
12

Solving Fluid Dynamics Problems with Matlab

Rui M. S. Pereira1 and Jitesh S. B. Gajjar2

1 Centre of Mathematics, University of Minho
2School of Mathematics, University of Manchester

1Portugal
2United Kingdom

1. Introduction

MATLAB (short for Matrix Laboratory) was created by Cleve Moler and Jack Little in the
seventies. It is a programming language for technical computing. Its environment is easy
to work with, the syntax is very simple and intuitive, it has powerful toolboxes to treat
many different problems in engineering, and it allows us to produce fantastic graphics as the
programme runs. It also allows us to create a graphical interface (via graphical user interfaces
- GUIs) that gives our programme a look that is very close to professional software.
Because of many of the mentioned features, a MATLAB code can be very compact, allowing
anyone to have "the big picture" of any code without have to look at all its details. Another
great advantage of Matlab is that, if the code is written in a vectorized form, the code can
run much faster than if it was written in the traditional form (’a la C/fortran’). The fact that
MATLAB allows us to use a powerful toolbox for sparse matrices, is also a great advantage
since, many traditional linear algebra operations can be highly improved, allowing the codes
to run much faster than it would run with the traditional linear algebra functions.
In our work we have made extensive use of MATLAB to do ’proof of concept’ studies,
especially when developing new algorithms and techniques for solving systems of coupled
nonlinear partial differential equations, such as those which arise in fluid dynamics. This
includes, for instance, codes for investigating instabilities in lid-driven cavities, Boppana and
Gajjar (2010a), instabilities in flow past circular cylinders, Boppana and Gajjar (2010b), and
transonic flow past aerofoils Pereira and Gajjar (2010). In some cases MATLAB is used in its
own right for solving small problems, but the fact that MATLAB is an interpreted language
means that for increasing problem sizes, the MATLAB version of the code can be much slower
than equivalent versions in other languages especially when one is dealing with very large
sparse matrices. On the other hand the beauty of MATLAB is that much of the hard work
is buried in the simple syntax and hidden from the user. An example of this is the use of
the backslash operator for solving linear systems. Whether the system is sparse or full, the
manner in which the equations are solved is hidden from the user and this greatly facilitates
code development. In the equivalent fortran versions of the code the replacement for the ’\’
operation requires considerable work and the code translation process is no longer a trivial
exercise.
In this chapter we will discuss the use of hybrid spectral methods to solve two and
three-dimensional problems using MATLAB. There is an excellent book by Trefethen (2000)
which discusses the application of spectral methods using MATLAB to solve ordinary and

2 Engineering Education and Research Using MATLAB

partial differential equations, and which provides the foundation for the techniques described
below.
To motivate the ideas we first consider the solution of a model equation of the form

a(x, y)ψxx + b(x, y)ψyy + c(x, y)ψx + e(x, y)ψy + f (x, y)ψ = g(x, y),

say with Dirichlet boundary conditions in a rectangular domain. To obtain a numerical
solution to this problem the first step is to choose an appropriate method and discretization.
In our work we have used a combination of spectral methods in one or two dimensions and
high order finite difference methods in another dimension. The main reasons for this choice
are that a hybrid approach combines the accuracy of spectral methods together with flexibility
in comparison to using spectral methods on their own. One restriction with the use of spectral
methods is that one needs to use somewhat simplified geometries. A hybrid approach gives
more flexibility in this respect. Another important reason stems from consideration of the
type of matrix patterns which arise. With finite differences in say the x direction and spectral
collocation in the y direction, the coefficient matrix with the unknowns ordered in terms of
increasing y values for a fixed x value, has a particular sparsity pattern dependent on the order
of the finite-differencing used. Second order finite-differencing leads to a a block tridiagonal
matrix whilst with fourth-order finite differences, the matrix is block-pentadiagonal of the
form:

AqΨq−2 + BqΨq−1 + CqΨq + DqΨq+1 + EqΨq+2 = Rq, q = 0, 1, ..., M. (1)

Here Ψq is the vector of unknowns at location x = xq, M + 1 is typically the number of points
in the x direction and the block matrices are of size N + 1 by N + 1 where N + 1 spectral points
are used.
Using MATLAB it is not too difficult to generate a short code to solve the above discrete system
and the book by Trefethen (2000) gives plenty of such examples. The problem becomes more
challenging when N and M become large, as for example in some fluid flow applications
where large N, M values are needed to resolve regions of the flow where the solution changes
very rapidly. When using a large number of points the sparse matrix facilities of MATLAB
come into their own. The whole coefficient matrix does not need to be stored and by declaring
this as a sparse matrix, only the non-zero entries of the block matrices are calculated. This
avoids having to store a very large and sparse matrix which can quickly lead to memory
problems.
Increasing the order of the scheme leads to increased bandwidths. This sparsity pattern can
be exploited for 2nd, 4th or even 6th finite-differencing with a direct solver. However, with
spectral methods in two directions, unless the differential operator involved has a special
form, it is not immediately possible to utilize the sparse nature of the matrix. Whilst this
does not pose any intrinsic difficulties if one is coding in MATLAB, with increased number of
points the solution phase can become very memory intensive and requires a lot of processor
time. The use of the hybrid approach in our work is motivated in part by the observation that
the sparse matrix structure can be exploited to write efficient solvers, which not only work
well with MATLAB, but can be coded directly in other languages. MATLAB provides for an
excellent environment in which one can test and develop solvers of this type.
The above techniques have been successfully applied to investigate a whole range of different
flow problems governed by the Navier-Stokes and related equations. In the first example we
consider the onset of instability in the lid-driven cavity flow. MATLAB was used to generate
results on coarse grids and do preliminary eigenvalue computations. For very fine grids, the

