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Predict Churn

AURELIE LEMMENS and CHRISTOPHE CROUX*

In this article, the authors explore the bagging and boosting classifica-
tion techniques. They apply the two techniques to a customer database
of an anonymous U.S. wireless telecommunications company, and both
significantly improve accuracy in predicting churn. This higher predictive
performance could ultimately lead to incremental profits for companies
that use these methods. Furthermore, the results recommend the use of
a balanced sampling scheme when predicting a rare event from large

data sets, but this requires an appropriate bias correction.

Bagging and Boosting Classification Trees to

Classification issues are common in marketing literature.
One of the most frequent topics envisioned as a classifica-
tion task is consumer choice modeling (see, e.g., Chung and
Rao 2003; Corstjens and Gautschi 1983; Currim, Meyer,
and Le 1988; Guadagni and Little 1983; Kalwani, Meyer,
and Morrison 1994). The current study considers a binary
choice problem, namely, the prediction of customer churn
behavior.

Several classification models exist, but one of the most
popular is the (binary) logit model, which has been used
extensively in marketing to solve binary or multiple choice
problems (see, e.g., Andrews, Ainslie, and Currim 2002).
More sophisticated models, which take into account the het-
erogeneity in consumer response, include finite mixture
models (see, e.g., Andrews and Currim 2002; Wedel and
Kamakura 2000) and hierarchical Bayes techniques (see,
e.g., Arora, Allenby, and Ginter 1998; Yang and Allenby
2003). For binary choice problems, these approaches
require the availability of panel data (i.e., data from several
observations over time on multiple customers). However, in
many applications (including the current one), a customer is
observed only once over time, which makes it impossible to
disentangle the individual effects from the random errors
(Donkers et al. 2006).
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In this article, we use the “bagging” and “boosting” clas-
sification models that originated in the statistical machine-
learning literature. Bagging (Breiman 1996) consists of
sequentially estimating a binary choice model—called a
“base classifier” in machine learning—from resampled ver-
sions of a given calibration sample. The obtained classifiers
form a committee from which a final choice model can be
derived by simple aggregation. Although bagging is simple
and easy to use, more sophisticated variants also exist. “Sto-
chastic gradient boosting” (Friedman 2002) is one of the
latest developments and includes weights in the resampling
procedure.

Although bagging and boosting have received increasing
attention in various fields (e.g., for the University of Cali-
fornia, Irvine, machine-learning archive, see Friedman,
Hastie, and Tibshirani 2000; for text categorization, see
Nardiello, Sebastiani, and Sperduti 2003; for use in chemo-
metrics, see Varmuza, He, and Fang 2003; for an applica-
tion in fraud claim detection, see Viaene, Derrig, and
Dedene 2002), to the best of our knowledge, marketing
literature does not contain any reference to such models.
Therefore, we attempt to fill this gap by empirically investi-
gating whether bagging and stochastic gradient boosting
can challenge more traditional choice models. In particular,
we examine their performance in predicting customers’
churn behavior for an anonymous U.S. wireless telecommu-
nications company.! To evaluate the predictive accuracy of
our churn model, we consider not only the misclassification
rate, which may be misleading for rare events, such as
churn, but also the Gini coefficient and the top-decile lift.

Churn is a marketing-related term that characterizes
whether a current customer decides to take his or her busi-

IThis database was provided by the Teradata Center for Customer Rela-
tionship Management at Duke University during the Duke/NCR Churn
Modeling Tournament.
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ness elsewhere (in the current context, to defect from one
mobile service provider to another). As with many other
sectors (e.g., the newspaper business), churn is an important
issue for both the U.S. and the European wireless telecom-
munications industry. Monthly churn rates amount to
approximately 2.6% (Hawley 2003) as a result of increased
competition, lack of differentiation, and saturation of the
market. Because the cost of replacement of a lost wireless
customer amounts to $300-$700 (depending on the source
of information; see, e.g., Snel 2000) in terms of sales sup-
port, marketing, advertising, and commissions, churn may
have damaging consequences for the financial wealth of
companies. However, predicting churn enables the elabora-
tion of targeted retention strategies to limit these losses
(Bolton, Kannan, and Bramlett 2000; Ganesh, Arnold, and
Reynolds 2000; Shaffer and Zhang 2002). For example,
specific incentives may be offered to the most risky cus-
tomer segments (i.e., the most inclined to leave the com-
pany) with the hope that they remain loyal. Other scientific
studies also note the advantage of customer retention as a
lower-cost operation than attracting new customers
(Athanassopoulus 2000; Bhattacharya 1998; Colgate and
Danaher 2000).

