∣

∣

∣

∮

ΓN

π cotπz f(z)dz
∣

∣

∣

∣

≤
πMK

N2
(8N + 4) → 0 as N → ∞
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Summing Series: Proof (Continued)

Therefore by the residue theorem

0 = lim
N→∞

∮

ΓN

π cotπz f(z)dz =
∑

all poles of F (z)

Res(π cotπz f(z))

= lim
N→∞

N
∑

n=−N

f(n) +
∑

poles zj of f(z)

Res(π cotπz f(z); zj)

=
∞
∑

n=−∞
f(n) +

∑

poles zj of f(z)

Res(π cotπz f(z); zj)

provided the double series converges. !
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Summing Example Series

Example: Show that for a > 0,
∞
∑

n=−∞

1

n2 + a2
=
π

a
cothπa :

The series is absolutely convergent for a > 0. Let f(z) =
1

z2 + a2
with simple poles at z = ±ai.

The residues of

F(z) = π cotπz f(z) =
π cotπz

z2 + a2

at z = ±ai are then

Res(F ; ai) = lim
z→ai

(z − ai)π cotπz

(z + ai)(z − ai)
=
π cotπai

2ai
= −

π

2a
cothπa

Res(F ;−ai) = lim
z→−ai

(z + ai)π cotπz

(z + ai)(z − ai)
=
π cotπai

2ai
= −

π

2a
cothπa

Hence, by the previous theorem,

∞
∑

n=−∞

1

n2 + a2
= −

∑

poles zj of f(z)

Res(π cotπz f(z); zj) =
π

a
cothπa !

Example: Sum the series
∞
∑

n=1

1

n2
as the limit a → 0 of the series

∞
∑

n=1

1

n2 + a2
:

The second series is absolutely and uniformly convergent for 0 ≤ a ≤ R < ∞ by the Weierstrass

M-test. Using uniform convergence, continuity and l’Hôpital’s rule

∞
∑

n=1

1

n2
= lim

a→0

∞
∑

n=1

1

n2 + a2
= lim

a→0

1
2

[ ∞
∑

n=−∞

1

n2 + a2
−

1

a2

]

= lim
a→0

πa cothπa − 1

2a2
=
π2

6
!
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Week 10: Applications/Cauchy Theorems

28. Gauss mean value theorem, maximum modulus principle, applications to harmonic functions
29. Liouville’s theorem, the fundamental theorem of algebra
30. The identity theorem with a brief discussion of analytic continuation

Carl Friedrich Gauss (1777–1855) Joseph Liouville (1809–1882)

Photographs c⃝ MacTutor Mathematics Archive (http://www-history.mcs.st-andrews.ac.uk)
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Maximum Modulus Principle

Lemma 71 (Gauss Mean Value Theorem) If f(z) is analytic inside and on the circle C
given by |z − a| = r, then the mean of f(z) on C is f(a)

f(a) =
1

2π

∫ 2π

0
f(a + reit)dt

Proof: On C, z = a + reit, z′(t) = ireit. So by Cauchy’s integral formula

f(a) =
1

2πi

∮

C

f(z)

z − a
dz =

1

2πi

∫ 2π

0

f(a + reit)ireit

reit
dt =

1

2π

∫ 2π

0
f(a + reit)dt !

Theorem 72 (Maximum Modulus Principle)

If f(z) is analytic in and on a simple closed curve Γ, then the maximum value of |f(z)|
occurs on Γ unless f(z) is constant.

Proof: By the Gauss mean value theorem on |z − a| = r

|f(a)| =
∣

∣

∣

∣

1

2π

∫ 2π

0
f(a + reit)dt

∣

∣

∣

∣

≤
1

2π

∫ 2π

0
|f(a + reit)|dt (∗)

Proceed by contradiction. Suppose maximum is |f(a)| for a inside Γ so that, on some circle
C about a and inside Γ, |f(a + reit)| ≤ |f(a)| and (if f(z) is not constant)

|f(a + reit)| < |f(a)|, for some t

Then, by continuity, this holds in some interval t1 < t < t2 and so the mean value satisfies

1

2π

∫ 2π

0
|f(a + reit)|dt < |f(a)|

which contradicts (∗). Hence either f(z) is constant or the maximum occurs on Γ. !
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Application of Maximum Modulus

Example: Let f(z) = ez/z. Find the point where |f(z)| takes its maximum on the annulus
1
2 ≤ |z| ≤ 1 and find its value.

Solution: By the maximum modulus principle, the maximium must occur on the boundary

of the annulus which consists of the inner and outer circles:

|z| = 1
2, |z| = 1

For z = reiθ on this boundary we have

|f(z)| =
er cos θ

r
, r = 1

2,1

1
2

1

|z| = 1

|z| = 1
2

The maximum thus occurs when cos θ = 1 or θ = 0. But now

|f(z)| =

⎧

⎨

⎩

2
√

e ≈ 3.3, r = 1
2, θ = 0

e ≈ 2.7, r = 1, θ = 0

so the maximum value |f(z)| = 2
√

e occurs at z = 1
2. !

