PDF /A-1a in ConTEpXt-mkiv

Luigi Scarso

Abstract

I present some considerations on electronic docu-
ment archiving and how ConTEXt-mkiv supports
the ISO Standard 19500-1 Level A Conformance
(PDF/A-1a:2005), an ISO standard for long-term
document archiving.

Abstract
Alcune considerazioni sulle problematiche
dell’archiviazione di documenti elettronici e

come ConTEXt-mkiv supporta lo standard ISO
19500-1 Level A (PDF/A-1a:2005) relativo
all’archiviazione digitale documentale.

1 Introduction

In this paper I will try to illustrate some aspects
of electronic documents archiving starting from
the position that it’s fundamentally a typographic
language problem, and also, in the contest of in-
formation technology, a programming language
one. After some theoretical considerations, I will
show some important typographic languages that
are used, and then I will briefly talk about the
ISO Standard PDF/A-1 and how ConTEXt-mkiv
tries to adhere to its requirements. About the
typographic style of this paper, I will follow these
simple rules: I will avoid footnotes and citations
on running text, and I will try to limit lists (e.g.
only itemize and enumerate) and figures; the last
section before the References one will collect all
citations.

2 Some theoretical considerations

The main problem of electronic document archiv-
ing is to find a good answer to the question: “Will
we be able to read it again in the next x years or,
better, forever?” There are basically two kinds of
requests: just to be able to understand the docu-
ment contents, or to be able to fully and faithfully
reproduce the original document. With electronic
documents we aim at the second one.

It should be clear that it is not a problem to
make an identical copy of an electronic document,
but to obtain a reasonable confidence that we will
be able to read the present document as originally
intended. So the problem is to define an electronic
format which is clear enough to allow a correct
implementation of a consumer program both now
and in the future, hence robust against accidental

25

errors and independent of external resources, i.e.
self contained, and semantically adequate for the
purpose of document archiving.

The first requirement calls for a widely accepted
standard; the semantically adequacy calls for a
(formal) language, and precisely a Typographic
Language. Some authors also distinguish between
digital typography (the design and rendering of
a “character”), micro typography (which covers
aspects of type and spacing, such as kerning be-
tween letters, ligatures, line breaking etc.), and
macro typography (that covers the visual quality
of the document, hence the design of headings,
lists, pages but also colors and images). A for-
mal typographic language ideally covers all these
aspects while being also a programming language.

We actually need to preserve both the content
and the visual appearance of the document and
inevitably this demands for a language that is able
to talk of fonts, colors, images and animations
in an abstract fashion and easily connects these
abstractions to the concrete world of printing (and
not only printing on paper), i.e. it must be a Page
Description Language.

But this is not enough: we need another more
abstract connection to the world of semantic and
structure. As of today, we are still unable to ex-
hibit a practical algorithm that checks the semantic
correctness of a document in a human language,
and there are some problems with the syntax:
we can only hope to check the semantic of the
typographical unit, the “character”. This seems
more affordable: just a (possibly unlimited) list of
(glyph, id, semantic), where glyph is the pic-
torial representation of a “character” and id is a
unique identifier to prevent misunderstanding (for
example a space is also a “character” and there are
several kinds of spaces that we need to distinguish).
The typographic language hence can use the id
both to display the “character” (its glyph) and
as a reference to its semantic. But here we enter
into a cultural and linguistic domain: for example
the semantic require a standardized metalanguage
and more often than not a glyph is intimately tied
with the literature of a given cultural area (of the
present as of the past): it’s not unusual to see
the same glyph in completely different contexts
that must be clearly distinguished. It’s hence rea-
sonable to expect practical/contingent conventions
hard to implement or to respect — and perhaps
also meaningless in the future. Even the concept
of lists may be impractical: some glyphs are combi-

Luigi Scarso

nations of others “characters” (basic signs and/or
other glyphs) and the rules of combinations can
lead to infinite possibilities: that means that we
need a standard Character Language.

The structure of the document calls for a Markup
Language. This field is better known and well es-
tablished: the key points are a clear separation
between structure and contents, and the usage of
a standard metalanguage. This is a peculiar prop-
erty of an electronic document: the structure in
a paper document can be inferred from the phys-
ical copy, but it’s not embedded in it. Markup
languages permit computational classification of
electronic documents, high degree of content reuse
(e.g. automatic speaking), efficiency in storage, hy-
per link capabilities, while preserving the original
document unaltered — things that are difficult or
impossible to achieve in traditional documents.