Despite the financial consequences that a 2% monthly
churn rate may lead to, customer defection is still a statisti-
cally rare event. Consequently, when the churn predictive
model is estimated on a random sample of the customer
population, the vast majority of nonchurners in this propor-
tional calibration sample (i.e., the number of churners in
this randomly drawn sample is proportional to the real-life
churn proportion) dominate the statistical analysis, which
may hinder the detection of churn drivers and eventually
decrease the predictive accuracy. To address this issue, the
calibration sample size can be increased. However, this
solution is usually not optimal (see the “Results” section;
King and Zeng 2001a). A better solution to this issue is to
apply a selective sampling scheme to increase the number
of churners in the calibration sample. Such a sampling
scheme is called “balanced sampling” (or “stratified sam-
pling” in King and Zeng 2001a, b). Theoretically, a poten-
tially better-performing classifier could be obtained from
such a sample, especially for small sample sizes (see, e.g.,
Donkers, Franses, and Verhoef 2003; King and Zeng 2001a,
b). We investigate whether these findings are still valid for
large sample sizes.

The estimation of a classification model from a balanced
sample usually overestimates the number of churners in real
life. Several methods exist to correct this bias (see, e.g.,
Cosslett 1993; Donkers, Franses, and Verhoef 2003; Franses
and Paap 2001, pp. 73-75; Imbens and Lancaster 1996;
King and Zeng 2001a, b; Scott and Wild 1997). However,
most of these corrections are dedicated to traditional classi-
fication methods, such as the binary logit model. Therefore,
we subsequently discuss two easy correction methods for
bagging and boosting, from which marketers can benefit to
predict churn.

In summary, we investigate the following research ques-
tions: Do the recent developments in statistical machine
learning outperform the traditional binary logit model in
predicting churn? If so, what financial gains can be
expected from this improvement, and what are the more
relevant churn drivers, or “triggers,” for which marketers
can watch? Moreover, we propose two bias correction
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methods for balanced samples and compare their perform-
ance. Finally, using large sample configurations, we investi-
gate whether a choice model estimated on a balanced sam-
ple, with the bias appropriately corrected for, outperforms a
choice model estimated on a proportional sample.

We organize the remainder of this article as follows: The
next section contains a description of the data. The three
subsequent sections outline the bagging and boosting mod-
els, the bias correction methods for balanced sampling
schemes, and the assessment criteria, respectively. We then
empirically answer the aforementioned research questions
and offer some conclusions.

DATA

We used a data set that the Teradata Center at Duke Uni-
versity provided. This database contains three data sets of
mature subscribers (i.e., customers who had been with the
company for at least six months) to a major U.S. wireless
telecommunications carrier. The variable we attempt to pre-
dict is whether a subscriber churns during the period of 31—
60 days after the sampling date (we know that the actual
reported average monthly churn rate is approximately
1.8%). A delay of one month in measuring the churn varia-
ble is justified because the implementation of proactive cus-
tomer retention incentives requires some time. In this case,
marketers would have a one-month delay to target and
retain customers before they churn. We coded the churn
response as a dummy variable, where y = 1 if the customer
churns and -1 if otherwise.

We used the first two data sets as calibration samples of
51,306 observations each.2 The first data set is a “propor-
tional calibration sample” (the proportion of churners in the
sample is approximately 1.8%), and the second contains an
“oversampled” number of churners such that the number of
churners is perfectly balanced by the number of nonchurn-
ers. Selected at a future point in time, the third data set con-
tains 100,462 customers, 1.8% of whom are churners. We
used this third set as a validation (thus, we do not use it in
our estimation) holdout sample to evaluate the performance
of the prediction rules constructed from one of the afore-
mentioned calibration samples. All samples contain a differ-
ent set of customers.

To predict customers’ churn potential, U.S. wireless oper-
ators usually take into account between 50 and 300 sub-
scriber variables as explicative factors (Hawley 2003).
From the high number of explicative variables contained in
the initial database (171 variables), we retained 46 varia-
bles, including 31 continuous and 15 categorical variables.
The retained predictors include behavioral (e.g., the average
monthly minutes of use over the previous three months, the
total revenue of a customer account, the base cost of a call-
ing plan), company interaction (e.g., mean unrounded min-
utes of customer-care calls), and customer demographic
(e.g., the number of adults in the household, the education
level of the customer) variables (for an overview, see Table
1). We selected the variables by excluding all variables that
contained more than 30% of missing values. Among the
remaining variables, we selected those with the most poten-