Exercise: If f(z) = ez/z, find the minimum of |f(z)| on the annulus 1
2 ≤ |z| ≤ 1. (Hint: Find

the maximum of |g(z)| with g(z) = 1/f(z) = ze−z.) !

Exercise: Let f(z) = 1/z. Find the point or points where |f(z)| takes its maximum and

minimum values on the annulus 1 ≤ |z| ≤ 2. !
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Liouville’s Theorem

Lemma 73 (Cauchy’s Inequality)

If f(z) is analytic inside and on the circle C given by |z − a| = r and |f(z)| ≤ M on C, then

|f(n)(a)| ≤
M n!

rn
, n = 0,1,2, . . .

Proof: On C we have z = a + reit and z′(t) = ireit. So using Cauchy’s integral formula

|f(n)(a)| =
∣

∣

∣

∣

n!

2πi

∮

C

f(z)

(z − a)n+1
dz
∣

∣

∣

∣

≤
n!

2π

∫ 2π

0

∣

∣

∣

∣

f(z)

(z − a)n+1
z′(t)

∣

∣

∣

∣

dt

=
n!

2π

∫ 2π

0

∣

∣

∣

∣

f(a + reit) ireit

rn+1e(n+1)it

∣

∣

∣

∣

dt ≤
M n!

rn
!

Theorem 74 (Liouville’s Theorem) If f(z) is entire and bounded |f(z)| ≤ M in C, then

f(z) is constant.

Proof: By Cauchy’s inequality with n = 1

|f ′(z)| ≤
M

r

Letting r → ∞, we find f ′(z) = 0 and so f(z) is constant since C is connected. !

• Note that for this theorem to apply f(z) must be bounded as |z| → ∞.
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Application of Liouville’s Theorem

Example: Prove the identity

sin(z + u) sin(z − u) sin(v + w) sin(v − w) − sin(z + w) sin(z − w) sin(v + u) sin(v − u)

= sin(z + v) sin(z − v) sin(u + w) sin(u − w), z, u, v, w ∈ C

Solution: View the LHS and RHS as functions of z and show
LHS

RHS
= {entire and bounded}, u ̸= ±w + kπ, k ∈ Z

The RHS vanishes when z = ± v + kπ, k ∈ Z. Setting z = ± v + kπ in the LHS gives

sin(± v + u) sin(± v − u) sin(v + w) sin(v − w) − sin(± v + w) sin(± v − w) sin(v + u) sin(v − u) = 0

It follows that LHS/RHS is an entire function of z. But LHS/RHS is continuous, periodic in
the real direction and bounded in the imaginary direction since

f(z) =
sin(z + u)

sin(z + v)
=

e2iz+iu − e−iu

e2iz+iv − e−iv
= bounded as z → ±i∞

lim
z→±i∞

|f(z)| =
∣

∣

∣

∣

e∓iu

e∓iv

∣

∣

∣

∣

≤ e|u|+|v| = M

It follows that LHS/RHS is bounded. Since LHS/RHS is entire and bounded, it follows by
Liouville’s theorem that it is constant. Setting z = w we find

LHS

RHS
= 1 !

Exercise: Prove this identity algebraically. !

Exercise: Use Liouville’s theorem to prove the identity

sin v sin(w − v) − sinu sin(w − u) = sin(v − u) sin(w − u − v) !
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Fundamental Theorem of Algebra

Theorem 75 (Fundamental Theorem of Algebra)

Every polynomial equation of degree n ≥ 1

Pn(z) := anzn + an−1zn−1 + · · · + a2z2 + a1z + a0 = 0, a0, a1, . . . , an ∈ C

with an ̸= 0 has exactly n roots (solutions) counted according to multiplicity.

Proof: (i) First we show that there exists at least one root. Proceed by contradiction.

Suppose Pn(z) = 0 has no root, then f(z) =
1

Pn(z)
is entire. Moreover, since

lim
|z|→∞

|f(z)| = 0

f(z) is bounded on C. So, by Liouville’s theorem, f(z) and Pn(z) are constant. But this is a

contradiction. We conclude that Pn(z) = 0 must have at least one root.

(ii) Suppose z = z1 is a root of Pn(z) = 0. Then we apply polynomial division

Pn(z)−Pn(z1) = (anzn + an−1zn−1 + · · · + a1z + a0) − (anzn
1 + an−1zn−1

1 + · · · + a1z1 + a0)

= an(z
n−zn

1)+an−1(z
n−1−zn−1

1 ) + · · · + a1(z−z1)

= (z − z1)Qn−1(z) = Pn(z)

where Qn−1(z) is a polynomial of degree n−1. By iterating, Pn(z) has exactly n roots. !

