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1.1 Motivation

Many real-world data analysis tasks involve estimating unknown quantities
from some given observations. In most of these applications, prior knowl-
edge about the phenomenon being modelled is available. This knowledge
allows us to formulate Bayesian models, that is prior distributions for the
unknown quantities and likelihood functions relating these quantities to
the observations. Within this setting, all inference on the unknown quan-
tities is based on the posterior distribution obtained from Bayes’ theorem.
Often, the observations arrive sequentially in time and one is interested in
performing inference on-line. It is therefore necessary to update the poste-
rior distribution as data become available. Examples include tracking an
aircraft using radar measurements, estimating a digital communications
signal using noisy measurements, or estimating the volatility of financial
instruments using stock market data. Computational simplicity in the form
of not having to store all the data might also be an additional motivating
factor for sequential methods.

If the data are modelled by a linear Gaussian state-space model, it is
possible to derive an exact analytical expression to compute the evolving
sequence of posterior distributions. This recursion is the well known and
widespread Kalman filter. If the data are modelled as a partially observed,
finite state-space Markov chain, it is also possible to obtain an analytical
solution, which is known as the hidden Markov model HMM filter. These
two filters are the most ubiquitous and famous ones, yet there are a few
other dynamic systems that admit finite dimensional filters (Vidoni 1999,
West and Harrison 1997).

The aforementioned filters rely on various assumptions to ensure math-
ematical tractability. However, real data can be very complex, typically
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involving elements of non-Gaussianity, high dimensionality and nonlinear-
ity, which conditions usually preclude analytic solution. This is a problem
of fundamental importance that permeates most disciplines of science. Ac-
cording to the field of interest, the problem appears under many different
names, including Bayesian filtering, optimal (nonlinear) filtering, stochas-
tic filtering and on-line inference and learning. For over thirty years, many
approximation schemes, such as the extended Kalman filter, Gaussian sum
approximations and grid-based filters, have been proposed to surmount
this problem. The first two methods fail to take into account all the salient
statistical features of the processes under consideration, leading quite of-
ten to poor results. Grid-based filters, based on deterministic numerical
integration methods, can lead to accurate results, but are difficult to im-
plement and too computationally expensive to be of any practical use in
high dimensions.

Sequential Monte Carlo (SMC) methods are a set of simulation-based
methods which provide a convenient and attractive approach to computing
the posterior distributions. Unlike grid-based methods, SMC methods are
very flexible, easy to implement, parallelisable and applicable in very gen-
eral settings. The advent of cheap and formidable computational power,
in conjunction with some recent developments in applied statistics, en-
gineering and probability, have stimulated many advancements in this
field.

Over the last few years, there has been a proliferation of scientific papers
on SMC methods and their applications. Several closely related algorithms,
under the names of bootstrap filters, condensation, particle filters, Monte
Carlo filters, interacting particle approzimations and survival of the fittest,
have appeared in several research fields. This book aims to bring together
the main exponents of these algorithms with the goal of introducing the
methods to a wider audience, presenting the latest algorithmic and theoret-
ical developments and demonstrating their use in a wide range of complex
practical applications. For lack of space, it has unfortunately not been pos-
sible to include all the leading researchers in the field, nor to address the
theoretical and practical issues with the depth they deserve.

The chapters in the book are grouped in three parts. In the first part,
a detailed theoretical treatment of various SMC algorithms is presented.
The second part is mainly concerned with outlining various methods for
improving the efficiency of the basic SMC algorithm. Finally, the third part
discusses several applications in the areas of financial modelling and econo-
metrics, target tracking and missile guidance, terrain navigation, computer
vision, neural networks, time series analysis and forecasting, machine learn-
ing, robotics, industrial process control and population biology. In each of
these parts, the chapters are arranged alphabetically by author.

The chapters are to a large extent self-contained and can be read inde-
pendently. Yet, for completeness, we have added this introductory chapter
to allow readers unfamiliar with the topic to understand the fundamen-
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tals and to be able to implement the basic algorithm. Here, we describe
a general probabilistic model and the Bayesian inference objectives. After
outlining the problems associated with the computation of the posterior dis-
tributions, we briefly mention standard approximation methods and point
out some of their shortcomings. Subsequently, we introduce Monte Carlo
methods, placing particular emphasis on describing the simplest — but still
very useful — SMC method. This should enable the reader to start applying
the basic algorithm in various contexts.