The controversial point is about the semantic:
given a markup language, what is its domain? Is
it wide enough to cover all the aspects of our doc-
ument? Is it infinite or finite? For example, a
markup language about the book’s structure can
cover only a part of all the aspects of a technical
drawing or an invoice document. We can think of
a sort of a universal infinite markup language that
covers all the aspects, but sentences of an infinite
language can be long enough to become a practical
problem, and, most important, markup languages
are hard to design. Ideally, we would like a lan-
guage defined by a compact grammar, with infinite
sentences and a wide semantic; practically we must
rely on the human common sense of measure and
adaptability.

So far we have seen that a typographic language
alone is not sufficient to honor the contents. We
need other kinds of languages. But even with them
we need something else to be able to reproduce
the document as originally intended: we must be
reasonably certain that the current document is the
original document. Traditional paper documents
are always tied to a physical support: we have only
one original and one or more copies. Sometimes
the copies are so faithful that the original seems
unimportant (think of a newspaper) and sometimes
things can be arranged to produce two or more
“originals” — but it is another way to say that
there is one original and one o more copies that are
“indistinguishable from the original for practical
purpose”.

Things change radically with the electronic doc-
uments: the copy is indistinguishable from the
original, and it’s easy to verify if two documents
are equal — just a comparison between bytes —
as to keep track of changes (the history of the
document). But the negative side is that it’s now
more difficult to decide the right one between two
documents when both claim to be the “original

b2

one’.

26

ArsTXnica N° 10, Ottobre 2010

Again, it’s another peculiar property of any elec-
tronic document that solves the problem: the prop-
erty to be seen as a number. Each stream of bits
can be easily analyzed and transformed by means
of a particular kind of mathematical functions,
among which the one-way function plays a central
role: it is a function that is easy (“cheap enough
for the legitimate users”) to calculate for every
input but hard (“prohibitively expensive for any
malicious agents”) to invert given the image of
a random input. A trivial example: it is easier
to multiply two large numbers than to find the
divisors of a large number.

A one-way function can be used to encode a
stream of bits so that only who knows the key can
decode it, but it can also be used to detect and
prevent the modifications of the stream itself —
and this is what we need for the document archiv-
ing. It’s the modern edition of the signet ring, in
facts it is called digital signature, but with a subtle
difference: up today a formal proof does not exist
that inverting an one-way function will always be a
hard task. Unfortunately the history just says the
opposite: with the raising of computational power
and the advancement of modern algebra some of
the early one-ways-functions were “easily” (for a
malicious agent) inverted so that literally every day
the security experts must check the news. With
Internet there are more potential malicious agents
today than in the past, software and documen-
tation are available for free, more computational
power can be achieved with clustering (often abu-
sively). And, finally, for a casual user managing a
secret key can be problematic.

It’s important to note that the digital signa-
ture depends only on the digital nature of the
content, and not from any typographic property:
every stream of bits (i.e. every kind of file) can be
encrypted.

3 Some typographic languages

In the previous section we delineated some proper-
ties of a typographic language for document archiv-
ing: now let’s see some real candidates.

3.1 SVG and XSL-FO

The Scalable Vector Language is a W3C recom-
mendation for describing two-dimensional graphics
both static and dynamic. It’s a vector graphics
markup language in XML format and hence it can
express concepts like fonts, colors, curves but it’s
not a strictly page description language — every
SVG graphics has exactly one page, even if multi-
ple layers are possible. A W3C draft extending the
standard SVG with the notion of pages has been
written, but development efforts are now directed
to the next release of SVG, so it’s unlikely that
this draft will have further influences in the present
recommendation. Moreover, there are no ways to

ArsTpXnica N° 10, Ottobre 2010

express the logical structure of a page.

Another W3C recommendation that is related

to typography is the Extensible Stylesheet Language,
an XML application that defines a language for
transforming XML documents (XSLT) and an
XML vocabulary to specify formatting semantics,
informally referred to as XSL formatting objects
or XSL-FO.
The semantic of XSL-FO is mostly related to the
layout of a document; there are some structural
elements especially for book-like documents (i.e.
tables, lists, but not sectioning), and hence it looks
like a natural companion of SVG because, thanks
to the namespace, we can compose documents with
fragments from different markup languages, while
preserving the syntactic and semantic correctness
of each language.