20riginally, the second data set contained 100,000 observations, but we
reduced its size (by taking a random subset from it) to ensure a fair com-
parison between both calibration samples.
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Table 1
NONEXHAUSTIVE OVERVIEW OF THE CHURN PREDICTORS

Behavioral Predictors

Company Interaction Predictors

Customer Demographics

Billing adjusted total revenue over the life of the
customer (“total revenue over life”)

Mean number of attempted calls placed (“mean
attempted calls”)

Percentage change in monthly minutes of use
versus previous three-month average (“‘change in
monthly minutes of use”)

Mean total monthly recurring charge (“base cost of
the calling plan”)

Average monthly minutes of use over the previous
six months (“average monthly minutes of use
[six months]”)

Mean number of completed calls (“mean completed
calls”)

Mean number of peak calls (“mean peak calls™)

(yes/no)

Total number of months in service (“months in
service”)

Mean number of inbound calls less than one minute
(“mean inbound calls less one minute”)

Mean of overage revenue (“mean overage revenue’)

Mean number of monthly minutes of use (“mean
monthly minutes of use”)

Mean unrounded minutes of use of outbound
wireless to wireless calls (“mean monthly
minutes wireless to wireless”)

Having responded to an offer in the mail

Mean minutes of use of customer care calls

Age of the first household member (“age”)
Estimated income

Social group

Marital status

Geographic area

Account spending limit

Children in the household (yes/no)

Dwelling unit type

Number of days of current equipment (“Equipment
days”)

Refurbished or new handset

Current handset price (“handset price”)

tial relevance, following the results of a principal compo-
nents analysis.3 Note that for an equal comparison, we con-
sider the exact same set of variables for all investigated
models.

The handling of missing values is operated differently for
the continuous and the categorical predictors. For the con-
tinuous variables, we imputed the missing values by the
mean of the nonmissing ones. Because not answering a
question may be as informative as a specific response, for
each observation, we added an extra predictor that indicated
whether there was at least one imputation. For categorical
predictors, we created an extra level for each of them that
indicated whether the value was missing.

THE BAGGING AND BOOSTING MODELS

Both bagging and boosting originate from the machine-
learning research community and are based on the principle
of “classifier aggregation.” This idea was inspired by
Breiman (1996), who found gains in accuracy by combin-
ing several base classifiers, sequentially estimated from per-
turbed versions of the calibration sample. Among the sev-
eral possible alternatives of base classifiers, classification
trees (also known as CART; see Breiman et al. 1984) are a
sensible choice (Breiman 1996). Their use is not wide-
spread in marketing literature (for exceptions, see Baines et
al. 2003; Currim, Meyer, and Le 1988; Haughton and
Oulabi 1997), though they are powerful nonparametric

3Because the purpose of this article is to investigate the comparative per-
formance of different models, we do not provide further details about
variable selection, which mainly served to reduce computation time. Some
experiments indicated that the performance of the classification rules
barely changed, regardless of whether we implemented a variable selection
procedure.

methods. In recent years, statistical theory has been elabo-
rated to provide a theoretical background for these tech-
niques (e.g., for bagging, see Bithlmann and Yu 2002; for
boosting, see Friedman, Hastie, and Tibshirani 2000; for a
comprehensive review, see Hastie, Tibshirani, and Friedman
2001).

For the sake of conciseness, the following subsection
contains a brief description of the bagging algorithm. In the
next subsection, we provide further details about the main
differences between bagging and stochastic gradient boost-
ing, one of the most sophisticated versions of boosting to
date (for an in-depth description of this method, see Fried-
man 2002).

Bagging

Bagging (i.e., a term derived from “bootstrap aggregat-
ing”) is the simplest technique to upgrade, or to “boost,” the
performance of a given choice model. We denote the cali-
bration sample as Z = ([xq, Y11, ---s X ¥ils -+ [Xns YND)s
where N is the number of customers in the calibration sam-
ple. In this expression, X; = (X1, ---, Xjk» ---» XjK) Iepresents
a vector that contains the K predictors for customer i, and y;
(equal to 1 or —1) indicates whether customer i will churn.
We estimate a base classifier f from this calibration sample,
giving a score value of f(x)to each customer, where x is the
characteristics of this subscriber. This score value indicates
the risk to churn associated with each customer. For a speci-
fied cutoff value T, we can predict customers as churners or
nonchurners by computing

