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Abstract

Energy-Based Models (EBMs) capture dependencies betvag@bles by as-
sociating a scalar energy to each configuration of the viesalinference consists
in clamping the value of observed variables and finding conditions of the re-
maining variables that minimize the energy. Learning cgissn finding an energy
function in which observed configurations of the variablesgiven lower energies
than unobserved ones. The EBM approach provides a commoretlwal frame-
work for many learning models, including traditional disemnative and genera-
tive approaches, as well as graph-transformer networksjitonal random fields,
maximum margin Markov networks, and several manifold leagmmethods.

Probabilistic models must be properly normalized, whicinebmes requires
evaluating intractable integrals over the space of all ipswvariable configura-
tions. Since EBMs have no requirement for proper normabmathis problem is
naturally circumvented. EBMs can be viewed as a form of narbabilistic factor
graphs, and they provide considerably more flexibility ie thesign of architec-
tures and training criteria than probabilistic approaches

1 Introduction: Energy-Based Models

The main purpose of statistical modeling and machine legrig to encode depen-
dencies between variables. By capturing those dependgraciaodel can be used to
answer guestions about the values of unknown variablesgive values of known
variables.

Energy-Based Models (EBMs) capture dependencies by assaria scalaen-
ergy (a measure of compatibility) to each configuration of thealaes. Inference
i.e., making a prediction or decision, consists in setthg\value of observed variables



and finding values of the remaining variables that minimime¢nergylL earningcon-
sists in finding an energy function that associates low éegtg correct values of the
remaining variables, and higher energies to incorrectealliAloss functional mini-
mized during learning, is used to measure the quality of tadable energy functions.
Within this common inference/learning framework, the witleice of energy func-
tions and loss functionals allows for the design of many $ypEstatistical models,
both probabilistic and non-probabilistic.

Energy-based learning provides a unified framework for marpabilistic and
non-probabilistic approaches to learning, particuladyrion-probabilistic training of
graphical models and other structured models. Energyeldaaening can be seen as an
alternative to probabilistic estimation for predictiomagsification, or decision-making
tasks. Because there is no requirement for proper norntigizaenergy-based ap-
proaches avoid the problems associated with estimatingdhmalization constant in
probabilistic models. Furthermore, the absence of the abzation condition allows
for much more flexibility in the design of learning machin®&ost probabilistic mod-
els can be viewed as special types of energy-based modelgéh the energy function
satisfies certain normalizability conditions, and in whtbke loss function, optimized
by learning, has a particular form.

This chapter presents a tutorial on energy-based modéls amiemphasis on their
use for structured output problems and sequence labelimigigms. Section 1 intro-
duces energy-based models and describes determinigtieide through energy min-
imization. Section 2 introduces energy-based learningla@doncept of the loss func-
tion. A number of standard and non-standard loss functioaslascribed, including
the perceptron loss, several margin-based losses, anctfadive log-likelihood loss.
The negative log-likelihood loss can be used to train a momeroduce conditional
probability estimates. Section 3 shows how simple regoesand classification mod-
els can be formulated in the EBM framework. Section 4 corngarndels that contain
latent variables. Section 5 analyzes the various loss ifumein detail and gives suf-
ficient conditions that a loss function must satisfy so tk&minimization will cause
the model to approach the desired behavior. A list of “goaat] &ad” loss functions
is given. Section 6 introduces the concept of non-probstlilfactor graphs and infor-
mally discusses efficient inference algorithms. Sectioocui$es on sequence labeling
and structured output models. Linear models such as magimiftarkov networks
and conditional random fields are re-formulated in the EBEhfework. The liter-
ature on discriminative learning for speech and handvgitiecognition, going back
to the late 80's and early 90’s, is reviewed. This includesbglly trained systems
that integrate non-linear discriminant functions, suchesral networks, and sequence
alignment methods, such as dynamic time warping and hiddekd® models. Hier-
archical models such as the graph transformer network texthire are also reviewed.
Finally, the differences, commonalities, and relative atteges of energy-based ap-
proaches, probabilistic approaches, and sampling-bggadximate methods such as
contrastive divergence are discussed in Section 8.
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Figure 1: A model measures the compatibility between observed Vagab and variables to

be predictedY” using anenergy functionE (Y, X). For example, X could be the pixels of an
image, andY” a discrete label describing the object in the image. Giserthe model produces
the answelY” that minimizes the energy.

1.1 Energy-Based Inference

Let us consider a model with two sets of variabl&sandY’, as represented in Fig-
ure 1. VariableX could be a vector containing the pixels from an image of aeabj
VariableY could be a discrete variable that represents the possitégag of the ob-
ject. For exampleY could take six possible values: animal, human figure, aigla
truck, car, and “none of the above”. The model is viewed asreargy functiorwhich
measures the “goodness” (or badness) of each possible gratfan of X andY'. The
output number can be interpreted as the degremoipatibilitybetween the values of
X andY'. In the following, we use the convention that small energueacorrespond
to highly compatible configurations of the variables, whiege energy values corre-
spond to highly incompatible configurations of the variableunctions of this type are
given different names in different technical communitigmsy may be called contrast
functions, value functions, or negative log-likelihooah@tions. In the following, we
will use the termenergy functiorand denote i (Y, X). A distinction should be made
between the energy function, which is minimized by the iefee process, and the loss
functional (introduced in Section 2), which is minimizedtie learning process.

In the most common use of a model, the infuis given (observed from the world),
and the model produces the answethat is most compatible with the observad
More precisely, the model must produce the valife chosen from a sé€y, for which
E(Y, X) is the smallest:

Y™ = argminy ., E(Y, X). (@)

When the size of the s@f is small, we can simply comput@(Y, X) for all possible
values ofY” € ) and pick the smallest.
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Figure 2:Several applications of EBM$a) face recognition: Y is a high-cardinality discrete
variable; (b) face detection and pose estimationY” is a collection of vectors with location
and pose of each possible fadg) image segmentation:Y is an image in which each pixel
is a discrete labelf{d-e) handwriting recognition and sequence labelingY” is a sequence of
symbols from a highly structured but potentially infinite @be set of English sentences). The
situation is similar for many applications in natural langge processing and computational
biology; (f) image restoration: Y is a high-dimensional continuous variable (an image).



In general, however, picking the bestmay not be simple. Figure 2 depicts sev-
eral situations in whichy may be too large to make exhaustive search practical. In
Figure 2(a), the model is used to recognize a face. In thig,dag sefy is discrete
and finite, but its cardinality may be tens of thousands [Caapal., 2005]. In Fig-
ure 2(b), the model is used to find the faces in an image anu&®itheir poses. The
set) contains a binary variable for each location indicating thiee a face is present
at that location, and a set of continuous variables reptaggthe size and orienta-
tion of the face [Osadchy et al., 2005]. In Figure 2(c), thedelds used to segment
a biological image: each pixel must be classified into onewvef ¢iategories (cell nu-
cleus, nuclear membrane, cytoplasm, cell membrane, e{teradium). In this case,
Y contains all theconsistentabel images, i.e. the ones for which the nuclear mem-
branes are encircling the nuclei, the nuclei and cytoplaserireside the cells walls,
etc. The set is discrete, but intractably large. More imgatty, members of the set
must satisfy complicated consistency constraints [Nirg.eR005]. In Figure 2(d),
the model is used to recognize a handwritten sentence. Maentains all possible
sentences of the English language, which is a discrete bniténset of sequences of
symbols [LeCun et al., 1998a]. In Figure 2(f), the model isduo restore an image
(by cleaning the noise, enhancing the resolution, or remgpegcratches). The sgt
contains all possible images (all possible pixel combore). It is a continuous and
high-dimensional set.

For each of the above situations, a specific strategy, cHikeidference procedure
must be employed to find tHe that minimizesE (Y, X). In many real situations, the
inference procedure will produce an approximate resulictvinay or may not be the
global minimum of E(Y, X)) for a givenX. In fact, there may be situations where
E(Y, X) has several equivalent minima. The best inference proeeuuse often
depends on the internal structure of the model. For exanifplg,is continuous and
E(Y, X) is smooth and well-behaved with respecttpone may use a gradient-based
optimization algorithm. 1Y is a collection of discrete variables and the energy func-
tion can be expressed adactor graph i.e. a sum of energy functions (factors) that
depend on different subsets of variables, efficient infeegarocedures for factor graphs
can be used (see Section 6) [Kschischang et al., 2001, Ma2KR@ag]. A popular ex-
ample of such a procedure is then-sumalgorithm. When each element pfcan be
represented as a path in a weighted directed acyclic graph the energy for a partic-
ularY is the sum of values on the edges and nodes along a partiatharlp this case,
the besty” can be found efficiently using dynamic programming (e.g vl Viterbi
algorithm or A*). This situation often occurs in sequence labeling prokleoch as
speech recognition, handwriting recognition, naturaglaage processing, and biolog-
ical sequence analysis (e.g. gene finding, protein foldirgligtion, etc). Different
situations may call for the use of other optimization praged, including continuous
optimization methods such as linear programming, quadpatigramming, non-linear
optimization methods, or discrete optimization methodshsas simulated annealing,
graph cuts, or graph matching. In many cases, exact opfiimize impractical, and
one must resort to approximate methods, including methuatsuse surrogate energy
functions (such as variational methods).



1.2 What Questions Can a Model Answer?

In the preceding discussion, we have implied that the questi be answered by the
model is “What is th&” that is most compatible with thi& ?”, a situation that occurs
in prediction, classificatiomr decision-makingasks. However, a model may be used
to answer questions of several types:

1. Prediction, classification, and decision-makifigvhich value ofY” is most com-
patible with thisX ?’ This situation occurs when the model is used to make hard
decisions or to produce an action. For example, if the malaked to drive a
robot and avoid obstacles, it must produce a single bessidacsuch as “steer
left”, “steer right”, or “go straight”.

2. Ranking “Is Y7 or Y5> more compatible with this{?” This is a more complex
task than classification because the system must be traipedduce a complete
ranking of all the answers, instead of merely producing te&t lone. This situ-
ation occurs in many data mining applications where the rhisdesed to select
multiple samples that best satisfy a given criterion.

3. Detection “Is this value of Y’ compatible withX ?” Typically, detection tasks,
such as detecting faces in images, are performed by congpéwgnenergy of a
facelabel with a threshold. Since the threshold is generallynamkn when the
system is built, the system must be trained to produce engiges that increase
as the image looks less like a face.

4. Conditional density estimatiofiWhat is the conditional probability distribution
over) given X?" This case occurs when the output of the system is not used
directly to produce actions, but is given to a human decisiaker or is fed to
the input of another, separately built system.

We often think ofX as a high-dimensional variable (e.g. an image) &nds a
discrete variable (e.g. a label), but the converse casesss@mmon. This occurs
when the model is used for such applications as image reistoraomputer graphics,
speech and language production, etc. The most complexsageen bothX andY
are high-dimensional.

1.3 Decision Making versus Probabilistic Modeling

For decision-making tasks, such as steering a robot, it ieljmaecessary that the sys-
tem give the lowest energy to the correct answer. The eredfiether answers are
irrelevant, as long as they are larger. However, the outpatsystem must sometimes
be combined with that of another system, or fed to the inpatnaither system (or to a
human decision maker). Because energies are uncalibisgedneasured in arbitrary
units), combining two, separately trained energy-basedaisas not straightforward:
there is noa priori guarantee that their energy scales are commensurate.r&eld
energies so as to permit such combinations can be done in berafways. However,
the onlyconsistentvay involves turning the collection of energies for all pbss out-
puts into a normalized probability distribution. The simgiiand most common method



for turning a collection of arbitrary energies into a cotiea of numbers between 0 and
1 whose sum (or integral) is 1 is through tBébs distribution

e—BE(Y.X)

P(Y|X) - fyey e*ﬁE(y,X) ) (2)
whereg is an arbitrary positive constant akin to an inverse tempeeaand the denom-
inator is called thepartition function(by analogy with similar concepts in statistical
physics). The choice of the Gibbs distribution may seemti@yi, but other proba-
bility distributions can be obtained (or approximatedpigh a suitable re-definition
of the energy function. Whether the numbers obtained thig ava good probability
estimates does not depend on how energies are turned irttalghties, but on how
E(Y, X) is estimated from data.

It should be noted that the above transformation of eneiigiesprobabilities is
only possible if the integraﬁJEy e~ PEW.X) converges. This somewhat restricts the
energy functions and domaigsthat can be used. More importantly, there are many
practical situations where computing the partition fuoetis intractable (e.g. when
Y has high cardinality), or outright impossible (e.g. wh¥ris a high dimensional
variable and the integral has no analytical solution). Hepmbabilistic modeling
comes with a high price, and should be avoided when the aijaitdoes not require
it.