SVG and XSL have some good points: they
are standards according to a widely recognized
world organization, they are free from royalties
and freely available, and there are software tools
to check the syntactic correctness. At least for
SVG, the Inkscape program is a quite good editor
for an average use and the last release has also
the interesting feature of embedding the JavaScript
language into a graphic, so that it’s possible to
consider SVG + JavaScript as a full typographic
language. As for any XML application, they both
use the Unicode standard for the character encod-
ing.

But as of today their diffusion is still limited:
one of the most important browser, Internet Ex-
plorer 8, still lacks support for SVG (it should be
supported in the next version 9) and XSL-FO is
quite simple in its typographic capabilities to gain
popularity per se even if we consider that XSLT
is a programming language — but intended to
transform generic XML documents, not specific
for typography. For the document archiving pur-
pose a document markup language with a richer
semantic like DocBook should be preferable, but
managing three different standardized languages
is not a good solution, given that each one evolves
independently; on the other side just two of them
are not enough.

TEX

TEX is a typographic macro-programming Turing-
complete language by D. Knuth. The original lan-
guage is described by the author in The TEXbook,
and it consists of about 300 primitive commands
that cover, in essence, how to organize the char-
acters in rows, the rows in lines and the lines in
pages, the indexing and the tables. In the same
book it is also described the plain format, a col-
lection of almost 600 macros built on top of the
primitive commands, that provides sectioning and
a few other typographic constructs (and used to
typeset the book itself). It has only a basic notion
of graphics, but the macro \special permits to

3.2

27

pdf/a-1a:2005

implement extensions: particularly important is
the extension to the PostScript language, a page
description language which is also a full-featured
programming language.

The key point is the Turing-completeness. With
TEX we can build an arbitrary format that is, ba-
sically, a document markup and programming lan-
guage and this definitely solves the problem to
choose the right markup language for document
structure because new structures can be build re-
maining inside the format. The macro nature of
the language is also well suited to process the
input, so that it’s possible to build macros that
manage a particular text encoding — theoretically
all computable character languages. Knuth also
designed a compact page description language, the
DeVice Independent format, or DVI, that repre-
sents the output of a tex file as processed by the
TEX program, and the METAFONT programming
language to design fonts (i.e. it’s a digital typo-
graphic programming language), which is the com-
panion program to produce bitmap fonts. Finally
he also described the complete implementation in
PascalWeb of all these programs. TEX was so ac-
curately designed and so deeply tested on a wide
range of hardware/software (still today) that we
can consider it as practically bug free.

On the other side, TEX was not designed for
archiving purpose. The DVI format is not self
contained (for example, the fonts aren’t included)
and this is true even if we consider the TEX source
file as an electronic format. There is no standard
organization behind TEX and the original program
today is surpassed by new implementations: the
most important are pdfTEX, XHITEX and luaTgEX.
Finally, TEX is almost unknown outside the scien-
tific community, even if its hyphenation algorithm
is widely used.

3.3 PDF

The Adobe Portable Document Format (PDF) is
the successor of the PostScript language, a well
known and established page description language
for printing documents. Basically it extends the
PostScript model by adding interactive features as
navigation and annotations (these are quite similar
to a static html page with a script language similar
to php or JavaScript; in fact PDF uses JavaScript),
tree dimensional images, movies and animations
(all for screen documents), a complete support for
Unicode, a new font technology, digital signature,
a document meta-markup language and a simple
html-like markup language and a radically different
electronic format — a binary format instead of
textual.

Adobe started PDF around 1993 and until now,
following the same line of conduct of PostScript all
specifications are publicly available, as there is a
pdf reader free for downloading (the full featured
pdf editor Acrobat is available as a commercial

Luigi Scarso

product). In 2008 the PDF version 1.7 became
the ISO standard 32000-1:2008, and as of today
Adobe has promulgated two extensions (for Rich
Media contents and forms) which probably will be
included into the next ISO standard 32000-2 under
development.

There are many good points in PDF. Practi-
cally all electronic documents can be converted
in a self contained PDF. Thanks to PDF binary
format, exchanging and archiving are more reli-
able because even the modification of only one
byte may entail an error when reading. Editing is
also difficult (but nowadays less than in the past)
and so accidental modifications; conversely pro-
ducing PDF is increasingly simple and there are
now better pdf readers other than the Adobe one
(but currently very few commercial products can
compete with the Adobe pdf editor). The print
quality of PDF is the same of PostScript but a pdf
file can also embed the logical structure and finally,
most important, pdf documents are enormously
widespread all around the world, fitting well with
the local typographic traditions. It’s a winning
ISO Standard.