Solving Fluid Dynamics Problems with Matlab 3

computations were performed in Fortran 95. The problem is described in detail in Boppana
and Gajjar (2010a).
The second problem concerns the onset of instability in the flow past a row of circular
cylinders. Again the same technqiues have been used but for a more complicated geometry.
This problem is described in detail in Boppana and Gajjar (2010b).
The third problem we discuss concerns the inviscid transonic flows past thin airfoils. Here
the governing equations are nonlinear and of mixed type and the flow can contain shock
wave discontinuities for certain parameter values. The full details are given in Pereira and
Gajjar (2010). The same methods as described above are used except now type differencing
needs to be incorporated to allow for the different flow behaviours in regions of subsonic
and supersonic flow. The method is fast and very robust and we are able to compute steady
flows with strong shocks. The code was written in MATLAB, using vectorization when
possible, and, in order to produce a good interface with the user, we used GUIs (graphical
user interfaces) from MATLAB. The result was a fast and accurate code, with the extra bonus
of a very good interface with the user, without a lot of effort in terms of programming. The fact
that graphical results can be shown immediately, saves us a lot of work, both on the analysis
of the results and on its presentation.

2. Instabilities in lid-driven cavities.

To motivate the techniques used in our work we first consider a model elliptic equation of the
form

a(x, y)ψxx + b(x, y)ψyy + c(x, y)ψx + e(x, y)ψy + f (x, y)ψ = g(x, y) (2)

with say Dirichlet boundary conditions in a square domain 0 ≤ x, y ≤ 1. It is assumed that
the functions a, b, c, e, f , g are smooth functions of x and y.
The discrete solution to the equations will be obtained at a set of grid points on an (M +
1) × (N + 1) grid say with the nodes, x = xj, j = 0, . . . , M with x1 = 0, xM = 1, and
y = yk, 0 ≤ k ≤ N with y0 = 1, yN = 1, and at these points we set ψj,k = ψ(xj, yk).
We will assume that derivatives in the x− and y− directions may be approximated as

∂ψ

∂x
(xj, yk) =

M

∑
q=0

(Dx)j,qψq,k,
∂2ψ

∂x2 (xj, yk) =
M

∑
q=0

(Dxx)j,qψq,k,

∂ψ

∂y
(xj, yk) =

M

∑
q=0

(Dy)k,qψj,q,
∂2ψ

∂y2 (xj, yk) =
M

∑
q=0

(Dyy)k,qψj,q. (3)

Given the type and order of discretisation, the elements of the matrices Dx, Dxx, Dy, Dyy are
known. For example with second-order central finite differences, at an interior point of a
uniform grid in x with ∆x = xj − xj−1, we have

(Dx)j,j−1 = − 1
2∆x

, (Dx)j,j+1 =
1

2∆x
,

(Dxx)j,j−1 =
1

∆2
x

, (Dxx)j,j+1 =
1

∆2
x

, (Dxx)j,j = − 2
∆2

x
, 1 ≤ j ≤ M− 1,

and zero otherwise. If we take Chebychev collocation in the y−direction, the Dy, Dyy are
the Chebychev differentiation matrices and are given in a number of places, see for example

4 Engineering Education and Research Using MATLAB

Weideman and Reddy (2003) or Trefethen (2000), where MATLAB code to generate the
matrices is given.
Discretization of the equation 2 leads to the set of equations

aj,k

M

∑
q=0

(Dxx)j,qψq,k + bj,k

M

∑
q=0

(Dyy)k,qψj,q + cj,k

M

∑
q=0

(Dx)j,qψq,k + ej,k

M

∑
q=0

(Dy)k,qψj,q + f j,kψj,k = gj,k,

(4)
at the interior points 1 ≤ j ≤ M− 1, 1 ≤ k ≤ N − 1. At the boundaries we have ψ = 0.
The discrete set (4) can be combined into a compact form as

[DIAG(a)(IN+1 ⊕Dxx) + DIAG(c)(IN+1 ⊕Dx)] Ψ+[
DIAG(b)(Dyy ⊕ IM+1) + DIAG(e)(Dy ⊕ IM+1)