2 Energy-Based Training: Architecture and Loss Func-
tion

Training an EBM consists in finding an energy function thaidurces the best for
any X . The search for the best energy function is performed wigtfiamily of energy
functions€ indexed by a parametéy’

E={EW,Y,X): WeWh 3)

Thearchitectureof the EBM is the internal structure of the parameterizedgy@inc-
tion E(W,Y, X). At this point, we put no particular restriction on the natwf X,
Y, W, and€. WhenX andY are real vectors$ could be as simple as a linear com-
bination of basis functions (as in the case of kernel methamtsa set of neural net
architectures and weight values. Section gives examplagmgile architectures for
common applications to classification and regression. WHemdY™ are variable-size
images, sequences of symbols or vectors, or more complgstsied objects€ may
represent a considerably richer class of functions. Sestfy 6 and 7 discuss several
examples of such architectures. One advantage of the ebaggd approach is that it
puts very little restrictions on the nature &f

To train the model for prediction, classification, or desisimaking, we are given
a set of training sampleS = {(X% Y?) : i = 1... P}, whereX' is the input for
thei-th training sample, ani”® is the corresponding desired answer. In order to find
the best energy function in the famify, we need a way to assess the quality of any



particular energy function, based solely on two elemehisiaining set, and our prior
knowledge about the task. This quality measure is calleddse functionali.e. a
function of function) and denotefi( F, §). For simplicity, we often denote £(W, S)
and simply call it thdoss function The learning problem is simply to find th& that
minimizes the loss:
W* = min L(W,S). 4)
wew

For most cases, the loss functional is defined as follows:
P
L(E,S) = = S L(Y', E(W, Y, X7)) + R(W) 5)
) P ) b ? *

i=1

It is an average taken over the training set giex-sample loss functionatlenoted
LY, E(W,Y, X"), which depends on the desired answérand on the energies
obtained by keeping the input sample fixed and varying thevang. Thus, for each
sample, we evaluate a “slice” of the energy surface. The (W) is theregularizer,
and can be used to embed our prior knowledge about which efigngtions in our
family are preferable to others (in the absence of trainiatgad With this definition,
the loss is invariant under permutations of the training @as and under multiple
repetitions of the training set.

Naturally, the ultimate purpose of learning is to produce @dei that will give
good answers for new input samples that are not seen duangrtg. We can rely
on general results from statistical learning theory whiclamgntee that, under simple
interchangeability conditions on the samples and generadlitions on the family of
energy functions (finite VC dimension), the deviation beswehe value of the loss
after minimization on the training set, and the loss on adaggparate set of test
samples is bounded by a quantity that converges to zero asizbeof training set
increases [Vapnik, 1995].

2.1 Designing a Loss Functional

Intuitively, the per-sample loss functional should be desd in such a way that it
assigns a low loss twell-behavedenergy functions: energy functions that give the
lowest energy to the correct answer and higher energy taflardincorrect) answers.
Conversely, energy functions that do not assign the lowesigy to the correct answers
would have a high loss. Characterizing the appropriateoilsss functions (the ones
that select the best energy functions) is further discusséallowing sections.
Considering only the task of training a model to answer qaestof type 1 (pre-
diction, classification and decision-making), the maiwitidn of the energy-based ap-
proach is as follows. Training an EBM consists in shapingathergy function, so that
for any givenX, the inference algorithm will produce the desired value¥orSince
the inference algorithm selects thewith the lowest energy, the learning procedure
must shape the energy surface so that the desired valtihak lower energy than all
other (undesired) values. Figures 3 and 4 show exampleseofgas a function ot
for a given input samplé(? in cases wher&” is a discrete variable and a continuous
scalar variable. We note three types of answers:
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Figure 4:The effect of training on the energy surface as a functiohetmnswen” in the con-
tinuous case. After training, the energy of the correct arsW is lower than that of incorrect
answers.



e Y the correct answer
e Y*': the answer produced by the model, i.e. the answer with thedbenergy.

e Y. the most offending incorrect answeice. the answer that has the lowest
energy among all the incorrect answers. To define this answhe continuous
case, we can simply view all answers within a distanogY* as correct, and all
answers beyond that distance as incorrect.

With a properly designed loss function, the learning prectmould have the effect
of “pushing down” onE (W, Y, X%), and “pulling up” on the incorrect energies, par-
ticularly on E(W, Y%, X%). Different loss functions do this in different ways. Seatt®
gives sufficient conditions that the loss function mustsaiin order to be guaranteed
to shape the energy surface correctly. We show that somdywided loss functions
do not satisfy the conditions, while others do.

To summarize: given a training s&t building and training an energy-based model
involves designing four components:

1. The architecturethe internal structure o (W,Y, X).

2. The inference algorithmthe method for finding a value df that minimizes
E(W,Y, X) for any givenX.

3. The loss functionZ(W, S) measures the quality of an energy function using the
training set.

4. The learning algorithm the method for finding @V that minimizes the loss
functional over the family of energy functiods given the training set.

Properly designing the architecture and the loss funcsaritical. Any prior knowl-
edge we may have about the task at hand is embedded into thigeatgre and into
the loss function (particularly the regularizer). Unfaradely, not all combinations of
architectures and loss functions are allowed. With somebteations, minimizing the
loss will not make the model produce the best answers. Chgdise combinations of
architecture and loss functions that can learn effectiaely efficiently is critical to the
energy-based approach, and thus is a central theme of torgaiu

2.2 Examples of Loss Functions

We now describe a number of standard loss functions thattheee proposed and used
in the machine learning literature. We shall discuss thethdassify them as “good”
or “bad” in an energy-based setting. For the time being, wasiele the regularization
term, and concentrate on the data-dependent part of théuosson.

2.2.1 Energy Loss

The simplest and the most straightforward of all the los<fioms is the energy loss.
For a training sampléX ¢, Y'?), the per-sample loss is defined simply as:

Lenergy (Y, EOW, Y, X%)) = E(W,Y*, X9). (6)
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Figure 5:The hinge loss (left) and log loss (center) penaliZéV, Y, X*)—E(W,Y*, X*) lin-
early and logarithmically, respectively. The square-sguass (right) separately penalizes large
values of E(W,Y"*, X*) (solid line) and small values df (W, Y*, X*) (dashed line) quadrati-
cally.

This loss function, although very popular for things likgression and neural network
training, cannot be used to train most architectures: wihie loss will push down
on the energy of the desired answer, it will not pull up on atlyeo energy. With
some architectures, this can lead toalapsed solutionn which the energy is con-
stant and equal to zero. The energy loss will only work witbhitectures that are
designed in such a way that pushing downmiV, Y¢, X*) will automatically make
the energies of the other answers larger. A simple exampéaicti an architecture is
EW, Y1 X)) = ||y — G(W, X?)||?, which corresponds to regression with mean-
squared error witliz being the regression function.

2.2.2 Generalized Perceptron Loss

The generalized perceptron loss for a training sanijlé Y?) is defined as

Lyerceptron (Y, EOW, Y, X*)) = E(W,Y", X") — Inin EW,Y,X").  (7)

This loss is always positive, since the second term is a ld®eand on the first term.
Minimizing this loss has the effect of pushing down B, Y¢, X*), while pulling
up on the energy of the answer produced by the model.

While the perceptron loss has been widely used in many gsttimcluding for
models with structured outputs such as handwriting redagnjLeCun et al., 1998a]
and parts of speech tagging [Collins, 2002], it has a majficidacy: there is no mech-
anism for creating an energy gap between the correct answeeth& incorrect ones.
Hence, as with the energy loss, the perceptron loss may peofiiat (or almost flat)
energy surfaces if the architecture allows it. Conseqyeatineaningful, uncollapsed
result is only guaranteed with this loss if a model is used tiamnot produce a flat
energy surface. For other models, one cannot guaranteliagyt

2.2.3 Generalized Margin Losses

Several loss functions can be describedhasginlosses; the hinge loss, log loss, LVQ2
loss, minimum classification error loss, square-squae sd square-exponential loss
all use some form of margin to create an energy gap betweearothect answer and the

11



incorrect answers. Before discussing the generalizedimbgs we give the following
definitions.

Definition 1 LetY be a discrete variable. Then for a training samplg’ Y?), the
most offending incorrect answer Y is the answer that has the lowest energy among
all answers that are incorrect:

Yi= argminy ¢y, ,qy 2y E(W, Y, X, (8)

If Y is a continuous variable then the definition of the most affeg incorrect answer
can be defined in a number of ways. The simplest definition fslksvs.

Definition 2 LetY be a continuous variable. Then for a training sam¥, Y'?), the
most offending incorrect answer Y is the answer that has the lowest energy among
all answers that are at leagtaway from the correct answer:

yvi— argminYey,HYinlbeE(W’ Y, X’) (9

The generalized margin loss is a more robust version of thergdized perceptron
loss. Itdirectly uses the energy of the most offending iretranswer in the contrastive
term:

Lmargin(VVv Yiv XZ) = Qm (E(Wa Yia Xl)a E(VVv Yia Xl)) . (10)

Herem is a positive parameter called thearginand@,,,(e1, e2) is a convex function
whose gradient has a positive dot product with the vedtor 1] in the region where
EW, Y X¥)+m > E(W, Y X*). In other words, the loss surface is slanted toward
low values of E(W, Y, X*) and high values of? (W, Y?, X*) whereverE(W, Y%, X?)

is not smaller tharZ(W, Y, X*) by at leastn. Two special cases of the generalized
margin loss are given below:

Hinge Loss A particularly popular example of generalized margin lass
the hinge loss which is used in combination with linearly parameterized e
ergies and a quadratic regularizer in support vector mashinsupport vector
Markov models [Altun and Hofmann, 2003], and maximum-mar§ilarkov net-
works [Taskar et al., 2003]:

Lpinge(W,Y", X") = max (0,m + E(W,Y", X") — E(W,Y", X")), (11)

wherem is the positive margin. The shape of this loss functioniggiw Figure 5. The
difference between the energies of the correct answer anehtst offending incorrect
answer is penalized linearly when larger tham. The hinge loss only depends on
energy differences, hence individual energies are nottcaingd to take any particular
value.

Log Loss a common variation of the hinge loss is tlog loss which can be seen
as a “soft” version of the hinge loss with an infinite margiedd=igure 5, center):

Liog(W, Y7, X7) = log (1 n eE<WvY"'vX”—E(WY“X")) . (12)

LVQ2 Loss: One of the very first proposals for discriminatively train-
ing sequence labeling systems (particularly speech retogn systems)

12



is a version of Kohonen's LVQ2 loss. This loss has been adedca
by Driancourt and Bottou since the early 90's [Driancourlet1991a,

Driancourt and Gallinari, 1992b, Driancourt and Gallind®92a, Driancourt, 1994,
McDermott, 1997, McDermott and Katagiri, 1992]:

W,Y?, X)) — E(W,Y?, X%)
_\7 . (13)
SE(W, Y7, X7)

where) is a positive parameter. LVQ2 is a zero-margin loss, butsttha peculiarity of
saturating the ratio betwedn(W, Y, X*) and E(W, Y, X?) to 1 4 §. This mitigates
the effect of outliers by making them contribute a nominadtcd to the total loss.
This loss function is a continuous approximation of the nandj classification errors.
Unlike generalized margin losses, the LVQ2 loss is non-earin E(W, Y?, X%) and
E(W,Y! X%).

MCE Loss: The Minimum Classification Error loss was originally praeal by
Juang et al. in the context of discriminative training foresph recognition sys-
tems [Juang et al., 1997]. The motivation was to build a loggtion that also ap-
proximately counts the number of classification errors,l@being smooth and differ-
entiable. The number of classification errors can be written

0 (E(W,Y", X")— E(W,Y", X"), (14)

. E
Liyee(W,Y", X*) = min (1, max (O7 (

whered is the step function (equal to zero for negative argumemis,lafor positive
arguments). However, this function is not differentiataleq therefore very difficult to
optimize. The MCE Loss “softens” it with a sigmoid:

Lice(W,Y', X" =0 (E(W,Y", X") — E(W,Y", X")), (15)

whereo is the logistic functionr(z) = (1+e~*)~!1. As with the LVQ2 loss, the satu-
ration ensures that mistakes contribute a nominal cosetoverall loss. Although the
MCE loss does not have an explicit margin, it does create dgapeens (W, Y*, X?)
andE(W, Y, X*). The MCE loss is non-convex.

Square-Square Loss Unlike the hinge loss, the square-square loss treats
the energy of the correct answer and the most offending anssepa-
rately [LeCun and Huang, 2005, Hadsell et al., 2006]:

Leq_sq(W, Y%, X7) = E(W,Y", X%)? + (max(0,m — E(W,Y*, X%)))*.  (16)

Large values o2(W, Y%, X%) and small values of (W, Y, X*) below the marginn
are both penalized quadratically (see Figure 5). Unlikertfaggin loss, the square-
square loss “pins down” the correct answer energy at zerd'gind down” the incor-
rect answer energies abowe Therefore, it is only suitable for energy functions that
are bounded below by zero, notably in architectures whoggubunodule measures
some sort of distance.

Square-Exponential [LeCun and Huang, 2005, Chopra et al., 2005,
Osadchy et al., 2005]: Thsquare-exponentidbss is similar to thesquare-square
loss. It only differs in the contrastive term: instead of aadtatic term it has the
exponential of the negative energy of the most offendingiirect answer:

Loqeexp(W, Y1, XT) = BE(W, Y, XT)2 4 e~ BOWYLXT), (17)
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where~ is a positive constant. Unlike the square-square loss)dhi&shas an infinite
margin and pushes the energy of the incorrect answers tatynfirth exponentially
decreasing force.

