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Chapter 7

A Tutorial on EEG Signal Processing Techniques
for Mental State Recognition in Brain-Computer
Interfaces

Fabien LOTTE

Abstract This chapter presents an introductory overview and a aitofi signal
processing techniques that can be used to recognize méamteed from electroen-
cephalographic (EEG) signals in Brain-Computer Interfadéore particularly, this
chapter presents how to extract relevant and robust shespiial and temporal
information from noisy EEG signals (e.g., Band Power fesguspatial filters such
as Common Spatial Patterns or XDAWN, etc.), as well as a fegsifleation algo-
rithms (e.g., Linear Discriminant Analysis) used to clfs#his information into a
class of mental state. It also briefly touches on alternabiué currently less used
approaches. The overall objective of this chapter is toidethe reader with prac-
tical knowledge about how to analyse EEG signals as well sségs the key points
to understand when performing such an analysis.

7.1 Introduction

One of the critical steps in the design of Brain-Computeefiatce (BCI) applica-
tions based on ElectroEncephaloGraphy (EEG) is to procesamalyse such EEG
signals in real-time, in order to identify the mental statéhe user. Musical EEG-
based BCI applications are no exception. For instance, inafMa et al, 2011),
the application had to recognize the visual target the user attending to from
his/her EEG signals, in order to execute the correspondingjaal command. Un-
fortunately, identifying the user's mental state from EE@nals is no easy task,
such signals being noisy, non-stationary, complex andgif dimensionality (Lotte
et al, 2007). Therefore, mental state recognition from EE@Gads requires specific
signal processing and machine learning tools. This chagtes at providing the
reader with a basic knowledge about how to do EEG signal geiog and the kind
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2 Fabien LOTTE

of algorithms to use to do so. This knowledge is - hopefullyesented in an ac-
cessible and intuitive way, by focusing more on the concaptsideas than on the
technical details.

This chapter is organized as follows: Section 7.2 preséwgéneral architec-
ture of an EEG signal processing system for BCI. Then, Sedti8 describes the
specific signal processing tools that can be used to desigrbB&ed on oscilla-
tory EEG activity while Section 7.4 describes those thatused for BCl based on
Event Related Potentials (ERP), i.e., brain responsesnulsis and events. Sec-
tion 7.5 presents some alternative tools, still not as popas the one mentioned
so far but promising, both for BCI based on oscillatory &ttiand those based on
ERP. Finally, Section 7.6 proposes a discussion aboutetiibls covered and their
perspectives while Section 7.7 concludes the paper.

7.2 General EEG signal processing principle

In BCI design, EEG signal processing aims at translatingE& signals into the
class of these signals, i.e., into the estimated mental sfdlhe user. This translation
is usually achieved using a pattern recognition approablose two main steps are
the following:

e Feature Extraction: The first signal processing step is known as “feature extrac-

tion” and aims at describing the EEG signals by (ideally)w felevant values
called “features” (Bashashati et al, 2007). Such featunesild capture the in-
formation embedded in EEG signals that is relevant to desdhie mental states
to identify, while rejecting the noise and other non-reteviaformation. All fea-
tures extracted are usually arranged into a vector, knovenfeature vector.

e Classification: The second step, denoted as “classification” assigns atdass
set of features (the feature vector) extracted from theadsgfhotte et al, 2007).
This class corresponds to the kind of mental state identifiaés step can also
be denoted as “feature translation” (Mason and Birch, 2008)ssification al-
gorithms are known as “classifiers”.

As an example, let us consider a Motor Imagery (Ml)-based, B€l, a BCI
that can recognized imagined movements such left hand bt hignd imagined
movements (see Figure 7.1). In this case, the two mentakstaidentify are imag-
ined left hand movement on one side and imagined right hangement on the
other side. To identify them from EEG signals, typical featuare band power
features, i.e., the power of the EEG signal in a specific feegy band. For MI,
band power features are usually extracted ingth@bout 8- 12 Hz) andB (about
16— 24 Hz) frequency bands, for electrode localized over theomumirtex areas of
the brain (around locations C3 and C4 for right and left hary@ments respec-
tively) (Pfurtscheller and Neuper, 2001). Such featurestiaen typically classified
using a Linear Discriminant Analysis (LDA) classifier.
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Fig. 7.1 A classical EEG signal processing pipeline for BCI, here in theteodnof a motor
imagery-based BClI, i.e., a BCl that can recognized imagined mewts from EEG signals.