1.2 Problem statement

For sake of simplicity, we restrict ourselves here to signals modelled as
Markovian, nonlinear, non-Gaussian state-space models, though SMC can
be applied in a more general setting!. The unobserved signal (hidden states)
{x¢;t € N}, x4 € X, is modelled as a Markov process of initial distribution
p(Xo) and transition equation p (x¢|xt—1). The observations {y;;t € N*},
y: € Y, are assumed to be conditionally independent given the process
{x¢;t € N} and of marginal distribution p (y|x¢). To sum up, the model
is described by

p(Xo)
p(x¢|x4—1) fort>1
p(yi|x;) fort>1.

We denote by xo.; = {x0,...,x¢} and y1.4 = {y1,...,y:}, respectively, the
signal and the observations up to time ¢.

Our aim is to estimate recursively in time the posterior distribution
P (Xo:t| ¥1:t), its associated features (including the marginal distribution
p(xX¢|y1:t), known as the filtering distribution), and the expectations

I(f:)= ]Ep( X0:4|y1:¢) [ft (X0:t)] £ /ft (X0:¢) P (Xo:t| ¥Y1:¢) dXo:¢

for some function of interest f; : Xt — R"s: integrable with respect
to p (x0.¢| ¥1:t). Examples of appropriate functions include the conditional
mean, in which case f; (Xo.t) = Xo.t, or the conditional covariance of x;

where f; (Xo:¢) = X¢X] — Ep( x;|y1.0) [Xt] E;(xilyl:i) [x¢].

LFor simplicity, we use x; to denote both the random variable and its realisation.
Consequently, we express continuous probability distributions using p (dx¢) instead of
Pr (X € dx¢) and discrete distributions using p(x¢) instead of Pr(X; = x¢). If these
distributions admit densities with respect to an underlying measure p (usually counting
or Lebesgue), we denote these densities by p (x¢). To make the material accessible to a
wider audience, we shall allow for a slight abuse of terminology by sometimes referring
to p (x¢) as a distribution.
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At any time ¢, the posterior distribution is given by Bayes’ theorem

p(X0t|Y1 t) _ p(Yl:t|X0:t)p(x0:t)

' ' fp (YI:t| XO:t) p (XO:t) dXO:t

It is possible to obtain straightforwardly a recursive formula for this joint
distribution p (Xo:¢| ¥1:¢),

P(Yt+1| Xt+1)P(Xt+1| X¢) (1.1)
p (Yt+1| Y1:t)

The marginal distribution p (x:|y1.:) also satisfies the following recursion.

p(XO:t+1|y1:t+1) = P(Xo:t| YI:t)

Prediction: p (x¢|y1:4-1) = /p(Xt|Xt71)p(Xt—1|Y1:t71)dthl; (1.2)

. o p(Yt|Xt)p(Xt|Y1:t—1)
Updating: p (x¢|y1:t) T (ye %) p (xe] yias) e (1.3)
These expressions and recursions are deceptively simple because one cannot
typically compute the normalising constant p (yi.;), the marginals of the
posterior p (Xo.t| y1:t), in particular p (x¢|y:), and I (f) since they require
the evaluation of complex high-dimensional integrals.

This is why, from the mid-1960s, a great many papers and books
have been devoted to obtaining approximations for these distributions,
including, as discussed in the previous section, the extended Kalman fil-
ter (Anderson and Moore 1979, Jazwinski 1970), the Gaussian sum filter
(Sorenson and Alspach 1971) and grid-based methods (Bucy and Senne
1971). Other interesting work in automatic control was done during the 60s
and 70s based on SMC integration methods (see (Handschin and Mayne
1969)). Most likely because of the modest computers available at the time,
these last algorithms were overlooked and forgotten. In the late 1980s, the
great increase of computational power made possible rapid advances in
numerical integration methods for Bayesian filtering (Kitagawa 1987).

1.3 Monte Carlo methods

To address the problems described in the previous section, many scien-
tific and engineering disciplines have recently devoted a considerable effort
towards the study and development of Monte Carlo (MC) integration meth-
ods. These methods have the great advantage of not being subject to
any linearity or Gaussianity constraints on the model, and they also have
appealing convergence properties.