) &(x) = sign[f(x) - 1l,

which takes values of +1 or —1. If f(xi) is larger than T, cus-
tomer i is classified as a churner, but if f(x;) is smaller than
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T, customer i is classified as a nonchurner. When we use a
classification tree as base classifier, the score is given by
f(x) = 2p(x) — 1, where p(x) is the probability to churn as
estimated by the tree. When working with a proportional
calibration sample, we set T = 0. In the presence of a non-
proportional calibration sample, the value of T varies (see
the “Correction for a Balanced Sampling Scheme” section).
From the original calibration set Z, we construct B boot-
strap samples Zy, b = 1, 2, ..., B, by randomly drawing,
with replacement, N observations from Z. Note that the size
of the bootstrap samples equals the original calibration
sample size. From each bootstrap sample Z, we estimate a
base classifier, giving B score functions (%), .. ), ...,
f5(x). We aggregate these functions into the final score

B
R 1 A
@ fiag (0 =5 D B0

b=1

We can then carry out the classification using the follow-
ing equation:

B = sign[fbag(x) —Ty], where &, (x) € {-11}.

Again, the cutoff value Tz equals zero in the presence of
a proportional calibration sample. To determine the optimal
value of B (i.e., the number of bootstrap samples), a strat-
egy consists of selecting B such that the apparent error rates
(i.e., error rates on the calibration data) remain more or less
constant for values larger than B. In our application, we set
B =1004

As with traditional classification models, we can also
obtain diagnostic measures for the estimated bagging
model. These are important to give some face validity to the
estimated model. For example, the estimated relative impor-
tance of each predictor in the construction of the classifica-
tion rule can be investigated. For a single tree, the relative
importance of a predictor can be computed, as Hastie, Tib-
shirani, and Friedman (2001) do.5 For bagging (and, simi-
larly, for boosting), the relative importance of an explicative
variable is averaged over all B trees. In addition, the partial
dependence of churn on a specified predictor variable can
be investigated. This measure provides similar insight to the
parameter estimates’ values of a logit model, but it advanta-
geously allows for nonlinear relationships between the pre-
dictors and the dependent variable. A partial dependence
plot represents the impact of a predictor variable on the
churn probability of a customer, conditional on all other
predictors. In practice, the partial dependence of the
dependent variable on a specified value of a predictor xy is
obtained by assigning the value of x to all observations of
the calibration sample. The model is subsequently esti-
mated, and the N resulting predicted probabilities are com-
puted for the calibration data. The partial dependence on a

4Other criteria could also be considered (e.g., the Gini coefficient, the
top-decile lift).

SMore precisely, a tree is composed of several nodes, from the root to
the leaves (i.e., terminal nodes). Each nonterminal node is split into two
child nodes on the basis of the value of the variable that provides the maxi-
mal reduction in the squared error rate. The relative importance of a varia-
ble xi is then the sum of these improvements (reductions) over all nodes
for which the predictor x; was selected as a splitting variable.

279

specified value of x; is eventually given by averaging over
these N predicted probabilities. The partial dependence plot
is obtained by letting the value assigned to xj vary over a
large range of values (for more details, see Friedman 2001).

Boosting and Stochastic Gradient Boosting

Several versions of boosting exist: the Real AdaBoost
(Freund and Schapire 1996; Schapire and Singer 1999),
LogitBoost (Friedman, Hastie, and Tibshirani 2000), and
gradient boosting (Friedman 2001). Boosting is more com-
plex than bagging and not as easy to put into practice. In
this article, we focus on stochastic gradient boosting (Fried-
man 2002), one of the most recent boosting variants and the
winning model of the Teradata Churn Modeling Tourna-
ment (Cardell, Golovnya, and Steinberg 2003).

The main difference between boosting and the previously
described bagging procedure lies in the sampling scheme.
Boosting consists of sequentially estimating a classifier to
“adaptively reweighted” versions of the initial calibration
sample Z7, b = 1, 2, ..., B. The adaptive reweighting
scheme enables us to give previously misclassified cus-
tomers an increased weight on the next iteration, whereas
weights given to observations that were correctly classified
previously are reduced. The idea is to force the classifica-
tion procedure to concentrate on the customers that are dif-
ficult to classify.

Another main difference with bagging is that the initial
choice model should preferably be “weak” (i.e., with a
slightly lower associated error rate than random guessing).
For stochastic gradient boosting, Friedman (2002) recom-
mends the use of k-node trees as a base classifier, where k is
approximately 6-9, depending on the issue. In addition, the
number of required iterations is usually higher for stochas-
tic gradient boosting than for bagging. In our application,
we select B = 1000.