It should be mentioned that EEG signal processing is oftélh dsing machine
learning. This means the classifier and/or the featureswaoenatically tuned, gen-
erally for each user, according to examples of EEG signals fthis user. These
examples of EEG signals are called a training set, and ae¢eldlwvith their class of
belonging (i.e., the corresponding mental state). Baseiti@se training examples,
the classifier will be tuned in order to recognize as appeately as possible the
class of the training EEG signals. Features can also be forsath a way, e.g., by
automatically selecting the most relevant channels ouiaqy bands to recognized
the different mental states. Designing BCI based on madbaraing (most current
BCI are based on machine learning) therefore consists oa2qsh

e Calibration (a.k.a., training) phase: This consists in 1) Acquiringnirsg EEG
signals (i.e., training examples) and 2) Optimizing the E&i@hal processing
pipeline by tuning the feature parameters and/or trairtiegctassifier.

e Use(a.k.a., test) phase: This consists in using the modeluffeatand classifier)
obtained during the calibration phase in order to recogthigenental state of the
user from previously unseen EEG signals, in order to op¢nat8Cl.

Feature extraction and classification are discussed in deiegls hereafter.
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7.2.1 Classification

As mentioned above, the classification step in a BCl aimsastating the features
into commands (McFarland et al, 2006) (Mason and Birch, 2008do so, one can
use either regression algorithms (McFarland and Wolpa@52(Duda et al, 2001)
or classification algorithms (Penny et al, 2000) (Lotte eR@D7), the classification
algorithms being by far the most used in the BCI communitys{igshati et al,
2007) (Lotte et al, 2007). As such, in this chapter, we foauly on classification
algorithms. Classifiers are able to learn how to identifydlaess of a feature vector,
thanks to training sets, i.e., labeled feature vectorsaeted from the training EEG
examples.

Typically, in order to learn which kind of feature vector mespond to which
class (or mental state), classifiers try either to model Wwhiea of the feature space
is covered by the training feature vectors from each classthis case the classi-
fier is a generative classifier - or they try to model the boupt@tween the areas
covered by the training feature vectors of each class - ichvbase the classifier is
a discriminant classifier. For BCI, the most used classiierfar are discriminant
classifiers, and notably Linear Discriminant Analysis (LDAassifiers.

The aim of LDA (also known as Fisher’'s LDA) is to use hypergaro sepa-
rate the training feature vectors representing the diffeckasses (Duda et al, 2001)
(Fukunaga, 1990). The location and orientation of this hylame is determined
from training data. Then, for a two-class problem, the clafsan unseen (a.k.a.,
test) feature vector depends on which side of the hyperplamdeature vector is
(see Figure 7.2). LDA has very low computational requiretsewhich makes it
suitable for online BCI system. Moreover this classifierime which makes it
naturally good at generalizing to unseen data, hence denpraviding good re-
sults in practice (Lotte et al, 2007). LDA is probably the mosed classifier for
BCI design.

Feature 1 < Separating
hyperplane

(Ex: powerin

the mu band &

overthe left

motor cortex)

Feature Vector
from the
«right » class

Feature Vector
from the
«left » class

Feature 2 (Ex powerinthe mu bandover
the right motor cortex)

Fig. 7.2 Discriminating two types of motor imagery with a linear hypern@aising a Linear Dis-
criminant Analysis (LDA) classifier.
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Another very popular classifier for BCI is the Support Vedttechine (SVM)
(Bennett and Campbell, 2000). An SVM also uses a discrintihgperplane to
identify classes (Burges, 1998). However, with SVM, theestdd hyperplane is
the one that maximizes the margins, i.e., the distance floennearest training
points, which has been found to increase the generalizatpabilites (Burges,
1998) (Bennett and Campbell, 2000).

Generally, regarding classification algorithms, it seehag very good recogni-
tion performances can be obtained using appropriate effttelf classifiers such as
LDA or SVM (Lotte et al, 2007). What seems to be really impottiarthe design
and selection of appropriate features to describe EEG Isigiéth this purpose,
specific EEG signal processing tools have been proposedsigriBCI. In the rest
of this chapter we will therefore focus on EEG feature esttoactools for BCI. For
readers interested to learn more about classification itgus, we refer them to
(Lotte et al, 2007), a review paper on this topic.

