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Abstract: Bellman’s challenge to find the shortest path to escape 

from a forest of known shape is notoriously difficult. Apart from a 

few of the simplest cases, there are not even many conjectures for 

likely solutions let alone proofs. In this work it is shown that when 

the forest is a convex polygon then at least one shortest escape path 

is a piecewise curve made from segments taking the form of either 

straight lines or circular arcs. The circular arcs are formed from the 

envelope of three sides of the polygon touching the escape path at 

three points. It is hoped that in future work these results could lead 

to a practical computational algorithm for finding the shortest escape 

path for any convex polygon. 

Introduction 

Sixty years ago Richard Bellman proposed the “Lost in a Forest” problem of 

finding the shortest path that ensures escape from a forest of known shape when 

the starting position and direction is unknown [1]. In geometric terms: Given a 

shape in the plane, what is the shortest continuous open curve which cannot be 

placed inside the shape using rotations and translations without intersecting the 

shapes boundary? An equivalent problem is to find the smallest shape similar to 

a given shape which is a universal cover (allowing rotations and translations but 

not reflections) for all continuous open curves of length one. 

The latter formulation makes clear the relationship with Moser’s famous 

“Worm Problem” which seeks to find the smallest convex area that is a 

universal cover for all open curves of length one [2]. Many of the shapes for 

which solutions to Bellman’s problem are known come from known universal 

covers for Moser’s problem. For example, a universal cover in the form of a 

rhombus can be embedded inside regular polygons with four or more sides to 

show that the optimal escape route for these shapes is simply the longest 

straight line path that fits inside. Triangles are a source of more interesting 

solutions. 

Fortunately there are two very good reviews of Bellman’s problem describing 

the details of prior work: Finch and Wetzel 2004 [3] and Ward 2008 [4]. Given 



the sparsity of solutions to the problem after 50 years who can blame Ward for 

suggesting that “a general solution appears elusive and likely unapproachable” 

However, in 2006 Coulton and Movshovich produced a breakthrough which 

indicates that there may be some hope [5]. They solved the problem for a range 

of isosceles triangles including the equilateral triangle for which Besicovitch 

forty years earlier had correctly conjectured a zig-zag shaped solution. The only 

other known solution which is not a simple straight line is a caliper shaped 

curve for shortest escape path from an infinite strip, first solved by Zalgaller in 

1961. This may not seem like much of a repertoire but if these cases can be 

resolved why not others?   

Escape Paths for Convex Polygons 

Before turning to the specific cases it is useful to consider the general forms a 

shortest escape path can take for a polygonal shaped forest. For simplicity and 

without losing too much generality, consider a forest 𝐹 as a region of the plane 

bounded by and including a convex polygon of which no two sides are parallel. 

Let 𝒞 be the set of all open continuous rectifiable plane curves of non-zero 

length. Let 𝐶 be a curve in 𝒞, and let |𝐶| denotes its length. 𝐶 can be rotated 

through an angle 𝜃 without change of shape. For each 𝜃 there is a unique largest 

positive scale factor 𝑠(𝐹, 𝐶, 𝜃) such that the rotated curve scaled by this factor 

can be translated to a position where it is covered by 𝐹. Since 𝐹 is convex with 

no parallel sides the position will be unique. Furthermore it can be shown that 

𝑠(𝐹, 𝐶, 𝜃) is a continuous periodic function of 𝜃 and is therefore bounded and 

has a maximum value  𝑠𝑚𝑎𝑥(𝐹, 𝐶). 

When the curve 𝐶 is scaled by the factor 𝑠𝑚𝑎𝑥(𝐹, 𝐶) it forms a Shortest Escape 

Path (SEP) of length 𝑠𝑚𝑎𝑥(𝐹, 𝐶) × |𝐶|. For any given orientation and any 

starting point in 𝐹 the scaled curve must then intersect the boundary of 𝐹 at 

some point. Furthermore any SEP can be formed in this way. There may be 

more than one SEP for a given F that are distinct under rotations and scalings, 

but they all have the same length. 

