
Testing Graph Clusterability: Algorithms and Lower Bounds

Ashish Chiplunkar∗, Michael Kapralov∗, Sanjeev Khanna†, Aida Mousavifar∗ and Yuval Peres‡
∗EPFL, Lausanne, Switzerland

†University of Pennsylvania, Philadelphia, USA
‡Microsoft Research, Redmond, USA

Abstract—We consider the problem of testing graph
cluster structure: given access to a graph G = (V,E),
can we quickly determine whether the graph can be par-
titioned into a few clusters with good inner conductance,
or is far from any such graph? This is a generalization
of the well-studied problem of testing graph expansion,
where one wants to distinguish between the graph having
good expansion (i.e. being a good single cluster) and the
graph having a sparse cut (i.e. being a union of at least
two clusters). A recent work of Czumaj, Peng, and Sohler
(STOC’15) gave an ingenious sublinear time algorithm
for testing k-clusterability in time Õ(n1/2poly(k)). Their
algorithm implicitly embeds a random sample of vertices
of the graph into Euclidean space, and then clusters the
samples based on estimates of Euclidean distances between
the points. This yields a very efficient testing algorithm,
but only works if the cluster structure is very strong: it
is necessary to assume that the gap between conductances
of accepted and rejected graphs is at least logarithmic in
the size of the graph G. In this paper we show how one
can leverage more refined geometric information, namely
angles as opposed to distances, to obtain a sublinear time
tester that works even when the gap is a sufficiently
large constant. Our tester is based on the singular value
decomposition of a natural matrix derived from random
walk transition probabilities from a small sample of seed
nodes.

We complement our algorithm with a matching lower
bound on the query complexity of testing clusterability.
Our lower bound is based on a novel property testing
problem, which we analyze using Fourier analytic tools.
As a byproduct of our techniques, we also achieve new
lower bounds for the problem of approximating MAX-
CUT value in sublinear time.

Keywords-clustering; property testing; sublinear algo-
rithms; spectral graph theory

I. INTRODUCTION

Graph clustering is the problem of partitioning ver-

tices of a graph based on the connectivity structure of

the graph. It is a fundamental problem in many ap-

plication domains where one wishes to identify groups

of closely related objects, for instance, communities in

a social network. The clustering problem is, thus, to

partition a graph into vertex-disjoint subgraphs, namely

clusters, such that each cluster contains vertices that

are more similar to each other than the rest of the

graph. There are many natural measures that have

been proposed to assess the quality of a cluster; one

particularly well-studied and well-motivated measure

for graph clustering is conductance of a cluster [21].

Roughly speaking, conductance of a graph measures the

strength of connections across any partition of vertices

relative to the strength of connections inside the smaller

of the two parts. The higher the conductance inside a

cluster, the harder it is to split it into non-trivial pieces.

The conductance measure lends itself to a natural graph

clustering objective, namely, partition the vertices of a

graph into a small number of clusters such that each

cluster has large conductance in the graph induced by

it (the inner conductance of the cluster). Towards this

objective, many efficient graph partitioning algorithms

have been developed that partition vertices of a graph

into a specified number of clusters with approximately

high conductance (when possible). Any algorithm that

outputs such a partition necessarily requires Ω(n) time

– simply to output the solution, and usually Ω(m)
time, where n and m respectively denote the number

of vertices and edges in the input graph. On very large-

scale graphs, even linear-time algorithms may prove to

be computationally prohibitive, and consequently, there

has been considerable recent interest in understanding

the cluster structure of a graph in sublinear time.

Specifically, given a target number of clusters, say k,

and a measure φ of desired cluster quality, how much

exploration of the input graph is needed to distinguish

between graphs that can be partitioned into at most k
clusters with inner conductance at least φ from graphs

that are far from admitting such clustering? The focus

of this paper is to understand the power of sublinear

algorithms in discovering the cluster structure of a

graph.

In our study, we use by now a standard model of

graph exploration for sublinear algorithms, where at any

step, the algorithm can either sample a uniformly at

random vertex, ask the degree d(u) of a vertex u, or

specify a pair (u, i) and recover the ith neighbor of u for

any i ∈ [1..d(u)]. Each such operation is called a query.

For any positive ε > 0, we say a pair of graphs is ε-far

if one needs to modify at least an ε-fraction of edges to

convert one graph into another. The simplest form of the

cluster structure problem is the case k = 1: how many

queries to the graph are needed to distinguish between

497

2018 IEEE 59th Annual Symposium on Foundations of Computer Science

2575-8454/18/$31.00 ©2018 IEEE
DOI 10.1109/FOCS.2018.00054

graphs that are expanders (YES case) from graphs that

are Ω(1)-far from being expanders (NO case)? A formal

study of this basic question was initiated in the work of

Goldreich and Ron [17] where they showed that even

on bounded degree graphs, Ω(
√
n) queries to the input

graph are necessary to distinguish between expanders

and graphs that are far from expanders. On the positive

side, it is known that a bounded degree expander graph

with conductance at least φ can be distinguished from

a graph that is Ω(1)-far from a graph with conductance

γ×φ2 for some positive constant γ, using only n
1
2+O(γ)

queries [20], [24]. Thus even the simplest setting of the

graph clustering problem is not completely understood

– the known algorithmic results require additional sep-

aration in the conductance requirements of YES and

NO instances. Furthermore, even with this separation

in conductance requirements, best algorithmic result

require polynomially more queries than suggested by

the lower bound.

Lifting algorithmic results above for the case k = 1
to larger values of k turned out to be a challenging

task. A breakthrough was made by Czumaj, Peng, and

Sohler [6], who designed an algorithm that differentiates

between bounded degree graphs that can be clustered

into k clusters with good inner conductance (YES

case) from graphs that are far from such graphs (NO

case), using only Õ(n
1
2 poly(k)) queries. This striking

progress, however, required an even stronger separation

between YES and NO instances of the problem. In

particular, the algorithm requires that in the YES case,

the graph can be partitioned into k clusters with inner

conductance at least φ, while in the NO case, the graph

is ε-far from admitting k clusters with conductance

φ2/ log n. Thus the cluster quality in the NO case needs

to be weakened by a factor that now depends on the size

of the input graph.

The current state of the art raises several natural

questions on both algorithmic and lower bound fronts.

On the algorithmic front, does sublinear testing of

cluster structure of a graph fundamentally require such

strong separation between the cluster structures of YES

and NO cases? On the lower bound front, is there

a stronger barrier than the current Ω(
√
n) threshold

for differentiating between the YES and NO cases?

Even for the case of distinguishing an expander for a

graph that is far from expander, the known algorithmic

results require n
1
2+Ω(1) queries when the conductance

guarantees of YES and NO cases are separated by only

a constant factor.

In this work, we make progress on both questions

above. On the algorithmic side, we present a new

sublinear testing algorithm that considerably weakens

the separation required between the conductance of YES

and NO instances. In particular, for any fixed k, our

algorithm can distinguish between instances that can

be partitioned into k clusters with conductance at least

φ from instances that are Ω(1)-far from admitting k
clusters with conductance γφ2, using n

1
2+O(γ) queries.

This generalizes the results of [20], [24] for k = 1
to any fixed k and arbitrary graphs. Similar to [6]

our algorithm is based on sampling a small number of

vertices and gathering information about the transition

probabilities of suitably long random walks from the

sampled points. However, instead of classifying points

as pairwise similar or dissimilar based on �2 similarity

between the transition probability vectors, our approach

is based on analyzing the structure of the Gram matrix

of these transition probability vectors, which turns out

to be a more robust mechanism for separating the YES

and NO cases.