7.2.2 Feature extraction

As mentioned before, feature extraction aims at reprasgméw EEG signals by
an ideally small number of relevant values, which desciiteetask-relevant infor-
mation contained in the signals. However, classifiers ate tblearn from data
which class corresponds to which input features. As sucly, mat using directly
the EEG signals as input to the classifier? This is due to thealed “curse-of-
dimensionality”, which states that the amount of data ndedeproperly describe
the different classes increases exponentially with theedsionality of the feature
vectors (Jain et al, 2000) (Friedman, 1997). It has beemmewnded to use from
5 to 10 times as many training examples per class as the iepture vector di-
mensionality (Raudys and Jain, 1991). What would it mean to use directly the
EEG signals as input to the classifier? Let us consider a consteup with 32
EEG sensors sampled at 250Hz, with one trial of EEG signalgogisecond long.
This would mean a dimensionality of 3250= 8000, which would require at least
40000 training examples. Obviously we cannot ask the BCi tsperform each
mental task 40000 times to calibrate the BCI before he/shddaase it. A much
more compact representation is therefore needed, henaeetessity to perform
some form of feature extraction.

With BCI, there are 3 main sources of information that can $eduto extract
features from EEG signals:

e Spatial information: Such features would describe where (spatially) the retevan
signal comes from. In practice, this would mean selectirgiic EEG channels,
or focusing more on specific channels than on some other.arh@unts to fo-
cusing on the signal originating from specific areas of ttaérbr

1 note that this was estimated before SVM were invented, an@Witare generally less sensitive
- although not completely immune - to this curse-of-dimensiopalit
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e Spectral (frequential) information: Such features would describe how the
power in some relevant frequency bands varies. In pradtice means that the
features will use the power in some specific frequency bands.

e Temporal information: Such features would describe how the relevant signal
varies with time. In practice this means using the EEG sgualues at different
time points or in different time windows.

Note that these three sources of information are not the amig, and alterna-
tives can be used (see Section 7.5). However, they are bjpdambst used one,
and, at least so far, the most efficient ones in terms of dieaon performances.
It should be mentioned that so far, nobody managed to discaweto design a set
of features that would work for all types of BCI. As a conseawes different kinds
of BCI currently use different sources of information. Nat{a BCl based on oscil-
latory activity (e.g., BCl based on motor imagery) mostlgdend use the spectral
and spatial information whereas BCI based on event reladéehpals (e.g., BCI
based on the P300) mostly need and use the temporal and spfatianation. The
next sections detail the corresponding tools for these ategories of BCI.

7.3 EEG signal processing tools for BCl based on oscillatory
activity

BCI based on oscillatory activity are BCI that use mentatestavhich lead to
changes in the oscillatory components of EEG signalstiat Jead to change in the
power of EEG signals in some frequency bands. Increase of i@ial power in a
given frequency band is called an Event Related SynchrooiséERS), whereas a
decrease of EEG signal power is called an Event Related Deeymisation (ERD)
(Pfurtscheller and da Silva, 1999). BCI based on osciliedativity notably includes
motor imagery-based BCI (Pfurtscheller and Neuper, 208fgady State Visual
Evoked Potentials (SSVEP)-based BCI (Vialatte et al, 2@E)vell as BCI based
on various cognitive imagery tasks such as mental calonatnental geometric
figure rotation, mental word generation, etc. (Friedrictalet2012) (Millan et al,
2002). As an example, imagination of a left hand movemenidéa a contralateral
ERD in the motor cortex (i.e., in the right motor cortex foftleand movement)
in the u and B bands during movement imagination, and to an ERS irgthend
(a.k.a., beta rebound) just after the movement imaginainating (Pfurtscheller and
da Silva, 1999). This section first describes a basic desigodcillatory activity-
based BCI. Then, due to the limitations exhibited by thisgiesit exposes more
advanced designs based on multiple EEG channels. Firtgdlgsents a key tool to
design such BCls: the Common Spatial Pattern (CSP) algoyils well as some of
its variants.
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7.3.1 Basic design for an oscillatory activity-based BCI