Therefore Bellman’s problem reduces to finding the curves 𝐶 which minimises 

the function |𝐶|𝑠𝑚𝑎𝑥(𝐹, 𝐶). In other words the length of the shortest escape 

paths for 𝐹 is given in terms of the scaling function by 

𝐿𝑆𝐸𝑃(𝐹) =  min 
𝐶∈𝒞

(|𝐶| max
0<𝜃≤2𝜋

𝑠(𝐹, 𝐶, 𝜃)) 



To maximise the scaling factor 𝑆(𝐹, 𝐶, 𝜃) for a fixed curve 𝐶 and a fixed angle 

𝜃 the curve is translated and expanded giving three degrees of freedom. When it 

touches one of the edges of 𝐹, that will impose a constraint with one degree of 

freedom. This tells us that for the maximum case it will touch at least three sides 

of 𝐹. In some cases it may touch two adjacent sides at the vertex where they 

meet so that the path only touches the boundary of 𝐹 at two points. Because we 

have specified that the boundary is a convex polygon with no parallel edges the 

position of the curve at maximum expansion will be uniquely determined. 

It can also be seen that the edges of 𝐹 touched by 𝐶 can be extended to form a 

polygon that encloses 𝐹. Normally this polygon will be a triangle.  

If a curve 𝐶 is chosen at random it is reasonable to expect that the scaling 

function 𝑠(𝐹, 𝐶, 𝜃) would typically have a single maximum at a unique 𝜃 angle. 

However, when 𝐶 is also varied to find the curve which minimises this 

maximum, it is possible that the optimum path will be a case where there is a 

switch between different local maxima so it is important to consider cases 

where there are multiple maxima. Indeed, the minimisation is over an infinite 

space of variables describing the curve 𝐶 as a function so it may not be 

unreasonable to expect that the maxima will occur along continuous ranges of 

angles. We already know this to arise in the case of Zalgallar’s escape path for 

an infinite strip. 

In the general case where the shape of the curve 𝐶 is unrestricted it will have a 

maximal scaling factor for fixed angle 𝜃 at a unique position where it touches at 

least three edges of the boundary of 𝐹. Define a subset 𝑇 of 𝐶 consisting of all 

points that touch the boundary of 𝐹 at some angle where the scaling factor is 

maximal. 𝑇 could consist of as few as just two discrete points of 𝐶 but if 𝐶 is an 

optimal escape path 𝑇 may include several discrete points and even continuous 

segments of 𝐶. It will however by a closed set in the topological sense. What 

can be said about the sections of 𝐶 that join up the points of 𝑇? The first step in 

demonstrating the claim that the shortest escape paths are composed of straight 

lines and circular arcs is to show that:  

If 𝑪 is an shortest escape path then sections of 𝑪 that are not in 𝑻 must be 

straight line segments. Furthermore the end points of 𝑪 must be in 𝑻.  

 

 



This can be proven by contradiction. If a segment of 𝐶 that does not include 

points of T is not a straight line then it can be replaced by a straight line to give 

a shorter path, or if it is at one end of the curve it can be removed altogether. 

However, this change could also modify the scaling factor function 𝑠(𝐹, 𝐶, 𝜃) 

making its maximum bigger to counteract the shortening of the curve. This can 

only happen if there is an angle 𝜃 where a point 𝑋 on the segment is touching 

the boundary of 𝐹. Since 𝑋 is not in 𝑇 the scaling factor for this angle must be 

smaller than the maximum. It then suffices to show that a small part of the 

segment near 𝑋 can be replaced with a straight line segment without changing 

the scaling factor to make it greater than the maximum at any angle. This 

follows from the continuity of the scaling factor as a function of 𝐶. 

This means that if 𝑇 included only discrete points on a shortest escape path then 

the optimal curve would be a polyline. What can be said about the shape of 

continuous sections of the curve which are in 𝑇? 

As the angle 𝜃 covers the range 0 < 𝜃 ≤ 2𝜋 a curve 𝐶 expanded by the scaling 

factor 𝑠(𝐹, 𝐶, 𝜃) will touch three sides of 𝐹 except at discrete points where it 

may touch 4 or more sides. The range can be subdivided into intervals 𝜃𝑖 < 𝜃 ≤

𝜃𝑖−1 over which the curve touches the same three sides and the points in 𝑇 

where is touches move continuously in one direction of remain at the same 

point. This subdivision of the angular ranges also induces the curve  𝐶 to be 

subdivided into segments which are either straight lines joining points of 𝑇 or 

continuous sections within 𝑇 which touch the same straight edge of 𝐹 over one 

of the angular intervals. The remaining task is to establish the possible form of 

curve that one of these segments can take. 