We start this section by showing that, when one has a large number of
samples drawn from the required posterior distributions, it is not difficult
to approximate the intractable integrals appearing in equations (1.1)-(1.3).
It is, however, seldom possible to obtain samples from these distributions
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directly. One therefore has to resort to alternative MC methods, such as
importance sampling. By making this general MC technique recursive, one
obtains the sequential importance sampling (SIS) method. Unfortunately,
it can easily be shown that SIS is guaranteed to fail as ¢ increases. This
problem can be surmounted by including an additional selection step. The
introduction of this key step in (Gordon, Salmond and Smith 1993) led to
the first operationally effective method. Since then, theoretical convergence
results for this algorithm have been established. See, for example, (Del
Moral 1996) and the chapters in this book by Crisan and Del Moral and
Jacod.

1.3.1 Perfect Monte Carlo sampling

Let us assume that we are able to simulate N independent and
identically distributed (i.i.d.) random samples, also named particles,
{x[()lz)t;i =1,.., N} according to p (Xo.t| y1.t). An empirical estimate of this

distribution is given by
Py (dxo.¢| yo:t) = 25() (dxo:t) ,

where & ) (dxo.¢) denotes the delta-Dirac mass located in Xo t One obtains
stralghtforwardly the following estimate of I (f;)

N (ft) = /ft (x0:¢) Pnv (dXo:t| y1:4) = th( )

This estimate is unbiased and, if the posterior variance of f; (xo.;) satisfies
o7, S Eo( xoulyre) LfE (X0:6)] = I? (ft) < 400, then the variance of Iy (f) is
2

equal to var (In (ft)) = % Clearly, from the strong law of large numbers,
In () 25 T,

where =% denotes almost sure convergence. Moreover, if U}t < 400, then
a central limit theorem holds

\/N[IN (fe) = I (fe)] NﬁmN(O,Ui) )

where = denotes convergence in distribution. The advantage of this per-
fect MC method is clear. From the set of random samples {x(()fl;i =1,.., N},
one can easily estimate any quantity I (f;) and the rate of convergence of
this estimate is independent of the dimension of the integrand. In contrast,

any deterministic numerical integration method has a rate of convergence
that decreases as the dimension of the integrand increases.
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Unfortunately, it is usually impossible to sample efficiently from the
posterior distribution p (Xo.t| y1.t) at any time ¢, p (Xo.t| y1.t) being multi-
variate, non-standard, and only known up to a proportionality constant.
In applied statistics, Markov chain Monte Carlo (MCMC) methods are
a popular approach to sampling from such complex probability distribu-
tions (Gilks, Richardson and Spiegelhalter 1996, Robert and Casella 1999).
However, MCMC methods are iterative algorithms unsuited to recursive
estimation problems. So, alternative methods have to be developed.

1.3.2  Importance sampling
Importance sampling

An alternative classical solution consists of using the importance sampling
method, see for example (Geweke 1989). Let us introduce an arbitrary
so-called importance sampling distribution (also often referred to as the
proposal distribution or the importance function) 7 (Xo.¢| ¥1.¢)?. Assum-
ing that we want to evaluate I (f;), and provided that the support of
7 (Xo:¢| ¥1.t) includes the support of p (xo.t| y1:t), we get the identity

_ f ft (XO:t) w (XO:t) ™ (XO:t| Y1:t) dxo.¢
fw (XO:t) T (XO:t| Y1:t) dxo.

I(ft)

where w (x9.¢) is known as the importance weight |

D (XO:t| Y1:t)

w (XO:t) = T (X[):t| y1:t) -

Consequently, if one can simulate N i.i.d. particles {x(()fl,i = 1,...,N}

according to 7 (Xo.t| y1:¢), a possible Monte Carlo estimate of I (f;) is

R LS (50 4 (x0) N N
- SR - S
(4)

where the normalised importance weights w; ' are given by
()
—)_ " (XW)
wy ~ = N—()
Ej:l w (X[)jzt)
For N finite, In (ft) is biased (ratio of two estimates) but asymptotically,

under weak assumptions, the strong law of large numbers applies, that is,
In (ft) Na'—:> I (f)- Under additional assumptions, a central limit theorem
—+00

(1.4)

with a convergence rate still independent of the dimension of the integrand

2We underline the (possible) dependence of 7 (-) on y1.; by writing 7 ( Xo:.¢| y1:¢)-
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can be obtained (Geweke 1989). It is clear that this integration method can
also be interpreted as a sampling method where the posterior distribution
P (Xo:t| ¥1:¢) is approximated by

N
Py (dxou|y14) =Y ﬁt(l)fsx[(){l (dxo:1) (1.5)
i=1 '

and T (f;) is nothing but the function f; (xo.) integrated with respect to
the empirical measure Py (dxo.t| ¥1:¢):

In (ft) = /ft (%0:¢) Py (dXo:¢| y1:t) -

Importance sampling is a general Monte Carlo integration method. How-
ever, in its simplest form, it is not adequate for recursive estimation. That
is, one needs to get all the data y;.; before estimating p (xo.t|y1.¢). In gen-
eral, each time new data y.y1 become available, one needs to recompute
the importance weights over the entire state sequence. The computational
complexity of this operation increases with time. In the following section,
we present a strategy for overcoming this problem.