]
Ψ + DIAG(f)Ψ = g , (5)

where Ψ denotes the vector of unknowns, A ⊕ B is the kronecker tensor product of two
matrices A, B (which in MATLAB is represented by the kron(A,B) operator), and DIAG(v)
is as in MATLAB the diagonal matrix with entries given by the vector v, and IM+1 is the
identity matrix of order M + 1. Certain rows of the matrix operator in (5) are also modified
when the boundary conditions are incorporated.
The linear sytem may be represented as

SΨ = R. (6)

Once the coefficient matrix S and the right hand sides have been computed, the solution just
involves the use of the \ operator with Ψ = S\R. From the user perspective other than
declaring that the matrices involved are sparse matrices, no additional special treatment is
required to obtain the solution of the linear systems.
Given the discretization matrices, the above system is easy to code in MATLAB. For certain
discretizations however, the linear systems outlined above can be huge and highly sparse.
The bandwidth of the coefficient matrix increases with increasing order of differences used,
and with spectral methods in two directions, the coefficient matrix has the sparsity pattern
similar to that in figure 1(c), obtained using the spy function in MATLAB. On the other hand
by taking second-order finite differences in the x−direction and spectral collocation in the
y−direction, with a particular ordering of grid points, the matrices can be written in block
tridiagonal form as shown in figure 1(a),1(b), or with fourth order finite-differencing in x the
linear system is block pentadiagonal. With 2nd, 4th or even 6th finite-differencing the linear
systems can be solved with a direct solver but with spectral methods in two directions, unless
the differential operator involved has a special form, it is not immediately possible to utilize
the sparse nature of the matrix. Whilst this does not pose any intrinsic difficulties if one is
coding in MATLAB, with increased number of points the solution phase can become very
memory intensive and requires a lot of processor time. The use of the hybrid approach in our
work is motivated in part by the observation that the sparse matrix structure can be exploited
to write efficient solvers, which not only work well with MATLAB, but can be coded directly
in other languages. MATLAB provides for an excellent environment in which one can test and
develop solvers of this type. In our work we have written our own direct block solvers as well
as making direct use of the \ operator with a sparse matrix.
In the MATLAB codes when constructing the coefficient matrices, we use the functions speye
or spalloc for initially creating the sparse matrices. After this only the non-zero elements of
the matrices are assigned.

Solving Fluid Dynamics Problems with Matlab 5

0 20 40 60 80 100 120

0

20

40

60

80

100

120

nz = 492

(a)

0 20 40 60 80 100 120

0

20

40

60

80

100

120

nz = 1212

(b)

0 20 40 60 80 100 120

0

20

40

60

80

100

120

nz = 2022

(c)

Fig. 1. Sparsity patterns for model problem with (a) second order finite-differences in both x
and y with N = 10, M = 11, (b) second-order finite-difference in x and chebychev collocation
in y with N = 10, M = 11, (b) chebychev collocation in both x and y with N = 10, M = 11.

2.1 Lid-driven cavity flow.
In this section we discuss the steps needed to go from the continuous model described by the
set of coupled nonlinear partial differential equations, the Navier-Stokes equations, to solution
using MATLAB. To focus attention we will consider the classic problem of flow in a lid-driven
cavity which has been extensively studied in the literature. The governing equations for the
problem are

∇2ψ = ω,
and ψyωx − ψxωy = 1

Re∇2ω.

}
(7)

Here Re is the Reynolds number defined as Uw
ν , where U is the velocity of the lid, ν

is the kinematic viscosity of the fluid, and w is the width of the cavity that are used
to non-dimensionalize the velocity and length-scale variables respectively. The boundary
conditions (see figure 2(a)) are given by

ψ = 0 & ψx = 0 for x = 0, 0 ≤ y ≤ A,
ψ = 0 & ψx = 0 for x = 1, 0 ≤ y ≤ A,
ψ = 0 & ψy = 0 for y = 0, 0 ≤ x ≤ 1,
ψ = 0 & ψy = 1 for y = A, 0 ≤ x ≤ 1,

 (8)

where A is the aspect ratio of the cavity. The discrete solution to the equations will be obtained
at a set of grid points on an (M + 1)× (N + 1) grid say with the nodes, x = xj, j = 0, . . . , M
with x1 = 0, xM = 1, and y = yk, 0 ≤ k ≤ N with y0 = 1, yN = 1, and at these points we set
ψj,k = ψ(xj, yk), ωj,k = ω(xj, yk).
We will assume that derivatives in the x− and y− directions may be approximated as in (3).
The discretization leads to a set of nonlinear algebraic equations for the unknowns ψj,k, ωj,k,
0 ≤ j ≤ M, 0 ≤ k ≤ N. To solve these we use Newton linearization and this will lead to
linear system of equations which are solved using MATLAB. Linearization of the nonlinear
equations is performed by setting ψj,k = ψ̄j,k + Gj,k, ωj,k = ω̄j,k + Hj,k, the barred quantities
representing a current iterate and Gj,k, Hj,k begin small corrections, and substituting into the