To visualise the situation it is better to take the expanded curve 𝐶 as static and 

allow the polygon 𝐹 to rotate through an angle – 𝜃 for 𝜃𝑖 < 𝜃 ≤ 𝜃𝑖−1 while 

being translated by a variable vector so as to touch the curve. Over the whole 

segment the scaling factor of the curve is fixed at its maximum value so the size 

of 𝐹 and 𝐶 will be fixed. Since only the same three aides of 𝐹 touch the curve it 

is sufficient to look at just those three sides and extend them to form a triangle 

enclosing the curve. The triangle will touch 𝐶 along three subsets of  𝑇. One or 

two of these could be single points but in the most general case they are 

continuous segments and are formed by the envelope of the edges of the triangle 

as it moves and rotates. 



To understand how these envelopes form, first consider the special case where 

two of three segments of 𝑇 on the curve collapse to points. Let the triangle 

formed by extending three sides of the forest boundary be ∆𝐴𝐵𝐶. The two 

points on the curve are 𝑃 and 𝑄 with 𝑄 touching the side 𝐴𝐵 and 𝑃 touching the 

side 𝐴𝐶. The third segment of the curve is then the envelope of the side 𝐵𝐶 as 

the triangle rotates under these constraints. It can be demonstrated that the 

solution is a circular arc by the following construction. 

 

Define a new point 𝑂 to construct a triangle ∆𝑂𝑃𝑄 on the given side 𝑃𝑄 so that 

it is similar to the reflection of the moving triangle ∆𝐴𝐵𝐶. I.e. ∠𝑂𝑃𝑄 =  ∠𝐴𝐵𝐶 

and ∠𝑂𝑄𝑃 =  ∠𝐴𝐶𝐵. Draw the circumscribed circle of triangle ∆𝑂𝑃𝑄. 

Because ∠𝑃𝑂𝑄 =  ∠𝐶𝐴𝐵 =  ∠𝑃𝐴𝑄 it follows that 𝐴 must also lie on this 

circle.  Also, ∠𝑂𝐴𝑃 =  ∠𝑂𝑄𝑃 =  ∠𝐴𝐶𝐵, therefore 𝑂𝐴 is parallel to 𝐶𝐵. 

Therefore the distance 𝑂𝑌 from the point 𝑂 to the side 𝐵𝐶 is equal to the 

distance ℎ𝐴 from the point 𝐴 to the side 𝐵𝐶 and this is the fixed height of the 

triangle. Therefore the side 𝐵𝐶 is tangent to the circle with centre 𝑂 and radius 

𝑟𝐴 = ℎ𝐴 and the envelope of the edge must be an arc of that circle. 

Although this is just a specific special case it does appear to be one that arises 

on the shortest path for some triangular shaped forests (future work.) It also 



generalises easily to the case where the triangle touch circular arcs at all three 

points. To see this draw a circle of radius 𝑟𝐶  centred on 𝑄 and a circle of radius 

𝑟𝐵 centred on 𝑃.  The radii must be sufficiently small that the two circles can fit 

simultaneously inside the triangle ∆𝐴𝐵𝐶 so that the side 𝐴𝐵 touches the circle 

tangentially and the side 𝐴𝐶 touches the second circle tangentially. What then is 

the envelope of the side 𝐵𝐶?  

To find the answer, first reduce the triangle ∆𝐴𝐵𝐶 to a smaller similar triangle 

∆𝐴′𝐵′𝐶′ by drawing the edge 𝐴′𝐵′ parallel to 𝐴𝐵 but passing through  , the side 

𝐴′𝐶′ parallel to 𝐴𝐶 but passing through 𝑃 , and the side 𝐵′𝐶′ lying on the side 

𝐵𝐶. The triangle ∆𝐴′𝐵′𝐶′ is then similar to ∆𝐴𝐵𝐶 with linear dimensions 

reduced by a factor 𝑓 = 1 −
𝑟𝐵

ℎ𝐵
−

𝑟𝐶

ℎ𝐶
. Where ℎ𝐵is the height of the original 

triangle with 𝐴𝐶 as the base and ℎ𝐵is the height with 𝐴𝐵 as the base. The earlier 