CORRECTION FOR A BALANCED SAMPLING SCHEME

Predictions made from a model estimated on a balanced
calibration sample are known to be biased because they
overestimate the proportion of churners in real life.
Although appropriate bias correction methods already exist
for some common classifiers (for the logit model, see, e.g.,
King and Zeng 2001b), to the best of our knowledge, no
correction method for bagging and boosting currently
exists. Hereinafter, we adapt to the bagging and boosting
models two simple bias correction methods that King and
Zeng (2001b) discuss.

The first correction consists of attaching a weight to each
observation of the balanced sample. These weights are
based on marketers’ prior beliefs about the churn rate .
(i.e., the proportion of churners) among their customers. For
example, T, can be taken as the empirical frequency of
churners in a proportional sample; in the current context,
this is 1.8%. Let Npalanced e the number of churners in the
balanced sample, where N is the total size of this sample. It
is possible to weight the observations of a balanced calibra-
tion sample by attaching the weights

T, -,
—<— and wi* = <

C — —_—
) Wi = Nbalanced I TN- Nbalanced

to the churners and the nonchurners, respectively. As such,
the sum of the weights associated with the churners equals
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the real-life proportion of churners. Note that the sum of the
weights we defined in Equation 4 is always equal to one.
When this weighting correction is applied to bagging and
stochastic gradient boosting, a sequence of weighted deci-
sion trees is estimated, and the weights remain fixed
through iterations. In a statistical context, assigning weights
to customers is a valid approach to correct for stratified
sampling. However, because the weights assigned to the
churners are small, this correction might actually cancel the
advantage of oversampling the churners and thus provide
similar results to a proportional sample of the same size
(see the “Results” section).

Rather than weighting the observations of a balanced
sample, we could employ a more simple approach by taking
a nonzero cutoff value T in the bagging and boosting algo-
rithms. The value of Ty is such that the proportion of pre-
dicted churners in the calibration sample equals the actual a
priori proportion of churners m.. This correction is achieved
for bagging (and, similarly, for boosting) by first sorting the
values of fbag (x) in the calibration sample from the largest
to the smallest value, fi,,(x(1)) 2 firae(X2) 2 - 2 Fipexv),
and then taking

(5) Tp = g (X())» Where j =N

This latter correction method can also be called “intercept
correction” (or “prior correction” in King and Zeng 2001a,
b), referring to a similar correction for the logit model (see,
e.g., Franses and Paap 2001, pp. 73-75). Unlike the weight-
ing correction, the intercept correction affects neither the
estimated scores nor the ranking of the customers. We
assess both corrections in the “Results” section.

ASSESSMENT CRITERIA

We assess the predictive performance of the investigated
models using a holdout test sample (as described in the
“Data” section). Because this sample has not been used for
the estimation of the classification rules and is very large, it
allows for a valid assessment of performance. We denote

the validation or holdout test sample as ([x;, yil, ..., [X;,
Yil, - [Xm, yml) and the computed scores as f(x;), for i =
1, ..., M, where M is the size of the validation sample.
Error Rate

The traditional performance criterion is the error rate,
that is, the percentage of incorrectly classified observations
in the validation set. For rare events, as Morrison (1969)
notes, the error rate is often inappropriate. For example, a
naive prediction rule stating that no customer of the valida-
tion set churns has an expected error rate of approximately
1.8%, from which the classification rule could be falsely
considered good. Indeed, such a rule does not isolate any
group of the potentially riskiest customers for a targeted
retention strategy. Another drawback is that error rates do
not take the numerical values of the scores f(xi) into
account, whereas these scores may contain relevant infor-
mation for proactive marketing actions. The targeting of
such incentives can indeed be based on the churn degree of
risk (i.e., score) of each customer (e.g., targeting the 10%
riskiest customers). In contrast, the top-decile lift and the
Gini coefficient are based on these scores.