2.2.4 Negative Log-Likelihood Loss

The motivation for the negative log-likelihood loss comesi probabilistic modeling.
Itis defined as:

Lan(W, Y4 XY = E(W, Y, X% + Fa(W, Y, XY). (18)

WhereF is thefree energyf the ensemblé E(W, y, X?), y € V}:

Fo(W. Y. X') = Slog ( / e (-pEw, y,Xﬁ)) . (19)
)

wherej is a positive constant akin to an inverse temperature. Tss tan only be
used if the exponential of the negative energy is integraté ), which may not be
the case for some choices of energy functiog/or

The form of the negative log-likelihood loss stems from alatoilistic formulation
of the learning problem in terms of the maximum conditionadlability principle.
Given the training sef, we must find the value of the parameter that maximizes the
conditional probability of all the answers given all theinpin the training set. Assum-
ing that the samples are independent, and denoting @y| X ¢, W) the conditional
probability of Y givenX? that is produced by our model with paraméitér the condi-
tional probability of the training set under the model ismgie product over samples:

P
P!, YPIxt L xPow) =[Py X w). (20)
=1
Applying the maximum likelihood estimation principle, week the value of¥ that

maximizes the above product, or the one that minimizes tigativelog of the above

product:
P P

—log [[P(Y'|X",W) =) —log P(Y'|X",W). (21)
i=1 =1

Using the Gibbs distribution (Equation 2), we get:

P P
—log [[ POYiIX W) =3 BE(W,Y", X") +log / ye—ﬁE<Wv%X">. (22)
i=1 ye

i=1

The final form of the negative log-likelihood loss is obtairigy dividing the above
expression by? andg (which has no effect on the position of the minimum):

P

‘CHH(W7 S) = %Z (E(W7 YiaXi) + %k)g/

eﬂE(W!%X”) . (23)
i=1 yeY
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While many of the previous loss functions involved oy, Y, X*) in their con-
trastive term, the negative log-likelihood loss combintgte energies for all val-
ues ofY in its contrastive termFs(W, Y, X*). This term can be interpreted as the
Helmholtz free energy (log partition function) of the enddenof systems with ener-
giesE(W,Y, X*), Y € Y. This contrastive term causes the energies of all the asswer
to be pulled up. The energy of the correct answer is also gulte but not as hard as it

is pushed down by the first term. This can be seen in the exprestthe gradient for

a single sample:

8L,111(W, Yi,Xi) _ 8E(W7 Yi,Xi) _/ 8E(VV,Y,Xi)
Yey ow

ow ow
whereP(Y| X, W) is obtained through the Gibbs distribution:

PY|X' W), (24)

e~ BEWY,X")

P(Y|X', W)= (25)

ey PPORIT
Hence, the contrastive term pulls up on the energy of eachemasith a force propor-
tional to the likelihood of that answer under the model. Unfpately, there are many
interesting models for which computing the integral oyeis intractable. Evaluating
this integral is a major topic of research. Considerabler&ffhave been devoted to ap-
proximation methods, including clever organization of tadculations, Monte-Carlo
sampling methods, and variational methods. While thesbaadsthave been devised as
approximate ways of minimizing the NLL loss, they can be \@ehin the energy-based
framework as different strategies for choosing #is whose energies will be pulled
up.

Interestingly, the NLL loss reduces to the generalizedgm@iron loss whepgd — oo
(zero temperature), and reduces to the log loss (Eqg. 12) whwas two elements (e.g.
binary classification).

The NLL loss has been used extensively by many authors undeous
names. In the neural network classification literature,sitkhown as thecross-
entropy loss[Sollaetal., 1988]. It was also used by Bengio et al. to tram
energy-based language model [Bengio et al., 2003]. It han vddely used un-
der the namemaximum mutual information estimatidor discriminatively train-
ing speech recognition systems since the late 80’s, inctudiidden Markov
models with mixtures of Gaussians [Bahl et al., 1986], and NH#kkeural net hy-
brids [Bengio et al., 1990, Bengio et al., 1992, Haffner,3,9Bengio, 1996]. It has
also been used extensively for global discriminative tragnof handwriting recog-
nition systems that integrate neural nets and hidden Mammdels under the
namesmaximum mutual informatiofBengio et al., 1993, LeCun and Bengio, 1994,
Bengio et al., 1995, LeCun et al., 1997, Bottou et al., 1997 discriminative for-
ward training[LeCun et al., 1998a]. Finally, it is the loss function of atefor train-
ing other probabilistic discriminative sequence labelingdels such as input/output
HMM [Bengio and Frasconi, 1996], conditional random fieldafferty et al., 2001],
and discriminative random fields [Kumar and Hebert, 2004].

Minimum Empirical Error Loss : Some authors have argued that the negative log
likelihood loss puts too much emphasis on mistakes: Eq. 2Qpioduct whose value
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is dominated by its smallest term. Hence, Ljolje et al. [|gat al., 1990] proposed
theminimum empirical error losswhich combines the conditional probabilities of the
samples additively instead of multiplicatively:

Linee (W, Y, X?) =1 — P(Y?| X", W). (26)
Substituting Equation 2 we get:

o e—BE(W,Y' X?)
Liee(W, Y, X")=1—

ey € PPOR0 T 0
As with the MCE loss and the LVQ2 loss, the MEE loss saturdtescontribution
of any single error. This makes the system more robust td labise and outliers,
which is of particular importance to such applications saslspeech recognition, but
it makes the loss non-convex. As with the NLL loss, MEE regsiievaluating the
partition function.

3 Simple Architectures

To substantiate the ideas presented thus far, this seaimoistrates how simple mod-
els of classification and regression can be formulated agg+msed models. This sets
the stage for the discussion of good and bad loss functisngel as for the discussion

of advanced architectures for structured prediction.

3
E(W,Y, X) E(W,Y, X) EW,Y,X) =" 8(Y — k)gi

Jgo 9
Gw(X)

92

~_ b

X Y X Y X

Figure 6: Simple learning models viewed as EBMa) a regressor: The energy is the dis-
crepancy between the output of the regression fundfign(X) and the answel”. The best
inference is simply™* = Gw (X); (b) a simple two-class classifierThe set of possible an-
swers is{—1, +1}. The best inference " = sign(Gw (X)); (c) a multiclass classifier:The
discriminant function produces one value for each of thed¢hrategories. The answer, which
can take three values, controls the position of a “switchhigh connects one output of the dis-
criminant function to the energy function. The best infeeeis the index of the smallest output
component offw (X).
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3.1 Regression

Figure 6(a) shows a simple architecture for regression imction approximation. The
energy function is the squared error between the outputegeession functiotry, (X )
and the variable to be predict&d which may be a scalar or a vector:

B(W,Y,X) = |G (X) - V| (28)

The inference problem is trivial: the value Bfthat minimizesE is equal toGw (X).
The minimum energy is always equal to zero. When used withdhthitecture, the
energy loss, perceptron loss, and negative log-likeliHossl are all equivalent because
the contrastive term of the perceptron loss is zero, andafidie NLL loss is constant
(it is a Gaussian integral with a constant variance):

£ene1 gy W S

"U |

r
g (W,Y", X1) = 2PZHGW “YIPR(29)

This corresponds to standard regression with mean-sqeared
A popular form of regression occurs whéhis a linear function of the parameters:

N
X)= Zwk¢k(X) =Whe(X). (30)
k=1

The ¢y (X) are a set ofV features andwy, are the components of aM-dimensional
parameter vectoll’. For concision, we use the vector notatidi’ ® (X ), whereW”
denotes the transposeldf, and® (X ) denotes the vector formed by eagh X ). With
this linear parameterization, training with the energyslosduces to an easily solvable
least-squares minimization problem, which is convex:

P
W* = argminy, EE IWTa(Xh) - Y] . (31)
=1

In simple models, the feature functions are hand-craftethbydesigner, or separately
trained from unlabeled data. In the dual form of kernel mdthdhey are defined as
ox(X) = K(X,X*), k=1... P, whereK is the kernel function. In more complex
models such as multilayer neural networks and othersp¥henay themselves be pa-
rameterized and subject to learning, in which case the ssgre function is no longer

a linear function of the parameters and hence the loss fumatiay not be convex in

the parameters.

3.2 Two-Class Classifier

Figure 6(b) shows a simple two-class classifier architectdthe variable to be pre-
dicted is binaryy = {—1,+1}. The energy function can be defined as:

E(W,Y,X) = -YGw(X), (32)
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whereGw (X)) is a scalar-valuediscriminant functiorparameterized b¥. Inference
is trivial:
Y* = argminy ;13 — YGw(X) = sign(Gw (X)). (33)
Learning can be done using a number of different loss funstiavhich include the
perceptron loss, hinge loss, and negative log-likelihesd| Substituting Equations 32
and 33 into the perceptron loss (Eqg. 7), we get:

P

ﬁperceptron(Wa S) = % Z (Slgn(GW (XZ)) - YZ) GW (XZ) (34)

=1
The stochastic gradient descent update rule to minimizddiss is:
IGw (X7)
ow
wheren is a positive step size. If we chooghy (X) in the family of linear models,

the energy function becomes(W,Y, X) = —YW7T®(X) and the perceptron loss
becomes:

W —W+n (Yi — sign(GW(Xi)) (35)

P

1 . ,

»Cperceptron W S Z Slgn WT(I) )) - YZ) WT(I)(Xl% (36)
z:l

and the stochastic gradient descent update rule becomésiiar perceptron learn-
ing rule: W — W +n (Y — sign(W7®(X"))) ®(X?).
The hinge loss (Eqg. 11) with the two-class classifier enegy 82) yields:

Linge(W, S) = Z max (0, m + 2Y Gy (X?)). (37)

=1

Using this loss withG'y (X)) = WT X and a regularizer of the foriiiv||? gives the
familiar linear support vector machine.
The negative log-likelihood loss (Eqg. 23) with Equation 3&lgs:

P
Lon(W,S) = %Z [—YiGW(Xi) +log (eYiGW@f” n e*Y"Gw<X">)} . (39)

=1

Using the fact thay) = {—1, +1}, we obtain:

L (W, S) Z log (1 4N Gw(X! )) (39)

which is equivalent to the log loss (Eq. 12). Using a lineadei@s described above,
the loss function becomes:

La(W,S) Z log (1 te Y WX )) (40)

This particular combination of architecture and loss isfdmailiar logistic regression
method.
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3.3 Multiclass Classifier

Figure 6(c) shows an example of architecture for multictdassification for 3 classes.
A discriminant functionGy (X)) produces an output vect@y, g, . - . , gc| with one
component for each of th€' categories. Each componegt can be interpreted as
a “penalty” for assigningX to the j** category. A discrete switch module selects
which of the components is connected to the output energy pbiition of the switch
is controlled by the discrete variab¥é € {1,2,...,C}, which is interpreted as the
category. The output energy is equal E§W)Y, X) = ch:l 0(Y — j)g;, where
0(Y — j) is the Kronecker delta functioni(u) = 1 for u = 0; §(u) = 0 otherwise.
Inference consists in settifig to the index of the smallest component@®fy (X).

The perceptron loss, hinge loss, and negative log-likekhlmss can be directly
translated to the multiclass case.

3.4 Implicit Regression

E(W,Y, X)
A

‘I\lel (X) = Gay,, (V)Ih

t t

Gy, (X)

G2w2 (Y)

A A

X Y

Figure 7: The implicit regression architectureX andY are passed through two functions
Giyy,, andGa,,, . This architecture allows multiple values ¥fto have low energies for a given

The architectures described in the previous section anglsifunctions ofY” with a
single minimum within the s€Y. However, there are tasks for which multiple answers
are equally good. Examples include robot navigation, wiemnging left or right may
get around an obstacle equally well, or alanguage model iohwhe sentence segment
“the cat ate the” can be followed equally well by “mouse” oirtf3.

More generally, the dependency betweémndY sometimes cannot be expressed
as a function that map% to Y (e.g., consider the constraiit?+Y?2 = 1). In this case,
which we callimplicit regressionwe model the constraint th&f andY must satisfy
and design the energy function such that it measures thatigal of the constraint.
Both X andY can be passed through functions, and the energy is a funcfithreir
outputs. A simple example is:

B(W,Y, X) = 5|[Gx (W, X) — Gy (W, V)] (@1
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For some problems, the functi@iyx must be different from the functio@'y-. In
other cases(x and Gy must be instances of the same functi@n An interesting
example is theSiamesarchitecture [Bromley et al., 1993]: variablé§ and X, are
passed through two instances of a functigy . A binary labelY” determines the con-
straint onGyw (X1) andGw (X2): if Y = 0, Gw (X1) andGw (X2) should be equal,
and ifY = 1, Gw(X1) and Gy (X2) should be different. In this way, the regres-
sion onX; and X5 is implicitly learned through the constrailtrather than explicitly
learned through supervision. Siamese architectures agktodearn similarity metrics
with labeled examples. When two input samplésand X, are known to be similar
(e.g. two pictures of the same persoYi)= 0; when they are differenly = 1.

Siamese architectures were originally designed for signeaterification [Bromley et al., 1993)].
More recently they have been used with the square-exp@iéogs (Eq. 17) to learn a
similarity metric with application to face recognition [Gpra et al., 2005]. They have
also been used with the square-square loss (Eg. 16) for anssed learning of mani-
folds [Hadsell et al., 2006].

In other applications, a single non-linear function conglsi andY. An example
of such architecture is the trainable language model of Begigal [Bengio et al., 2003].
Under this model, the input is a sequence of a several successive words in a text, and
the answel” is the the next word in the text. Since many different words fcdlow
a particular word sequence, the architecture must allowtiplelvalues ofY” to have
low energy. The authors used a multilayer neural net as thetitnG(W, X, Y), and
chose to train it with the negative log-likelihood loss. Bese of the high cardinal-
ity of ) (equal to the size of the English dictionary), they had to ayggroximations
(importance sampling) and had to train the system on a closehine.

The current section often referred to architectures in Witlhe energy was linear or
quadratic inl/, and the loss function was convexlifi, but it is important to keep in
mind that much of the discussion applies equally well to nameplex architectures,
as we will see later.

