
CS250, UC Berkeley Fall ‘10Lecture 03, Timing

CS250
VLSI Systems Design

Lecture 3: Physical Realities:
Beneath the Digital Abstraction,

Part 1: Timing

Fall 2010

Krste Asanovic’, John Wawrzynek
with

John Lazzaro
and

Yunsup Lee (TA)

CS250, UC Berkeley Fall ‘10Lecture 03, Timing

What do Computer Architects
need to know about physics?

‣ Physics effect:
Area ⇒ cost
Delay ⇒ performance
Energy ⇒ performance & cost

• Ideally, zero delay, area, and energy. However, the
physical devices occupy area, take time, and consume
energy.

• CMOS process lets us build transistors, wires,
connections, and we get capacitors (,inductors) and
resistors whether or not we want them.

2

CS250, UC Berkeley Fall ‘10Lecture 03, Timing

Physical Layout

‣ “Switch-level” abstraction gives a good way to understand
the function of a circuit.
‣ nFET (g=1 ? short circuit : open)
‣ pFET (g=0 ? short circuit : open)

‣ Understanding delay means going below the switch-level
abstraction to transistor physics and layout details.

3

CS250, UC Berkeley Fall ‘10Lecture 03, Timing

“Gate Delay”

‣ Modern CMOS gate delays on the order of
a few picoseconds. (However, highly
dependent on gate context.)

‣ Often expressed as FO4 delays (fan-out of
4) - as a process independent delay metric:
‣ the delay of an inverter, driven by an

inverter 4x smaller than itself, and
driving an inverter 4x larger than itself.

‣ For our 90nm process FO4 is around 20ps.

4

CS250, UC Berkeley Fall ‘10Lecture 03, Timing

“Path Delay”

‣ For correct operation:
Total Delay ≤ clock_period - FFsetup_time - FFclk_to_q - Clock_skew
on all paths.

5

‣ High-speed processors critical paths have around 10-20 FO4
delays.

CS250, UC Berkeley Fall ‘10Lecture 03, Timing

FO4 Delays per clock period

!"#$%&'()*#+&$,-

./#+&$,-0(,#$.&"12-13 456756887 9,#$.&"1):$';-"(',<

!"#$%&'(&)*+

8

=8

68

78

48

>8

?8

@8

A8

B8

=88

A> A? A@ AA AB B8 B= B6 B7 B4 B> B? B@ BA BB 88 8= 86 87 84 8>

'$,-/)7A?

'$,-/)4A?

'$,-/)C-$,'3D

'$,-/)C-$,'3D)6

'$,-/)C-$,'3D)7

'$,-/)C-$,'3D)4

'$,-/)',#$'3D

E/CF#)6=8?4

E/CF#)6==?4

E/CF#)6=6?4

9C#"%

93C-"9C#"%

9C#"%?4

G'C(

HI)IE

I&J-")IK

EGL)M?

EGL)M@

EGL)NA?O?4

Thanks to Francois Labonte, Stanford

FO4
Delays

Historical
limit:
about

12

CPU Clock Periods
1985-2005

MIPS 2000
5 stages

Pentium 4
20 stages

Pentium Pro
10 stages

6

CS250, UC Berkeley Fall ‘10Lecture 03, Timing

“Gate Delay”
‣ What determines the actual delay of a logic gate?
‣ Transistors are not perfect switches - cannot change terminal

voltages instantaneously.
‣ Consider the NAND gate:

‣ Current (I) value depends on: process parameters, transistor size

7

‣ CL models gate output, wire, inputs to next stage (Cap. of Load)
‣ C “integrates” I creating a voltage change at output

∆ ∝ CL / I

CS250, UC Berkeley Fall ‘10Lecture 03, Timing

More on transistor Current
‣ Transistors act like a cross between a resistor and “current

source”

8

‣ ISAT depends on process parameters (higher for nFETs than for
pFETs) and transistor size (layout):

ISAT ∝ W/L

CS250, UC Berkeley Fall ‘10Lecture 03, Timing

More on CL

‣ Everything that connects to the output of a logic gate (or
transistor) contributes capacitance:

9

‣ Transistor
drains

‣ Interconnection
(wires/
contacts/vias)

‣ Transistor Gates

I

CS250, UC Berkeley Fall ‘10Lecture 03, Timing

Wires
‣ So far, simple capacitors:

10

C ∝ Area = width ∗ length

‣ Wires have finite resistance, so have distributed R and C:

with r = res/length, c = cap/length, ∆ ∝ rcL2 ≅ rc + 2rc +3rc + ...
‣ For short wires (between gates) R is insignificant (total RC

delay << gate delay)
‣ For long wires R becomes significant. Ex: busses, clocks, reset
‣ “rebuffering” helps

CS250, UC Berkeley Fall ‘10Lecture 03, Timing

Turning Rise/Fall Delay into Gate Delay
• Cascaded gates:

“transfer curve” for inverter.