Oscillatory activity-based BCI are based on change in pawexome frequency
bands, in some specific brain areas. As such, they naturedlgt to exploit both the
spatial and spectral information. As an example, a basigdésr a motor-imagery
BCI would exploit the spatial information by extracting feses only from EEG
channels localized over the motor areas of the brain, tifgichannels C3 for right
hand movements, Cz for foot movements and C4 for left hancemewts. It would
exploit the spectral information by focusing on frequenaptisu (8— 12 Hz) and3
(16— 24 Hz). More precisely, for a BCI that can recognize left hiHdrersus right
hand MI, the basic features extracted would be the averaydaver in 8- 12 Hz
and 16— 24 Hz from both channels C3 and C4. Therefore, the EEG sigvalsd
be described by only 4 features.

There are many ways to compute band power features from Ef@lsi(Her-
man et al, 2008) (Brodu et al, 2011). However, a simple, papaihd efficient one
is to first band-pass filter the EEG signal from a given chamtelthe frequency
band of interest, then to square the resulting signal to coetbe signal power, and
finally to average it over time (e.g., over a time window of 1T¥)is is illustrated in
Figure 7.3.

1 feature:
M band power
Temporal for channel C3

il Band-pass _ Power
average

il filteringin  _ estimation +
8-12Hz (u) .| (squaring)

) ; “:‘\; | } > ‘\“J

Raw EEG at C3
(left motor cortex)

Fig. 7.3 Signal processing steps to extract band power features fronkEE®vsignals. The EEG
signal displayed here was recorded during right hand motor iagee instruction to perform
the imagination was provided &&= 0 s on the plots). The contralateral ERD during imagination is
here clearly visible. Indeed, the signal power in channel €8 hotor cortex) in 8-12 Hz clearly
decreases during this imagination of a right hand movement.

Unfortunately, this basic design is far from being optiniatleed, it uses only
two fixed channels. As such, relevant information, measimgather channels
might be missing, and C3 and C4 may not be the best channelkd@ubject at
hand. Similarly, using the fixed frequency bands B2 Hz and 16- 24 Hz may not
be the optimal frequency bands for the current subject. hegd, much better per-
formances are obtained when using subject-specific desigtisthe best channels
and frequency bands optimized for this subject. Using mioa@ two channels is
also known to lead to improved performances, since it esaoleollect the rele-
vant information spread over the various EEG sensors.
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7.3.2 Towards advanced BCI using multiple EEG channels

Both the need to use subject-specific channels and the neesktonore than 2
channels lead to the necessity to design BCI based on naulthpnnels. This is
confirmed by various studies which suggested that, for matagery, 8 channels
is a minimum to obtain reasonnable performances (Sanreli €010) (Arvaneh
et al, 2011), with optimal performances achieved with a maofer number, e.g.,
48 channels in (Sannelli et al, 2010). However, simply usioge channels will not
solve the problem. Indeed, using more channels means grtgranore features,
thus increasing the dimensionality of the data and suffenmore from the curse-
of-dimensionality. As such, just adding channels may ewverehse performances
if too little training data is available. In order to efficiynexploit multiple EEG
channels, 3 main approaches are available, all of whiclribomé to reducing the
dimensionality:

e Feature selectionalgorithm: These are methods to select automatically aesubs
of relevant features, among all the features extracted.

e Channel selectionalgorithms: These are similar methods that select autemati
cally a subset of relevant channels, among all channel&alai

e Spatial Filtering algorithms: These are methods that combine several clannel
into a single one, generally using weighted linear comlbdmat from which fea-
tures will be extracted.

They are described below.

7.3.2.1 Feature selection:

Feature selection are classical algorithms widely useddohime learning (Guyon
and Elisseeff, 2003) (Jain and Zongker, 1997) and as suchvely popular in
BCI design (Garrett et al, 2003). There are too main famiiefeature selection
algorithms:

e Univariate algorithms: They evaluate the discriminative (or desarg)tpower
of each feature individually. Then, they select the N bedividual features (N
needs to be defined by the BCI designer). The usefulness bffeature is typ-
ically assessed using measures such as Student t-sgatghich measures the
feature value difference between two classes, correldtam®ed measures such
asR?, mutual information, which measures the dependence batthecfeature
value and the class label, etc. (Guyon and Elisseeff, 200@yariate methods
are usually very fast and computationally efficient but they also suboptimal.
Indeed, since they only consider the individual featurefulsess, they ignore
possible redundancies or complementarities betweenrésatas such, the best
subset of N features is usually not the N best individualuiesst. As an example,
the N best individual features might be highly redundantmedsure almost the
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same information. As such using them together would add Meley discrimi-
nant power. On the other hand, adding a feature that is ishataliy not very good
but which measures a different information from that of tlestbindividual ones
is likely to improve the discriminative power much more.