Sequential Importance Sampling

The importance sampling method can be modified so that it be-
comes possible to compute an estimate Py (dxo:t|y1:t) of p(Xo.t|y1:t)

without modifying the past simulated trajectories x(()fifl;i =1,...,.N¢.

This means that the importance function 7 (xo.t|y1.+) at time ¢ ad-
mits as marginal distribution at time ¢t — 1 the importance function
T (Xo:4—1|Y1:4-1), that is

™ (XO:t| Y1:t) =7 (XO:t71| }’1:t71)7r (Xt| Xo:t—l;)’l:t)-
Iterating, one obtains

t
T (Xo:t| y1:¢) = 7 (%o) H T (Xk| Xosk—1,Y1:k) -
k=1
It is easy to see that this importance function allows us to evaluate
recursively in time the importance weights (1.4). Indeed, one has

i oc i, (> Xf:) IZ>( %) .

(X | X015 Y1:t)

(1.6)

An important particular case of this framework arises when we adopt the
prior distribution as importance distribution

t

™ (X0:¢| y1:¢) = p (X0:¢) = p (X0) H P (Xp|Xp—1) -
k=1
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In this case, the importance weights satisfy ﬁt(i) x ﬁt(i)lp (yt| xgi)). In the

following section, we restrict ourselves to the use of the prior distribution
as importance sampling distribution. However, it is important to keep in
mind that the method is far more general than this.

SIS is an attractive method, but it is nothing but a constrained version
of importance sampling. Unfortunately, it is well known that importance
sampling is usually inefficient in high-dimensional spaces (Gilks et al. 1996,
Robert and Casella 1999). So, as ¢ increases, this problem will arise in the
SIS setting.

1.3.3 The Bootstrap filter

The problem encountered by the SIS method is that, as ¢ increases, the dis-
tribution of the importance weights @t(l) becomes more and more skewed.
Practically, after a few time steps, only one particle has a non-zero impor-
tance weight. The algorithm, consequently, fails to represent the posterior
distributions of interest adequately. To avoid this degeneracy, one needs to
introduce an additional selection step.

Notion

The key idea of the bootstrap filter is to eliminate the particles having low
importance weights ﬁt(i) and to multiply particles having high importance
weights (Gordon et al. 1993). More formally, we replace the weighted empir-
ical distribution I3N (dxo:t|y1:¢) = Zf;l @gi) 6x(()iz (dxo.¢) by the unweighted
measure
Lo 0
P (dxo:t|y1e) = & E;Nt 0, (dXo:t)
P

where Nt(i) is the number of offspring associated to particle x((f;)t; it is an
integer number such that Zi\; Nt(i) = N. If Nt(j) = 0, then the parti-
cle x[()]t) dies. The Nt(i) are chosen such that Py (dxo.t|yo:t) is close to
]3N (dxo.t| y1:¢) in the sense that, for any function fi,

/ f1 (xost) Py (o] y1e) ~ / fi (x00) Pr (dxoulyre) . (L7)

After the selection step, the surviving particles x[()fl, that is the ones with
Nt(l) > 0, are thus approximately distributed according to p(xo.t|y1:t)-

There are many different ways to select the Nt(i), the most popular be-
ing the one introduced in (Gordon et al. 1993). Here, one obtains the
surviving particles by sampling N times from the (discrete) distribution

]3N (dxo.t| y1:¢); this is equivalent to sampling the number of offspring Nt(i)
according to a multinomial distribution of parameters ﬁt(z). Equation (1.7)
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is satisfied in the sense that one can check easily that, for any bounded
function fi with || f¢]| = sup | ft (X0:¢)|, there exists C' such that