But there are also some limitations. PDF is
not a programming language: unlike PostScript,
for example, it needs another language (the Job
Description Format) to describe a print job, and
unlike TEX we cannot use it as a typographic lan-
guage. In the end, it’s not so different from SVG:
even Adobe has started the Mars project to give
“an XML-friendly representation for PDF docu-
ments called PDFXML”, and it’s not necessary to
invent a sort of binary SVG because the digital sig-
nature can be used to detect and prevent document
modifications. Finally it seems that by the end
of this year all the most important browsers will
support the SVG format to some extent, so they
can be insidious competitors for the pdf reader
(not for printing, anyway).

4 The PDF/A-1 ISO Standard

Probably one of most known PDF version is PDF
1.4 (around 2001, almost ten years ago) maybe
because the companion Acrobat 5.0 was a robust
programs and the pdf Reader was freely available
for several platforms both as a program and as plu-
gin for browsers. We keep having a huge amount
of electronic documents that are in PDF 1.4, hence
we should not be surprised if Adobe pushed it as
reference for document archiving. What follows is
a verbatim copy from http://www.digitalpreserva-
tion.gov/formats/fdd/fdd000125.shtml and it’s a
good description:

PDF/A-1 is a constrained form of Adobe PDF
version 1.4 intended to be suitable for long-term
preservation of page-oriented documents for which
PDF is already being used in practice. The ISO stan-

28

ArsTXnica N° 10, Ottobre 2010

dard [ISO 19005-1:2005] was developed by a working
group with representatives from government, indus-
try, and academia and active support from Adobe
Systems Incorporated. Part 2 of ISO 19005 (as of
September 2010, an ISO Draft International Stan-
dard) extends the capabilities of Part 1. It is based on
PDF version 1.7 (as defined in ISO 32000-1) rather
than PDF version 1.4 (which is used as the basis of
ISO 19005-1).

PDF/A attempts to maximize device indepen-
dence, self-containment, self-documentation. The
constraints include: audio and video content are for-
bidden, JavaScript and executable file launches are
prohibited, All fonts must be embedded and also must
be legally embeddable for unlimited, universal ren-
dering, colorspaces specified in a device-independent
manner, encryption is disallowed, use of standards-
based metadata is mandated.

The PDF/A-1 standard defines two levels of confor-
mance: conformance level A satisfies all requirements
in the specification; level B is a lower level of con-
formance, “encompassing the requirements of this
part of ISO 19005 regarding the visual appearance
of electronic documents, but not their structural or
semantic properties”.

In essence the standard wants to ensure that
every typographic element, from the low level char-
acter to the high level logical structure is unam-
biguously defined and unchangeable — and it does,
it achieves its purpose: every character must be
identified by a Unicode id, which is an interna-
tional standard and a character language, every
color must be device independent by means of a
color profile or output intent, there must be precise
metadata informations for classifications and the
document must have a logical structure described
by a (possible ad-hoc) markup language.

Unfortunately the pdf version 1.4 is quite old:
animations and 3D pictures cannot be embedded,
the font format cannot be OpenType, JavaScript
programs are not permitted at all, even if they
don’t modify the document in any way as, for
example, a calculator. Ten years ago it was very
important to guarantee that the document would
always be printed as intended, nowadays screen
is slowly replacing paper and animations play a
fundamental role: PDF/A-1 is good for paper but
less than optimal for “electronic paper”.

5 PDF/A-1la in ConTEXt-mkiv

Given that it is still under heavy development, Con-
TEXt-mkiv has the opportunity to be developed on
two fronts: the “low level” luaTgX (CWEB code
and Lua primitives) and the “high level” macros
that build the format itself. One of this year re-
sults is the implementation of “tagged PDF”, the
Adobe document markup language for PDF docu-
ments, and the development of color macros for the
PDF/X specifications. As a consequence, it was

ArsTpXnica N° 10, Ottobre 2010

possible to use these results to test some real code
for producing PDF/A-1la compliant documents.
Let’s start with an example explained step-by-step.