On the lower bound side, we show that arguably the

simplest question in this setting, namely, differentiating

a bounded degree expander graph with conductance

Ω(1) from a graph that is Ω(1)-far from a graph with

conductance γ for some positive constant γ, already

requires n
1
2+Ω(γ) queries. This improves upon the long-

standing previous lower bound of Ω(n
1
2). Going past

the n
1
2 threshold requires us to introduce new ideas

to handle non-trivial dependencies that manifest due

to unavoidable emergence of cycles once an ω(n
1
2)-

sized component is uncovered in an expander. We use a

Fourier analytic approach to handle emergence of cycles

and create a distribution where n
1
2+Ω(γ) queries are nec-

essary to distinguish between YES and NO cases. We

believe our lower bound techniques are of independent

interest and will quite likely find applications to other

problems. As one illustrative application, we show that

our approach yields an n
1
2+Ω(1) query complexity lower

bound for the problem of approximating the max-cut

value in graph to within a factor better than 2, improving

the previous best lower bound of Ω(n
1
2).

In what follows, we formally define our clustering

problem, present our main results, and give an overview

of our techniques.

A. Problem Statement

We start by introducing basic definitions, then pro-

ceed to define the problems that we design algorithms

for (namely PartitionTesting and testing clusterability)

in Section I-B, and finally discuss the communication

game that we use to derive query complexity lower

bounds (namely the NoisyParities game) and state our

results on lower bounds in Section I-C.

Definition 1 (Internal and external conductance). Let

G = (VG, EG) be a graph. Let deg(v) be the degree of

vertex v. For a set S ⊆ VG, let vol(S) =
∑

v∈S deg(v)
denote the volume of set S. For a set S ⊆ C ⊆ VG, the

conductance of S within C, denoted by φG
C(S), is the

498

number of edges with one endpoint in S and the other

in C \ S divided by vol(S). Equivalently, φG
C(S) is the

probability that a uniformly random neighbor, of a ver-

tex in S selected with probability proportional to degree,

is in C \S. The internal conductance of C, denoted by

φG(C), is defined to be min
S⊆C,0<vol(S)≤ vol(C)

2
φG
C(S)

if |C| > 1 and one otherwise. The external conductance
of C is defined to be φG

VG
(C) .

Based on the conductance parameters, clusterability

and unclusterability of graphs is defined as follows.

Definition 2 (Graph clusterability). Graph G =

(VG, EG) is defined to be (k, ϕ)-clusterable if VG can

be partitioned into C1, . . . , Ch for some h ≤ k such

that for all i = 1, . . . , h, φG(Ci) ≥ ϕ. Graph G

is defined to be (k, ϕ, β)-unclusterable if VG contains

k + 1 pairwise disjoint subsets C1, . . . , Ck+1 such that

for all i = 1, . . . , k + 1, vol(Ci) ≥ β · vol(VG)
k+1 , and

φG
VG

(Ci) ≤ ϕ.

The following algorithmic problem was implicitly

defined in [6]:

Definition 3. PartitionTesting(k, ϕin, ϕout, β) is the

problem of distinguishing between the following two

types of graphs.

1) The YES case: graphs which are (k, ϕin)-

clusterable
2) The NO case: graphs which are (k, ϕout, β)-

unclusterable

The ultimate problem that we would like to solve is

the Clusterability problem, defined below:

Definition 4. Clusterability(k, ϕ, k′, ϕ′, ε) is the prob-

lem of distinguishing between the following two types

of graphs.

1) The YES case: graphs which are (k, ϕ)-

clusterable
2) The NO case: graphs which are ε-far from

(k′, ϕ′)-clusterable.

Here, a graph G = (V,E) is ε-far from (k′, ϕ′)-
clusterable if there does not exist a (k′, ϕ′)-clusterable

graph G′ = (V,E′) such that |E ⊕ E′| ≤ ε · |E| (here

⊕ denotes the symmetric difference between sets).

Note that in the clusterability problem considered by

Czumaj et al. [6], the YES instances were required to

have clusters with small outer conductance, whereas we

have no such requirement.

Queries and Complexity. We assume that the algo-

rithm has access to the input graph G via the following

queries.

1) Vertex query: returns a uniformly random vertex

v ∈ VG

2) Degree query: outputs degree deg(v) of a given

v ∈ VG.

3) Neighbor query: given a vertex v ∈ VG, and i ∈
[n], returns the i-th neighbor of v if i ≤ deg(v),
and returns fail otherwise.

The complexity of the algorithm is measured by number

of access queries.

B. Algorithmic Results

Theorem 1. Suppose ϕout ≤ 1
480ϕ

2
in. Then

there exists a randomized algorithm for
PartitionTesting(k, ϕin, ϕout, β) which gives the
correct answer with probability at least 2/3, and which
makes poly(1/ϕin) · poly(k) · poly(1/β) · poly log(m) ·
m1/2+O(ϕout/ϕ

2
in) queries on graphs with m edges.

Observe that even when the average degree of the

vertices of the graph is constant, the dependence of

query complexity on n, the number of vertices, is

Õ(n1/2+O(ϕout/ϕ
2
in)). We also note that our current anal-

ysis of the tester is probably somewhat loose: the tester

likely requires no more than Õ(n1/2+O(ϕout/ϕ
2
in)) for

graphs of arbitrary volume.

Theorem 1 allows us to obtain the following result

on testing clusterability, which removes the logarithmic

gap assumption required for the results in [7] in the

property testing framework.

Theorem 2. Suppose ϕ′ ≤ α4.5ε, (for the con-
stant α4.5 = Θ(min(d−1, k−1)) from Lemma
4.5 of [7], where d denotes the maximum de-
gree), and ϕ′ ≤ c′ε2ϕ2/k2 for some small con-
stant c′. Then there exists a randomized algorithm
for Clusterability(k, ϕ, k, ϕ′, ε) problem on degree
d-bounded graphs that gives the correct answer
with probability at least 2/3, and which makes
poly(1/ϕ) · poly(k) · poly(1/ε) · poly(d) · poly log(n) ·
n1/2+O(ε−2k2·ϕ′/ϕ2) queries on graphs with n vertices.

The proof of the theorem follows by combining

Theorem 1 and Lemma 4.5 of [7].

Furthermore, we strengthen Lemma 4.5 of [7] to

reduce the dependence of the gap between inner and

outer conductance to logarithmic in k, albeit at the

expense of a bicriteria approximation. This gives us the

following theorem.

Theorem 3. Let 0 ≤ ε ≤ 1
2 . Suppose ϕ′ ≤ α, (for

α = min{ cexp

150d ,
cexp·ε

1400 log(16k
ε)
}, where d denotes the

maximum degree), and ϕ′ ≤ c · ε2ϕ2/ log(32kε) for
some small constant c. Then there exists a randomized
algorithm for Clusterability(k, ϕ, 2k, ϕ′, ε) problem on
degree d-bounded graphs that gives the correct an-
swer with probability at least 2/3, and which makes
poly(1/ϕ) · poly(k) · poly(1/ε) · poly(d) · poly log(n) ·

499

n1/2+O(ε−2 log(32k
ε)·ϕ′/ϕ2) queries on graphs with n

vertices.