X0:t
5 | _Clfl’
E fe (%0:¢) Pnv (d%o:¢| y1:4) — [ fi (X0:¢) Pn (dXo:t| y1:¢) S—y
Algorithm description
We can now specify the algorithm in detail as follows.
Bootstrap Filter
1. Instialisation, t = 0.
e Fori=1,...,N, sample x(()i) ~ p(xo) and set t = 1.
2. Importance sampling step
s (@) (@) (@) _
e For i = 1,..,N, sample x;” ~ p (xt|xt71) and set X;, =

(Xél:)t—la ig”) .
e Fori=1,...,N, evaluate the importance weights
@ =p (vl =) . (1.8)
e Normalise the importance weights.
3. Selection step
e Resample with replacement N particles (x((fl,z =1,... ,N) from the
set (i((f)t,z =1,... ,N) according to the importance weights.

e Sett < t+1 and go to step 2.

Note that in equation (1.8), ﬁt(l_)l does not appear because the propagated
particles ngl_l have uniform weights after the resampling step at time ¢—1.
Also, we do not need to store the paths of the particles from time 0 to time ¢
if we are only interested in estimating p (x¢|y1.+). A graphic representation
of the algorithm is shown in Figure 1.1.

The bootstrap filter has several attractive properties. Firstly, it is very
quick and easy to implement. Secondly, it is to a large extent modular. That
is, when changing the problem one need only change the expressions for the
importance distribution and the importance weights in the code. Thirdly,
it can be straightforwardly implemented on a parallel computer. Finally,
the resampling step is a black box routine that only requires as inputs the
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i=1,...,N=10 particles
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SN Nt
(] ° ° {"‘E'), (')
AR BN
o 8 § 8 o o {XS?UN 1}
h A\OA l Z KON

: {“’(') (')}

Figure 1.1. In this example, the bootstrap filter starts at time ¢ — 1 with
an unweighted measure {x{ )1, N7'}, which provides an approximation of
p(x¢—1|y1:4—2). For each particle we compute the importance Weights using the
information at time ¢ — 1. This results in the weighted measure {xt l,fbg )1
which yields an approximation p(x:—1|y1:t—1). Subsequently, the resamphng step
selects only the fittest particles to obtain the unweighted measure {xt LN,
which is still an approximation of p(x¢—1|y1:t—1) . Finally, the sampling (predic-
tion) step introduces variety, resulting in the measure {igi), N~'}, which is an
approximation of p(x¢|yi.t—1)-

importance weights and indices (both being one-dimensional quantities).
This enables one to easily carry out sequential inference for very complex
models.

An illustrative example

For demonstration purposes, we apply the bootstrap algorithm to the
following nonlinear, non-Gaussian model (Gordon et al. 1993, Kitagawa
1996):

1 Ti—1

To= SE + 25ng71 + 8cos (1.2t) + vy
x?

Yt = == + Wt,

20
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where 1 ~ N (0, a%), v¢ and wy are mutually independent white Gaussian
noises, v, ~ N (0,02) and wy, ~ N (0,02) with o7 = 10, 02 = 10 and
02 = 1. The estimated filtering distributions are shown in Figure 1.2.

X 25 0 Time (t)

Figure 1.2. Estimated filtering distribution using 1000 particles.

Notice that for this model the minimum mean square estimates could
be misleading because they do not provide enough information about
the shape of the distribution. Indeed, one of the advantages of Monte
Carlo methods is that they provide a complete description of the posterior
distribution, not just a single point estimate.

1.4 Discussion

The aim of this chapter was to motivate the use of SMC methods to solve
complex nonlinear, non-Gaussian on-line estimation problems. We also pro-
vided a brief introduction to SMC methods by describing one of the most
basic particle filters. We hope we have convinced the reader of the enormous
potential of SMC.

The algorithm we described is applicable to a very large class of models
and is straightforward to implement. The price to pay for this simplicity is
computationally inefficiency in some application domains.

The following chapters aim to develop and improve upon many of the
ideas sketched here, and to propose new ones. Firstly, Chapters 2 and 3
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provide a rigorous theoretical basis for SMC methods. Secondly, Chapters 4
to 14 describe numerous algorithmic developments which allow significant
performance improvements over standard methods. Finally, Chapters 15 to
26 demonstrate the relevance of SMC to a wide range of complex practical
applications.

The extended Kalman filter and related recursive sub-optimal estimation
methods have been widely used for over 30 years in numerous applications.
It is our belief that SMC methods can not only improve estimation perfor-
mance in most of these applications, but also allow us to deal with more
complex models that were out of reach a few years ago. We hope that this
book constitutes a valuable and unified source of information on the topic.