11

CS250, UC Berkeley Fall ‘10Lecture 03, Timing

Driving Large Loads
‣ Large fanout nets: clocks, resets, memory bit lines, off-chip
‣ Relatively small driver results in long rise time (and thus

large gate delay)

‣ Strategy:

‣ Optimal trade-off between delay per stage and total
number of stages ⇒ fanout of ∼4 per stage

12

Staged Buffers

CS250, UC Berkeley Fall ‘10Lecture 03, Timing

Components of Path Delay

1. # of levels of logic
2. Internal cell delay
3. wire delay
4. cell input capacitance
5. cell fanout
6. cell output drive strength

13

CS250, UC Berkeley Fall ‘10Lecture 03, Timing

Who controls the delay?

14

foundary
engineer
(TSMC)

Library
Developer
(Aritsan)

CAD Tools (DC,
IC Compiler)

Designer
(Yunsup)

1. # of levels synthesis RTL

2. Internal
cell delay

physical
parameters

cell topology,
trans sizing

3. Wire
delay

physical
parameters place & route layout

generator
4. Cell input
capacitance

physical
parameters

cell topology,
trans sizing cell selection instantiation

5. Cell
fanout synthesis RTL

6. Cell drive
strength

physical
parameters

transistor
sizing cell selection instantiation

Timing Closure: Searching for and beating
down the critical path1600 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 36, NO. 11, NOVEMBER 2001

Fig. 1. Process SEM cross section.

The process was raised from [1] to limit standby power.

Circuit design and architectural pipelining ensure low voltage

performance and functionality. To further limit standby current

in handheld ASSPs, a longer poly target takes advantage of the

versus dependence and source-to-body bias is used

to electrically limit transistor in standby mode. All core

nMOS and pMOS transistors utilize separate source and bulk

connections to support this. The process includes cobalt disili-

cide gates and diffusions. Low source and drain capacitance, as

well as 3-nm gate-oxide thickness, allow high performance and

low-voltage operation.

III. ARCHITECTURE

The microprocessor contains 32-kB instruction and data

caches as well as an eight-entry coalescing writeback buffer.

The instruction and data cache fill buffers have two and four

entries, respectively. The data cache supports hit-under-miss

operation and lines may be locked to allow SRAM-like oper-

ation. Thirty-two-entry fully associative translation lookaside

buffers (TLBs) that support multiple page sizes are provided

for both caches. TLB entries may also be locked. A 128-entry

branch target buffer improves branch performance a pipeline

deeper than earlier high-performance ARM designs [2], [3].

A. Pipeline Organization

To obtain high performance, the microprocessor core utilizes

a simple scalar pipeline and a high-frequency clock. In addition

to avoiding the potential power waste of a superscalar approach,

functional design and validation complexity is decreased at the

expense of circuit design effort. To avoid circuit design issues,

the pipeline partitioning balances the workload and ensures that

no one pipeline stage is tight. The main integer pipeline is seven

stages, memory operations follow an eight-stage pipeline, and

when operating in thumb mode an extra pipe stage is inserted

after the last fetch stage to convert thumb instructions into ARM

instructions. Since thumb mode instructions [11] are 16 b, two

instructions are fetched in parallel while executing thumb in-

structions. A simplified diagram of the processor pipeline is

Fig. 2. Microprocessor pipeline organization.

shown in Fig. 2, where the state boundaries are indicated by

gray. Features that allow the microarchitecture to achieve high

speed are as follows.

The shifter and ALU reside in separate stages. The ARM in-

struction set allows a shift followed by an ALU operation in a

single instruction. Previous implementations limited frequency

by having the shift and ALU in a single stage. Splitting this op-

eration reduces the critical ALU bypass path by approximately

1/3. The extra pipeline hazard introduced when an instruction is

immediately followed by one requiring that the result be shifted

is infrequent.

Decoupled Instruction Fetch.A two-instruction deep queue is

implemented between the second fetch and instruction decode

pipe stages. This allows stalls generated later in the pipe to be

deferred by one or more cycles in the earlier pipe stages, thereby

allowing instruction fetches to proceed when the pipe is stalled,

and also relieves stall speed paths in the instruction fetch and

branch prediction units.

Deferred register dependency stalls. While register depen-

dencies are checked in the RF stage, stalls due to these hazards

are deferred until the X1 stage. All the necessary operands are

then captured from result-forwarding busses as the results are

returned to the register file.

One of the major goals of the design was to minimize the en-

ergy consumed to complete a given task. Conventional wisdom

has been that shorter pipelines are more efficient due to re-

Must consider all connected register pairs,
paths from input to register, register to

output. Don’t forget the controller.

?

• Design tools help in the search.
– Synthesis tools work to meet clock

constraint, report delays on paths,
– Special static timing analyzers accept a

design netlist and report path delays,
– and, of course, simulators can be used to

determine timing performance.
Tools that are expected to do something about
the timing behavior (such as synthesizers), also
include provisions for specifying input arrival

times (relative to the clock), and output
requirements (set-up times of next stage).