C. Lower bound Results
Our lower bounds are based on the following

communication problem that we refer to as the

NoisyParities(d, ε):

Definition 5. NoisyParities(d, ε) is the problem with

parameters d ≥ 3 and ε ≤ 1/2 defined as fol-

lows. An adversary samples a random d-regular graph

G = (V,E) from the distribution induced by the

configuration model of Bollobás [2]. The adversary

chooses to be in the YES case or the NO case with

probability 1/2, and generates a vector of binary edge

labels Y ∈ {0, 1}E as follows:

1) The YES case: The vector Y is chosen uniformly

at random from {0, 1}E , that is, the labels Y (e)
for all edges e ∈ E are independently 0 or 1 with

probability 1/2;

2) The NO case: A vector X ∈ {0, 1}V is sampled

uniformly at random. Independently, a “noise”

vector Z ∈ {0, 1}E is sampled such that all

the Z(e)’s are independent Bernoulli random

variables which are 1 with probability ε and 0
with probability 1 − ε. The label of an edge

e = (u, v) ∈ E is given by Y (e) = X(u) +
X(v) + Z(e).

The algorithm can query vertices q ∈ V in an adap-

tive manner deterministically. Upon querying a vertex

q ∈ V , the algorithm gets the edges incident on q
together with their labels as a response to the query,

and must ultimately determine whether the adversary

was in the YES or the NO case.

Our main result is the following lower bound on

the query complexity of NoisyParities, whose proof is

deferred to the full version of the paper [4].

Theorem 4. Any deterministic algorithm that solves
the NoisyParities problem correctly with probability at
least 2/3 must make at least n1/2+Ω(ε) queries on n-
vertex graphs, for constant d.

We remark that this lower bound is tight up to

constant factors multiplying ε in the exponent. As a

consequence of Theorem 4 and an appropriate reduc-

tions, we derive the following lower bound on the query

complexity of PartitionTesting.

Theorem 5. Any algorithm that distinguishes between
a (1, ϕin)-clusterable graph (that is, a ϕin-expander)
and a (2, ϕout, 1)-unclusterable graph on n vertices
(in other words, solves PartitionTesting(1, ϕin, ϕout, 1))
correctly with probability at least 2/3 must make at
least n1/2+Ω(ϕout) queries, even when the input is re-
stricted to regular graphs, for constant ϕin.

Moreover, as a by-product of Theorem 4, we also get

the following result, whose proof is deferred to the full

version [4].

Theorem 6. Any algorithm that approximates the
MAX-CUT of n-vertex graphs within a factor 2 −
ε′ with probability at least 2/3 must make at least
n1/2+Ω(ε′/ log(1/ε′)) queries.

D. Our techniques

In this section we give an overview of the new

techniques involved in our algorithm and lower bounds.
1) Algorithms: We start by giving an outline the ap-

proach of [6], outline the major challenges in designing

robust tester of graph cluster structure, and then describe

our approach.

As [6] show, the task of distinguishing

between (k, ϕ)-clusterable graphs and graphs

that are ε-far from (k, ϕ′)-clusterable reduces to

PartitionTesting(k, ϕin, ϕout, β), where β = poly(ε).
In this problem we are given query access to a graph

G, and would like to distinguish between two cases:

either the graph can be partitioned into at most k
clusters with inner conductance at least ϕin (the YES
case, or ‘clusterable’ graphs) or there exists at least

k + 1 subsets C1, . . . , Ck+1 with outer conductance

at most ϕout and containing nontrivial (i.e. no smaller

than βn/(k + 1)) number of nodes (the NO case, or

‘non-clusterable’ graphs). Here ϕin = ϕ, and ϕout is a

function of the conductance ϕ′, the number of nodes

k, and the precision parameter ε.
A very natural approach to

PartitionTesting(k, ϕin, ϕout, β) is to sample 10k
nodes, say, run random walks of appropriate length

from the sampled nodes, and compare the resulting

distributions: if a pair of nodes is in the same cluster,

then the distributions of random walks should be

‘close’, and if the nodes are in different clusters, the

distributions of random walks should be ‘far’. The

work of [6] shows that this high level approach can

indeed be made to work: if one compares distributions

in �2 norm, then for an appropriate separation between

ϕin and ϕout random walks whose distributions are

closer than a threshold θ in �2 sense will indicate that

the starting nodes are in the same cluster, and if the

distributions are further than 2θ apart in �2, say, then

the starting points must have been in different clusters.

Using an ingenious analysis [6] show that one can

construct a graph on the sampled nodes where ‘close’

nodes are connected by an edge, and the original graph

is clusterable if and only if the graph on the sampled

nodes is a union of at most k connected components.

The question of estimating �2 norm distance between

distributions remains, but this can be done in about√
n time by estimating collision probabilities (by

500

the birthday paradox), or by using existing results in

the literature. The right threshold θ turns out to be

≈ 1/
√
n.

The main challenge: While very beautiful, the

above approach unfortunately does not work unless the

cluster structure in our instances is very pronounced.

Specifically, the analysis of [6] is based on arguing

that random walks of O(log n) length from sampled

nodes that come from the same cluster mostly don’t

leave the cluster, and this is true only if the outer

conductance of the cluster is no larger than 1/ log n.

This makes the approach unsuitable for handling gaps

between conductances that are smaller than log n (it is

not hard to see that the walk length must be at least

logarithmic in the size of the input graph, so shortening

the walk will not help).

One could think that this is a question of designing

of a more refined analysis of the algorithm of [6], but

the problem is deeper: it is, in general, not possible

to choose a threshold θ that will work even if the gap

between conductances is constant, and even if we want

to distinguish between 2-clusterable and far from 2-

clusterable graphs (such a choice is, in fact, possible

for k = 1). To summarize, euclidean distance between

distributions is no longer a reliable metric if one would

like to operate in a regime close to theoretical optimum,

and a new proxy for clusterability is needed. (See the

full version [4] for a more elaborate discussion.)

Our main algorithmic ideas: Our main algorithmic

contribution is a more geometric approach to analyzing

the proximity of the sampled points: instead of compar-

ing �2 distances between points, our tester considers the

Gram matrix of the random walk transition probabilities

of the points, estimates this matrix entry-wise to a

precision that depends on the gap between ϕin and ϕout

in the instance of PartitionTesting(k, ϕin, ϕout, β) that

we would like to solve, and computes the (k + 1)-st

largest eigenvalue of the matrix. This quantity turns

out to be a more robust metric, yielding a tester that

operates close to the theoretical optimum, i.e. able to

solve PartitionTesting(k, ϕin, ϕout, β) as long as the

gap ϕout/ϕ
2
in is smaller than an absolute constant.1

Specifically, our tester (see Algorithms 1 and 2 in

Section II-A for the most basic version) samples a

multiset S of s ≈ poly(k) log n vertices of the graph

G independently and with probability proportional to

the degree distribution (this can be achieved in ≈ √n
time per sample using the result of Eden and Rosen-

baum [13]), and computes the matrix

A := (D−
1
2M tS)�(D−

1
2M tS), (1)

1Note that our runtime depends on ϕout/ϕ2
in as opposed to ϕout/ϕin

due to a loss in parameters incurred through Cheeger’s inequality. This
loss is quite common for spectral algorithms.

where M is the random walk transition matrix of the

graph G, and D is the diagonal matrix of degrees.