• Note that the n roots need not be distinct. For example, the polynomial P2(z) = (z − 1)2

has a double root at z = 1.
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Factorization of Polynomials

Corollary 76 (Factorization of Polynomials)

Every polynomial of degree n ≥ 1

Pn(z) = anzn + an−1zn−1 + · · · + a2z2 + a1z + a0

with an ̸= 0 factorizes into n complex linear factors

Pn(z) = an(z − z1)(z − z2) · · · (z − zn)

where the n roots z1, z2, . . . , zn of Pn(z) satisfy

n
∑

j=1

zj = −
an−1

an
,

∑

i<j

zizj =
an−2

an
, . . . z1z2 . . . zn = (−1)n a0

an

Proof: Iterating the fundamental theorem of algebra gives

Pn(z) = (z − z1)Qn−1(z) = (z − z1)(z − z2)Rn−2(z) = · · · = (z − z1)(z − z2) · · · (z − zn)S0

where the polynomial S0 of degree zero is a constant. Expanding this polynomial gives

Pn(z) = anzn + an−1zn−1 + · · · + a2z2 + a1z + a0

= S0

[

zn − (z1 + z2 + · · · + zn)z
n−1 + · · · + (−1)nz1z2 . . . zn

]

So equating coefficients we find an = S0 and

an−1 = −S0 (z1 + z2 + · · · + zn)

an−2 = S0 (z1z2 + z1z3 + · · · + zn−1zn)

. . . . . .

a0 = (−1)nS0 z1z2 . . . zn !
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Roots and Polynomials

Example: If z4 = 1 and z ̸= 1 show that 1 + z + z2 + z3 = 0.

Solution: The roots of z4 − 1 = (z2 − 1)(z2 + 1) = 0 are z = ±1, ±i. Hence

z4 − 1 = (z − 1)(z + 1)(z − i)(z + i) = 0

But z ̸= 1 so

(z + 1)(z − i)(z + i) = 0 ⇒ (z + 1)(z2 + 1) = 0 ⇒ z3 + z2 + z + 1 = 0 !

Corollary 77 (Roots in Z)

Suppose a0, a1, . . . , an ∈ Z and Pn(z) factors as

Pn(z) = anzn + an−1zn−1 + · · · + a2z2 + a1z + a0 = (z − z1)(bn−1zn−1 + · · · + b1z + b0)

where z1 ∈ Z and b0, b1, . . . , bn−1 ∈ Z. Then the integer root z1 must be an integer factor of
a0 = −z1b0.

• This Corollary may yield integer roots of polynomials with integer coefficients:

Example: Find the 3 roots of the cubic

P3(z) = z3 − z2 − z − 2 = 0

Solution: The factors of a0 = −2 are ±1,±2 so try z = ±1,±2

P3(2) = 8−4−2−2 = 0 ⇒ (z − 2) is a factor

⇒ P3(z) = (z − 2)(z2 + z + 1) by polynomial division

⇒ z = 2, −
1

2
± i

√
3

2
!
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Conjugate Roots and Quadratic Factors

Corollary 78 (Conjugate Roots) Suppose a0, a1, . . . , an ∈ R and

Pn(z) = anzn + an−1zn−1 + · · · + a2z2 + a1z + a0

where z = z1 ∈ C is a root Pn(z1) = 0. Then z = z1 is also a root, that is, Pn(z1) = 0.

Proof: Taking the complex conjugate of Pn(z1) = 0 gives

Pn(z1) = anzn
1 + an−1zn−1

1 + · · · + a2z2
1 + a1z1 + a0 = 0

⇒ anzn
1 + an−1zn−1

1 + · · · + a2z2
1 + a1z1 + a0 = Pn(z1) = 0 !

Example: Expand into linear and quadratic factors the degree six polynomial

P6(z) = z6 − z5 − 3z4 + z3 + 3z2 − z − 2 = 0

Solution: Try z = ±1,±2 as roots:

P6(−1) = P6(2) = 0 ⇒ (z + 1), (z − 2) are factors

Using polynomial division

P6(z) = (z + 1)(z5 − 2z4 − z3 + 2z2 + z − 2) = (z + 1)(z − 2)(z4 − z2 + 1) = 0

Solving the quadratic in w = z2 gives the other roots

z2 =
1 ± i

√
3

2
= e±πi/3 ⇒ z = ±e±πi/6

Hence, since e
πi
6 + e−

πi
6 = 2cos π6 =

√
3,

P6(z) = (z + 1)(z − 2)(z + e
πi
6 )(z + e−

πi
6 )(z − e

πi
6 )(z − e−

πi
6 )

= (z + 1)(z − 2)(z2 +
√

3 z + 1)(z2 −
√

3 z + 1) !
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Analytic Continuation

Theorem 79 (Identity Theorem)

If f1(z) and f2(z) are analytic in an open connected region R and f1(z) = f2(z) on some

open neighbourhood of z, then f1(z) = f2(z) on R.

• An analytic function in a connected region R is thus determined by its values on an

arbitrarily small open neighbourhood in R. The proof derives from complex Taylor series and

the result does not apply to real differentiable functions.

Definition: Let f1(z) be analytic in the open connected region R1. Suppose f2(z) is analytic

in the open connected region R2 and f1(z) = f2(z) in R1 ∩ R2. Then we say that f(z) is an

analytic continuation of f1(z) and analytic in the combined region R = R1 ∪ R2.

f(z) =

⎧

⎨

⎩

f1(z), z ∈ R1

f2(z), z ∈ R2 R1 R2

It is sometimes impossible to extend a function analytically beyond the boundary of a region.