%% Debug
\enabletrackers[backend.format,
backend.variables]

%% For PDF/A

\setupbackend [

format={pdf/a-1a:2005},

profile={default_cmyk.icc,
default_rgb.icc,default_gray.icc},

intent={},

IS0 coated v2 300\letterpercent\space (ECI)}

]

%% Tagged PDF

%% method=auto ==> default tags by Adobe

\setupstructure[state=start,method=auto]

\definecolor[Cyan] [c=1.0,m=0.0,y=0.0,k=0.0]

\starttext

\startchapter[title={Test}]

\startparagraph

\input tufte

%% Some ConTeXt env. are already mapped:

%% colors

\color [red] {0K}

\color[Cyan]{0K}

%% figures

\externalfigure [rgb-icc-sRGB_v4_ICC. jpg]l
[width=0.4\textwidth]

\stopparagraph

%% Natural tables

\bTABLE

\bTR\bTD 1 \eTD \bTD 2 \eTD \eTR

\bTR \bTD[nx=2] 3 \eTD\eTR

\eTABLE

\stopchapter

\stoptext

As usual the file is processed with

#>context test.tex

and it doesn’t hurt to enable some debug informa-

tion with

\enabletrackers[backend.format,
backend.variables]

5.1 Enable the PDF/A-1a

To enable PDF/A-1a we must setup the backend
with the appropriate variant of PDF/A. From the
very beginning ConTEXt has had a backend system
that permits to use almost the same macro-format
for different outputs (i.e. DVI and PDF), and with
luaTEX this system is increasingly enhanced, as
we’ll see later on.
With format={pdf/a-1a:2005} we select the la
variant of PDF/A standard and the label is manda-
tory because it also puts some default metadata
into the output (see 1pdf-pda.xml; a complete list
of formats is currently in 1pdf-fmt.lua and also
as a Lua table 1pdf.formats).

Next comes the colors part, and we must pay
attention here. The key concept is:

29

pdf/a-1a:2005

every color must be independent of any device.

In a pdf we usually have two sources of colors: the
colors specified by the author, e.g something like
\definecolor [orange] [r=1.0,g=0.5,b=0.0]

and the images. The 3 most used color spaces
DeviceGray, DeviceRGB, DeviceCMYK are device
dependent because the reproduction of a color
from these color spaces depends on the particular
output device; but the real output devices are all
different due both to the different nature (screen
vs. printer, for example) and different technologies
(CRT vs. LCD screen, or inkjet vs laser printer,
for example). Every device can be classified by
means of a color profile which maps an input color
(rgb, cmyk or gray) to an independent color space
so that we achieve two goals: such maps assure
that each device will correctly reproduce the
color, and the independent color space permits to
compare colors from different color spaces. With

profile={default_cmyk.icc,
default_rgb.icc,default_gray.icc},

we associate all the document colors with the cor-
responding color profile by mean of a filename (the
file colorprofiles.xml has a list of predefined
profiles). Of course it’s wrong to tie a rgb color
space to, for example, a cmyk profile, and not all
profiles are good too.

There is a second way to specify colors, but it’s
a bit tricky. We must specify that all the colors
without profile are intended to be used with a
common output profile, i.e. we must impose an
output intent: this is the meaning of

intent={%
IS0 coated v2 300\letterpercent\space (ECI)}

which is a cmyk profile for coated paper. Note
that we are using a name and not a filename to
avoid clashing with the values of the profile key.
By doing so we accept these implicit limitations
and color space conversions:

o if the output intent is a cmyk profile then
the document can have only cmyk and gray
colors;

o if the output intent is a rgb profile then the
document can have only rgb and gray colors;

o if the output intent is a gray profile then the
document can have only gray colors.

They are reasonable: in general we cannot use a
rgb color with a cmyk profile because there are
rgb colors without equivalent cmyk ones (that is to
say that screens display more colors than printers).
We can convert a gray color to rgh or cmyk because
usually gray color spaces are a subset of the former
(otherwise we have a really poor device). It’s not an
error if we specify both profiles and output intent:
at least if all color spaces have their own profiles,
as in the example, then the output intent is simply
ignored by a PDF/A compliant pdf reader.

Luigi Scarso

Finally the images: we must be sure that every
image has its color profile but as of today Con-
TEXt-mkiv cannot help here. There are some good
programs like MagickWand that are really useful
for these tasks.