Note that this is the Gram matrix of the distribu-

tions of the endpoints of random walks from the sam-

pled nodes in G, where each walk has a logarithmic

number of steps. Intuitively, the matrix A captures

pairwise collision probabilities of random walks from

sampled nodes, weighted by inverse degree. The al-

gorithm accepts the graph if the (k + 1)-st largest

eigenvalue of the matrix A is below a threshold, and

rejects otherwise. Specifically, the algorithm accepts

if μk+1(A) � vol(VG)
−1−Θ(ϕout/ϕ

2
in) and rejects oth-

erwise. Before outlining the proof of correctness for

the tester, we note that, of course, the tester above

cannot be directly implemented in sublinear time, as

computing the matrix A exactly is expensive. The

actual sublinear time tester approximately computes the

entries of the matrix A to additive precision about
1

poly(k)vol(VG)
−1−Θ(ϕout/ϕ

2
in) and uses the eigenvalues of

the approximately computed matrix to decide whether

to accept or reject. Such an approximation can be com-

puted in about vol(VG)
1
2+Θ(ϕout/ϕ

2
in) queries by rather

standard techniques (see Section II-B).

We now outline the proof of correctness of the tester

above (the detailed proof is presented in Section II-A).

It turns out to be not too hard to show that the

tester accepts graphs that are (k, ϕin)-clusterable. One

first observes that Cheeger’s inequality together with

the assumption that each of the k clusters is a ϕin-

expander implies that the (k + 1)-st eigenvalue of the

normalized Laplacian of G is at least ϕ2
in/2. It follows

that the matrix M t of t-step random walk transition

probabilities, for our choice of t = (c/ϕ2
in) log n, is very

close to a matrix of rank at most k, and thus the (k+1)-
st eigenvalue of the matrix A above (see (1)) is smaller

than 1/n2, say. The challenging part is to show that the

tester rejects graphs that are (k, ϕout, β)-unclusterable,

since in this case we do not have any assumptions

on the inner structure of the clusters C1, . . . , Ck+1.

The clusters C1, . . . , Ck+1 could either be good ex-

panders, or, for instance, unions of small disconnected

components. The random walks from nodes in those

clusters behave very differently in these two cases,

but the analysis needs to handle both. Our main idea

is to consider a carefully defined k + 1-dimensional

subspace of the eigenspace of the normalized Laplacian

of G that corresponds to small (smaller than O(ϕout))
eigenvalues, and show that our random sample of points

is likely to have a well-concentrated projection onto this

subspace. We then show that this fact implies that the

matrix A in (1) has a large (k + 1)-st eigenvalue with

high probability. The assumption that vertices in S are

sampled with probabilities proportional to their degrees

is crucial to making the proof work for general (sparse)

501

graphs.

One consequence of the fact that our algorithm for

PartitionTesting(k, ϕin, ϕout, β) estimates the entries of

the Gram matrix referred to above to additive precision

≈ n−1−Θ(ϕout/ϕ
2
in) is that the runtime ≈ n1/2+Θ(ϕout/ϕ

2
in).

If ϕout 	 ϕ2
in/ log n, then we recover the ≈ √n runtime

of [6], but for any constant gap between ϕout and ϕ2
in

our runtime is polynomially larger than
√
n. Our main

contribution on the lower bound side is to show that this

dependence is necessary. We outline our main ideas in

that part of the paper now.

2) The lower bound: We show that

the n1+Ω(ϕout/ϕ
2
in) runtime is necessary for

PartitionTesting(k, ϕin, ϕout, β) problem, thereby

proving that our runtime is essentially best possible

for constant k. More precisely, we show that even

distinguishing between an expander and a graph

that contains a cut of sparsity ε for ε ∈ (0, 1/2)
requires n1+Ω(ε) adaptive queries, giving a lower

bound for the query complexity (and hence runtime)

of PartitionTesting(1,Ω(1), ε, 1) that matches our

algorithm’s performance.

The NoisyParities problem: Our main tool in

proving the lower bound is a new communication com-

plexity problem (the NoisyParities problem) that we

define and analyze: an adversary chooses a regular graph

G = (V,E) and a hidden binary string X ∈ {0, 1}V ,

which can be thought of as encoding a hidden bipartition

of G. The algorithm can repeatedly (and adaptively)

query vertices of G. Upon querying a vertex v, the

algorithm receives the edges incident on v and a binary

label Y (e) on each edge e. In the NO case the labels

Y (e) satisfy Y (e) = X(u) + X(v) + Z(e), where

Z(e) is an independent Bernoulli random variable with

expectation ε (i.e. the algorithm is told whether the

edge crosses the hidden bipartition, but the answer is

noisy). In the YES case each label Y (e) is uniformly

random in {0, 1}. The task of the algorithm is to

distinguish between the two cases using the smallest

possible number of queries to the graph G.

It is easy to see that if ε = 0, then the algorithm

can get a constant advantage over random guessing as

long as it can query all edges along a cycle in G. If G
is a random d-regular graph unknown to the algorithm,

one can show that this will take at least Ω(
√
n) queries,

recovering the lower bound for expansion testing due to

Goldreich and Ron [17]. In the noisy setting, however,

detecting a single cycle is not enough, as cycles that

the algorithm can locate in a random regular graph

using few queries are generally of logarithmic length,

and the noise added to each edge compounds over

the length of the cycle, leading to only advantage of

about n−O(ε) over random guessing that one can obtain

from a single cycle. Intuitively. this suggests that the

algorithm should find at least nΩ(ε) cycles in order to get

a constant advantage. Detecting a single cycle in an un-

known sparse random graphs requires about
√
n queries,

which leads to the n1/2+Ω(ε) lower bound. Turning this

intuition into a proof is challenging, however, as (a)
the algorithm may base its decisions on labels that it

observes on its adaptively queried subgraph of G and

(b) the algorithm does not have to base its decision

on observed parities over cycles. We circumvent these

difficulties by analyzing the distribution of labels on

the edges of the subgraph that the algorithm queries

in the NO case and proving that this distribution is

close to uniformly random in total variation distance,

with high probability over the queries of the algorithm.

We analyze this distribution using a Fourier analytic

approach, which we outline now.

Suppose that we are in the NO case, i.e. the edge

labels presented to the algorithm are an ε-noisy version

of parities of the hidden boolean vector X ∈ {0, 1}n,

and suppose that the algorithm has discovered a subset

Equery ⊆ EG of edges of the graph G (recall that

the graph G, crucially, is not known to the algorithm)

together with their labels. The central question that

our analysis needs to answer in this situation turns

out to be the following: given the observed labels on

edges in Equery and an edge e = (a, b) ∈ EG what

is the posterior distribution of X(a) + X(b) given the

information that the algorithm observed so far? For

example, if Equery does not contain any cycles (i.e. is

a forest), then X(a) + X(b) is a uniformly random

Bernoulli variable with expectation 1/2 if the edge

(a, b) does not close a cycle when added to Equery.

If it does close a cycle but Equery is still a forest,

then one can show that if the distance in Equery from

a to b is large (at least Ω(logn)), then the posterior

distribution of X(a) + X(b) is still n−Ω(ε) close, in

total variation distance, to a Bernoulli random variable

with expectation 1/2. Our analysis needs to upper bound

this distance to uniformity for a ‘typical’ subset Equery

that arises throughout the interaction process of the

algorithm with the adversary, and contains two main

ideas. First, we show using Fourier analytic tools that for

a ‘typical’ subset of queried edges Equery and any setting

of observed labels, one has that the bias of X(a)+X(b),
i.e. the absolute deviation of the expectation of this

Bernoulli random variable from 1/2, satisfies

bias(X(a)+X(b)) �
∑

E′⊆Equery s.t.