4 Latent Variable Architectures

Energy minimization is a convenient way to represent theegamprocess of reasoning
and inference. In the usual scenario, the energy is minighizi¢h respect to the vari-
ables to be predicteH, given the observed variablés. During training, the correct
value ofY is given for each training sample. However there are nunseapplications
where it is convenient to use energy functions that deperals®t of hidden variables
Z whose correct value is never (or rarely) given to us, everinduraining. For ex-
ample, we could imagine training the face detection systepiatied in Figure 2(b)
with data for which the scale and pose information of the §asenot available. For
these architectures, the inference process for a giverf satiablesX andY involves
minimizing over these unseen variablés

EY,X)= mmin E(Z,Y, X). (42)
Such hidden variables are callldent variablesby analogy with a similar conceptin
probabilistic modeling. The fact that the evaluation®(fY, X) involves a minimiza-
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tion overZ does not significantly impact the approach described stfarthe use of
latent variables is so ubiquitous that it deserves spe@atment.

In particular, some insight can be gained by viewing theririee process in the
presence of latent variables as a simultaneous minimizatierY” andZ:

Y* = argminycy zczE(Z,Y, X). (43)

Latent variables can be viewed as intermediate results @mwdy to finding the best
outputY’. At this point, one could argue that there is no conceptudmince between
the Z andY variables:Z could simply be folded intd”. The distinction arises during
training: we are given the correct value Bffor a number of training samples, but we
are never given the correct value &f

Latent variables are very useful in situations where a hidclearacteristic of the
process being modeled can be inferred from observationgdnnot be predicted di-
rectly. One such example is in recognition problems. Fonga, in face recognition
the gender of a person or the orientation of the face couldétat variable. Knowing
these values would make the recognition task much easi@wlise in invariant object
recognition the pose parameters of the object (locatiaantation, scale) or the illumi-
nation could be latent variables. They play a crucial rolprioblems where segmenta-
tion of the sequential data must be performed simultangavuigh the recognition task.
A good example is speech recognition, in which the segmientatf sentences into
words and words into phonemes must take place simultanewaitsl recognition, yet
the correct segmentation into phonemes is rarely avaitini@g training. Similarly, in
handwriting recognition, the segmentation of words intarelecters should take place
simultaneously with the recognition. The use of latentalales in face recognition is
discussed in this section, and Section 7.3 describes &t kedeiable architecture for
handwriting recognition.

4.1 An Example of Latent Variable Architecture

To illustrate the concept of latent variables, we consither task of face detection,
beginning with the simple problem of determining whetheaeefis present or not in
a small image. Imagine that we are provided with a face degétinctionGg,ce(X)
which takes a small image window as input and produces arsgatput. It outputs
a small value when a human face fills the input image, and & featie if no face is
present (or if only a piece of a face or a tiny face is preseAt).energy-based face
detector built around this function is shown in Figure 8{#)e variableY” controls the
position of a binary switchl( = “face”, 0 = “non-face”). The output energy is equal
t0 Grace(X) whenY = 1, and to a fixed threshold valdéwhenY = 0:

E(Y, X) = YGiace(X) + (1 = Y)T.

The value ofY” that minimizes this energy function is(face) if Gace (X) < T and0
(non-face) otherwise.

Let us now consider the more complex tasldefecting and locating single face
in a large image. We can apply oG¥...(X ) function to multiple windows in the large
image, compute which window produces the lowest valué'gf.(X ), and detect a
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Figure 8: (a): Architecture of an energy-based face detector. Given amémé outputs a
small value when the image is filled with a human face, and h Wédue equal to the threshold
T when there is no face in the imagéb): Architecture of an energy-based face detector that
simultaneously locates and detects a face in an input imggesimg the location of the face as
a latent variable.

face at that location if the value is lower thdh This process is implemented by
the energy-based architecture shown in Figure 8(b). Tlemldtocation” variableZ
selects which of thé( copies of theGs... function is routed to the output energy. The
energy function can be written as

K
E(Z,Y,X)=Y | 6(Z = k)Grace(Xx) | + (1 = YT, (44)
k=1

where theX s are the image windows. Locating the best-scoring locdtidhe image
consists in minimizing the energy with respectffoandZ. The resulting value oY
will indicate whether a face was found, and the resultingieadf Z will indicate the
location.

4.2 Probabilistic Latent Variables

When the best value of the latent variable for a giveandY is ambiguous, one may
consider combining the contributions of the various pdssitalues by marginalizing
over the latent variables instead of minimizing with regpgedhose variables.

When latent variables are present, the joint conditionstrihution overY and Z

22



given by the Gibbs distribution is:

e—BE(Z)Y.X)
P(Z,Y|X) = J——— (45)
Marginalizing overZ gives:
[ s e—BE(Z,Y,X)
PY|X) = fyey — RGN (46)
Finding the best” after marginalizing ove# reduces to:
1
Y* = argminy ¢y — — log/ e PAE(EY.X) 47
ﬁ z2€Z

This is actually a conventional energy-based inferencehicithe energy function has
merely been redefined frofi(Z,Y, X) to F(Z) = — log [, e~ ?#=¥"X), which

is thefree energyf the ensemblé E(z,Y, X ), z € Z}. The above inference formula
by marginalization reduces to the previous inference fdany minimization when
8 — oo (zero temperature).

5 Analysis of Loss Functions for Energy-Based Models

This section discusses the conditions that a loss functiast satisfy so that its mini-
mization will result in a model that produces the correctvears. To give an intuition
of the problem, we first describe simple experiments in witiettain combinations of
architectures and loss functions are used to learn a sinapeselt, with varying results.
A more formal treatment follows in Section 5.2.

5.1 “Good” and “Bad” Loss Functions

Consider the problem of learning a function that computesstjuare of a number:
Y = f(X), wheref(X) = X2. Though this is a trivial problem for a learning
machine, it is useful for demonstrating the issues involvetthe design of an energy
function and loss function that work together. For the foilog experiments, we use
a training set o200 samples( X%, V') whereY® = X%, randomly sampled with a
uniform distribution betweer-1 and—+1.

First, we use the architecture shown in Figure 9(a). Thetitpis passed through
a parametric functiordzy,, which produces a scalar output. The output is compared
with the desired answer using the absolute value of therdiffge (.1 norm):

EW,Y, X) = ||Gw(X) = Y. (48)

Any reasonable parameterized family of functions could seduforGy,. For these
experiments, we chose a two-layer neural network with 1 inymit, 20 hidden units
(with sigmoids) and 1 output unit. Figure 10(a) shows th&dhshape of the energy
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, [|Gw (X) — Y| ] [lel(X)—GZWQ(Y)l
- 1 X
Gw(X) Gy, (X) Gay, (Y)
A /Y A
X Y X Y
(a) (b)

Figure 9: (a): A simple architecture that can be trained with tBeergyloss. (b): An implicit
regression architecture whet® andY” are passed through functior@s, ,, and Gz, respec-
tively. Training this architecture with the energy loss sasi a collapse (a flat energy surface). A
loss function with a contrastive term corrects the problem.

function in the space of the variabl&sandY’, using a set of random initial parameters
W. The dark spheres mark the location of a few training samples
First, the simple architecture is trained with the energgl(Eq. 6):

P P
Leneray(W,S) = Z E(W,Y', X" Z|GW Y. (49)

This corresponds to a classical form of robust regressidwe. [&arning process can be
viewed as pulling down on the energy surface at the locatitimetraining samples (the
spheres in Figure 10), without considering the rest of thiatsmn the energy surface.
The energy surface as a function¥offor any X has the shape of a V with fixed slopes.
By changing the functioidy (X)), the apex of that V can move around for different
X% The loss is minimized by placing the apex of the V at the jpmsit” = X2 for
any value ofX, and this has the effect of making the energies of all othewans
larger, because the V has a single minimum. Figure 10 shosvshtape of the energy
surface at fixed intervals during training with simple stastic gradient descent. The
energy surface takes the proper shape after a few iteratiwoagh the training set.
Using more sophisticated loss functions such as the NLL dosbe perceptron loss
would produce exactly the same result as the energy losaubecaiith this simple
architecture, their contrastive term is constant.

Consider a slightly more complicated architecture, shawhRigure 9(b), to learn
the same dataset. In this architectufeis passed through functio@;,, andY is
passed through functio@’s,,,. For the experiment, both functions were two-layer
neural networks with 1 input unit, 10 hidden units and 10 autmits. The energy is
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(@) (b) (©) (d)

Figure 10:The shape of the energy surface at four intervals while ingjrthe system in Fig-
ure 9(a) with stochastic gradient descent to minimizeghergy loss The X axis is the input,
and theY axis the output. The energy surface is shown (a) at the stdréiming, (b) after 10
epochs through the training set, (c) after 25 epochs, anatftgy 39 epochs. The energy surface
has attained the desired shape where the energy aroundricasamples (dark spheres) is low
and energy at all other points is high.

the L,; norm of the difference between their 10-dimensional owgput
E(WXaY): ||G1W1 (X)_GQWQ(Y)Hlv (50)

whereW = [W;W3]. Training this architecture with the energy loss resulta gol-
lapseof the energy surface. Figure 11 shows the shape of the eserfgce during
training; the energy surface becomes essentially flat. Waathappened? The shape
of the energy as a function &f for a givenX is no longer fixed. With the energy loss,
there is no mechanism to preverit andG, from ignoring their inputs and producing
identical output values. This results in the collapsedtsmhu the energy surface is flat
and equal to zero everywhere.

(b) (d)

Figure 11:The shape of the energy surface at four intervals while ingjrthe system in Fig-
ure 9(b) using the energy loss. Along tReaxis is the input variable and along thé axis is the
answer. The shape of the surface (a) at the start of the wginib) after 3 epochs through the
training set, (c) after 6 epochs, and (d) after 9 epochs. @yehe energy is collapsing to a flat
surface.

Now consider the same architecture, but trained withstiigare-squaréoss:
LOW,Y*, X') = EOW, Y, X*)? — (maz(0,m — E(W,Y*, X")))*.  (51)

Herem is a positive margin, andl’ is the most offending incorrect answer. The second
term in the loss explicitly prevents the collapse of the gpday pushing up on points
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whose energy threatens to go below that of the desired angvigure 12 shows the
shape of the energy function during training; the surfacessasfully attains the desired
shape.

(@) (b)

(d)

Figure 12:The shape of the energy surface at four intervals while ingjrthe system in Fig-
ure 9(b) usingsquare-squark®ss. Along the x-axis is the variablé and along the y-axis is the
variableY. The shape of the surface at (a) the start of the trainingaftgr 15 epochs over the
training set, (c) after 25 epochs, and (d) after 34 epochse dergy surface has attained the
desired shape: the energies around the training sampletoareand energies at all other points
are high.

-

(a)

Figure 13:The shape of the energy surface at four intervals while ingjrthe system in Fig-
ure 9(b) using the negative log-likelihood loss. Along Mexis is the input variable and along
theY axis is the answer. The shape of the surface at (a) the staraioing, (b) after 3 epochs
over the training set, (c) after 6 epochs, and (d) after 11obg0 The energy surface has quickly
attained the desired shape.

Another loss function that works well with this architeaus thenegative log-
likelihoodloss:

LW, Y', X)) = B(W, Y, X%) + 1 log (/ e—ﬁEWﬂ’X‘)) . (52)
6 yey
The first term pulls down on the energy of the desired answkilevthe second term
pushes up on all answers, particularly those that have thedbenergy. Note that
the energy corresponding to the desired answer also appetrs second term. The
shape of the energy function at various intervals using ggative log-likelihood loss
is shown in Figure 13. The learning is much faster than theusstaquare loss. The
minimum is deeper because, unlike with the square-squasetioe energies of the in-
correct answers are pushed up to infinity (although with aeBesing force). However,
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each iteration of negative log-likelihood loss involvesisilerably more work because
pushing up every incorrect answer is computationally espenwhen no analytical
expression for the derivative of the second term exists.his éxperiment, a simple
sampling method was used: the integral is approximated lyradf 20 points regu-
larly spaced between -1 and +1 in tHadirection. Each learning iteration thus requires
computing the gradient of the energy at 20 locations, veBsleations in the case
of the square-square loss. However, the cost of locatingnibst offending incorrect
answer must be taken into account for the square-square loss

An important aspect of the NLL loss is that it is invariant lolgal shifts of energy
values, and only depends on differences between the eserfttieeY’s for a givenX.
Hence, the desired answer may have different energiesfferetit X, and may not be
zero. This has an important consequerthe:quality of an answer cannot be measured
by the energy of that answer without considering the ensrgiall other answers.

In this section we have seen the results of training four doatlons of architec-
tures and loss functions. In the first case we used a simplétacture along with a
simple energy loss, which was satisfactory. The conssainthe architecture of the
system automatically lead to the increase in energy of lreteanswers while de-
creasing the energies of the desired answers. In the seesed & more complicated
architecture was used with the simple energy loss and théimacollapsed for lack
of a contrastive term in the loss. In the third and the fouakecthe same architecture
was used as in the second case but with loss functions corgamplicit contrastive
terms. In these cases the machine performed as expecteddamat dollapse.

5.2 Sufficient Conditions for Good Loss Functions

In the previous section we offered some intuitions aboutWlioss functions are good
and which ones are bad with the help of illustrative experitaeln this section a more
formal treatment of the topic is given. First, a set of suffiticonditions are stated.
The energy function and the loss function must satisfy tlveselitions in order to be
guaranteed to work in an energy-based setting. Then westigsbe quality of the loss
functions introduced previously from the point of view oé#e conditions.

5.3 Conditions on the Energy

Generally in energy-based learning, the inference methmbses the answer with
minimum energy. Thus the condition for the correct infelena a sampl¢X*®, Y?) is
as follows.