e Multivariate algorithms: They evaluate subsets of features togethékesp the
best subset with N features. These algorithms typicallymeasures of global
performance for the subsets of features, such as measucésssification per-
formances on the training set (typically using cross-walih (Browne, 2000))
or multivariate mutual information measures, see, e.calI(l2000) (Pudil et al,
1994) (Peng et al, 2005). This global measure of performanedles to actu-
ally consider the impact of redundancies or complemeigartetween features.
Some measures also remove the need to manually select tiesofdd (the num-
ber of features to keep), the best value of N being the numbfeiatures in the
best subset identified. However, evaluating the usefuloksabsets of features
leads to very high computational requirements. Indeedethre many more pos-
sible subsets of any size than individual features. As shetretare many more
evaluations to perform. In fact, the number of possible sth$o evaluate is
very often far too high to actually perform all the evaluasdn practice. Con-
sequently, multivariate methods usually rely on heursticgreedy solutions in
order to reduce the number of subsets to evaluate. They arefdie also sub-
optimal but usually give much better performances thanariate methods in
practice. On the other hand, if the initial number of feasugevery high, multi-
variate methods may be too slow to use in practice.

7.3.2.2 Channel selection:

Rather than selecting features, one can also select chamlenly use features
extracted from the selected channels. While both channefeatdre selection re-
duce the dimensionality, selecting channels instead ofifes has some additional
advantages. In particular using less channels means a $ast time for the EEG
cap and also a lighter and more comfortable setup for the B€t. ut should be
noted, however, that with the development of dry EEG chaselecting channels
may become less crucial. Indeed the setup time will not déjpenthe number of
channel used, and the BCI user will not have more gel in hiibi if more chan-
nels are used. With dry electrodes, using less channelstillilbe lighter and more
comfortable for the user though.

Algorithms for EEG channel selection are usually basedspined from generic
feature selection algorithm. Several of them are actualblagous algorithms that
assess individual channel useufulness or subsets of dsafiseriminative power
instead of individual features or subset of features. Adistiey also use similar
performance measures, and have similar properties. Sdme channel selection
algorithms are based on spatial filter optimization (seevwglReaders interested
to know more about EEG channel selection may refer to thevatig papers and
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associated references (Satler et al, 2005) (Arvaneh et al, 2011) (Lal et al, 2004)
(Lan et al, 2007), among many other.

7.3.2.3 Spatial filtering:

Spatial filtering consists in using a small number of new cledsthat are defined
as a linear combination of the original ones:

K= Zwixi =wX (7.1)

with X the spatially filtered signak; the EEG signal from channely; the weight
given to that channel in the spatial filter aXda matrix whosé'" row is x;, i.e., X is
the matrix of EEG signals from all channels.

It should be noted that spatial filtering is useful not onlgdngse it reduces the
dimension from many EEG channels to a few spatially filteigdals (we typically
use much less spatial filters than original channels), l=at bécause it has a neu-
rophysiological meaning. Indeed, with EEG, the signals suezd on the surface
of the scalp are a blurred image of the signals originatiognfwithin the brain. In
other words, due to the smearing effect of the skull and kfaiua., volume con-
duction effect), the underlying brain signal is spread a&reral EEG channels.
Therefore spatial filtering can help recovering this oréisignal by gathering the
relevant information that is spread over different chasinel