E′∪{a,b} is Eulerian

(1−2ε)|E
′|. (2)

Note that for the special case of Equery being a tree,

the right hand side is exactly the (1− 2ε)dist(a,b), where

dist(a, b) stands for the shortest path distance from a to

b in T . Since ‘typical’ cycles that the algorithm will

502

discover will be of Ω(logn) length due to the fact

that G is a constant degree random regular graph, this

is n−Ω(ε), as required. Of course, the main challenge

in proving our lower bound is to analyze settings

where the set of queried edges Equery is quite far from

being a tree, and generally contains many cycles, and

control the sum in (2). In other words, we need to

bound the weight distribution of Eulerian subgraphs of

Equery. The main insight here is the following structural

claim about ‘typical’ sets of queried edges Equery: we

show that for typical interaction scenarios between the

algorithm and the adversary one can decompose Equery

as Equery = F ∪R, where F is a forest and R is a small

(about nO(ε) size) set of ‘off-forest’ edges that further

satisfies the property that the endpoints of edges in R are

Ω(logn)-far from each other in the shortest path metric

induced by F . This analysis relies on basic properties

of random graphs with constant degrees. Once such a

decomposition of Equery = T ∪F is established, we get

a convenient basis for the cycle space of Equery, which

lets us control the right hand side in (2) as required.

Finally, our lower bound on the query com-

plexity of NoisyParities yields a lower bound for

PartitionTesting(1,Ω(1), ε, 1) (Theorem 5), as well as

a lower bound for better than factor 2 approximation to

MAX-CUT value in sublinear time (Theorem 6). The

reduction to MAX-CUT follows using rather standard

techniques (e.g. is very similar to [22]). The reduction

to PartitionTesting(1,Ω(1), ε, 1) is more delicate and

novel: the difficulty is that we need to ensure that the

introduction of random noise Ze on the edge labels

produces graphs that have the expansion property (in

contrast, the MAX-CUT reduction produces graphs with

a linear fraction of isolated nodes).

E. Related Work

Goldreich and Ron [17] initiated the framework of

testing graph properties via neighborhood queries. In

this framework, the goal is to separate graphs having

a certain property from graphs which are “far” from

having that property, in the sense that they need many

edge additions and deletions to satisfy the property. The

line of work closest to this paper is the one on testing

expansion of graphs [16], [24], [8], [20] which proves

that expansion testing can be done in about Õ(
√
n)

queries, and Ω(
√
n) queries are indeed necessary. Going

beyond expansion (that is, 1-clusterability), Kannan et

al. [21] introduced (internal) conductance as a measure

of how well a set of vertices form a cluster. In order to

measure the quality of a clustering, that is, a partition of

vertices into clusters, Zhu et al. [1] and Oveis Gharan

and Trevisan [14] proposed bi-criteria measures which

take into account the (minimum) internal conductance

and the (maximum) external conductance of the clusters.

Considering this measure, Czumaj et al. [6] defined

the notion of clusterable graphs parameterized by re-

quirements on the minimum internal expansion and the

maximum external expansion, and gave an algorithm for

testing clusterability.

There has been an extensive work on testing many

other graph properties in the framework of Goldreich

and Ron. For instance, Czumaj et al. [5] give algorithms

for testing several properties including cycle-freeness,

whereas Eden et al. [10] design algorithms to test

arboricity. Estimation of graph parameters such as de-

gree distribution moments [12], number of triangles [9],

and more generally, number of k-cliques [11] has also

received attention recently.

A closely related model of property testing is the one

where the graph arrives as a random order stream and

the property testing algorithm is required to use sublin-

ear space. Although this appears to be a less powerful

model because the algorithm no longer has the ability

to execute whatever queries it wants, interestingly, Peng

and Sohler [25] show that sublinear property testing

algorithms give rise to sublinear space algorithms for

random order streams.

Other graph property testing models include exten-

sion to dense graphs [19], [18] where the algorithm

queries the entries of the adjacency matrix of the graph,

and the non-deterministic property testing model [23],

[15], where the algorithm queries the graph and a

certificate, and must decide whether the graph satisfies

the property. We refer the reader to [6] for a more

comprehensive survey of the related work.

II. ALGORITHM FOR PartitionTesting

The goal of this section is to present an algorithm

for the PartitionTesting problem, analyze it, and hence,

prove Theorem 1. We start by setting up some notation.

Let G = (VG, EG) be a graph and let A be its adjacency

matrix.

Definition 6. The normalized adjacency matrix A of G
is D−

1
2AD−

1
2 , where D is the diagonal matrix of the

degrees. The normalized Laplacian of G is L = I −A.

Definition 7. The random walk associated with G is

defined to be the random walk with transition matrix

M = I+AD−1

2 . Equivalently, from any vertex v, this

random walk takes every edge of G incident on v with

probability 1
2·deg(v) , and stays on v with probability 1

2 .

We will use the following notation.

• For a vertex a ∈ VG, 1a ∈ R
VG denotes the

indicator of a, that is, the vector which is 1 at a
and 0 elsewhere. Fix some total order on VG. For

a (multi) set S = {a1, . . . , as} of vertices from

VG where a1, . . . , as are sorted, we abuse notation

503

and also denote by S the VG × s matrix whose ith

column is 1ai
.

• For a symmetric matrix B, μh(B) (resp. μmax(B)
μmin(B)) denotes the hth largest (resp. maximum,

minimum) eigenvalue of B.

Towards designing our algorithm for PartitionTest-
ing, we first make the following simplifying assumption.

We assume that we have the following oracle at our

disposal: the oracle takes a vertex a as input, and returns

D−
1
2M t1a, where D is the diagonal matrix of the

vertex degrees, M is the transition matrix of the lazy

random walk associated with the input graph, and 1a is

the indicator vector of a. We first present in Section II-A

an algorithm for PartitionTesting which makes use of

this oracle. Following this, in Section II-B, we describe

how we can (approximately) simulate the oracle, and

thereby, get an algorithm for PartitionTesting.

We remark that our algorithms use the value of

vol(VG), which is not available directly through the

access model described in Section I-A. However, by the

result of [26], it is possible to approximate the value of

vol(VG) with an arbitrarily small multiplicative error

using Õ(
√|VG|) queries.

A. The algorithm under an oracle assumption

Fix t, the length of the random walk, and assume that

we have access to the oracle which returns D−
1
2M t1a

on input a ∈ VG. Our algorithm for PartitionTesting is

presented as a main procedure PARTITIONTEST (Algo-

rithm 2), that calls the subroutine ESTIMATE (Algorithm

1). The goal of this section is to prove guarantees about

this algorithm, as stated in Theorem 7.

Algorithm 1 ESTIMATE(G, k, s, t, η)

1: Sample s vertices from VG independently and with

probability proportional to the degree of the vertices

at random with replacement using sampler(G, η)

(See Lemma 1). Let S be the multiset of sampled

vertices.

2: Compute D−
1
2M tS using the oracle.

3: return μk+1((D
− 1

2M tS)�(D−
1
2M tS)).

Algorithm 2 PARTITIONTEST(G, k, ϕin, ϕout, β)

1: η := 0.5

2: s := 1600(k+1)2·ln(12(k+1))·ln(vol(VG))
β(1−η)

3: c := 20
ϕ2

in

, t := c ln(vol(VG))

4: μthres :=
4(k+1) ln(12(k+1))

β·(1−η) vol(VG)
−1−120cϕout

5: if ESTIMATE(G, k, s, t, η) ≤ μthres then
6: Accept G.

7: else
8: Reject G.

Theorem 7. Suppose ϕ2
in > 480ϕout. For every graph

G, integer k ≥ 1, and β ∈ (0, 1),

1) If G is (k, ϕin)-clusterable (YES case), then
PARTITIONTEST(G, k, ϕin, ϕout, β) accepts.