6 Engineering Education and Research Using MATLAB

0
x

y

A

1

ψ = 0ψ = 0

ψ = 0

ψ = 0

ψx = 0ψx = 0

ψy = 0

ψy = 1

(a)

W

x

y

1

(b)

Fig. 2. Sketch of (a) the lid–driven cavity with boundary conditions, and (b) flow past a row
of circular cylinders.

nonlinear equations and neglecting second order small terms. This leads to

(IN+1 ⊕Dxx)G + (Dyy ⊕ IM+1)G−DIAG(H) =
−(IN+1 ⊕Dxx)ψ̄− (Dyy ⊕ IM+1)ψ̄ + DIAG(ω̄),

DIAG(ψ̄y)(IN+1 ⊕Dx)H + DIAG(ω̄x)(Dy ⊕ IM+1)G

− DIAG(ψ̄x)(Dy ⊕ IM+1)H−DIAG(ω̄y)(IN+1 ⊕Dx)G

− 1
Re
[
(IN+1 ⊕Dxx)H + (Dyy ⊕ IM+1)H

]
= −DIAG(ψ̄y)(IN+1 ⊕Dx)ω̄

+ DIAG(ψ̄x)(Dy ⊕ IM+1)ω̄ +
1

Re
[
(IN+1 ⊕Dxx)ω̄ + (Dyy ⊕ IM+1)ω̄)

]
.

Here G, H are the vector of unknown corrections.
Depending on the discretization, the above can be coded directly in MATLAB by constructing
the coefficient matrix multiplying the vector of unknowns (G, H)T . Note that the size of the
coefficient matrix is 2(N + 1)(M + 1)× 2(N + 1)(M + 1) and even for modest N, M the above
procedure leads to very large matrices and is not efficient. The approach we have adopted is
to make use of the sparsity patterns for particular types of discretizations.

2.2 Use of Matlab for the solution of the discrete system
For the case when we use second order finite-differeces in the x−direction and chebychev
collocation in the y−direction, the linear system may be written as

SΦ = (S0, S1, . . . , SM)T = r,

where
Sp = ApΦp−1 + BpΦp + CpΦp+1, 0 ≤ p ≤ M (9)

Solving Fluid Dynamics Problems with Matlab 7

Φp = (Gp0, Gp1, . . . , GpN , Hp0, Hp1, . . . HpN)T , Φ = (Φ0, Φ1, . . . , ΦM)T ,

with A0 = CM = 0. This represents a particular ordering of unknowns and gives rise to the
block tridiagonal system in (9). With 4th order finite-differencing in x the linear system is
block pentadiagonal.
The coefficient matrices Ap, BP, Cp can be extracted from the discrete equations above and

Ap =

(1
∆2

x
IN+1 O

1
2∆x

DIAG(Dyω̄p) − 1
2∆x

DIAG(Up)− 1
Re∆2

x
IN+1

)
,

Bp =

Dyy − 2
∆2

x
IN+1 −IN+1

DIAG(Ωx p)Dy DIAG(Vp)Dy + 1
Re

[
2

∆2
x
IN+1 −Dyy

] ,

Cp =

(1
∆2

x
IN+1 O

1
2∆x

DIAG(Dyω̄p) 1
2∆x

DIAG(Up)− 1
Re∆2

x
IN+1

)
,

with

Up = Dyψ̄p, Ωx p =
ω̄p+1 − ω̄p−1

2∆x
, Vp = − ψ̄p+1 − ψ̄p−1

2∆x
.

The above excludes the boundary conditions, but these just alter certain rows of the matrices.
In MATLAB the individual entries of the block matrices are easily computed and the S matrix
is updated via

S(1 + 2p(N + 1) : 2(p + 1)(N + 1), 1 + 2(p− 1)(N + 1) : 2p(N + 1)) = Ap,

S(1 + 2p(N + 1) : 2(p + 1)(N + 1), 1 + 2p(N + 1) : 2(p + 1)(N + 1)) = Bp,

S(1 + 2p(N + 1) : 2(p + 1)(N + 1), 1 + 2(p + 1)(N + 1) : 2(p + 2)(N + 1)) = CP,

for 1 ≤ p ≤ M− 1.