Condition 1 For sample( X, Y'), the machine will give the correct answer &t if

EW,Y', X") < B(X,Y,X"),VY €Y and Y # Y. (53)

In other words, the inference algorithm will give the cotranswer if the energy of the
desired answeY is less than the energies of all the other ans\¥ers
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To ensure that the correct answer is robustly stable, we magse to impose that
its energy be lower than energies of incorrect answers bysiip® marginm. If Y?
denotes the most offending incorrect answer, then the tondor the answer to be
correct by a margimn is as follows.

Condition 2 For a variableY” and samplé X, Y*) and positive margimn, the infer-
ence algorithm will give the correct answer faf if

EW,Y!, X)) < E(W,Y", X% —m. (54)

5.4 Sufficient Conditions on the Loss Functional

If the system is to produce the correct answers, the losgifumad should be designedin
such a way that minimizing it will causB(W, Y'?, X%) to be lower tharE (W, Y, X%)
by some margimn. Since only the relative values of those two energies matteonly
need to consider the shape of a slice of the loss functiortbki2D space of those two
energies. For example, in the case whris the set of integers from to k, the loss
functional can be written as:

LOW.Y', X') = L(Y*, E(W,1,X"),..., E(W, k, X")). (55)

The projection of this loss in the space BfW,Y?, X%) and E(W,Y?, X*) can be
viewed as a functio parameterized by the othgér— 2 energies:

LW, Y", X") = Qe (E(W,Y', X"), B(W,Y", X")), (56)

where the parametéE, | contains the vector of energies for all valuesoéxcepty
andY™.

We assume the existence of at least one set of paran&téss which condition 2
is satisfied for a single training sampl& ‘¢, Y'?). Clearly, if such &V does not exist,
there cannot exist any loss function whose minimizationliéead to condition 2. For
the purpose of notational simplicity let us denote the epét¢iV, Y, X*) associated
with the training sampléX?, Y?) by E- (as in “correct energy”) and (W, Y?, X*)
by E; (as in “incorrect energy”). Consider the plane formedy and E;. As an
illustration, Figure 17(a) shows a 3-dimensional plot &shuare-squartoss function
in which the abscissa iE- and the ordinate i€;. The third axis gives the value of
the loss for the corresponding values Bf and E;. In general, the loss function
is a family of 2D surfaces in this 3D space, where each surfacesponds to one
particular configuration of all the energies excépt andE;. The solid red line in the
figure corresponds to the points in the 2D plane for whigh= E;. The dashed blue
line correspond to the margin lifé-+m = E;. Letthe two half plane&c+m < E;
andEqc +m > E; be denoted by? P, andH P, respectively.

Let R be thefeasible regiondefined as the set of valu¢g¢, E;) corresponding
to all possible values of¥’ € W. This region may be non-convex, discontinuous,
open, or one-dimensional and could lie anywhere in the pléins shown shaded in
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Figure 14:Figure showing the various regions in the plane of the twagiee Ec and E;. Ec
are the (correct answer) energies associated Witif, Y*), and E; are the (incorrect answer)
energies associated witl*, Y™*).

Figure 14. As a consequence of our assumption that a soleti@ts which satisfies
conditions 2,k must intersect the half plané P; .

Let two points(ey,e2) and (e}, e) belong to the feasible regioR, such that
(e1,e2) € HP; (thatis,e; +m < e3) and(e}, eb) € HP, (thatis,ef +m > e5). We
are now ready to present the sufficient conditions on theflosgtion.

Condition 3 Let (X?,Y") be thei*" training example andn be a positive margin.
Minimizing the loss functiof will satisfy conditions 1 or 2 if there exists at least one
point (e1, e2) with e; + m < ey such that for all pointge’, e5) with e} + m > €}, we
have

Q[Ey](eheQ) < Q[Ey](e/lveé)a (57)

whereQ g, is given by

LW,Y*', X") = Q) (EW, Y, X'), E(W, Y", X")). (58)

In other words, the surface of the loss function in the spdcE®and E; should be
such that there exists at least one point in the part of th&liEaregionkR intersecting
the half planeff P; such that the value of the loss function at this point is laas fits
value at all other points in the part & intersecting the half plan® P.

Note that this is only a sufficient condition and not a neagssandition. There
may be loss functions that do not satisfy this condition bhbge minimization still
satisfies condition 2.
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Table 1: A list of loss functions, together with the margin which alfothem to satisfy con-
dition 3. A margin> 0 indicates that the loss satisfies the condition for any 8yripositive
margin, and “none” indicates that the loss does not satisy tondition.

Loss (equation #) | Formula Margin
energy loss (6) E(W, Y X1) none
perceptron (7) E(W,Y! X%) —minycy BE(W,Y, X?) 0
inge (1) | max (0,m 4 EQW.Y, X0 - EW.FLXD) | m
log (12) log (1 i eE(W,Yi,X”’)fE(W,Y”’,Xi)) >0
LVQ2 (13) min (M, max(0, E(W,Y?, X)) — E(W,Y?, Xz)) 0
MCE (15) (1 T e—(E(W,Y",X”’)fE(W,Yi,Xi)))—1 o
square-square (16) E(W,Y?, X*)? — (max(0, m — E(W,Y?, Xi)))2 m
square-exp (17) | E(W, Y X%)2 + 567E(W,Y1',X1') <0
NLL/MMI (23) | E(W, Y, X7) + Llog [, ., e PE(Ww X =0
MEE (27) 1 — e BEWYSXYy fyey e—BE(W,y,X") <0

5.5 Which Loss Functions are Good or Bad

Table 1 lists several loss functions, together with the &alfithe margin with which
they satisfy condition 3. The energy loss is marked “none&ase it does not satisfy
condition 3 for a general architecture. The perceptron oabthe LVQ2 loss satisfy
it with a margin of zero. All others satisfy condition 3 withstrictly positive value of
the margin.

5.5.1 Energy Loss

The energy loss is a bad loss function in general, but thereextain forms of energies
for which it is a good loss function. For example consider aargy function of the

form
K

BOVY'X) = 3080 = B|0* = Gu (X (59)

This energy passes the output of the functigy through K radial basis functions
(one corresponding to each class) whose centers are thers&¢t. If the centerd/*
are fixed and distinct then the energy loss satisfies comdtiand hence is a good loss
function.

To see this, consider the two-class classification caseré&soning fork > 2
follows along the same lines). The architecture of the sgsseshown in Figure 15.
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Figure 15: The architecture of a system where two RBF units with ceritérand U? are
placed on top of the machin@y, to produce distanceg; anddx.
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Figure 16:(a): When using the RBF architecture with fixed and distinct RBRters, only the
shaded region of theE ¢, Er) plane is allowed. The non-shaded region is unattainableabse
the energies of the two outputs cannot be small at the sange fiihe minimum of the energy
loss is at the intersection of the shaded region and vertig#. (b): The 3-dimensional plot of
the energy loss when using the RBF architecture with fixeddistthct centers. Lighter shades
indicate higher loss values and darker shades indicate taakies.
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Letd = ||[U—U?||%, dy = ||[U'—Gw (X?)||?, anddy = ||U?—Gw (X?)||. Since
U' andU? are fixed and distinct, there is a strictly positive lower bdwnd; + ds
for all Gyy. Being only a two-class problent;c and E; correspond directly to the
energies of the two classes. In thE-, E;) plane no part of the loss function exists
in whereE- + E; < d. The region where the loss function is defined is shaded in
Figure 16(a). The exact shape of the loss function is showigare 16(b). One can
see from the figure that as long és> m, the loss function satisfies condition 3. We
conclude that this is a good loss function.

However, when the RBF centets' andU? are not fixed and are allowed to be
learned, then there is no guarantee tthat- do > d. Then the RBF centers could
become equal and the energy could become zero for all infssiting in a collapsed
energy surface. Such a situation can be avoided by havingteastive term in the loss
function.

5.5.2 Generalized Perceptron Loss

The generalized perceptron loss has a margin of zero. Tdrexgf could lead to a col-
lapsed energy surface and is not generally suitable famitrgienergy-based models.
However, the absence of a margin is not always fatal [LeCwah £1998a, Collins, 2002].
First, the set of collapsed solutions is a small piece of twameter space. Second,
although nothing prevents the system from reaching theps#d solutions, nothing
drives the system toward them either. Thus the probabifityitting a collapsed solu-
tion is quite small.

5.5.3 Generalized Margin Loss

Ifﬁ;ergy: Ec
0 o EC = EI

(a) (b)

Figure 17: (a) The square-squaréoss in the space of energigs- and E;). The value of
the loss monotonically decreases as we move ffbi, into H P, indicating that it satisfies
condition 3. (b) Thesquare-exponentidbss in the space of energids- and E;). The value
of the loss monotonically decreases as we move fof into H Py, indicating that it satisfies
condition 3.
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We now consider thequare-squar@nd square-exponentidbsses. For the two-
class case, the shape of the surface of the losses in theapgeand E'; is shown in
Figure 17. One can clearly see that there exists at least@ng(p,, e2) in HP; such
that

Q[Ey] (617 62) < Q[Ey] (6/17 612)a (60)
for all points(e}, e5) in HP,. These loss functions satisfy condition 3.

5.5.4 Negative Log-Likelihood Loss

It is not obvious that the negative log-likelihood loss sfidis condition 3. The proof
follows.
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Figure 18:Figure showing the direction of gradient of the negative-lizgglihood loss in the
feasible regionR in the space defined by the two energi&s and E;.

For any fixed parameté# and a sampléX?, Y'*) consider the gradient of the loss
with respect to the energyc of the correct answey? and the energy; of the most
offending incorrect answer ‘. We have

_ LW Y XY e P (61)
go = O0Ec B dovey e~ E(WY,X?)’
and o L
_OLWLYR XY et BIYRAY 62)
gr = OE; - Zyey e—E(W,Y,X%)"

Clearly, for any value of the energieg,; > 0 andg; < 0. The overall direction of
the gradient at any point in the spacefd and E; is shown in Figure 18. One can
conclude that when going froli P, to H P;, the loss decreases monotonically.
Now we need to show that there exists at least one poift# at which the loss
is less than at all the points H P». Let A = (Ef, Ef + m) be a point on the margin
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line for which the loss is minimumEy, is the value of the correct energy at this point.
That is,
Ef = argmin{Q(g,|(Ec, Ec + m)}. (63)

Since from the above discussion, the negative of the gradiethe lossQ(z,) at all
points (and in particular on the margin line) is in the difeotwhich is insideH P;, by
monotonicity of the loss we can conclude that

Qe (B, Ec +m) < Qg (Ec, Er), (64)

whereEc +m > Ej.
Consider a poinB at a distance away from the pointE¢., Ef + m), and inside
H P, (see Figure 18). That is the point

(Bt — e, EE +m +e). (65)
Using the first order Taylor’'s expansion on the value of tteslat this point, we get

Q[Ey](EE‘ — €, Eé +m + 6)
Qg

* * 8Q[Ey] 2
= Qip,)(Ec, B¢ +m) — ¢ B +e oF, + O(€%)
_ * * 8Q[Ey] 8Q[Ey] -1 2
= Qp,)(EG, EG +m) + e 9Fc + oF, ) + O(€%). (66)

From the previous discussion the second term on the rigtd bae is negative. So for
sufficiently smalle we have

Qie,)(Ec — ¢, Ec + m+¢) < Qg,)(Ec, Ec +m). (67)

Thus we conclude that there exists at least one poiif i at which the loss is less
than at all points inH Ps.

Note that the energy of the most offending incorrect ansiieis bounded above
by the value of the energy of the next most offending incdraaswer. Thus we only
need to consider a finite range Bf’s and the point3 cannot be at infinity.

6 Efficient Inference: Non-Probabilistic Factor Graphs

This section addresses the important issue of efficientggreased inference. Se-
qguence labeling problems and other learning problem witicstired outputs can often
be modeled using energy functions whose structure can beitgfor efficient infer-
ence algorithms.

Learning and inference with EBMs involves a minimizatiorttoé energy over the
set of answer®’ and latent variable€. When the cardinality o) x Z is large, this
minimization can become intractable. One approach to tbblpm is to exploit the
structure of the energy function in order to perform the miziation efficiently. One
case where the structure can be exploited occurs when tihgyeren be expressed as a
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Figure 19:Top: A log domain factor graph. The energy is a sum of factbas take differ-
ent subsets of variables as inputs. Bottom: Each possibiéigrioation of Z and Y can be
represented by a path in a trellis. Hef&, Z5, andY; are binary variables, whil&> is ternary.
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sum of individual functions (called factors) that each depen different subsets of the
variables in)) and Z. These dependencies are best expressed in the fornfacta
graph[Kschischang et al., 2001, MacKay, 2003]. Factor graphsayeneral form of
graphical models, or belief networks.

Graphical models are normally used to represent probghbiktributions over vari-
ables by directly encoding the dependency relationshipsd®n variables. At first
glance, it is difficult to dissociate graphical models frorolpabilistic modeling (wit-
ness their original name: “Bayesian networks”). Howeaetdr graphs can be studied
outside the context of probabilistic modeling, and EBM teag applies to them.

A simple example of a factor graph is shown in Figure 19 (tdp)e energy func-
tion is the sum of four factors:

E(Y,Z,X) = FE.X,Z1) + Ey(X, 21, Z2) + E.(Z2, Y1) + E4(Y1,Y2),  (68)

whereY = [Y1,Ys] are the output variables atl = [Z, Z,] are the latent variables.
Each factor can be seen as representing soft constraintedethe values of its input
variables. The inference problem consists in finding:

(Y,Z) = argmingcy ez (Ea(X, 21) + Ep(X, 21, 22) + Ec(22,y1) + Ea(y1,92)) -

(69)
This factor graph representsséructured outpuproblem, because the factéi; en-
codes dependencies betwééhandY 2 (perhaps by forbidding certain combinations
of values).