2) If G is (k, ϕout, β)-unclusterable (NO case), then
PARTITIONTEST(G, k, ϕin, ϕout, β) rejects with
probability at least 2

3 .

Algorithm PARTITIONTEST calls the procedure ES-

TIMATE, compares the value returned with a threshold,

and then decides whether to accept or reject. Procedure

ESTIMATE needs to draw several samples of vertices,

where each vertex of the input graph is sampled with

probability proportional to its degree. This, by itself,

is not allowed in the query model under consideration

defined in Section I-A. Therefore, procedure ESTI-

MATE makes use of the following result by Eden and

Rosenbaum to (approximately) sample vertices with

probabilities proportional to degree.

Lemma 1 (Corollary 1.5 of [13]). Let G = (VG, EG)
be an arbitrary graph, and η > 0. Let D denote the
degree distribution of G (i.e. D(v) = deg(v)

vol(G)). Then there
exists an algorithm, denoted by sampler(G, η), that with
probability at least 2

3 produces a vertex v sampled from
a distribution P over VG, and outputs “Fail” otherwise.
The distribution P is such that for all v ∈ VG, |P(v)−
D(v)| ≤ η · D(v). The algorithm uses Õ

(
|VG|√

η·vol(VG)

)

vertex, degree and neighbor queries.

The proof of Theorem 7 relies on the following

guarantees about the behavior of the algorithm in the

YES case, and the NO case respectively, whose proofs

are deferred to the full version of the paper [4].

Theorem 8. Let ϕin > 0 and integer k ≥ 1. Then
for every (k, ϕin)-clusterable graph G = (VG, EG) (see
definition 2), with minv∈VG

deg(v) ≥ 1 the following
holds:

ESTIMATE(G, k, s, t, η) ≤ s ·
(
1− ϕ2

in

4

)2t

.

Theorem 9. Let ϕout > 0, β ∈ (0, 1), and integer k ≥
1. Let

s = 1600(k+1)2·ln(12(k+1))·ln(vol(VG))/(β·(1−η)).

Then for every (k, ϕout, β)-unclusterable graph G =
(VG, EG) (see definition 2), with minv∈VG

deg(v) ≥ 1,
the following holds with probability at least 2

3 .

ESTIMATE(G, k, s, t, η) ≥
8(k + 1) ln(12(k + 1))

β · (1− η) · vol(VG)
× (1− 30ϕout)

2t.

504

Proof of Theorem 7: Let t = c ln(vol(VG)) for

c = 20
ϕ2

in

. We call the procedure ESTIMATE with

s =
1600(k + 1)2 · ln(12(k + 1)) · ln(vol(VG))

β · (1− η)
,

and t = c ln(vol(VG)). In the YES case, by Theorem 8,

ESTIMATE returns a value at most

s ·
(
1− ϕ2

in

4

)2t

≤ s · exp
(
−ϕ2

int

2

)

= s · exp
(
−ϕ2

inc ln(vol(VG))

2

)

=
1600(k + 1)2 ln(12(k + 1)) ln(vol(VG))

β · (1− η) · vol(VG)cϕ
2
in
/2

≤ 1

2
· 8(k + 1) ln(12(k + 1))

β · (1− η)
vol(VG)

2−c
ϕ2

in
2 .

In the last inequality we use the fact that k + 1 ≤
vol(VG), and vol(VG) is large enough to ensure that

200 ln(vol(VG)) ≤ vol(VG). In the NO case, by Theo-

rem 9, with probability at least 2
3 , ESTIMATE returns a

value at least

8(k + 1) ln(12(k + 1))

β · (1− η) · vol(VG)
× (1− 30ϕout)

2t

≥ 8(k + 1) ln(12(k + 1))

β · (1− η) · vol(VG)
× exp (−120ϕoutt)

≥ 1

2
· 8(k + 1) ln(12(k + 1))

β · (1− η)
× vol(VG)

−1−120cϕout .

Since ϕ2
in > 480ϕout, the value of c = 20

ϕ2
in

,

chosen in PARTITIONTEST is such that

2− c
ϕ2

in

2 < −1− 120cϕout. Therefore, for vol(VG)
large enough, the upper bound on the value

returned by ESTIMATE in the YES case is less

than μthres =
1
2 · 8(k+1) ln(12(k+1))

β·(1−η) ×vol(VG)
−1−120cϕout ,

which is less than the lower bound on the value

returned by ESTIMATE in the NO case.

B. Lifting the Oracle Assumption

The goal of this section is to show how we can

remove the oracle assumption that we made in Section

II-A, and get an algorithm for the PartitionTesting
problem that fits into the query complexity model,

defined in Section I-A, that only allows (uniformly

random) vertex, degree, and neighbor queries. This will

then establish Theorem 7. The algorithm is presented as

a main procedure PARTITIONTESTWITHOUTORACLE

(Algorithm 4) that calls the subroutine ESTIMATE-

WITHOUTORACLE (Algorithm 3). These two proce-

dures can be seen as a analogs of the procedures PAR-

TITIONTEST (Algorithm 2) and ESTIMATE (Algorithm

1) respectively, from Section II-A.

Recall from Definition 7 that with the graph G we

associated a random walk, and let M be the transition

Algorithm 3
ESTIMATEWITHOUTORACLE(G, k, s, t, σ,R, η)

1: Sample s vertices from N independently and with

probability proportional to the degree of the vertices

at random with replacement using sampler(G, η).

Let S be the multiset of sampled vertices.

2: r = 192s
√

vol(VG).
3: for each sample a ∈ S do
4: if �22-norm tester(G, a, σ, r) rejects then
5: return ∞.

6: for Each sample a ∈ S do
7: Run R random walks starting from a, and let

qa be the distribution of the t-step random walk

started at a.

8: Let Q be the matrix whose columns are {D− 1
2qa :

a ∈ S}.
9: return μk+1(Q

�Q).

Algorithm 4
PARTITIONTESTWITHOUTORACLE(G, k, ϕin, ϕout, β)

1: η := 0.5

2: s := 1600(k+1)2·ln(12(k+1))·ln(vol(VG)
(β(1−η))

3: c := 20
ϕ2

in

, t := c ln(vol(VG))

4: σ := 192sk(1+η)
vol(VG)

5: μthres :=
1
2 · 8(k+1) ln(12(k+1))

β·(1−η) vol(VG)
−1−120cϕout

6: μerr =
1
3 · 8(k+1) ln(12(k+1))

β·(1−η) vol(VG)
−1−120cϕout

7: R := max
(

100s2σ1/2

μerr
, 200s4σ3/2

μ2
err

)
8: if ESTIMATEWITHOUTORACLE(G, k, s, t, σ,R, η)
≤ μthres then

9: Accept G.

10: else
11: Reject G.

matrix of that random walk. For a vertex a of G, denote

by pt
a = M t1a the probability distribution of of a t step

random walk starting from a. Recall that ESTIMATE

assumed the existence of an oracle that takes a vertex

a of G as input, and returns D−
1
2M t1a. ESTIMATE-

WITHOUTORACLE simulates the behavior of the oracle

by running several t-step random walks from a. For any

vertex b, the fraction of the random walks ending in b
is taken as an estimate of pt

a(b) = 1�b M
t1a, the proba-

bility that the t-step random walk started from a ends in

b. However, for this estimate to have sufficiently small

variance, the quantity ‖D− 1
2pt

a‖22 needs to be small

enough. To check this, ESTIMATEWITHOUTORACLE

uses the procedure �22-norm tester, whose guarantees

are formally specified in the following lemma. The

details of our �22-norm tester, which is a modification

of the �22-norm tester from [7], are deferred to the full

505

version of the paper [4].