2.3 Results for lid-driven cavity
The method described above was used to compute the flow in a lid-driven cavity. The
same techniques used were adapted to firstly compute the steady flow, and then investigate
the instability of the flow via simulations as well as solving the linear eigenvalue problem
assuming normal mode disturbances proportional to eλt. Further details of the techniques
may be found in Boppana and Gajjar (2010a). MATLAB was also used in the eigenvalue
analysis. In fact the eigenvalue problem required to be solved takes the form

SΦ = λT,

which is a generalised eigenvalue problem. The matrix S is the same as the Jacobian matrix
of the linear system after Newton linearization, and T is a singular diagonal matrix. The
eigenvalue problem is solved in MATLAB using the eig function. In other related problems
the routine sptarn available in the PDE toolbox was used for the solution of the generalised
eigenvalue problem.
In figure 3 we have shown the real and imaginary parts of eigenfunctions for the disturbance
streamfunction ψ for aspect ratios of A = 1 and A = 2 at the onset of instability, obtained
from a solution of the eigenvalue problem. The advantage of working with MATLAB is that
such plots can be generated at the same time as the computation is in progress.
More extensive results and details are documented in Boppana and Gajjar (2010a).

8 Engineering Education and Research Using MATLAB

(a) ℜ(ψ̃)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

−0.5 0 0.5

(b) ℑ(ψ̃)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

−0.5 0 0.5

Fig. 3. Eigenfunctions of the streamfunction for lid-driven cavity at a critical Reynolds
number of Re = 8026.7 and aspect ratio A = 1.

(a) ℜ(ψ̃)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

−0.5 0 0.5

(b) ℑ(ψ̃)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

−1 −0.5 0 0.5

Fig. 4. Eigenfunctions of the streamfunction for lid-driven cavity at a critical Reynolds
number of Re = 5861 and aspect ratio A = 2.

Solving Fluid Dynamics Problems with Matlab 9

3. Flow past circular cylinders

The techniques described above have also been used to solve for the uniform flow past a
row of circular cylinders, see figure 2(b). Here the Navier-Stokes equations are solved with
boundary conditions of no slip on the cylinder surfaces and uniform flow far upstream. The
two important parameters are the gap-width between the cylinder centres W (normalised
with respect to cylinder radius) and the Reynolds number Re. Of particular interest is to
ascertain when the flow first becomes unstable and the mode of instability. Experiments, see
for example Mizushima & Ino (2008), for the flow past two such cylinders show a complicated
dynamics as the parameters are varied. For large Reynolds numbers, and for large gap widths
the flow is like that past an isolated cylinder and the observed shedding frequencies also
similar. For Re >> 1 and intermediate gap widths (of 0.5 to 1 cylinder diameters), the flow
can become deflected to one side and becomes asymmetric. For small gap widths, the flow is
similar to that past a single bluff body. At low Reynolds numbers the flow dynamics is also
complicated and with conflicting results.
In our work, MATLAB was used to first compute the base flows, and then for studies of
the onset of instability, by solving the generalised eigenvalue problem. Full details of the
numerical methods and results can be found in Boppana and Gajjar (2010b). In figures 5, 6 we
have shown the results for the streamfunction eigenfunctions. Modes which are symmetric
and asymmetric with respect to the cylinder centreline, can be observed and it found that
the critical Reynolds numbers for the onset of instabilties are very similar for both modes.
However the symmetric modes as shown in 5(b), 6(b) for instance, have much lower critical
Strohal frequencies as compared to asymmetric mode. The latter is the one which tends to
that for the flow past an isolated cylinder as the gap width increases.

(a) (b)

Fig. 5. Perturbation eigenfunctions the flow past a circular cylinder for a gap width W = 5
with (a) anti-phase oscillatory mode, (b) in phase oscillatory mode.

4. Transonic flows past airfoils.

The study of transonic flows is motivated in part by the observation that many modern
airplane carriers operate most efficiently when cruising at speeds which fall in the transonic
range, that is close to the speed of sound. Mathematically the study of transonic flows is
fascinating because the governing equations are nonlinear and of mixed type. The methods

10 Engineering Education and Research Using MATLAB

(a) (b)

Fig. 6. Perturbation eigenfunctions the flow past a circular cylinder for a gap width W = 50
with (a) anti-phase oscillatory mode, (b) in phase oscillatory mode.

described above work have been applied to partial differential equations of mixed type
containing shocks.

4.1 The mathematical model

In this subsection we describe briefly a numerical method to deal with transonic flows past
thin airfoils, based on the Kárman-Guderley equations. This method was discussed in detail
in Pereira and Gajjar (2010). However the aim of this section in not to repeat once again the
same work, but rather to focus on the use of the graphics interface which is extremely easy
to program in MATLAB. First we will give an overview of how the mathematical model was
built, and then we will explain how to use MATLAB graphics user interfaces (GUIs) in the
context of our problem.
The governing equation may be obtained using asymptotic methods as described in Cole and
Cook (1986). The starting point to our model was the full potential equation:

(a2 −U2)Φxx − 2UVΦxy + (a2 −V2)Φyy = 0, (10)

1
2
(Φ2

x + Φ2
y) +

a2

γ− 1
=

U∞

2
+

a2
∞

γ− 1
, (11)

where Φ represents the velocity potential, a is the local speed of sound, U∞ is the velocity in
the far field, a∞ is the speed of sound in the far field, and M∞ = U∞/a∞ is the free-stream
Mach number. The velocity components (U, V) are defined as follows,

U = Φx, V = Φy.