Let’s assume thaf,, Z», andY; are discrete binary variables, ah@ is a ternary
variable. The cardinality of the domain &f is immaterial sinceX is always observed.
The number of possible configurations@fandY given X is2 x 2 x 2 x 3 = 24.

A naive minimization algorithm through exhaustive searayuld evaluate the entire
energy function 24 times (96 single factor evaluations)weleer, we notice that for a
given X, E, only has two possible input configuration8; = 0 andZ; = 1. Sim-
ilarly, E, and E. only have 4 possible input configurations, ahg has 6. Hence,
there is no need for more th&w+ 4 4+ 4 + 6 = 16 single factor evaluations. The set
of possible configurations can be represented by a graplel(es)}tras shown in Fig-
ure 19 (bottom). The nodes in each column represent thelgessilues of a single
variable. Each edge is weighted by the output energy of ttterfdor the correspond-
ing values of its input variables. With this representatiasingle path from the start
node to the end node represents one possible configuratialh thie variables. The
sum of the weights along a path is equal to the total energghocorresponding con-
figuration. Hence, the inference problem can be reducedaicimg for the shortest
path in this graph. This can be performed using a dynamicraroghing method such
as the Viterbi algorithm, or the A* algorithm. The cost is postional to the number
of edges (16), which is exponentially smaller than the nunolb@aths in general. To
computeE (Y, X) = min,cz E(Y, z, X), we follow the same procedure, but we re-
strict the graph to the subset of arcs that are compatible thi prescribed value of
Y.

The above procedure is sometimes calledrttie-sum algorithmand it is the log
domain version of the traditional max-product for graphioadels. The procedure can
easily be generalized to factor graphs where the factoes iadre than two variables
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as inputs, and to factor graphs that have a tree structuteaidof a chain structure.
However, it only applies to factor graphs that are bipattiées (with no loops). When
loops are present in the graph, the min-sum algorithm mag givapproximate solu-
tion when iterated, or may not converge at all. In this caskszent algorithm such as
simulated annealing could be used.

As mentioned in Section 4, variables can be handled throuiglirmization or
through marginalization. The computation is identicalite bne required for comput-
ing the contrastive term of the negative log-likelihoodddhe log partition function),
hence we will make no distinctions. The contrastive ternhariegative log-likelihood
loss function is:

—llog/ e PEZY.X) (70)
ﬁ YeY, zeZ
or simply
1 ~BE(Y.X)
——log e I (71)
B Yey

when no latent variables are present.

At first, this seems intractable, but the computation careb#fized just like with
the min-sum algorithm. The result is the so-calledvard algorithmin the log domain.
Values are propagated forward, starting at the start nodbeteft, and following the
arrows in the trellis. Each nodecomputes a quantity;:

1
o = —=logy e ABriTa), (72)
o

whereFE};; is the energy attached to the edge linking ngde nodek. The final« at

the end node is the quantity in Eg. 70. The procedure redodas imin-sum algorithm

for large values ofj.
In a more complex factor graph with factors that take more tha variables as in-

put, or that have a tree structure, this procedure genesaliza non-probabilistic form

of belief propagation in the log domain. For loopy graphg, inocedure can be iter-

ated, and may lead to an approximate value for Eq. 70, if veayes at all [ Yedidia et al., 2005].
The above procedures are an essential component for comstrunodels with

structures and/or sequential output.

6.1 EBMSs versus Internally Normalized Models

It is important to note that at no point in the above discussio we need to manip-
ulate normalized probability distributions. The only gtities that are manipulated
are energies. This is in contrast with hidden Markov modets gaditional Bayesian
nets. In HMMs, the outgoing transition probabilities of aleanust sum to 1, and the
emission probabilities must be properly normalized. Thiswes that the overall dis-
tribution over sequences is normalized. Similarly, in diezl Bayesian nets, the rows
of the conditional probability tables are normalized.

EBMs manipulate energies, so no normalization is neces¥dhen energies are
transformed into probabilities, the normalization owéroccurs as the very last step
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in the process. This idea ddite normalizationsolves several problems associated
with the internal normalization of HMMs and Bayesian netbeTirst problem is the
so-calledlabel bias problemfirst pointed out by Bottou [Bottou, 1991]: transitions
leaving a given state compete with each other, but not witlerotransitions in the
model. Hence, paths whose states have few outgoing t@amsitend to have higher
probability than paths whose states have many outgoingitians. This seems like
an artificial constraint. To circumvent this problem, a laggmalization scheme was
first proposed by Denker and Burges in the context of handwréand speech recogni-
tion [Denker and Burges, 1995]. Another flavor of the labelsproblem is theniss-
ing probability mass problemiscussed by LeCun et al. in [LeCun et al., 1998a]. They
also make use of a late normalization scheme to solve thidgmo Normalized mod-
els distribute the probability mass among all the answextsate explicitly modeled by
the system. To cope with “junk” or other unforeseen and urdehed inputs, designers
must often add a so-calldzhckground modehat takes some probability mass away
from the set of explicitly-modeled answers. This could bastnied as a thinly dis-
guised way of removing the normalization constraint. Toipamother way, sincevery
explicit normalization is another opportunity for mishding unforeseen eventsne
should strive to minimize the number of explicit normalipat in a model. A recent
demonstration of successful handling of the label bias lpralihrough normalization
removal is the comparison between maximum entropy Markosetsby McCallum,
Freitag and Pereira [McCallum et al., 2000], and conditioaadom fields by Lafferty,
McCallum and Pereira [Lafferty et al., 2001].

The second problem is controlling the relative importantprobability distribu-
tions of different natures. In HMMs, emission probabiktiare often Gaussian mix-
tures in high dimensional spaces (typically 10 to 100), /iansition probabilities
are discrete probabilities over a few transitions. The dyicarange of the former
is considerably larger than that of the latter. Hence ttarsiprobabilities count for
almost nothing in the overall likelihood. Practitionersgesf raise the transition prob-
abilities to some power in order to increase their influen€ais trick is difficult to
justify in a probabilistic framework because it breaks tloemalization. In the energy-
based framework, there is no need to make excuses for bpdkénrules. Arbitrary
coefficients can be applied to any subset of energies in ttlemd@he normalization
can always be performed at the end.

The third problem concerns discriminative learning. Disénative training often
uses iterative gradient-based methods to optimize the lbssoften complicated, ex-
pensive, and inefficient to perform a normalization steprafch parameter update by
the gradient method. The EBM approach eliminates the pnofileCun et al., 1998a].
More importantly, the very reason for internally normatigiHMMs and Bayesian nets
is somewhat contradictory with the idea of training thentdisinatively. The normal-
ization is only necessary for generative models.
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7 EBMSs for Sequence Labeling and Structured Out-
puts

The problem of classifying or labeling sequences of symloolsequences of vec-
tors has long been a topic of great interest in several teahwommunities. The
earliest and most notable example is speech recognitiorscribiinative learning
methods were proposed to train HMM-based speech recogrstistems in the late
1980's [Bahl et al., 1986, Ljolje et al., 1990]. These methfut HMMs brought about
a considerable improvement in the accuracy of speech réomgsystems, and re-
mains an active topic of research to this day.

With the appearance of multi-layer neural network trainjmgcedures, several
groups proposed combining neural networks and time aligrimmeethods for speech
recognition. The time alignment was implemented eitheodlh elastic template
matching (Dynamic Time Warping) with a set of reference vgprar using a hidden
Markov model. One of the main challenges was to design aryrated training
method for simultaneously training the neural network dredtime alignment module.
In the early 1990's, several authors proposed such metlwwad®fmbining neural nets
and dynamic time warping [Driancourtetal.,1991a, Driamtetal., 1991b,
Driancourt and Gallinari, 1992b, Driancourt and Gallind®92a,
Driancourt, 1994], as well as for combining neural net and MM
[Bengio et al., 1990, Bourlard and Morgan, 1990, Bottou,11,9daffner et al., 1991,
Haffner and Waibel, 1991, Bengio et al., 1992, Haffner anibéla1992,
Haffner, 1993, Driancourt, 1994, Morgan and Bourlard, 199%onig et al., 1996].
Extensive lists of references on the topic are available Nfcermott, 1997,
Bengio, 1996]. Most approaches used one dimensional comvoll net-
works time-delay neural networksto build robustness to variations of pitch,
voice timbre, and speed of speech. Earlier models combinedrimhinative
classifiers with time alignment, but without integrated sence-level train-
ing [Sakoe et al., 1988, McDermott and Katagiri, 1992, Fiairet al., 1990].

Applying similar ideas to handwriting recognition provedra challenging, be-
cause the 2D nature of the signal made the segmentationgpnatnsiderably more
complicated. This task required the integration of imaggrsentation heuristics in
order to generate segmentation hypotheses. To classifgegments with robust-
ness to geometric distortions, 2D convolutional nets weseduBengio et al., 1993,
LeCun and Bengio, 1994, Bengio et al., 1995]. A general fdatan of integrated
learning of segmentation and recognition with late nore&ion resulted in thgraph
transformer networlarchitecture [LeCun et al., 1997, LeCun et al., 19984].

Detailed descriptions of several sequence labeling modethe framework of
energy-based models are presented in the next three section

7.1 Linear Structured Models: CRF, SVMM, and MMMN

Outside of the discriminative training tradition in speeatd handwriting recognition,
graphical models have traditionally been seen as prolstibijenerative models, and
trained as such. However, in recent years, a resurgencdeségt for discriminative
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Figure 20:A log domain factor graph for linear structured models, whinclude conditional
random fields, support vector Markov models, and maximungimatarkov networks.

training has emerged, largely motivated by sequence ladpelioblems in natural lan-
guage processing, notably conditional random fields [Lthffet al., 2001], perceptron-
like models [Collins, 2002], support vector Markov modefdt{in et al., 2003], and
maximum margin Markov networks [Taskar et al., 2003].

These models can be easily described in an EBM setting. Témefunction in
these models is assumed to be a linear function of the paeashEt

EW,Y,X)=W'F(X,Y), (73)

whereF'(X,Y) is a vector of feature functions that dependXrandY. The answer
Y is a sequence df individual labels(Ys,...,Y;), often interpreted as a temporal
sequence. The dependencies between individual labels 8etjuence is captured by a
factor graph, such as the one represented in Figure 20. Batdr is a linear function
of the trainable parameters. It depends on the idpand on a pair of individual labels
(Ym, Ys). In general, each factor could depend on more than two iddalilabels, but
we will limit the discussion to pairwise factors to simpliftye notation:

EW,Y,X)= Y Wl fun(X, Y, Yy). (74)
(m,n)eF

Here F denotes the set of factors (the set of pairs of individuatlathat have a direct
inter-dependency)y,.... is the parameter vector for facton, n), andf,., (X, Y., ¥»)
is a (fixed) feature vector. The global parameter vettois the concatenation of all
theW,,.,,. Itis sometimes assumed that all the factors encode the lsachef interac-
tion between input and label pairs: the model is then calledraogeneous field. The
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factors share the same parameter vector and features, @aedengy can be simplified
as:
EW,Y,X)= Y WI'f(X,Yn,Yn). (75)
(m,n)eF
The linear parameterization of the energy ensures thatdhegponding probability
distribution overlV is in the exponential family:

e~ WTF(XY)

P(W[Y,X) = (76)

—wTF(X,Y)"
fw/GW e~ ( )
This model is called thénear structured model

We now describe various versions of linear structured nstihelt use different loss

functions. Sections 7.2 and 7.3 will describe non-linear lierarchical models.

7.1.1 Perceptron Loss

The simplest way to train the linear structured model is wighperceptron loss. LeCun
et al. [LeCun et al., 1998a] proposed its use for general;lm@ar energy functions
in sequence labeling (particularly handwriting recogmi, calling it discriminative
Viterbi training. More recently, Collins [Collins, 2000, Collins, 2002] hadvocated
its use for linear structured models in the context of NLP:

P
1 L L
Lpercepiron(W) = 5 3 E(W, Y, X) = BV, Y™, XY), (77)
i=1

whereY*’ = argmin, ., E(W,y, X") is the answer produced by the system. The
linear property gives a particularly simple expressiontfa loss:

P
1 3 ] i *1
£pe1'ceptron(W) = F Z WT (F(X7a Yz) - F(X17Y )) . (78)
=1
Optimizing this loss with stochastic gradient descent ¢etrda simple form of the
perceptron learning rule:
We—W-—n(F(X"Y") - F(X",Y*"). (79)

As stated before, the main problem with the perceptron lo$iseé absence of margin,
although this problem is not fatal when the energy is a lifieaction of the parameters,
as in Collins’ model. The lack of a margin, which theoretigahay lead to stability
problems, was overlooked in [LeCun et al., 1998a].

7.1.2 Margin Loss: Max-Margin Markov Networks

The main idea behind margin-based Markov networks [Altuale003,
Altun and Hofmann, 2003, Taskar etal., 2003] is to use a maltgss to train
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the linearly parameterized factor graph of Figure 20, wite energy function of
Equation 73. The loss function is the simple hinge loss witl.aregularizer:

P
1 ) . _ . )
Lhinge(W) = 55 > max(0,m + E(W,Y", X') = E(W,Y", X)) ++||W|]*. (80)
i=1

Because the energy is linearli#i, the loss becomes particularly simple:
1 Ll L
Lhinge(W) = 5 > max (0,m + WTAF(X',Y")) +~[[W]|%, (81)
=1

whereAF(X% Y?) = F(X' Y') — F(X? Y?). This loss function can be optimized
with a variety of techniques. The simplest method is stoithigsadient descent. How-
ever, the hinge loss and linear parameterization allowlentse of a dual formulation
as in the case of conventional support vector machines. Tiestigpn of which op-
timization method is most suitable is not settled. As withunaé net training, it is
not clear whether second order methods bring a significasgdmprovement over
well tuned stochastic gradient methods. To our knowledgsystematic experimental
study of this issue has been published.