JOURNAL OF MARKETING RESEARCH, MAY 2006

Top-Decile Lift

The top-decile lift focuses on the most critical group of
customers and their churn risk. The top 10% riskiest cus-
tomers (i.e., those who have score values among the 10%
highest) represent a potentially ideal segment for targeting a
retention marketing campaign. The top-decile lift equals the
proportion of churners in this risky segment, 7;q,, divided
by the proportion of churners in the whole validation set, 7

ft
(6) Top decile = —9%
T

The higher the top-decile lift, the better is the classifier.
This measure enables us to control whether the targeted
segment of risky customers indeed contains actual churners.
As Neslin and colleagues (2006) extensively describe, top-
decile lift is related directly to profitability. They define the
incremental gain in financial profit from an increase in top-
decile lift as

(7 Gain = Noft (ATop decile)[YLVC — 8(y — y)],

where N is the customer base of the company, . is the per-
centage of targeted customers (in our context, 10%), ATop
decile is the increase in top-decile lift, v is the success rate
of the incentive among the churners, LVC is the lifetime
value of a customer (Gupta, Lehmann, and Stuart 2004), &
is the incentive cost per customer, and V is the success rate
of the incentive among the nonchurners (for more details,
see Neslin et al. 2006).

Gini Coefficient

Another interesting measure is the Gini coefficient (e.g.,
Hand 1997, p. 134). Instead of focusing only on the riskiest
segment, this measure considers all scores, including the
less risky customers. The top-decile lift and the Gini coeffi-
cient provide complementary information; a model can be
good at identifying the riskiest segment but less effective at
recognizing less risky customers. We first determine the
fraction of all subscribers who have a predicted churn prob-
ability above a certain threshold. We consider a whole
sequence of thresholds, each of which is given by a pre-
dicted score f"(xl ), for 1 =1, 2, ..., M, which results in M
proportions:

M
1 ~ ~
(8) m = D ke > ol

i=1

For each threshold, we also compute the fraction of all
churners who have a score value above this threshold:

MC
© t = —— 3 1f(x) > f(x)) and y, =1,

i=1

1
MC
where M, is the total number of actual churners in the vali-
dation set. We then define the Gini coefficient as

M
.. . 2 ,
(10) Gini coefficient = I\—/IIZI(TEI -,

The larger the Gini coefficient, the better is the classifica-
tion model.
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RESULTS

This section addresses the research questions introduced
in the beginning of the article. We show that (1) both bag-
ging and boosting techniques significantly improve the clas-
sification performance of traditional classification models,
(2) the correction methods for a balanced calibration sample
reduce the classification error rate, and (3) the use of a bal-
anced calibration sample improves the forecasting accuracy
of the estimated choice models.

Do Bagging and Boosting Provide Better Results than
Other Benchmarks?

We apply bagging and stochastic gradient boosting, with
classification trees as base classifiers, to the balanced cali-
bration sample.® As a benchmark, we estimate a binary logit
choice model on the same sample. Other benchmark mod-
els, including the traditional discriminant analysis, a single
classification tree, and a neural network, have also been
investigated (see, e.g., Thieme, Song, and Calantone 2000;
West, Brockett, and Golden 1997), but they appear to per-
form worse than the binary logit choice model in this
empirical application. Neslin and colleagues (2006)
recently compared the predictive performance of different
methodological approaches for this particular database and
found that the logit model and the decision tree were among
the most competitive methodologies. To evaluate the rela-
tive performance of the different methods, we apply the
estimated models to the holdout proportional test sample to
obtain churn predictions for each of the customers who
belong to this sample. From these predictions, we then
compute the validated error rate, the Gini coefficient, and
the top-decile lift that each of the three choice models
reaches.

Figure 1 represents the Gini coefficient and the top-decile
lift against the number of iterations for both bagging and

6We implemented bagging using the statistical software package Splus,
whereas we computed stochastic gradient boosting using the MART soft-
ware package for R that J.H. Friedman developed.
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stochastic gradient boosting.” The horizontal line in Figure
1 represents the performance of the binary logit model. The
performance of bagging and boosting improves as B
increases and stabilizes for large values of B. After the first
few iterations, both models already outperform the logit
benchmark, thus confirming many other examples (e.g.,
Hastie, Tibshirani, and Friedman 2001, pp. 24649, 299-
345).8

The relative gain in predictive performance is greater
than 16% for the Gini coefficient and 26% for the top-decile
lift. This improvement is statistically significant.® Stochas-
tic gradient boosting performs similarly to bagging but is
conceptually more complicated. Therefore, we consider
bagging the most competitive approach, at least in this
application. We can also evaluate the additional financial
gains (Equation 7) expected from a retention marketing
campaign that would be targeted using the scores predicted
by the bagging rather than the logit model. If we consider
N = 5,000,000 customers, a target group of o = 10%, ¥ =
30% success probability among the churners, LVC = $2,500
lifetime value, & = $50 incentive cost, and y = 50% success
probability among the nonchurners, the use of bagging as a
scoring model (versus a logit model) for targeting a specific
retention campaign is worth an additional $3,214,800.