The density ρ and pressure p can be determined via the relationships,

ργ−1 = M2
∞a2; p =

ργ

γM2
∞

,

where γ is the ratio of specific heats.
In order to define the boundary conditions we assume that the flow is uniform in the far field
and that the flow is tangent to the airfoil on its surface. To construct this theory we also assume

Solving Fluid Dynamics Problems with Matlab 11

that we have a thin aerofoil with width (δ→ 0) and that the air flow speed is close to sonic so
M2

∞ = 1− kµ(δ), µ(δ)→ 0 where k is the transonic similarity parameter and µ is a function
of the airfoil width (δ). The oncoming flow is assumed to be aligned with the x-direction.
In order to define the boundary conditions we assume that the flow is uniform in the far field
and that the flow is tangent to the airfoil on its surface. To construct this theory we also assume
that we have a thin aerofoil with width (δ→ 0) and that the air flow speed is close to sonic so
M2

∞ = 1− kµ(δ), µ(δ)→ 0 where k is the transonic similarity parameter and µ is a function
of the airfoil width (δ). The oncoming flow is assumed to be aligned with the x-direction. The
airfoil is defined by,

y = δF(x).

Introducing non dimensional variables,

U = uU∞, V = vU∞,

then the full potential equation becomes,

(
a2

U2
∞
− u2)Φxx − 2uvΦxy + (

a2

U2
∞
− v2)Φyy = 0.

The expansion for Φ is described in Cole and Cook (1986) and is given by,

Φ(x, y, M∞, δ) = U∞(x + ε(δ)φ(x, y, k) + ...).

It is well known that as M∞ → 1, the perturbations extend in the y direction significantly.
Because of this, stretched coordinates were used and the governing equations and boundary
conditions reduce to,

φxx(k− φx(γ + 1)) + φYY = 0, (12)

φx = φY = 0, x2 + Y2 → ∞, (13)

φY(Y = 0) = F′(x), (14)

where (12) is the so called Kárman-Guderley equation. Equation (12) in conservative form is
written as follows,

∂

∂x
(kφx −

γ + 1
2

φ2
x) + φYY = 0, (15)

and, if we denote,
ψ = kx− (γ + 1)φ (16)

then, we may rewrite (15) as,

(
ψ2

x
2

)x + ψYY = 0. (17)

The boundary conditions become,

ψ(x2 + Y2 → ∞) = kx, ψY(Y = 0) = −(γ + 1)F′(x). (18)

When considering the non symmetric case, one has to introduce a new boundary condition -
the Kutta condition. The Kutta condition is used at the trailing edge to ensure that the jump
obtained in the integration of ψx along the lower and upper surfaces at the tail is zero.

12 Engineering Education and Research Using MATLAB

Next we give a brief overview of the numerical method used to solve the above problem.
Ee used finite differences for the derivatives in the x direction and a Chebyshev collocation
method to describe the derivatives in the Y direction. As described in Cole and Cook (1986)
each point of the domain may be either subsonic, sonic, supersonic or a shock point. Let,

P = (
ψ2

x
2

),

then equation (17) becomes,
Px + ψYY = 0. (19)

Let (ψx)i+1/2,j represent the derivative with respect to x of ψ at the point (xi+1/2, Yj), and let
hi = xi − xi−1. Using central differences for the x derivatives we may write (19) as,

(ψx)2
i+1/2,j − (ψx)2

i−1/2,j

hi + hi+1
+ (ψYY)i,j = 0,

or,

1
hi + hi+1

((ψx)i+1/2,j − (ψx)i−1/2,j)((ψx)i+1/2,j + (ψx)i−1/2,j) + (ψYY)i,j = 0. (20)

As discussed in Cole and Cook (1986) if we have a subsonic point, the equation is elliptic and
central differences should be used to calculate both (ψx)i+1/2,j and (ψx)i−1/2,j. If we have a
supersonic point, then equation (20) becomes hyperbolic and backwards differences should
be used to calculate both (ψx)i+1/2,j and (ψx)i−1/2,j. In the first case we can rewrite (20) as,

pi,j + (ψYY)i,j = 0. (21)

In the second case, we can rewrite (20) as,

pi−1,j + (ψYY)i,j = 0. (22)

where,

pi,j =
Ai,j

hi + hi+1
ψc

x,

Ai,j =
ψi+1,j − ψi,j

hi+1
−

ψi,j − ψi−1,j

hi
. (23)

and,

ψc
x =

ψi+1,j − ψi,j

hi+1
+

ψi,j − ψi−1,j

hi
. (24)