Altun, Johnson, and Hofman [Altun et al., 2003] have studiederal versions of
this model that use other loss functions, such as the expiaherargin loss proposed
by Collins [Collins, 2000]:

P
1 L _
Lhinge(W) = 2 D exp(BE(W.Y', X') = EGWV, Y. X)) +4[[W|*. (82
i=1

This loss function tends to push the energi&$V, Y?, X¢) and E(W, Y, X?) as far
apart as possible, an effect which is moderated only by ezgpaition.

7.1.3 Negative Log-Likelihood Loss: Conditional Random Felds

Conditional random field6CRF) [Lafferty et al., 2001] use the negative log-likelitb
loss function to train a linear structured model:

P
1 A |
Lan(W) = 5 S EW, YL, X))+ —log y e MWD, (83)
i=1 yey

The linear form of the energy (Eq. 75) gives the following eegsion:

1 P

i i 1 T i
Lan(W) =5 > WIF(X,Y") + 5log 3 e AW ), (84)

i=1 yey
Following Equation 24, the derivative of this loss with resptolV is:
8£1111(W)

P
1 . . . .
T S FP(XLYY) =Y F(Xy)Pyl X', W), (85)
i=1 yey

42



where .
e BWTF(X*y)

—BWTF )(«L7 AN
Zy,eye B ( y’)

Pyl X", W) = (86)
The problem with this loss function is the need to sum ovepafisible label com-
binations, as there are an exponentially large number di sombinationsZ’ for a
sequence of binary labels). However, one of the efficient inference atgms men-
tioned in Section 6 can be used.

One of the alleged advantages of CRFs is that the loss funidiconvex with
respect tdl. However, the convexity of the loss function, while math&oaly sat-
isfying, does not seem to be a significant practical advantadthough the original
optimization algorithm for CRF was based on iterative suglirecent work indicates
that stochastic gradient methods may be more efficient {Méstathan et al., 2006].

7.2 Non-Linear Graph Based EBMs

The discriminative learning methods for graphical modedsaloped in the speech
and handwriting communities in the 90’s allowed for noreln parameterizations
of the factors, mainly mixtures of Gaussians and multi-tayeural nets. Non-linear
factors allow the modeling of highly complex dependencitsveen inputs and labels
(such as mapping the pixels of a handwritten word to the spoading character
labels). One particularly important aspect is the use dfiggctures that are invariant
(or robust) to irrelevant transformations of the inputsglsas time dilation or pitch

variation in speech, and geometric variations in handmgitiThis is best handled by
hierarchical, multi-layer architectures that can leamwu level features and higher level
representations in an integrated fashion. Most authorg h&ed one dimensional
convolutional nets (time-delay neural networks) for sfpeand pen-based handwrit-
ing [Bengio et al., 1990, Bottou, 1991, Haffner et al., 199&ffner and Waibel, 1991,

Driancourt et al., 1991a, Driancourtetal., 1991b, Driamtand Gallinari, 1992b,

Driancourt and Gallinari, 1992a, Bengio etal., 1992, Haffand Waibel, 1992,

Haffner, 1993, Driancourt, 1994, Bengio, 1996], and 2D @uational nets for image-

based handwriting [Bengio et al., 1993, LeCun and Bengi6418engio et al., 1995,

LeCunetal.,, 1997, LeCun et al., 1998a].

To some observers, the recent interest in the linear stredtmodel looks like
somewhat of a throw-back to the past, and a regression orothelexity scale. One
apparent advantage of linearly parameterized energidsaisttiey make the percep-
tron loss, hinge loss, and NLL loss convex. It is often argtied convex loss func-
tions are inherently better because they allow the use dfieffi optimization algo-
rithms with guaranteed convergence to the global minimunowéler, several au-
thors have recently argued that convex loss functions aguacantee for good perfor-
mance, and that non-convex losses may in fact be easieritoipptthan convex ones
in practice, even in the absence of theoretical guarantdearig and LeCun, 2006,
Collobert et al., 2006].

Furthermore, it has been argued that convex loss functicas loe effi-
ciently optimized using sophisticated second-order otition methods. How-
ever, it is a well-known but often overlooked fact that a falfg tuned stochas-
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tic gradient descent method is often considerably fastemptiactice than even
the most sophisticated second-order optimization meth@dsich appear bet-
ter on paper). This is because stochastic gradients can a&akmntage of
the redundancy between the samples by updating the pamsmete the ba-
sis of a single sample, whereas “batch” optimization meshedhste consider-
able resources to compute exact descent directions, oftlifyimg the theoretical
speed advantage [Becker and LeCun, 1989, LeCun et al., 1888an et al., 1998b,
Bottou, 2004, Bottou and LeCun, 2004, Vishwanathan et @GP
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Figure 21:Figure showing the architecture of a speech recognitiortesysusing latent vari-
ables. An acoustic signal is passed through a time-delayahewetwork (TDNN) to produce
a high level feature vector. The feature vector is then caagpéo the word templates. Dy-
namic time warping (DTW) aligns the feature vector with tleeditemplates so as to reduce the
sensitivity of the matching to variations in pronunciation

Figure 21 shows an example of speech recognition systenirttegirates a time-
delay neural network (TDNN) and word matching using dynatimie warping (DTW).
The raw speech signal is first transformed into a sequenamistic vectors (typically
10 to 50 spectral or cepstral coefficients, every 10ms). Toaistic vector sequence
is fed to a TDNN that transforms it into a sequence of highllé¥atures. Temporal
subsampling in the TDNN can be used to reduce the temporalutésn of the fea-
ture vectors [Bottou, 1991]. The sequence of feature vedésathen compared to word
templates. In order to reduce the sensitivity of the maghvariations in speed of
pronunciation, dynamic time warping aligns the featurausege with the template se-
quences. Intuitively, DTW consists in finding the best “@@swvarping that maps a
sequence of vectors (or symbols) to another. The solutinfbedound efficiently with
dynamic programming (e.g. the Viterbi algorithm or the Agatithm).

DTW can be reduced to a search for the shortest path in a itextyclic graph
in which the cost of each node is the mismatch between twositienthe two in-
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put sequences. Hence, the overall system can be seen asitaviaiable EBM in
which ) is the set of words in the lexicon, angl represents the set of templates
for each word, and the set of paths for each alignment grapte €arliest proposal
for integrated training of neural nets and time alignmenibysDriancourt and Bot-
tou [Driancourt et al., 1991a], who proposed using the LV@XI(Eq. 13) to train this
system. It is a simple matter to back-propagate gradiemtgth the DTW module
and further back-propagate gradients into the TDNN in otdewpdate the weights.
Similarly, gradients can be back-propagated to the wordptates in order to up-
date them as well. Excellent results were obtained for tsdlavord recognition,
despite the zero margin of the LVQ2 loss. A similar scheme lates used by Mc-
Dermott [McDermott, 1997].

A slightly more general method consists in combining neuretworks (e.g.
TDNN) with hidden Markov models instead of DTW. Several authproposed
integrated training procedures for such combinations rdurthe 90's.  The
first proposals were by Bengio et al. [Bengioetal., 1991, deet al., 1992,
Bengio, 1996] who used the NLL/MMI loss optimized with stastic gradient de-
scent, and Bottou [Bottou, 1991] who proposed various lasxtfons. A simi-
lar method was subsequently proposed by Haffner et al. imhilti-state TDNN
model [Haffner and Waibel, 1992, Haffner, 1993]. Similaiting methods were de-
vised for handwriting recognition. Bengio and LeCun ddsed a neural net/HMM
hybrid with global training using the NLL/MMI loss optimidewith stochastic gradi-
ent descent [Bengio et al., 1993, LeCun and Bengio, 1994rtiytthereafter, Konig
et al. proposed the REMAP method, which applies the expgentataximization algo-
rithm to the HMM in order to produce targets outputs for a méuet based acoustic
model [Konig et al., 1996].

The basic architecture of neural net/HMM hybrid systemsinsilar to the one
in Figure 21, except that the word (or language) models asbahilistic finite-state
machines instead of sequences. The emission probabditesch node are generally
simple Gaussians operating on the output vector sequenagsqed by the neural net.
The only challenge is to compute the gradient of the loss reitipect to the neural net
outputs by backpropagating gradients through the HMMigreBince the procedure is
very similar to the one used in graph transformer networlesyafer to the next section
for a description.

It should be noted that many authors had previously propossttiods that com-
bined a separately trained discriminative classifier andl@gmment method for speech
and handwriting, but they did not use integrated traininghods.

7.3 Hierarchical Graph-Based EBMs: Graph Transformer Net-
works

Sections 7.2 and 7.1 discussed models in which inferenckeaming involved marginal-
izing or minimizing over all configurations of variables ofdgnamic factor graph.
These operations are performed efficiently by building Bisren which each path cor-
responds to a particular configuration of those variables:ti8n 7.2 concentrated on
models where the factors are non-linear functions of thampeters, while Section 7.1
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Figure 22:The architecture of graph transformer networfor handwritten word recognition.
(a) The segmentation graphr,., is generated from the input image, (b) the hierarchical mult
modular architecture takes a set of graphs and outputs aatbt of graphs.

focused on simpler models where the factors are linearlgpaterized.

The present section discusses a class of models gattgadh transformer networks
(GTN) [LeCun et al., 1998a]. GTNs are designed for situadiamere the sequential
structure is so complicated that the corresponding dynalnféctor graph cannot be
explicitly represented, but must be represereatedurally For example, the factor
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graph that must be built on-the-fly in order to recognize atiremandwritten sen-
tence in English is extremely large. The correspondindjsrebntains a path for every
grammatically correct transcription of the sentence, f@rg possible segmentation of
the sentence into characters. Generating this trellistgoassociated factor graph) in
its entirety is impractical, hence the trellis must be reprged procedurally. Instead
of representing the factor graph, the GTN approach viewdr#iks as the main data
structure being manipulated by the machine. A GTN can be asamultilayer archi-
tecture in which the states are trellises, just as a neut# manultilayer architecture in
which the states are fixed-size vectors. A GTN can be viewedwtwork of modules,
calledgraph transformersthat take one or more graphs as input and produces another
graph as output. The operation of most modules can be exgutessthe composition
of the input graph with another graph, called a transdusaEpeiated with the mod-
ule [Mohri, 1997]. The objects attached to the edges of thatigraphs, which can be
numbers, labels, images, sequences, or any other enstjedrto trainable functions
whose outputs are attached to edge of the output graphs. eBoding architecture
can be seen as @mpositional hierarchyn which low level features and parts are
combined into higher level objects through graph compasiti

For speech recognition, acoustic vectors are assemblechtnes, phones into
triphones, triphones into words, and words into senten&snilarly in handwriting
recognition, ink segments are assembled into characteasacters into words, and
words into sentences.

Figure 22 shows an example of GTN architecture for simubbaisey segmenting
and recognizing handwritten words [LeCun et al., 1998ak fitst step involves over-
segmenting the image and generating a segmentation graphib(see Figure 22(a)).
The segmentation graghr,., is a directed acyclic graph (DAG) in which each path
from the start node to the end node represents a particulaofveegmenting the in-
put image into character candidates. Each internal nodssiscéated with a candidate
cut produced by the segmentation. Every arc between a saacta destination node
is associated with the part of the image that lies betweenvibecuts. Hence every
piece of ink appears once and only once along each path. iestage passes the
segmentation grap@ir,., through the recognition transformer which produces the in-
terpretation grapltsr;,; with the same number of nodes @s,.,. The recognition
transformer contains as many identical copies of the digoant functionsGy (X)
as there are arcs in the interpretation graph (this numbangés for every new in-
put). Each copy of+yy takes the image associated with one arc in the segmentation
graph and produces several arcs between the corresporutileg in the interpretation
graph. Each output arc is labeled by a character categodywaighted by the energy
of assigning the image to that category. Hence, each patteimterpretation graph
represents one possible interpretation of the input forpesible segmentation, with
the sum of the weights along the path representing the cadl®@nergy of that inter-
pretation. The interpretation graph is then passed threughth selector module that
selects only those paths from the interpretation graphhibae the same sequence of
labels as given by (the answer). The output of this module is another grapledall
Grs;- Finally a so-called Viterbi transformer selects a singiéhgn Gr.; indexed by
the latent variablé/. Each value o corresponds to a different path@v.;, and can
be interpreted as a particular segmentation of the inpug. dttliput energy is obtained
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either by minimizing or by marginalizing oveéf. Minimizing overZ is achieved by
running a shortest path algorithm on tGe,.; (e.g., the Viterbi algorithm, hence the
name Viterbi transformer). The output energy is then the sfithe arc energies along
the shortest path. Marginalizing overis achieved by running the forward algorithm
on Grge, as indicated in Section 6, equation 72. The path selectbM#arbi trans-
former can be seen as particular types of “switch” modules select paths in their
input graph.

In the handwriting recognition systems described in [Le€ual., 1998a], the dis-
criminant functionGw (X) was a 2D convolutional network. This class of function
is designed to learn low level features and high level repridions in an integrated
manner, and is therefore highly non-lineadih. Hence the loss function is not convex
in W. The optimization method proposed is a refined version daftetstic gradient
descent.