This boundary is then called a natural boundary.

Exercise: Show that f(z) =
∞
∑

n=0

z2n
has a singularity at each root of unity satisfying z2n

= 1.

Deduce that |z| = 1 is a natural boundary. !
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Non-Uniqueness of Analytic Continuation

Theorem 80 (Non-Uniqueness of Analytic Continuation)

If an analytic function f1(z) in R1 is extended by two different paths to an open connected

region Rn, then the two analytic continuations are identical if no singularity lies between the

two paths. If the two analytic continuations are different then a branch point lies between

the two paths.

• If the function f1(z) = Log z, analytic in |z − 1| < 1, is extended using Taylor series to the

negative real axis by analytic continuation clockwise and anti-clockwise around the branch

point at z = 0, then the two analytic continuations differ by 2πi.

Exercise: Verify this using R1 : |z − 1| < 1, R2 : |z − i| < 1, R3 : |z + 1| < 1 for the clockwise

path and R′
1 : |z − 1| < 1, R′

2 : |z + i| < 1, R′
3 : |z + 1| < 1 for the anti-clockwise path. !

• There is no problem analytically continuing around a singularity in the form of a pole.

Indeed, this is given by the Laurent expansion. Analytic continuation around poles is

sometimes called meromorphic continuation.

• We can now give a more precise definition of a branch point:

Definition: If analytic continuation of the function f(z) full circle around a point z = z0
brings you back to a different branch, then z = z0 is a branch point of the multi-valued

function f(z). This is called non-trivial monodromy. Note that analytic continuation around

a point on a branch cut always produces trivial monodromy.
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Week 11: Conformal Transformations

31. Analytic functions as conformal mappings
32. Möbius transformations and basic properties
33. Conformal transformations from Möbius transformations

August Ferdinand Möbius (1790–1868) Nikolai Egorovich Joukowsky (1847–1921)

Photographs c⃝ MacTutor Mathematics Archive (http://www-history.mcs.st-andrews.ac.uk)
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Conformal Maps

Definition: A conformal map f : U → V is a function which preserves angles. More specifically,

f is conformal at a point if the angle between any two C1 curves through the point is preserved

under the mapping.

Theorem 81 (Analytic Maps are Conformal) A function f(z) analytic in an open

neighbourhood of a with f ′(a) ̸= 0 is conformal at z = a. Since, by continuity, f ′(z) ̸= 0 in

an open neighbourhood of a, it follows that f(z) is conformal in a neighbourhood of a.

Proof: If γ : [0,1] → C is a C1 curve and f(γ(t)) its image then the tangent slopes are

arg(γ′(t)), γ′(t) ̸= 0; arg(f(γ(t))′), f(γ(t))′ = f ′(γ(t))γ′(t) ̸= 0 if f ′(z) ̸= 0 and γ′(t) ̸= 0

Let γ1 : [0,1] → C and γ2 : [0,1] → C be C1 curves through the point z = a with

γ1(t1) = γ2(t2) = a

The tangents to the curves at z = a are γ′1(t1) and γ′2(t2) and the angle between them is

arg(γ′2(t2)) − arg(γ′1(t1)), γ′1(t1) ̸= 0, γ′2(t2) ̸= 0

Assuming f ′(a) ̸= 0 and applying the chain rule gives

f(γ2(t2))
′

f(γ1(t1))′
=

f ′(γ2(t2))γ′2(t2)

f ′(γ1(t1))γ′1(t1)
=

f ′(a)γ′2(t2)

f ′(a)γ′1(t1)
=
γ′2(t2)

γ′1(t1)

The result follows by taking the argument on the left and right since

arg
(z2
z1

)

= arg(z2) − arg(z1) !

• It follows that the group of conformal maps in two dimensions is infinite dimensional. By

contrast, this group is finite dimensional in three or higher dimensions.
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Riemann Mapping Theorem

• A non-constant analytic function maps open

connected sets to open connected sets.

Theorem 82 (Riemann Mapping Theorem)

Let D ̸= C be an open simply-connected domain.

Then there is a one-to-one analytic function that maps

D onto the interior of the unit circle. Moreover, one

can prescribe an arbitrary point of D and a direction

through that point which are mapped to the origin

and the direction of the positive real axis, respectively.

Under such restrictions the mapping is unique.

Proof: See textbook.

• Since a one-to-one analytic map is invertible, it

follows that any open simply-connected domain can be

mapped onto any other open simply-connected domain

provided neither is C.
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Möbius Transformations

Definition: A Möbius transformation (linear fractional or bilinear transformation) is any non-

constant function on Ĉ of the form

w = f(z) =
az + b

cz + d
, ad ̸= bc, a, b, c, d ∈ C

f
(

−
d

c

)

= ∞, f(∞) =
a

c
(c ̸= 0); f(∞) = ∞ (c = 0)

• A Möbius transformation is conformal at every point except at its pole z = −d/c since

f ′(z) =
ad − bc

(cz + d)2
̸= 0

• Möbius transformations form a group under compositions with the identity I(z) = z.