Two other cases are considered, the case when the flow accelerates from subsonic to
supersonic in which case we define a sonic point, and the opposite, when the flow decelerates
form supersonic to subsonic in which case we call it a shock point. To deal with these cases
we use artificial viscosity (µi,j) Murman and Cole (1971), and equations (21) and (22) can be
condensed as,

pi,j(1− µi,j) + pi−1,jµi−1,j + ψYY = 0

where the values of µi,j and µi−1,j are taken from the following table:

Solving Fluid Dynamics Problems with Matlab 13

TYPE OF POINT ψcentral
x ψbackWs

x µi−1,j µi,j
ELLIPTIC > 0 > 0 0 0
HYPERBOLIC < 0 < 0 1 1
SONIC < 0 > 0 0 1
SHOCK > 0 < 0 1 0

Note that a shock point can be seen as an addition of both elliptic and hyperbolic x difference
operators.
In the Y direction, the physical domain was first truncated to y∞ and mapped into the
Chebyshev space, as in Canuto et. all (1998),

Y ∈ [0, y∞]→ z ∈ [−1, 1]

where,

zj = cos(
jπ
N

), j = 0, 1, ..., N

and,

Yj = y∞(
zj + 1

2
).

First and second derivatives in the Y directions were calculated as described earlier.
After applying the above discretizations we obtain a set of coupled nonlinear algebraic
equations. These are linearized using Newton-Raphson linearization by setting

ψi,j = ψi,j + Gi,j,

where ψi,j represents the value of ψi,j in a previous iteration and Gi,j represents the update for
ψi,j. This results in a linear system of equations for the Gi,j of the form

Ai,jGi−2,j + Bi,jGi−1,j + Ci,jGi,j + Hi,jGi+1,j + Ei,jGi+2,j = Fi,j. (25)

Details on how to calculate the coefficients Ai,j, Bi,j..., Fi,j can be found in Pereira and Gajjar
(2010). The block pentadiagonal system of equations was solved directly using routines
described in Korolev et all. (2002).

4.2 The use of GUIs

In this subsection we will focus on how to generate a good graphics interface using MATLAB
GUIs in the context of the problem described in the previous subsection. In order to obtain
a graphics interface to our programme, the first thing we have to do is to type guide in
MATLAB’s command window. The result is that MATLAB opens a window that has a
graphics interface working environment(GIWE). The next thing to do, is to save it as name.fig.
This action has as a result not only of saving the work done so far, but also to generate a file
name.m, that has the MATLAB corresponding instructions.
Suppose next that we want to introduce a title on top of the graphics interface window. We
select the "Static text" button in the GIWE. With the mouse one selects the location and the
size of the text to input. Then after double clicking on it a new window appears, where one
can choose options for the static text we want to introduce.

14 Engineering Education and Research Using MATLAB

Another important feature on the design of an interface, is how to read data from this interface.
To do so, one option is to select the "Edit text" button in the GIWE. With the mouse one selects
the location and the size of the text to be read. Then, after a double click a new window
appears where one can chose options for the text to be read from the keyboard. It is possible
to choose a default text that can be attributed to a certain variable in the MATLAB code. If we
fill in the field "Tag" with a name, that can be used to attribute the edited text to a variable.
Suppose we fill the field "Tag" with A1. By doing this and saving it, one automatically obtains
in the .m file two new functions A1CreateFcn and A1Callback. The first function executes
during object creation, after setting all properties. The second function allows for the edited
text to be attributed to a variable when the enter key is pressed. Say we want to attribute the
edited text to the variable "x", all you have to do is to write in the A1Callback function the
following instruction:

x=str2double(get(handles.A1,’String’));

Here, the text read via the keyboard, once the enter key is pressed, is converted to double and
attributed to a variable "x". This feature is very important for the user to be able to set the
values of any variables to be used in the program.

In many codes, it is also very important to define a push button. This can be used to set
up certain actions once it is pushed. An example is when one wants to read data from the
keyboard, before starting a simulation. To implement this idea, we click the push button in
the GIWE. Then one selects the size and place where to put it in the GIWE. Next, if one double
clicks in it, a new window opens and the options for this push button are defined. Once this
is done and it is saved, a new function is created in the .m file called pushbuttonCallback.
All the actions that are to happen once the button is pushed are to appear in this function.
For instance, one can attribute a set of values to a set of variables. This is done exactly in the
same way as before. The difference is that this can be done to a set of many variables at once.
The next instructions we put in this function are the ones that compose the main code of our
programme.