5.2 Tagged PDF

Next we must enable the tagging system with
\setupstructure[state=start,method=auto].
ConTEXt-mkiv permits the author to define his
own document markup language (the tags used
inside the pdf document) but of course we also
need the associated TEX macros. This naturally
leads to start with a sort of XML document:

\setupstructure [state=start,method=none]
\starttext

\startelement [document]

\startelement [chapter]

opes

\startelement [p] \input ward\stopelement \par
\stopelement

\stopelement

\stoptext

The internal tag names are <document>,
<chapter> and <p> as we see in fig. [I] from Ac-
robat 9.0, but we still need to put the appropriate
typographic elements into the PDF.

K] Tags
E|<j <document>
B <chapter>
= opes
E<C3<p>

'%§ The Earth, as a habitat for animal life, is in cld ...

FIGURE 1: The tags structure of a simple document

In the context of PDF/A, a validation program
expected the tags as defined by Adobe and this
leads to some “syntactic sugar” macros, i.e instead
of
\startelement [chapter]...\stopelement
it’s better to use
\startchapter[title={Test}]...\stopchapter
which puts the correct tags and also typesets the
chapter title Test as expected.

The complete list of tags can be found in
strc-tag.mkiv and of course ConTEXt-mkiv per-
mits to redefine the default mapping. In fig. 2 our
document shows that ConTEXt-mkiv had already
mapped some predefined typographic objects like
figures and tables to the appropriate tags.

We can use this mechanism to embed an XML
document into a tagged pdf document, which opens
quite interesting perspectives, but we can also start
from a “structured TEX” document and end into
an XML one, and this is more interesting because
it’s a matter of backend only — and because it’s
already implemented:

\setupbackend [export=yes]

30

ArsTXnica N° 10, Ottobre 2010

= @ Tags
EI{)" <document:
= O <section> chapter
E|<:'j <sectionnumber>
= B!
=7 <sectiontitle>
W Test
El <:'j <sectioncontents
E|<j <paragraph>
= We thrive in information--thick worldsbecauseof...
E <j <image>
¢ XObject: Image w:640 h:400
B <tablex
B4 <tablerow=
=4 <tablecell>
¢ 1PathPathPathPath
=<4 <tablecell>
¢ 2PathPathPathPath
= O <tablerow>
S <tablecell>
¥¢ 3PathPathPathPath

FIGURE 2: The tags structure of a more complex document

\setupstructure[state=start,method=none]
\starttext

\startelement [document]
\startelement [chapter] [title=Test]

opes

\startelement [p]\input ward\stopelement \par
\stopelement

\stopelement

\stoptext

produces a <tex-file>.export like this (original
XML spaces are not preserved in this listing)

<?xml version=’1.0’ standalone=’yes’ 7>

<!-- input filename : test-2 -=>
<!-- processing date 10/09/10 15:28:48 -->
<!-- context version : 2010.09.24 11:40 -->
<!-- exporter version : 0.10 -=>

<document language=’en’
file="test-2’ date=’10/09/10 15:29:04’
context=’2010.09.24 11:40°
version=’0.10">
<chapter title="Test">opes
<p>
The Earth, as a habitat for animal life, is
in old age and has a fatal illness. Several,
in fact. It would be happening whether humans
had ever evolved or not. But our presence is
like the effect of an old-age patient who
smokes many packs of cigarettes per day
—————— and we humans are the cigarettes.
</p>
</chapter>
</document>

5.3 Fonts and encoding

In the previous subsection we have seen that with
simple macro we can have a valid (i.e validated by
Acrobat 9.0) PDF/A-1a pdf document. We still
didn’t talk about fonts.

ArsTpXnica N° 10, Ottobre 2010

The default fonts used by ConTEXt-mkiv are the
OpenType version of LatinModern, and, as of now,
they cannot be embedded into PDF/A documents
because OpenType isn’t supported in version 1.4;
this is not a problem because, in essence, ConTEXt-
mkiv strips the OpenType part and embeds a valid
Typel or TrueType font. Given an OpenType font,
ConTEXt-mkiv is also able to map each glyph to its
Unicode id, so even this side is not problematic.

Unfortunately, it’s already known that typeset-
ting mathematics with the Computer Modern fonts
easily leads to invalid PDF/A documents due to
misleading dimensional information of some fonts.
As widely noted by C. Beccari, just the simple
$a\not=b$ invalidates the whole document, due
the wrong dimension of the \not sign. What are
the solutions? There are two of them, both unsat-
isfactory:

1. choose another (valid) math family;

2. make a high resolution (more than 300dpi)
bitmap of each invalid formula.