Exercise: The matrix associated with the Möbius transformation w = f(z) is

A =

(

a b
c d

)

, detA =

∣

∣

∣

∣

a b
c d

∣

∣

∣

∣

̸= 0

More precisely, w = f(z) is associated with the set λA with λ ̸= 0. Show that the matrix

associated with the composition f1(f2(z)) of Möbius transformations is

A1A2 =

(

a1 b1
c1 d1

)(

a2 b2
c2 d2

)

, detA1A2 = detA1 detA2 ̸= 0

Also show that the inverse function f−1 satisfying f(f−1(z)) = f−1(f(z)) = I(z) is given by

z = f−1(w) =
dw − b

−cw + a
, A−1 =

(

d −b
−c a

)
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Elementary Möbius Maps

Möbius transformations include translations, rescalings, rotations and inversions.

• If we superimpose the z- and w-planes, we can view a conformal or Möbius map as a map

from the complex plane onto itself Ĉ → Ĉ.

• Let z0 = x0 + iy0 ∈ Ĉ and λ, θ0 ∈ R with λ > 0. Then the elementary Möbius maps are:

1. Translation: w = z + z0

This is translation in the Argand plane by the vector (x0, y0) ∈ R2.

2. Rescaling: w = λz

This is a contraction if 0 < λ < 1 and a magnification if λ > 1.

3. Rotation: w = eiθ0z

This is a rotation of the complex plane about z = 0 by an angle θ0. The rotation is

anticlockwise of θ0 > 0 and clockwise if θ0 < 0.

4. Inversion: w =
1

z

This is point-by-point inversion of the plane through the point at the origin z = 0 (z 1→
1

z
)

followed by reflection in the x-axis (complex conjugation).

Exercise: A linear transformation w = αz + β with α,β ∈ C is a composition of a translation,

rescaling and rotation.
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Möbius Compositions

Theorem 83 (Möbius Compositions)

If f(z) is a Möbius transformation then:

(i) f(z) is the composition of a finite sequence of elementry maps in the form of translations,

rescalings, rotations and inversions.

(ii) f(z) maps Ĉ one-to-one onto itself.

(iii) f(z) maps the class of circles and lines to itself. Note that a circle is uniquely determined

by 3 distinct noncollinear points. A line is uniquely determined by 2 distinct points to which

we can add the point at ∞ on the Riemann sphere. A line is just a (great) circle which passes

through ∞.

Proof: (i) We have

f(z) =
az + c

cz + d
= f4(f3(f2(f1(z))))

where

f1(z) = z +
d

c
, f2(z) =

1

z
, f3(z) = −

ad − bc

c2
z, f4(z) = z +

a

c

(ii)-(iii) See textbook. !
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Crossratio

• The crossratio is defined by

(z, z1; z2, z3) =
z − z1
z − z3

z2 − z3
z2 − z1

= cross-ratio

• The crossratio is fundamental in perspective

drawings and projective geometry.

Exercise: Show that

(z, z1; z2, z3) + (z, z2; z1, z3) = 1

(z, z1; z2, z3) + (z3, z1; z2, z) = 1

(z, z1; z2, z3)(z, z3; z2, z1) = 1

(z, z1; z2, z3)(z2, z1; z, z3) = 1

(z, z1; z2, z3) = (z1, z; z3, z2) = (z2, z3; z, z1) = (z3, z2; z1, z)

z z1 z2
z3

w

w1

w2
w3

|(z, z1; z2, z3)| = |(w, w1;w2, w3)|

Exercise: Show that the crossratio is invariant under the following simultaneous

transformations of z, z1, z2, z3: (i) translations, (ii) rescalings, (iii) rotations (about the

origin) and (iv) inversions (through the origin) and hence invariant under arbitrary Möbius

transformations.
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Constructing Möbius Transformations

Example: Find a Möbius transformation that maps the unit disk |z| < 1 onto the right half-

plane Rew > 0 such that f(1) = ∞ and f(−1) = 0.

Solution: A Möbius transformation takes the form

w = f(z) =
az + b

cz + d

Since f(1) = ∞ and f(−1) = 0, we see that d = −c to ensure the divergence at z = 1 and

b = a to ensure the vanishing at z = −1. Hence

f(z) = −
a

c

1 + z

1 − z
= λ

1 + z

1 − z

To ensure f(±i) lie on the imaginary w-axis we find

f(±i) = ±iλ, λ = −
a

c
∈ R

From the properties of Möbius transformations, we conclude that the unit circle is mapped

into the line Rew = 0. The image f(0) of the point z = 0 at the centre of the disk

f(0) = −
a

c
= λ > 0

for this image to be in the right half-plane Rew > 0. Choosing the positive rescaling factor

λ = 1 gives the Möbius transformation

w = f(z) =
1 + z

1 − z

• The answer is not unique since a rescaling by λ ̸= 1 leaves the right half plane invariant.
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Three-Point Uniqueness

• The general Möbius transformation

w = f(z) =
az + b

cz + d

appears to involve four complex parameters a, b, c, d. However, since ad ̸= bc, either a ̸= 0 or

c ̸= 0 or both a and c are non-zero. We can therefore express the transformation with three

unkown coefficients

w = f(z) =
z + b

a
c
a z + d

a

or w = f(z) =
a
c z + b

c

z + d
c

• It follows that there exists a unique Möbius transformation w = f(z) that maps the three

distinct points z1, z2, z3 onto the three points w1, w2, w3 respectively. An implicit formula for

the mapping w = f(z) is given by

z − z1
z − z3

z2 − z3
z2 − z1

=
w − w1

w − w3

w2 − w3

w2 − w1

If the line or circles are oriented by the order of z1, z2, z3 and w1, w2, w3 respectively, then the

Möbius transformation maps the region to the left (left-region) of z1, z2, z3 onto the region

to the left (left-region) of w1, w2, w3.