In [LeCun et al., 1998a], two primary methods for training KT are proposed:
discriminative Viterbi training which is equivalent to using the generalized percep-
tron loss (Eg. 7), andiscriminative forward trainingwhich is equivalent to using the
negative log-likelihood loss (Eqg. 23). Any of the good lasgeTable 1 could also be
used.

Training by minimizing the perceptron loss with stochagtiadient descent is per-
formed by applying the following update rule:

(87)

OEW,Y', X) OEW, Y™, X")
aw aw '

W<—W—n< —

How can the gradients df(W,Y*, X?) andE(W,Y*, X*) be computed? The answer
is simply to back-propagate gradients through the entitecgire, all the way back to
the discriminant function&'y, (X). The overall energy can be written in the following
form:

EW,Y, X) Z S (V)G (W, X), (88)

where the sum runs over all arcs @v;,,;, G (W, X) is thel-th component of the

k copy of the discriminant function, andl,;(Y") is a binary value equal to 1 if the
arc containingG; (W, X) is present in the final graph, and 0 otherwise. Hence, the
gradient is simply:

) W Y, X) 8le W, X)
Z S (Y T (89)
One must simply keep track of thg;(Y").

In Section 5 we concluded that the generalized perceptissinot a good loss
function. While the zero margin may limit the robustnessefs$olution, the perceptron
loss seems appropriate as a way to refine a system that wasjpred on segmented
characters as suggested in [LeCun et al., 1998a]. Neveshethe GTN-based bank
check reading system described in [LeCun et al., 1998a]vilaatdeployed commer-
cially was trained with the negative log-likelihood loss.
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The second method for training GTNs uses the NLL loss functigth a marginal-
ization overZ using the forward algorithm of Equation 72 ov&¥,.;, instead of a
minimization.

Training by minimizing the NLL loss with stochastic gradielescent is performed
by applying the following update rule:

OFz(W, Y XY 0Fy z(W,X?)
W —W—n ( Bl — BTG , (90)
where ) -
Fz(W.Y',X') = —Zlog y | e PEIWI2Y, (91)

z€EZ

is the free energy obtained by marginalizing oZetkeepingX* andY® fixed, and

; 1 i
Fyz(W.X)=—glog > e PPMwaA0, (92)
yeY, z€2

is the free energy obtained by marginalizing o¥eand Z, keepingX '’ fixed. Com-
puting those gradients is slightly more complicated thathexminimization case. By
chain rule the gradients can be expressed as:

(93)

OFy z(W,X") Z 0Fy.z(W,X") 0Gr (W, X)
ow v 0G ow ’
where the sum runs over all edges in the interpretation grdjte first factor is the
derivative of the quantity obtained through the forwardoaithm (Eq. 72) with respect
to one particular edge in the interpretation graph. Thesetiiies can be computed by
back-propagating gradients through the trellis, viewed &ed-forward network with
node functions given by Equation 72. We refer to [LeCun et1#198a] for details.
Contrary to the claim in [Lafferty et al., 2001], the GTN syst trained with the
NLL loss as described in [LeCun et al., 1998a] does assignlladeg&ned probability
distribution over possible label sequences. The proligiofia particular interpretation
is given by Equation 46:

Joag e PEEYX)
z

L e PEweX)

P(Y|X) = (94)

fyey, z€

It would seem natural to train GTNs with one of the generalizergin losses. To
our knowledge, this has never been done.

8 Discussion

There are still outstanding questions to be answered abeugg-based and probabilis-
tic models. This section offers a relatively philosophidsicussion of these questions,
including an energy-based discussion of approximate ndstfar inference and learn-

ing. Finally, a summary of the main ideas of this chapteriegi
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8.1 EBMSs and Probabilistic Models

In Section 1.3, the transformation of energies to probtddithrough the Gibbs distri-
bution was introduced:

e~ BE(WY,X)

PIYIX W) = T apry (95)
Yy

Any probability distribution ovety can be approximated arbitrarily closely by a dis-
tribution of that form. With finite energy values, distrilbois where the probability
of someY is exactly zero can only be approximated. Estimating thampaters of a
probabilistic model can be performed in a number of difféeneays, including max-
imum likelihood estimation with Bayes inversion, maximumwnditional likelihood
estimation, and (when possible) Bayesian averaging (plyssith variational approx-
imations). Maximizing the conditional likelihood of theatning samples is equivalent
to minimizing what we called the negative log-likelihoodo

Hence, at a high level, discriminative probabilistic madedn be seen as a special
case of EBMs in which:

e The energy is such that the integrl ,, e~ PEW.y.X) (partition function) con-
verges.

e The model is trained by minimizing the negative log-likeldd loss.

An important question concerns the relative advantageslsadvantages of prob-
abilistic models versus energy-based models. Probabilisbdels have two major
disadvantages. First, the normalization requirementdirtiie choice of energy func-
tions we can use. For example, there is no reason to beliav¢hth model in Figure 7
is normalizable ove¥ . In fact, if the functionGy, (Y') is upper bounded, the integral
ff;o e~ BEW.w.X) 4y does not converge. A common fix is to include an additive term
R,(Y) to the energy, interpreted as a log prior Bp whose negative exponential is
integrable. Second, computing the contrastive term in ggative log-likelihood loss
function (or its gradient with respect #3") may be very complicated, expensive, or
even intractable. The various types of models can be diviiedive rough categories
of increasing complexity:

e Trivial : When) is discrete with a small cardinality, the partition functics
a sum with a small number of terms that can be computed simfshyother
trivial case is when the partition function does not depemdiig and hence can
be ignored for the purpose of learning. For example, thifiésdase when the
energy is a quadratic form il with a fixed matrix. These are cases were the
energy loss can be used without fear of collapse.

¢ Analytical: When the partition function and its derivative can be cotegdan-
alytically. For example, when the energy is a quadratic far in which the
matrix depends on trainable parameters, the partitiontfongs a Gaussian in-
tegral (with variable covariance matrix) and its derivatig an expectation under
a Gaussian distribution, both of which have closed-fornreggions.
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e Computable: When the partition function is a sum over an exponential hum
ber of terms, but the computation can be factorized in suclyas to make it
tractable. The most notable case of this is when the partftiaction is a sum
over configurations of output variables and latent varigioliea tree-type graph-
ical model. In this case, belief propagation can be used ngpce the partition
function. When the graphical model is a simple chain graphirffahe case of
HMMSs), the set of configurations can be represented by thespata weighted
trellis. Running the forward algorithm through this trellyields the partition
function. A simple backpropagation-like procedure can beduto compute its
gradient (e.g., see [LeCun et al., 1998a] and referenceithjer

e Approachable: When the partition function cannot be computed exactlychn
be approximated reasonably well using various methods. r@teble example
is when the partition function is a sum over configurationgdbopy graphi-
cal model. The sum cannot be computed exactly, but loopgbetbpagation
or other variational methods may yield a suitable approxioma With those ap-
proximations, the energies of the various answers willlséilpulled up, although
not as systematically and with the same force as if usinguheértition func-
tion. In a sense, variational methods could be interpreteédé context of EBM
as a way to choose a subset of energies to pull up.

e Intractable: When the partition function is truly intractable with naisgactory
variational approximation. In this case, one is reducedsiagsampling meth-
ods A sampling method is a policy for choosing suitable can@idanswers
whose energy will be pulled up. The probabilistic approazlhis is to sam-
ple answers according to their probability under the moaed] to pull up their
energy. On average, each answer will be pulled up by the appte amount
according to the partition function.

In this context, using an energy-based loss function otteer the negative log-likelihood
can be seen as a sampling method with a particular policy iftking the answers
whose energy will be pulled up. For example, the hinge lossesyatically chooses
the most offending incorrect answer as the one whose enbmpidgbe pulled up. In
the end, using such strategies will produce energy surfagbswhich differences of
energies cannot be interpreted as likelihood ratios (timeesi true with variational
methods). We should emphasize again that this is inconséigLié the model is to be
used for prediction, classification, or decision-making.

Variational approximation methods can be interpreted @ EBM framework as
a particular choice of contrastive term for the loss funeti?\ common approach is
to view variational methods and energy-based loss funstasnapproximations to the
probabilistic method. What we propose here is to view théabdlistic approach as
a special case of a much larger family of energy-based methedergy-based meth-
ods are equally well justified as probabilistic methods. yTaee merely designed for
training models to answer a different kind of question thesbpbilistic models.

An important open question is whether the variational mégthat are commonly
used (e.g., mean field approximations with popular archites) actually satisfy con-
dition 3 (see Section 5.2).
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8.2 Efficiency in Learning

The most important question that affects the efficiency afieng is: “How many en-
ergies of incorrect answers must be explicitly pulled upbethe energy surface takes
the right shape?”. Energy-based loss functions that puthepmost offending incor-
rect answer only pull up on a single energy at each learnergtion. By contrast, the
negative log-likelihood loss pulls up on all incorrect aressvat each iteration, includ-
ing those that are unlikely to produce a lower energy tharctireect answer. Hence,
unless the NLL computation can be done at very low cost (akearcase of “trivial”
and “analytical” models), the energy-based approach imoo be more efficient.

An important open question is whether alternative loss tions exist whose con-
trastive term and its derivative are considerably simptecémpute than that of the
negative log-likelihood loss, while preserving the nicegerty that they pull up a large
volume of incorrect answers whose energies are “threaginiow”. Perhaps, a figure
of merit for architectures and loss functions could be defimbich would compare
the amount of computation required to evaluate the loss nderrivative relative to
the volume of incorrect answers whose energy is pulled uprastt.

For models in the “intractable” category, each individuakryy that needs to be
pulled up or pushed down requires an evaluation of the enanglyof its gradient
(if a gradient-based optimization method is used). Henoeljfg parameterizations
of the energy surface that will cause the energy surfaceki® tiae right shape with
the minimum amount of pushing of pulling is of crucial impamte. If) is high-
dimensional, and the energy surface is infinitely malleatiien the energy surface
will have to be pulled up in many places to make it take a silétabape. Conversely,
more “rigid” energy surfaces may take a suitable shape we#is bulling, but are less
likely to approach the correct shape. There seems to be-war@nce dilemma similar
to the one that influences the generalization performance.

8.3 Learning with Approximate Inference

Very often, the inference algorithm can only give us an apjpnate answer, or is not
guaranteed to give us the global minimum of the energy. Canggrbased learning
work in this case? The theory for this does not yet exist, fetaintuitions may shed
light on the issue.

There may be certain answersJhthat our inference algorithm never finds, per-
haps because they reside in far-away regions of the spacthéhalgorithm can never
reach. Our model may give low energy to wrong answers in treggiens, but since the
inference algorithm cannot find them, they will never appeahe contrastive term,
and their energies will never be pulled up. Fortunatelycsithose answers are not
found by the inference algorithm, we do not need to worry albloeir energies.

It is an interesting advantage of energy-based learningahlg the incorrect an-
swers whose energies are pulled up actually matter. Thisdemtrast with probabilis-
tic loss functions (e.g. NLL) in which the contrastive ternushpull up the energy of
every single answer, including the ones that our inferetgerghm will never find,
which can be wasteful.
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8.4 Approximate Contrastive Samples, Contrastive Divergece

Loss functions differ in how the contrastive sample is selécand how hard its energy
is pulled up. One interesting suggestion is to pull up on amswthat are always near the
correct answer, so as to make the correct answer a local mimjrout not necessarily a
global one. This idea is the basis of thentrastive divergence algorithproposed by
Hinton [Hinton, 2002, Teh et al., 2003]. Contrastive divarge learning can be seen
as an approximation of NLL learning with two shortcuts. Eitee contrastive term in
Equation 24 is approximated by drawing samples from theibligion P(Y | X% W)
using a Markov chain Monte Carlo method. Second, the sanapégsicked by starting
the Markov chain at the desired answer, and by running ongmesteps of the chain.
This produces a samplg’ that is near the desired answer. Then, a simple gradient
update of the parameters is performed:

(96)

OE(W, Y X'y OE(W,Y" X?)
oW oW '

W<—W—77< —

Since the contrastive sample is always near the desiredeanene can hope that the
desired answer will become a local minimum of the energy.rifupnMCMC for just a
few steps limits computational expense. However, ther@iguarantee that all incor-
rect answers with low energy will be pulled up.

8.5 Conclusion

This tutorial was written to introduce and explicate thddaling major ideas:

e Many existing learning models can be be expressed simplyarframework of
energy-based learning.

e Among the many loss functions proposed in the literaturmesare good (with
a non-zero margin), and some can be bad.

e Probabilistic learning is a special case of energy-basauhieg where the loss
function is the negative log-likelihood, a.k.a. the maximmutual information
criterion.

e Optimizing the loss function with stochastic gradient noethis often more ef-
ficient than black box convex optimization methods.

e Stochastic gradient methods can be applied to any lossifumicicluding non-
convex ones. Local minima are rarely a problem in practicabee of the high
dimensionality of the space.

e Support vector Markov models, max-margin Markov netwoeks] conditional
random fields are all sequence modeling systems that uselimgarameterized
energy factors. Sequence modeling systems with non-lperameterization for
speech and handwriting recognition have been a very aasearch area since
the early 1990’s. since the early 90’s.
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e Graph transformer networks are hierarchical sequence limgdsystems in which
the objects that are manipulated are trellises containlinhealternative inter-
pretations at a given level. Global training can be perfamsing stochastic
gradient by using a form of back-propagation algorithm tonpaote the gradi-
ents of the loss with respect to all the parameters in theByst
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