Of course it’s possible to edit the fonts, but it’s not
a general solution: there are copyright limitations
and we should subset a modified copy of the font
when the original version is different — an error
prone situation because modifications of PDF/A-
la document are permitted, and an editor uses
the system fonts. The problem remains even if
ConTgXt-mkiv can patch the font on the fly. A
way out is the complete embedding of the patched
fonts, so that the editor uses the document fonts,
but it’s not a robust solution — some editors can
still use the original system fonts. Sometimes just
a change of glyph is sufficient:

\startluacode
function desc2utf8(desc)
local us =’
local plane = 0
for i,v in pairs(characters.data) do
if v.description == desc then
us v.unicodeslot
break
end
end

return tex.sprint(tex.ctxcatcodes,
unicode.utf8.char (us))

end

\stopluacode

\def\N#1{\ctxlua{desc2utf8("#1")}}

\starttext

\startTEXpage

$a\not=b$

$a\N{NOT EQUAL TO}b$ %% Use Unicode names!

\stopTEXpage

\stoptext

leads to

a#ba#b
where the first inequality makes an invalid PDF/A-
1 while the second does not. But the aesthetic
result is very different.

31

pdf/a-1a:2005

6 Conclusion

The PDF/Al-a is a good standard for document
archiving: it’s quite complete Page Description
Language, it relies on Unicode which is also quite
good Character Language and on Typel and True-
Type as digital typography formal language; it has
also a good Document Markup Language. The
binary electronic format and the digital signature
for detection and prevention of document modi-
fications complete the picture. The restrictions
(e.g. profiles for colors) together with a freely avail-
able PDF/A-1a compliant pdf reader lead to an
concrete self-contained format.

PDF/A-1a support in ConTEXt-mkiv is still ex-
perimental because it needs more tests, but pro-
gramming in luaTEX is easier than in pdfTEX, and
the 1.4 is a well known pdf version. The colors man-
agement can be probably improved by permitting
to specify a color and its profile for a single object
and not for the whole document, as it currently is.

On the other hand, the model of PDF/A-1 is
the traditional paper. The exclusion of animations
and 3D pictures is questionable and perhaps also
the scripting languages should be allowed if they
don’t change the document.

The ISO standard is not freely available and the
PDF/A-1a validators are expensive and complex
to implement: this is an obstacle for the diffusion
of PDF/A.

In this sense the SVG seems to have more
chances than PDF. For example by defining an
XML schema that is a subset of full SVG but tai-
lored for document archiving, we automatically
gain validation, because free XML validators al-
ready exist. From the TEX world we learned that
a typographic Turing complete programming lan-
guage is more powerful than a simple description
language, and perhaps SVG can use JavaScript for
this — and maybe it will end in a TEX-like lan-
guage. But even if this scenario will become reality,
ConTEXt-mkiv-users can still program typographic
tasks as they do today: it will be only a matter of
designing a new backend.

7 Notes on References

In section 2, for digital/micro/macro typography
see [Richy| and [Mittelbachl Unicode |[Unicode] is
an example of Character Language and Wikipedia
Markuplis a good starting point for Markup Lan-
guages; the W3C site XML| maintains the specifi-
cations for XML. One-way functions are described
in |(OneWayFunction|and the pdf reference PDFRef
on section “Digital Signatures” shows how it’s im-
plemented in PDF.

In section 3, for SVG see the W3C site at [SVG}
for XSL-FO see Wikipedia at [XSLFOWiki| and th
W3C site at XSLFO| For DocBook see |[docbooks;
a complete pdf reference is at [PDFRef] and for

Luigi Scarso

JavaScript see Wikipedia at [javascriptl

For section 4, there are some informations on
PDF/A-1 at Wikipedia [pdfaWiki| at the techdoc
at [pdfa, and at the |digitalpres. Very useful are

also the references of C. Beccari’s paper at cbpdfal

An interesting use of JavaScript in PDF is|calc]

For section 5, the ConTEXt wiki [pdfxctxwiki| has
some terse informations because the code is the
ultimate reference. Tagged PDF is described in the
new version of hybrid.pdf |hybrid| that is part of
“Proceedings of the 4" ConTpXt meeting’brejlov,
(to be published). For ICC profiles a good starting
point is [CCPRofile; font problems are described
by C. Beccari in |cbpdfal

References

URL http://cajun.cs.nott.ac.uk/compsci/
epo/papers/volume8/issue2/2point5. pdfl

URL http://www. tug . org/ interviews /
mittelbach.pdf

URL http : / / unicode
WhatIsUnicode.html.