Regarding the error rate, all three choice models perform
poorly (see Table 2, Column 3), confirming that a balanced
sampling scheme requires an appropriate bias correction,
regardless of the choice model under consideration. In the
next research question, we investigate whether a bias cor-
rection reduces these high error rates.

"Note that B is actually multiplied by ten for stochastic gradient boost-
ing in Figure 1.

8The Gini coefficient and top-decile lift are —.06 and .49, respectively,
for neural nets; .199 and 1.60, respectively, for discriminant analysis; and
.091 and 1.37, respectively, for a single classification tree, compared with
.24 and 1.77 for logit regression. These figures motivate our preference for
the logit model as a benchmark.

9Standard errors, which we computed using a bootstrap procedure, are
approximately .012 for the Gini coefficient and .09 for the top-decile lift.

Figure 1
VALIDATED GINI COEFFICIENT AND TOP-DECILE LIFT FOR BAGGING, STOCHASTIC GRADIENT BOOSTING, AND A BINARY LOGIT
MODEL AS A FUNCTION OF B
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Table 2
VALIDATED ERROR FOR PREDICTING CHURN FROM A
BALANCED SAMPLE WITH INTERCEPT CORRECTION, WITH
WEIGHTING CORRECTION, OR WITHOUT BIAS CORRECTION

Intercept Weighting No
Error Rate Correction Correction Correction
Binary logit model .035 .018 400
Bagging .034 .025 374
Stochastic gradient boosting .034 .018 460

Although the bagging and boosting models focus mainly
on scoring customers for targeting purposes, we can also
interpret the models. Figure 2 reports the 15 most important
variables in explaining churn, using bagging.!0 Reported
results offer some face validity. Among the particularly
relevant churn triggers, we find the number of days of the
current cellular phone (“equipment days”), the changes in
minutes of consumption over the previous three months
(“‘change in monthly minutes of use”), and the base cost of
the calling plan the customer chose (“base cost of the call-
ing plan”). Partial dependence plots provide additional
insights into the way these variables affect churn.

It appears that the probability that a customer churns
increases as his or her cellular phone becomes older (see

10Boosting yields similar results, confirming the face validity of the
results.
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Figure 3, “Equipment Days”). This rise is particularly
important during the first year, which could be due to
numerous operators proposing combined one-year-
subscription and free cellular phone packages. After this
delay, customers may be likely to defect from the company
and buy a new package from a competitor. Figure 3
(“Change in Monthly Minutes of Use”) indicates how the
churn risk of a customer varies as his or her consumption
habits change. When consumption decreases, the subscriber
is more likely to churn. When his or her consumption is
constant, the subscriber is less likely to defect. Finally,
when consumption increases, the customer is slightly less
(but still) likely to be loyal than when no change occurs.!!
Another interesting insight can be derived from Figure 4,
which represents the partial dependence between churn and
a combination of two churn drivers (i.e., the age of the cus-
tomer [“age”’] and the base cost of his or her calling plan). A
customer is more likely to churn when his or her calling
plan is cheaper. However, this relationship tends to be much
stronger for younger customers than for older ones, indicat-
ing that some demographics are more likely to drop certain
calling plans than others.

What Is the Best Bias Correction When Using a Balanced
Calibration Sample?

We use two corrections to adapt the predicted probabili-
ties obtained through the use of a balanced calibration sam-

11Note that logit models cannot capture such nonmonotonic relations.

Figure 2
VARIABLES’ RELATIVE IMPORTANCE FOR BAGGING
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Figure 3
PARTIAL DEPENDENCE PLOTS FOR “CHANGE IN MONTHLY MINUTES OF USE” AND “EQUIPMENT DAYS” FOR BAGGING
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ple. Either of these two corrections reduces the error rate
significantly (see Table 2).

The effectiveness of both corrections differs. For the
error rate, the weighting correction seems to be the most
appropriate bias correction method for all considered mod-
els. However, the weighting correction affects the estimated
scores, their ranking, and, eventually, the Gini coefficient
and the top-decile lift. This is not the case for the intercept
correction method, which preserves the relative ranking of
the attributed scores. Table 3 reports the Gini coefficient
and the top-decile lift for bagging, stochastic gradient
boosting, and the logit model (all estimated on the balanced
sample) for both corrections. For all three models under
consideration, the Gini coefficient and the top-decile lift
obtained with the intercept correction are substantially bet-
ter than those obtained with the weighting correction.