Lemma 2. Let G = (VG, EG). Let a ∈ VG, σ > 0,

0 < δ < 1, and R ≥ 16
√

vol(G)

δ . Let t ≥ 1, and
pt
a be the probability distribution of the endpoints of

a t-step random walk starting from a. There exists an
algorithm, denoted by �22-norm tester(G, a, σ,R), that
outputs accept if ‖D− 1

2pt
a‖22 ≤ σ

4 , and outputs reject
if ‖D− 1

2pt
a‖22 > σ, with probability at least 1− δ. The

running time of the tester is O(R · t).
The next two theorems formalize the guarantees of

Algorithm 4 in the YES and the NO cases respectively,

and their proofs are deferred to the full version of the

paper [4].

Theorem 10. Let ϕin > 0, and integer k ≥ 1. Then
for every (k, ϕin)-clusterable graph G = (VG, EG) (see
definition 2), with minv∈VG

deg(v) ≥ 1, Algorithm 4
accepts G with probability at least 5

6 .

Theorem 11. Let ϕout > 0, β ∈ (0, 1), and integer k ≥
1. Then for every (k, ϕout, β)-unclusterable graph G =
(VG, EG) (see definition 2), with minv∈VG

deg(v) ≥ 1,
Algorithm 4 rejects G with probability at least 4

7 .

Now we are set to prove Theorem 1.

Theorem 1 (restated). Suppose ϕout ≤ 1
480ϕ

2
in.

Then there exists a randomized algorithm for

PartitionTesting(k, ϕin, ϕout, β) which gives the

correct answer with probability at least 2/3, and which

makes poly(1/ϕin) · poly(k) · poly(1/β) · poly log(m) ·
m1/2+O(ϕout/ϕ

2
in) queries on graphs with m edges.

Proof: The correctness of the algorithm is guar-

anteed by Theorems 10 and 11. Since these theorems

give correctness probability that is a constant larger

than 1/2, it can be boosted up to 2/3 using standard

techniques (majority of the answers of a sufficiently

large constant number of independent runs). It remains

to analyze the query complexity. The running time of the

sampler algorithm to sample each vertex is Õ(|VG|
vol(G)).

Hence in total the query complexity of sampling is

Õ(s · √vol(G)). For each of the s sampled vertices,

we run �22-norm tester once, followed by R random

walks of t steps each. Each call to the �22-norm tester
takes O(rt) = O(st

√
vol(VG)) = O(st

√
m) queries,

as guaranteed by Lemma 2. The random walks from

each vertex take O(Rt) time. Thus, the overall query

complexity is O(srt + sRt + s
√
m). Substituting the

values of s, r, R, and t as defined in Algorithm 4, and

noting that m = vol(VG)/2, we get the required bound.

III. QUERY LOWER BOUND FOR PartitionTesting

In this section, we prove Theorem 5, which gives a

lower bound on the query complexity of PartitionTest-

ing. Our starting point is the following lower bound on

NoisyParities (Definition 5), whose proof is deferred to

the full version of the paper [4].
Theorem 4 (restated). Consider a deterministic algo-

rithm ALG for the NoisyParities problem with pa-

rameters d and ε. Let b = 1/(8 ln d). Suppose ALG

makes at most n1/2+δ queries on n vertex graphs, where

δ < min(1/16, bε). Then ALG gives the correct answer

with probability at most 1/2 + o(1).
Recall that the NoisyParities problem has a random

d-regular graph generated according to the configuration

model as its underlying graph. The configuration model

of Bollobás generates a random d regular graph G =
(V,E) over a set V of n vertices (provided dn is even)

as follows. It first puts d half-edges on each vertex and

identifies the set of half-edges with V ×[d]. Then in each

round, an arbitrary unpaired half-edge (u, i) of some

arbitrary vertex u is picked, and it is paired up with a

uniformly random unpaired half-edge (v, j). This results

in the addition of an edge (u, v) to E. This continues

until all the half-edges are paired up. (This might result

in self-loops and parallel edges, so G is not necessarily

simple.) The following is known about the expansion of

random d-regular graphs generated by the configuration

model [3].

Fact 1. For d ≥ 3 let η(d) ∈ (0, 1) be such that
(1−η(d)) log2(1−η(d))+(1+η(d)) log2(1+η(d)) >
4/d. Then with probability 1−o(1), a random d-regular
graph on n vertices generated from the configuration
model has expansion at least (1− η(d))/2.

We now show how the problem NoisyParities re-

duces to testing PartitionTesting(k, ϕin, ϕout, β), even

for k = 1 and any β ≤ 1. By this reduction, we

establish a lower bound of n1/2+Ω(ϕout) on the number

of queries required to test whether a graph is (1, ϕin)-
clusterable for some constant ϕin (the YES case), or it

is (2, ϕout, β)-unclusterable for any constant β ≤ 1 (the

NO case). The reduction is given by Algorithm 5.

Algorithm 5 REDUCTIONTOPARTITIONTESTING

(G = (V,E), y : E −→ {0, 1})
1: Input: G = (V,E), labeling y : E −→ {0, 1}
2: V ′ := V × {0, 1}.
3: � We denote the vertex (v, b) ∈ V × {0, 1} by vb

for readability.

4: E′0 :=
⋃

e=(u,v)∈E: y(e)=0{(u0, v0), (u1, v1)}.
5: E′1 :=

⋃
e=(u,v)∈E: y(e)=1{(u0, v1), (u1, v0)}.

6: E′ = E′0 ∪ E′1.

7: return G′ = (V ′, E′).

Observe that the reduction is “query complexity pre-

serving” in the sense that any query from a Parti-
tionTesting algorithm asking the neighbors of a vertex

506

vb ∈ V ′ can be answered by making (at most) one

query, asking the yet undisclosed edges incident on v
in G and their labels. To establish the correctness of the

reduction, it is sufficient to prove:

1) The YES case: If the edges of G are labeled

independently and uniformly at random, then G′

is an expander with high probability.

2) The NO case: If each edge e = (u, v) of G is

labeled X(u) + X(v) + Z(u, v), where Z(u, v)
is 1 with probability ε, then with high probability

G′ contains a cut with n vertices on each side

whose expansion is O(ε).

The next two lemmas formalize the above two claims,

and their proofs are deferred to the full version [4].

Lemma 3. Let G = (V,E) be a d-regular ϕ-expander
with |V | = n. Suppose each edge (u, v) ∈ E
independently and uniformly given label Y (u, v) ∈
{0, 1}. Suppose ReductionToPartitionTesting on input
(G, Y) returns the graph G′ = (V ′, E′). Then G′ is
a min(ϕ/4, 1/32)-expander with probability at least
1− 22n · exp(−dn/256).
Lemma 4. Let G = (V,E) be a d-regular graph with
|V | = n. For each v ∈ V , let X(v) be an independent
uniformly random bit. For each edge (u, v) ∈ E,
let Z(u, v) be an independent random bit which is 1
with probability ε and 0 otherwise. Suppose each edge
(u, v) ∈ E is labeled Y (u, v) = X(u)+X(v)+Z(u, v).
Suppose ReductionToPartitionTesting on input (G, Y)
returns the graph G′ = (V ′, E′). Then with probability
at least 1 − exp(−εnd/6), there exists a set V ∗ ⊆ V ′

with |V ∗| = n = |V ′|/2 whose expansion is at most 2ε.

We are now able to prove the following lower bound

on the query complexity of PartitionTesting.