Suppose that in the course of the simulation, we want to show a graphic object. This is done
by choosing the Axes button in the GIWE. Then one selects the size and place where to put
the graphic in the GIWE. Next, a double click on it and a new window opens and the options
for this Axes button are defined. If we fill in the field "Tag" with a name, say "graphics1", in
order to plot a graphic (x, f (x)) in that window, we would write:

axes(handles.graphics1);
plot(x,f)

Using these features, we were able to define a useful graphics interface for the program
to solve the transonic flow past an airfoil using the mathematical model presented in the
previous section. The interface was built for the NACA0012 airfoil.
The parameters considered were: Angle of attack (α), Mach number(M∞), number of points
in the x direction over the wing (nx), number of points in the Y direction (ny), maximum value
for Y (Ymax), and relaxation factor (w).
In the figures 8, 9, we present the results obtained by our code for two classic examples
extensively studied in the literature. The first example is for M∞ = 0.75, α = 2.0, nx = 40,
ny = 40, Ymax = 1.25, w = 0.5.
The second example is for M∞ = 0.8, α = 1.25, nx = 40, ny = 40, Ymax = 1.25, w = 0.6.

Solving Fluid Dynamics Problems with Matlab 15

Fig. 7. The ".fig" file built for the example considered.

The results of both examples agree with the literature, see for example Cole and Cook (1986)
and Camilo (2003). As we can see, by using GUIs, we obtained a user friendly professional
looking graphics interface, which allowed any other user to perform simulations and input
their parameters for the run. The other users of the software did not need to be familiar with
the underlying code and equations.

16 Engineering Education and Research Using MATLAB

Fig. 8. Example of results for KG code for Transonic flows where
Min f = 0.75; α = 2.0; Nx = 40, Ny = 40, relaxation = 0.5.

5. Conclusion

- The environment of MATLAB is easy to work, the syntax is very simple and intuitive, it
has powerful toolboxes to treat many different problems in engineering, and it allows us to
produce fantastic graphics as the program runs.

- A MATLAB code can be very compact, allowing anyone to have "the big picture" of any code
without having to look at all its details.

- Another great advantage of Matlab is that, if the code is written in a vectorized form, the
code can run much faster than if it was written in the traditional form (’a la C/fortran’).

- The fact that MATLAB allows us to use a powerful toolbox for sparse matrices, is also a great
advantage since, many traditional linear algebra operations can be highly improved, allowing
the codes to run much faster than it would run with the traditional linear algebra functions.

Solving Fluid Dynamics Problems with Matlab 17

Fig. 9. Example of results for KG code for Transonic flows where
Min f = 0.8; α = 1.25; Nx = 40, Ny = 40, relaxation = 0.6.

- The main drawback with the use of MATLAB is that when the number of points used in
the discretization grows, which is necessary for finely resolved computations, the execution
time and memory requirements can grow substantially. On multicore machines, the use of the
parallel toolbox is recommended and this is supposed to provide superior performance making
use of parallel linear algebra routines with minimal code changes. However we have not been
able to test this with our codes.

6. References

Boppana, V.B.L. and Gajjar, J.S.B. (2010a). Global flow instability in a lid-driven cavity. Int J. for
Num Methods in Fluids, 62, 827-853.

Boppana, V.B.L. and Gajjar, J.S.B. (2010b). Onset of instability in the flow past a circular cylinder
cascade. J. Fluid Mech. 668 303-334.

18 Engineering Education and Research Using MATLAB

Camilo E. (2003). Solução numérica das equações de Euler para representação do escoamento
transónico de aerofólios.M.Sc thesis, University of São Paulo, Brazil.

Canuto, C., Hussaini, M. Y., Quarteroni, A. and Zhang, T.A., (1998). Spectral Methods in Fluid
Mechanics. Springer series in Comp. Phys., Springer Verlag.

Cole, J. D. and Cook, L. P., (1986). Transonic Aerodynamics, Elsevier Science Publishers B.V. .
Korolev G.L, Gajjar J.S.B., and Ruban A.I., (2002). Once again on the supersonic flow separation

near a corner. J. Fluid Mech., 463, 173-199.
Mizushima, J. and Ino, Y., (2008). Stability of flows past a pair of circular cylinders in a side-by-side

arrangement. J. Fluid Mech., 595, 491-507.
Murman, E. M. and Cole, J. D.,(1971). Calculation of plane steady transonic flows. Boeing Scientific

Research Laboratories.
Pereira, R. M. S. and Gajjar, J. S. B. (2010). Transonic Inviscid Flows Past Thin Airfoils: A New

Numerical Method and Global Stability Analysis using MatLab. International Journal of
Mathematical Models and Methods in Applied Sciences, ISSN 1998-0140.

Trefethen L.N., (2000). Spectral Methods in Matlab. SIAM.
Weideman, J.A.C and Reddy, S.C (2003). http://dip.sun.ac.za/∼weideman/research/differ.html .

	Introduction
	Instabilities in lid-driven cavities.
	Lid-driven cavity flow.
	Use of Matlab for the solution of the discrete system
	Results for lid-driven cavity

	Flow past circular cylinders
	Transonic flows past airfoils.
	The mathematical model
	The use of GUIs

	Conclusion
	References