Timing Analysis, real example

From “The circuit and physical design of the POWER4 microprocessor”, IBM J Res and Dev, 46:1, Jan 2002, J.D. Warnock et al.

netlist. Of these, 121 713 were top-level chip global nets,
and 21 711 were processor-core-level global nets. Against
this model 3.5 million setup checks were performed in late
mode at points where clock signals met data signals in
latches or dynamic circuits. The total number of timing
checks of all types performed in each chip run was
9.8 million. Depending on the configuration of the timing
run and the mix of actual versus estimated design data,
the amount of real memory required was in the range
of 12 GB to 14 GB, with run times of about 5 to 6 hours
to the start of timing-report generation on an RS/6000*
Model S80 configured with 64 GB of real memory.
Approximately half of this time was taken up by reading
in the netlist, timing rules, and extracted RC networks, as

well as building and initializing the internal data structures
for the timing model. The actual static timing analysis
typically took 2.5–3 hours. Generation of the entire
complement of reports and analysis required an additional
5 to 6 hours to complete. A total of 1.9 GB of timing
reports and analysis were generated from each chip timing
run. This data was broken down, analyzed, and organized
by processor core and GPS, individual unit, and, in the
case of timing contracts, by unit and macro. This was one
component of the 24-hour-turnaround time achieved for
the chip-integration design cycle. Figure 26 shows the
results of iterating this process: A histogram of the final
nominal path delays obtained from static timing for the
POWER4 processor.

The POWER4 design includes LBIST and ABIST
(Logic/Array Built-In Self-Test) capability to enable full-
frequency ac testing of the logic and arrays. Such testing
on pre-final POWER4 chips revealed that several circuit
macros ran slower than predicted from static timing. The
speed of the critical paths in these macros was increased
in the final design. Typical fast ac LBIST laboratory test
results measured on POWER4 after these paths were
improved are shown in Figure 27.

Summary
The 174-million-transistor !1.3-GHz POWER4 chip,
containing two microprocessor cores and an on-chip
memory subsystem, is a large, complex, high-frequency
chip designed by a multi-site design team. The
performance and schedule goals set at the beginning of
the project were met successfully. This paper describes
the circuit and physical design of POWER4, emphasizing
aspects that were important to the project’s success in the
areas of design methodology, clock distribution, circuits,
power, integration, and timing.

Figure 25

POWER4 timing flow. This process was iterated daily during the
physical design phase to close timing.

VIM

Timer files ReportsAsserts

Spice

Spice

GL/1

Reports

< 12 hr

< 12 hr

< 12 hr

< 48 hr

< 24 hr

Non-uplift
timing

Noise
impact
on timing

Uplift
analysis

Capacitance
adjust

Chipbench /
EinsTimer

Chipbench /
EinsTimer

Extraction

Core or chip
wiring

Analysis/update
(wires, buffers)

Notes:
• Executed 2–3 months
 prior to tape-out
• Fully extracted data
 from routed designs
 • Hierarchical extraction
• Custom logic handled
 separately
 • Dracula
 • Harmony
• Extraction done for
 • Early
 • Late

Extracted units
 (flat or hierarchical)
Incrementally
 extracted RLMs
Custom NDRs
VIMs

Figure 26

Histogram of the POWER4 processor path delays.

!40 !20 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280
Timing slack (ps)

L
at

e-
m

od
e

tim
in

g
ch

ec
ks

 (
th

ou
sa

nd
s)

0

50

100

150

200

IBM J. RES. & DEV. VOL. 46 NO. 1 JANUARY 2002 J. D. WARNOCK ET AL.

47

Most paths have hundreds of
picoseconds to spare.

The critical path

CS250, UC Berkeley Fall ‘09Lecture 04, Timing

Timing Analysis Tools
‣ Static Timing Analysis: Tools use delay models for

gates and interconnect. Traces through circuit paths.
‣ Cell delay models capture
‣ For each input/output pair, internal delay (output load

independent)
‣ output dependent delay

‣ Standalone tools (PrimeTime) and part of logic
synthesis.

‣ Back-annotation takes information from results of
place and route to improve accuracy of timing
analysis.

‣ DC in “topographical mode” uses preliminary layout
information to model interconnect parasitics.
‣ Prior versions used a simple fan-out model of gate

loading.
17

delay

output load

CS250, UC Berkeley Fall ‘09Lecture 04, Timing

Hold-time Violations

‣ Some state elements have positive hold time requirements.
‣ How can this be?

‣ Fast paths from one state element to the next can create a
violation. (Think about shift registers!)

‣ CAD tools do their best to fix violations by inserting delay (buffers).
‣ Of course, if the path is delayed too much, then cycle time suffers.
‣ Difficult because buffer insertion changes layout, which changes

path delay.
18

FF

clk

d q

CS250, UC Berkeley Fall ‘09Lecture 04, Timing

Conclusion
‣ Timing Optimization: You start with a target on clock

period. What control do you have?
‣ Biggest effect is RTL manipulation.
‣ i.e., how much logic to put in each pipeline stage.
‣ In most cases, the tools will do a good job at logic/circuit

level:
‣ Logic level manipulation
‣ Transistor sizing
‣ Buffer insertion
‣ But some cases may be difficult and you may need to help
‣ Hand instantiate cells, layout generators

19

CS250, UC Berkeley Fall ‘09Lecture 02, Introduction 1

End of Physical Realities
part 1 Timing

20