This confirms the prior assumption that weighting the
observations of a balanced sample cancels the advantage of
balanced sampling, even for large sample sizes. Because we
consider the Gini coefficient and the top-decile lift more
global measures of performance than the error rate, the
intercept correction is the best compromise between no cor-
rection (i.e., a better Gini coefficient and top-decile lift but a
worse error rate) and weighting correction (i.e., a worse
Gini coefficient and top-decile lift but a better error rate), at
least in this application.

Note that the intercept correction appears to perform well
for stable markets (e.g., constant churn rate), but it is likely
to be inefficient in dynamic markets (e.g., increasing churn
rate). This constitutes a major limitation to the correction
methods we propose in this study. Moreover, the lack of
theory about the properties of these correction methods pre-
vents us from generalizing our findings to any other setting.

Table 3
VALIDATED GINI COEFFICIENT AND TOP-DECILE LIFT FOR
PREDICTING CHURN FROM A BALANCED SAMPLE WITH
INTERCEPT CORRECTION AND WEIGHTING CORRECTION

Intercept Weighting
Correction Correction
Gini Top Gini Top
Coefficient  Decile Coefficient  Decile
Binary logit model 241 1.775 239 1.764
Bagging 281 2.246 161 1.549
Stochastic gradient
boosting .280 2.290 187 1.632

aThe Gini coefficients and top-decile lifts are the same for the “no-
correction” method.
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Does a Choice Model Estimated on a Balanced Sample,
with Bias Appropriately Corrected for, Outperform a
Choice Model Estimated on a Proportional Sample?

A balanced calibration sample is often advised when the
variable to be predicted consists of a rare event, such as
churn. However, our third research issue questions this
advice. Indeed, given the high amount of observations in
the proportional calibration sample, the absolute number of
churners is still quite large, and a proportional sampling
could still be efficient.

Table 4 compares the performance of bagging, stochastic
gradient boosting, and the binary logit model, estimated
from the proportional or the balanced sample (with inter-
cept correction). The results of both the Gini coefficient and
the top-decile lift indicate that the balanced sampling
scheme is recommended for the three investigated classifi-
cation models. For the error rate, the results are more in
favor of proportional sampling. However, for the same rea-
sons as in the preceding subsection, we consider the bal-
anced sampling a better compromise than the proportional
sampling, which performs poorly for the Gini coefficient
and top-decile lift.

CONCLUSIONS

In this article, we discussed several new developments
from the machine-learning and statistical classification
literature in the context of marketing research. We pre-
sented one of the simplest versions of classifier aggregation
(i.e., bagging) and one of the most sophisticated algorithms
in this field (i.e., stochastic gradient boosting). We espe-
cially drew attention to the competitive performance of bag-
ging, an easy-to-use procedure aimed at increasing the clas-
sification performance of an initial classification model, by
repeatedly estimating a classifier to bootstrapped versions
of the calibration sample. We summarize the main findings
of this study in terms of three contributions: First, bagging
and boosting provide substantially better classifiers than a
binary logit model. In predicting churn, the gain in predic-
tive performance has reached 16% for the Gini coefficient
and 26% for the top-decile lift. Bagging and stochastic gra-
dient boosting perform comparatively. The performance of
the simple and easy-to-use bagging is especially noticeable.
In addition to their higher predictive power, bagging and
boosting provide good diagnostic measures, variable impor-
tance, and partial dependence plots, which offer face valid-
ity to the models and interesting insights into potential
churn drivers.

Second, in the presence of a rare event, such as churn, we
recommend a balanced sampling scheme over proportional
sampling for all considered classification models (i.e., bag-

Table 4
VALIDATED GINI COEFFICIENT, TOP-DECILE LIFT, AND ERROR RATE WITH A BALANCED AND A PROPORTIONAL CALIBRATION
SAMPLING

Balanced Sample (Intercept Correction)

Proportional Sample

Gini Coefficient Top Decile Error Rate Gini Coefficient Top Decile Error Rate
Binary logit model 241 1.775 .035 181 1.665 .018
Bagging 281 2.246 .034 237 1.886 018
Stochastic gradient boosting 280 2.290 .034 113 1.560 .018
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ging, boosting, and logit models), even for large data sets.
However, to maintain the classification error rate at a rea-
sonable level, it is necessary to correct the predictions
obtained from a balanced sample. Third, intercept correc-
tion constitutes an appropriate bias correction for a bal-
anced sampling scheme.

If companies take into account these recommendations,
they might better identify the riskiest customer segments in
terms of churn risk and thus ameliorate their retention strat-
egy. Noteworthy losses could ultimately be avoided.
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