Exercise: Show, using cross-ratios, that the unique Möbius transformation w = f(z) such

that f(−1) = 0, f(0) = a, f(1) = ∞ is

f(z) = a
1 + z

1 − z
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Circles to Circles

Example: Find a Möbius transformation that maps the circle through the distinct noncollinear

points z1, z2, z3 to the circle through the distinct noncollinear points w1, w2, w3.

Solution: Suppose the Möbius transformation w = T(z) is such that T(z1) = 0, T(z2) = 1

and T(z3) = ∞, that is, T(z) maps the circle onto the real axis Imw = 0. Following the

previous example, we find

T(z) =
z − z1
z − z3

z2 − z3
z2 − z1

= (z, z1; z2, z3) = cross-ratio

Similarly, suppose the Möbius transformation z = S(w) is such that S(w1) = 0, S(w2) = 1

and S(w3) = ∞, that is, S(w) maps the circle onto the real axis Im z = 0. We find

S(w) =
w − w1

w − w3

w2 − w3

w2 − w1
= (w, w1;w2, w3) = cross-ratio

The required Möbius transformation is thus given by

w = f(z) = S−1(T(z)) ⇔ S(w) = T(z) ⇔ (w, w1;w2, w3) = (z, z1; z2, z3)

because

f(z1) = S−1(T(z1)) = S−1(0) = w1

f(z2) = S−1(T(z2)) = S−1(1) = w2

f(z3) = S−1(T(z3)) = S−1(∞) = w3

• The order of the points is important. Specifically, if the circles are oriented such that the

points are traversed in the given order, then the left-region is mapped onto the left region

where each left-region is an interior or exterior of the associated circle.
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Conformal Mappings of Bounded Regions

Theorem 84 (Parametric Boundaries)
Suppose that a C1 curve C, which may be closed or open, has parametric equations

x = F(t), y = G(t), t ∈ [a, b]

Then, assuming f ′(z) ̸= 0, the conformal map

z = f(w) = F(w) + iG(w), F, G analytic

maps the real axis of the w-plane onto the curve C in the z-plane.

Proof: See textbook. For closed curves, this often gives map between bounded regions.

Exercise: Find a conformal transformation that maps the ellipse

x2

a2
+

y2

b2
, a, b > 0

onto the interval [0,2π] along the real axis of the w-plane and the interior of the ellipse onto
a suitable rectangle in the strip 0 < Rew < 2π within the upper-half w-plane.

• Conformal transformations map simply-connected open sets to simply-connected open
sets. To apply boundary conditions we need to include the boundary and extend these maps
to the closed sets.

Theorem 85 (Caratheodory)
Suppose that U, V are a pair of simply-connected open sets whose boundaries ∂U, ∂V are
simple continuous closed (Jordan) curves. Then any conformal map of U one-to-one onto
V extends to a continuous map of U ∪ ∂U one-to-one onto V ∪ ∂V .

Proof: See textbook.
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Conformal Mapping of Laplace’s Equation

Theorem 86 (Conformal Mapping of Laplace’s Equation)

(i) Suppose that an analytic function

w = f(z) = u(x, y) + iv(x, y)

maps a domain Dz in the z-plane onto a domain Dw in the w-plane. If h(u, v) is a harmonic

function of u, v on Dw, that is it satisfyies Laplace’s equation ∇2h(u, v) = 0, then

H(x, y) = h(u(x, y), v(x, y)) = harmonic function of x, y in Dz

(ii) Suppose that C = ∂Dz and Γ = f(C) = ∂Dw are C1. Then Dirichlet or Neumann boundary

conditions are preserved. Explicitly, if along Γ

h(u, v) = h0 ∈ R or
dh

dn
= normal derivative to Γ = 0

then along C

H(x, y) = h0 ∈ R or
dH

dN
= normal derivative to C = 0

Proof: (i) Let w = f(z) = u+ iv and let k = k(u, v) be the harmonic conjugate of h = h(u, v).

Then g(w) = h + ik is analytic. So

H(x, y) = h(u(x, y), v(x, y)) = Re g(w) = Re g(f(z)) = harmonic function of x, y

because the composite function g(f(z)) is analytic.