. org / standard /

URL http://en.wikipedia.org/wiki/Markup_
language.

URL http://www.w3.org/XML/|

URL http://en . wikipedia .
One-way_function.

org / wiki /

URL http://www.adobe.com/devnet/pdf/pdf _
reference.htmll

URL http : / / wuw .
REC-SVG11-20030114/.

w3 . org / TR / 2003 /

32

ArsTXnica N° 10, Ottobre 2010

URL http://en.wikipedia.org/wiki/XSL _
Formatting Objects.

URL http://www.docbook.org/.

URL |http : / / www .
REC-xs111-20061205/.

w3 . org / TR / 2006 /

URL http://en . wikipedia .
JavaScriptl

org / wiki /

URL http://en.wikipedia.org/wiki/PDF/A,

URL http://www.pdfa.org/doku.php?id=pdfa:
en:techdoc

URL |www . tug . org/applications/pdftex/
calculat.pdfl

URL http://www.digitalpreservation.gov/
formats/fdd/£dd000125. shtmll

URL http://en.wikipedia.org/wiki/ICC_
profile.

URL http://wiki.contextgarden.net/PDFX

URL http://www.pragma-ade.com/general/
manuals/hybrid.pdf

URL http://meeting . contextgarden . net/
2010/talks/

URL http://www.guit.sssup.it/downloads/
Beccari_Pdf_archiviabile.pdfl

> Luigi Scarso
luigi dot scarso at gmail dot
com

http://cajun.cs.nott.ac.uk/compsci/epo/papers/volume8/issue2/2point5.pdf
http://cajun.cs.nott.ac.uk/compsci/epo/papers/volume8/issue2/2point5.pdf
http://www.tug.org/interviews/mittelbach.pdf
http://www.tug.org/interviews/mittelbach.pdf
http://unicode.org/standard/WhatIsUnicode.html
http://unicode.org/standard/WhatIsUnicode.html
http://en.wikipedia.org/wiki/Markup_language
http://en.wikipedia.org/wiki/Markup_language
http://www.w3.org/XML/
http://en.wikipedia.org/wiki/One-way_function
http://en.wikipedia.org/wiki/One-way_function
http://www.adobe.com/devnet/pdf/pdf_reference.html
http://www.adobe.com/devnet/pdf/pdf_reference.html
http://www.w3.org/TR/2003/REC-SVG11-20030114/
http://www.w3.org/TR/2003/REC-SVG11-20030114/
http://en.wikipedia.org/wiki/XSL_Formatting_Objects
http://en.wikipedia.org/wiki/XSL_Formatting_Objects
http://www.docbook.org/
http://www.w3.org/TR/2006/REC-xsl11-20061205/
http://www.w3.org/TR/2006/REC-xsl11-20061205/
http://en.wikipedia.org/wiki/JavaScript
http://en.wikipedia.org/wiki/JavaScript
http://en.wikipedia.org/wiki/PDF/A
http://www.pdfa.org/doku.php?id=pdfa:en:techdoc
http://www.pdfa.org/doku.php?id=pdfa:en:techdoc
www.tug.org/applications/pdftex/calculat.pdf
www.tug.org/applications/pdftex/calculat.pdf
http://www.digitalpreservation.gov/formats/fdd/fdd000125.shtml
http://www.digitalpreservation.gov/formats/fdd/fdd000125.shtml
http://en.wikipedia.org/wiki/ICC_profile
http://en.wikipedia.org/wiki/ICC_profile
http://wiki.contextgarden.net/PDFX
http://www.pragma-ade.com/general/manuals/hybrid.pdf
http://www.pragma-ade.com/general/manuals/hybrid.pdf
http://meeting.contextgarden.net/2010/talks/
http://meeting.contextgarden.net/2010/talks/
http://www.guit.sssup.it/downloads/Beccari_Pdf_archiviabile.pdf
http://www.guit.sssup.it/downloads/Beccari_Pdf_archiviabile.pdf