Theorem 5 (restated). There exist positive constants

ϕin and b such that for all ϕout ≤ 1, any algorithm that

distinguishes between a (1, ϕin)-clusterable graph (that

is, a ϕin-expander) and a (2, ϕout, 1)-unclusterable graph

on n vertices with success probability at least 2/3 must

make at least (n/2)1/2+bϕout/2 queries, even when the

input is restricted to d-regular graphs for a large enough

constant d.

Proof: Let d = 512, ϕ = (1−η(d))/2 ≈ 0.45, and

ϕin = min(ϕ/4, 1/32). As before, let b = 1/(8 ln d)
(with d = 512 now). Given ϕout ≤ 1, let ε = ϕout/2 ≤
1/2. Suppose there is an algorithm for PartitionTesting
which makes (n/2)1/2+δ queries on n vertex graphs and

outputs the correct answer with probability at least 2/3,

for some δ < bϕout/2 = bε = min(1/16, bε) (note that

bε ≤ 1/(16 ln 512) ≤ 1/16). Then for any probability

distribution D over n-vertex PartitionTesting instances,

there exists a deterministic algorithm ALG(D) making

O(n1/2+δ) queries which outputs the correct answer

with probability at least 2/3, on a random instance of

PartitionTesting drawn from the distribution.

Let (G, y) be a random instance of the NoisyParities
problem with parameters d and ε, where G = (V,E) is

a graph and y : E −→ {0, 1} is an edge labeling. Apply

ReductionToPartitionTesting to (G, y), and thus, get

a random instance G′ of PartitionTesting from the

appropriate probability distribution D. Run ALG(D) on

this instance and return the answer. Note that to answer

one query of ALG(D), we make at most one query

into G. Thus, this reduction gives an algorithm ALG′

for NoisyParities making at most n1/2+δ queries.

The underlying graph G is a random d-regular graph

on n vertices. By Fact 1, with high probability, G is

a ϕ-expander. Hence, by Lemma 3, if (G, y) is a YES

instance, then with high probability the reduced graph

G′ is a ϕin-expander for ϕin = min(ϕ/4, 1/32) (we

chose d large enough so that the failure probability

22n ·exp(−dn/256) in Lemma 3 becomes o(1)). On the

other hand, if (G, y) is a NO instance, then by Lemma

4, the reduced graph G′ is a graph on 2n vertices

containing with high probability a subset of n vertices

whose expansion is at most 2ε = ϕout. Thus, G′ is

(2, ϕout, 1)-unclusterable. Hence, the reduction succeeds

with probability 1−o(1). Since ALG answers correctly

with probability at least 2/3, ALG′ answers correctly

with probability at least 2/3− o(1).
However, by Theorem 4, since ALG′ makes at most

n1/2+δ queries, ALG′ can be correct with probability

at most 1/2 + o(1). This is a contradiction.

ACKNOWLEDGMENT

Ashish Chiplunkar is supported by the Joint Re-

search Program ICES II–MRL Contract No. 2017-050.

Michael Kapralov is supported in part by ERC Starting

Grant 759471-Sublinear. Sanjeev Khanna is supported

in part by National Science Foundation grant CCF-

1617851.

507

REFERENCES

[1] Zeyuan Allen Zhu, Silvio Lattanzi, and Vahab S. Mir-
rokni. A local algorithm for finding well-connected
clusters. In ICML, pages 396–404, 2013.

[2] Béla Bollobás. A probabilistic proof of an asymptotic
formula for the number of labelled regular graphs. Eur.
J. Comb., 1(4):311–316, 1980.

[3] Béla Bollobás. The isoperimetric number of random
regular graphs. Eur. J. Comb., 9(3):241–244, 1988.

[4] Ashish Chiplunkar, Michael Kapralov, Sanjeev
Khanna, Aida Mousavifar, and Yuval Peres.
Testing graph clusterability: Algorithms and lower
bounds. CoRR, abs/1808.04807, 2018. Available at
https://arxiv.org/abs/1808.04807.

[5] Artur Czumaj, Oded Goldreich, Dana Ron, C. Seshadhri,
Asaf Shapira, and Christian Sohler. Finding cycles and
trees in sublinear time. Random Struct. Algorithms,
45(2):139–184, 2014.

[6] Artur Czumaj, Pan Peng, and Christian Sohler. Testing
cluster structure of graphs. In STOC, pages 723–732,
2015.

[7] Artur Czumaj, Pan Peng, and Christian Sohler. Testing
cluster structure of graphs. CoRR, abs/1504.03294, 2015.

[8] Artur Czumaj and Christian Sohler. Testing expansion
in bounded-degree graphs. Combinatorics, Probability
& Computing, 19(5-6):693–709, 2010.

[9] Talya Eden, Amit Levi, Dana Ron, and C. Seshadhri. Ap-
proximately counting triangles in sublinear time. SIAM
J. Comput., 46(5):1603–1646, 2017.

[10] Talya Eden, Reut Levi, and Dana Ron. Testing bounded
arboricity. In SODA, pages 2081–2092, 2018.

[11] Talya Eden, Dana Ron, and C. Seshadhri. On approx-
imating the number of k-cliques in sublinear time.
CoRR, abs/1707.04858, 2017.

[12] Talya Eden, Dana Ron, and C. Seshadhri. Sublinear
time estimation of degree distribution moments: The
degeneracy connection. In ICALP, pages 7:1–7:13, 2017.

[13] Talya Eden and Will Rosenbaum. On sampling edges
almost uniformly. In SOSA, pages 7:1–7:9, 2018.

[14] Shayan Oveis Gharan and Luca Trevisan. Partitioning
into expanders. In SODA, pages 1256–1266, 2014.

[15] Lior Gishboliner and Asaf Shapira. Deterministic vs
non-deterministic graph property testing. Electronic Col-
loquium on Computational Complexity (ECCC), 20:59,
2013.

[16] Oded Goldreich and Dana Ron. On testing expansion
in bounded-degree graphs. Electronic Colloquium on
Computational Complexity (ECCC), 7(20), 2000.

[17] Oded Goldreich and Dana Ron. Property testing in
bounded degree graphs. Algorithmica, 32(2):302–343,
2002.

[18] Oded Goldreich and Dana Ron. Algorithmic aspects of
property testing in the dense graphs model. SIAM J.
Comput., 40(2):376–445, 2011.

[19] Mira Gonen and Dana Ron. On the benefits of adaptivity
in property testing of dense graphs. Algorithmica,
58(4):811–830, 2010.

[20] Satyen Kale and C. Seshadhri. An expansion tester for
bounded degree graphs. SIAM J. Comput., 40(3):709–
720, 2011.

[21] Ravi Kannan, Santosh Vempala, and Adrian Vetta. On
clusterings: Good, bad and spectral. J. ACM, 51(3):497–
515, 2004.

[22] Michael Kapralov, Sanjeev Khanna, Madhu Sudan, and
Ameya Velingker. 1 + Ω(1)-approximation to MAX-
CUT requires linear space. In SODA, pages 1703–1722,
2017.

[23] László Lovász and Katalin Vesztergombi. Non-
deterministic graph property testing. Combinatorics,
Probability & Computing, 22(5):749–762, 2013.

[24] Asaf Nachmias and Asaf Shapira. Testing the expansion
of a graph. Inf. Comput., 208(4):309–314, 2010.

[25] Pan Peng and Christian Sohler. Estimating graph pa-
rameters from random order streams. In SODA, pages
2449–2466, 2018.

[26] C Seshadhri. A simpler sublinear algorithm for
approximating the triangle count. arXiv preprint
arXiv:1505.01927, 2015.

508