• It follows that a solution H(x, y) of Laplace’s equation ∇2H(x, y) = 0 in a complicated

domain Dz in the xy-plane can be obtained by using a conformal mapping f(z) of the domain

in the xy-plane onto a simpler domain Dw in the uv-plane and solving Laplace’s equation there.
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Applications in Potential Theory

Consider Laplace’s equation for φ = φ(x, y) in a domain D with specified boundary conditions

on Γ = ∂D

∂2φ

∂x2
+
∂2φ

∂y2
= 0

• Heat Flow:

In heat flow, Laplace’s equation governs the temperature distribution φ(x, y) and the curves

φ = constant are isotherms. Typically, the temperature is fixed on parts of the boundary

Γ = ∂D. The rest of the boundary is assumed to be insulating so that the normal derivative

to Γ vanishes
∂φ

∂n
= 0.

• Electrostatics:

In electrostatics, φ(x, y) is the electric potential with electric field E = ∇φ and ∇ · E = 0.

The curves φ = constant are equipotentials. Typically, one specifies either the potential or

the normal component of E on the boundary Γ = ∂D.

• Fluid Flow:

In fluid flow, φ(x, y) is the stream function and the curves φ = constant are streamlines. For

flow around a nonporous body, the perimeter must be part of a streamline.
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Cylindrical Capacitor

Example: Find the electrostatic potential φ(z) between two long cylindrical conductors such

that φ = 0 on
∣

∣

∣z − 3
10

∣

∣

∣ = 3
10 and φ = 1 on |z| = 1.

Solution: Since Logw = Log |w| + iArg(w), w ̸= 0 is analytic in an annulus (with a cut),

Log |w| is harmonic. So the radially symmetric solution we seek for two concentric cylinders

of radii r, R with 0 < r < R is

ψ(w) =
Log(|w|/r)

Log(R/r)
, r < |w| < R

We need to find a conformal mapping to relate the two geometries. The required Möbius

transformation and its inverse are

w = f(z) = −
z − 1

3

z − 3
, z = f−1(w) =

3w + 1
3

w + 1

It is verified that the inner and outer circles in the z-plane are mapped onto concentric circles

in the w-plane

|w| =
∣

∣

∣f
( 3

10
(1 + eiθ)

)
∣

∣

∣ =
1

9
= r, |w| = |f(eiθ)| =

1

3
= R, θ ∈ [0,2π]

The solution in the w-plane is thus

ψ(w) =
Log9|w|
Log3

,
1

9
< |w| <

1

3

Transforming back, we find

φ(z) = ψ
(z − 1

3

z − 3

)

=
Log(|9z − 3|/|z − 3|)

Log3
!
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Joukowsky Airfoil

• In 1908, the mathematician Joukowsky considered the flow around an off-centre cylinder

• Miraculously, this cylinder is mapped onto the Joukowsky airfoil under the conformal

Joukowsky mapping

w = J(z) = z +
1

z

• It is therefore possible to obtain the airflow around the Joukowsky airfoil by studying the

airflow around a cylinder. This technique is of major importance in aerodynamics!
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Week 12: Gamma and Zeta Functions
34. The Gamma function
35. General discussion of the Zeta function
36. Revision

Leonhard Euler

(1707–1783)

Georg Friedrich Bernhard Riemann

(1826–1866)

Photographs c⃝ MacTutor Mathematics Archive (http://www-history.mcs.st-andrews.ac.uk)
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Gamma Function

Definition: The gamma function is defined by

Γ(p) =
∫ ∞

0
xp−1e−x dx, Re p > 0

From this integral expression, Γ(p) has no branch points and is analytic for Re p > 0.

• Integrating by parts gives

Γ(p) = −
∫ ∞

0
xp−1 d

dx
(e−x) dx = −

[

xp−1e−x
]∞
0

+ (p − 1)
∫ ∞

0
xp−2e−xdx

= (p − 1)Γ(p − 1), provided Re p > 1

This recursion determines Γ(p) for p ∈ N. Since Γ(1) = 1, iteration gives

Γ(p) = (p − 1)(p − 2)(p − 3) . . . (3)(2)Γ(1) = (p − 1)!

Similarly, if p is half an odd integer, iteration shows that Γ(p) is a multiple of

Γ(1/2) =
∫ ∞

0
x−1/2e−x dx = 2

∫ ∞

0
e−y2

dy =
√
π, x = y2

• Iterating the reverse recursion relation is used to analytically continue Γ(p) to Re p ≤ 0

Γ(p) = Γ(p + 1)/p ⇒ Γ(p) =
Γ(p + n + 1)

p(p + 1)(p + 2) · · · (p + n)
, p ̸= 0,−1,−2,−3, . . .

It follows that Γ(p) is analytic everywhere in C except for simple poles at p = 0,−1,−2, . . ..
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Graph of the Gamma Function

• A graph of Γ(p) for real p:

-4 -2 2 4

-4

-2

2

4
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Beta Function

Definition: A related function is the beta function B(r, s) defined by

B(r, s) =
∫ 1

0
ur−1(1 − u)s−1 du

Consider the product

Γ(r)Γ(s) =
∫ ∞

0
xr−1e−x dx

∫ ∞

0
ys−1e−y dy

as a double integral over the first quadrant in the x-y plane. Substituting x + y = u we find

Γ(r)Γ(s) =
∫ ∞

0
e−u

(
∫ u

0
xr−1(u − x)s−1 dx

)

du

=
∫ ∞

0
ur+s−1e−u du

∫ 1

0
tr−1(1 − t)s−1 dt

= Γ(r + s)B(r, s)

In the second step we substituted x = ut, dx = u dt.