result can now be applied to the motion of the triangle ∆𝐴′𝐵′𝐶′ to show that the 

envelope of the side BC is also a circular arc with radius 𝑟𝐴 = 𝑓ℎ𝐴. The 

equation relating the three radii can also be written in the more symmetrical 

form  
𝑟𝐴

ℎ𝐴
+

𝑟𝐵

ℎ𝐵
+

𝑟𝐶

ℎ𝐶
= 1 

In general the envelopes formed from the sides of a triangle as it moves need 

not be arcs. In general the equation above is the relation between the radii of 

curvature of the three segments of curve at three points touched simultaneously 

by the triangle. The three segments defined as the points on the curve touched 

by the boundary of F as it turns through an angle – 𝜃 for 𝜃𝑖 < 𝜃 ≤ 𝜃𝑖−1. Fix the 

six end points of the segments and consider the set of possible arcs that can join 

them. In fact we have to include possible straight line segments at each end of 

each segment at fixed angles. The curve must be convex along these segments 

so the longest the curve can be is when the two straight lines meet at a point 

touched by the triangle over the full range of angles. This corresponds to a 

radius of curvature of zero. Let 𝐿0 be the length of the full curve if all three 

segments have a zero radius of curvature. 

Assume that the arcs have a constant curvatures. If the curvatures are non-zero 

then the length of the curve will be reduced according to the formula 𝐿 = 𝐿0 −

(𝑟𝐴 + 𝑟𝐵 + 𝑟𝐶)(2 tan
∆𝜃

2
− ∆𝜃). The factor multiplying the sum of the 

curvatures is positive so to minimise the path length we need to maximise 

(𝑟𝐴 + 𝑟𝐵 + 𝑟𝐶) under the constraint 
𝑟𝐴

ℎ𝐴
+

𝑟𝐵

ℎ𝐵
+

𝑟𝐶

ℎ𝐶
= 1 



Each radius of curvature must be non-negative. From the constraint given 

above, this means that each radius of curvature must be less than the 

corresponding altitude of the triangle. There can be stricter upper constraints 

from the positioning the fixed end-points of the arcs. In the most extreme case 

when two end points coincide the corresponding radius of curvature would have 

to be zero. In general we get 0 ≤ 𝑟𝐴 ≤ 𝑅𝐴 ≤ ℎ𝐴 and similarly for the other two 

cases. 

Suppose that ℎ𝐴 > ℎ𝐵 > ℎ𝐶. Then to maximise the sum of curvatures we need 

to take 𝑟𝐴 = 𝑅𝐴, 𝑟𝐵 = min (𝑅𝐵,  ℎ𝐵 (1 −
𝑅𝐴

ℎ𝐴
)).  The third radius can then be 

computed from the constraint.  

In general the curvature could vary with angle of rotation but must remain 

within the same limits. A full analysis of the general case should be given but it 

is not hard to guess that the shortest path is given when the curvature is constant 

and given by the same formulae. 

However, we neglected to consider the special case where two or three of the 

triangle’s altitudes are equal. In this case the corresponding curvatures can be 

varied with no change in the length of the curve. This means that unless the 

constraints force one or two of the curvatures to be zero, there will be an infinite 

set of shortest escape paths with the same minimum length. The curves would 

then not necessarily have to be composed of circular arcs, but there will always 

be cases where they are. Note that it is not currently known if this situation 

arises in actual solutions of Bellman’s problem, but in a variant of the problem 

where the paths are closed (i.e. the end of the path must return to the start point) 

this does seem to be the situation for the equilateral triangle shaped forest. 

In conclusion, we have sketched the outline of a proof that for the solutions of 

Bellman’s problem for any forest bounded by a convex polygon, there is at least 

one shortest escape path which is constructed piecewise from straight lines and 

circular arcs. 

Future Work 

The results in this paper are just a small step towards resolving Bellman’s “Lost 

in a Forest” problem. There is still a long way to go but this progress suggests 

that rather than being unapproachable there is in fact a possibility that it could 



be resolved for convex polygons. Knowing that there is a shortest escape path 

composed of straight lines and circular arcs comes close to reducing the 

problem to a combinatorial one. It is plausible that an algorithmic solution could 

be found that could be implemented in software. If this is too ambitious then the 

case of triangular forests may be more tractable. 

Any solution to Bellman’s problem for a given shape of forest also sets an upper 

bound for the more famous Moser’s worm problem. Current upper bounds are 

impressive accomplishments, but it is likely that they can be bettered even using 

just triangular covers. If a proven algorithmic solution is found for Bellman’s 

problem it will therefore be a big step forward for Moser’s problem too.  
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