In particular, since Γ(1) = 1

Γ(p)Γ(1 − p) = B(p,1 − p) =
∫ 1

0
up−1(1 − u)−p du

Or, after substituting u = x(1 + x)−1,

Γ(p)Γ(1 − p) =
∫ ∞

0
xp−1(1 + x)−1 dx

This integral can be evaluated by considering the integral of

zp−1(1 + z)−1 (0 < Re p < 1) around the contour C.

×
–1

branch cut

z =x

z =x ep-1 p-1

p-1p-1

2πip

.
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Reflection Formula

Using residues and limiting contours theorems I/III (Uniformity on an Arc) we find
∮

C
zp−1(1 + z)−1 dz = 2πiRes(−1) = 2πi eiπ(p−1) = −2πi eiπp

=
∫ ∞

0
xp−1(1 + x)−1 dx +

∫ 0

∞
xp−1e2πip(1 + x)−1 dx

= −(e2πip − 1)
∫ ∞

0
xp−1(1 + x)−1 dx

After rearranging we find
∫ ∞

0
xp−1(1 + x)−1 dx =

π

sinπp

The final result is called the reflection formula

Γ(p)Γ(1 − p) =
π

sinπp
, 0 < Re p < 1

• Although we derived the reflection formula for 0 < Re p < 1, it extends straightforwardly

to all p /∈ Z using the recursion relation for the Γ function.

• Using the fact that π/ sin(πz) has simple poles at z = ±n, n = 0,1,2 . . . with residues

(−1)n, the reflection formula shows that Γ(p) has simple poles at p = −n, n = 0,1,2, . . . with

residues

(−1)n

Γ(1 + n)
=

(−1)n

n!

12-4



Gamma Function Summary

Γ(p) =
∫ ∞

0
xp−1e−x dx, Re p > 0

Special Values Γ(1) = 1

Γ(1/2) =
√
π

Recurrence Relation Γ(p) = (p − 1)Γ(p − 1)

Reflection Formula Γ(p)Γ(1 − p) = π/ sin(πp)

Singularities Simple poles at p = 0,−1,−2, · · ·

Residues Res(−n) = (−1)n/n! n = 0,1,2, · · ·
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Zeta Function
• The Riemann zeta function is defined by

ζ(p) =
∞
∑

n=1

1

np
, Re p > 1

It is analytically (more precisely meromorphically) continued to Re p > 0 through the

alternating Riemann zeta function ζ∗(p)/Dirichlet eta function η(p)

ζ∗(p) =
η(p)

1 − 21−p
, η(p) =

∞
∑

n=1

(−1)n−1

np
, Re p > 0, p ̸= 1

with ζ∗(p) = ζ(p) for Re p > 1. The eta function η(p) is absolutely convergent for Re p > 1

and conditionally convergent for 0 < Re p < 1 by a convergence test for Dirichlet series
∣

∣

∣

∣

n
∑

k=1

ak

∣

∣

∣

∣

bounded for large n ⇒
∣

∣

∣

∣

∞
∑

n=1

an

np

∣

∣

∣

∣

< ∞, an ∈ C, Re p > 0;

• The Riemann zeta function is then analytically continued to Re p ≤ 0 by a reflection formula

in the form of the Riemann relation

2Γ(p) ζ(p) cos(πp/2) = (2π)pζ(1 − p)

This formula is not obvious and requires an integral representation of the eta function

η(p) =
1

Γ(p)

∫ ∞

0

xp−1

ex + 1
dx, Re p > 0

• It follows that ζ(p) has no branch points and is an analytic function in the complex p-plane
except for a simple pole at p = 1 with residue equal to unity.
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Zeta Function Summary

• Riemann/Euler Formulas

ζ(p) =
∞
∑

n=1

n−p =
∏

n prime

1

1 − n−p
, Re p > 1

Special values ζ(−1) = −1/12

ζ(0) = −1/2

ζ(2) = π2/6

ζ(4) = π4/90

Riemann Relation 2Γ(p)ζ(p) cos(pπ/2) = (2π)pζ(1 − p)

Singularity Simple pole at p = 1, Res(1) = 1

Zeros Trivial zeros at p = −2,−4,−6,−8, . . .

Non-trivial zeros on the line Re p = 1
2
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Zeta Function on Real Axis

Trivial Zeros on Negative Real Axis
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Pole at z = 1 on Positive Real Axis
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Zeta Function on Imaginary Axis

Plot of |ζ(1
2 + iy)| Showing Zeros on Imaginary Axis

!40 !20 20 40

0.5

1.0

1.5

2.0

2.5

3.0

• Riemann Hypothesis. Perhaps the most famous unproved mathematical conjecture is

the Riemann hypothesis which states that all of the (non-trivial) zeros of ζ(p) lie exactly on

the critical line Re p = 1/2.
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