There are different ways to define spatial filters. In patéiguhe weightsv; can
be fixed in advance, generally according to neurophysio&dnowledge, or they
can be data driven, that is, optimized on training data. Agrtbe fixed spatial filters
we can notably mention the bipolar and Laplacian which acellspatial filters that
try to locally reduce the smearing effect and some of the ¢paeknd noise (McFar-
land et al, 1997). A bipolar filter is defined as the differebeéveen 2 neighboring
channels, while a Laplacian filter is defined as 4 times theevaf a central chan-
nel minus the values of the 4 channels around. For instanbgadar filter over
channel C3 would be defined &8yiy0a = FC3 — CP3, while a Laplacian filter
over C3 would be defined &3 apacian = 4C3 — FC3—-C5—-C1—-CP3, see also
Figure 7.4. Extracting features from bipolar or Laplacigat&l filters rather than
from the single corresponding electrodes has been showigndisantly increase
classification performances (McFarland et al, 1997). Ariisg solution is another
kind of fixed spatial filter (Michel et al, 2004) (Baillet et, @&001). Inverse solutions
are algorithms that enable to estimate the signals origigdtom sources within
the brain based on the measurements taken from the scalfhdnwords, inverse
solutions enable us to look into the activity of specific breegions. A word of
caution though: inverse solutions do not provide more imfation than what is al-
ready available in scalp EEG signals. As such, using inveosations will NOT
make a non-invasive BCI as accurate and efficient as an uwevasie. However, by
focusing on some specific brain areas, inverse solutionga@atmnibute to reducing
background noise, the smearing effect and irrelevant im&ion originating from
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other areas. As such, it has been shown than extractingésdtom the signals spa-
tially filtered using inverse solutions (i.e., from the soes within the brain) leads to
higher classification performances than extracting festdirectly from scalp EEG

signals (Besserve et al, 2011) (Noirhomme et al, 2008). fregd, using inverse so-
lutions has been shown to lead to high classification perdiocas (Congedo et al,
2006) (Lotte et al, 2009b) (Qin et al, 2004) (Kamousi et aQ®0Grosse-Wentrup

et al, 2005). It should be noted that since the number of exignals obtained with

inverse solutions is often larger than the initial numbecludinnels, it is necessary
to use feature selection or dimensionality reduction atlgors.

P e ﬁ"_‘
’)_L“Ni S /’ \jk“\
(fw () (_z\ /.-\, (FW () (ﬂ .
/ AF;) '(Ar\ @d () @E z / AF, ’(Ar\ @:J (o C) EF,
(Fy) Fr)’r }f} T I F‘K r,@;( Rl ,-—\ »4:—'/ F')’Efr’r_,‘) D m( r,}@/)( PO r”m\

tFT" KFT)(C@ FQ!FGZ)(F&J* @».5 ;f—ﬁ') (\FI,T" GT)CO FQ)tiﬂﬁBl"@ ‘\?ﬂ)

(, ?T‘»( D O ca){c?u’cz‘ﬂ;);« G )@(T) &0 (w?m{n -

gt i S o

ﬁ) Tp,,(cmgum):cﬂbﬁaﬁ cn,) JJ i e : Tpr,(ca\olm)'CPDFJ CR) \3) a
PR m@ 2 ’U’P‘(\SU F\f.wc)@ D U(P“ %
(P0| J P i:o§) (po\@\ P 1:09
— .l
DU —{0,)- °1) (0)-

Fig. 7.4 Left: channels used in bipolar spatial filtering over chan@3sand C4. Right: channels
used in Laplacian spatial filtering over channels C3 and C4.

The second category of spatial filters, i.e., data driveriapfiters, are opti-
mized for each subject according to training data. As ang deven algorithm, the
spatial filter weightsv; can be estimated in an unsupervised way, that is without the
knowledge of which training data belongs to which classnoa isupervised way,
with each training data being labelled with its class. Amtrggunsupervised spatial
filters we can mention Principal Component Analysis (PCA)jol finds the spa-
tial filters that explain most of the variance of the data,ratependent Component
Analysis (ICA), which find spatial filters whose resultingyisals are independent
from each other (Kachenoura et al, 2008). The later has bremmsrather useful to
design spatial filters able to remove or attenuate the effieattifacts (EOG, EMG,
etc. (Fatourechi et al, 2007)) on EEG signals (Tangermarah, @009) (Xu et al,
2004) (Kachenoura et al, 2008) (Brunner et al, 2007). Atigvely, spatial filters
can be optimized in a supervised way, i.e., the weights wltbfined in order to
optimize some measure of classification performance. FobR€ed on oscillatory
EEG activity, such a spatial filter has been designed: ther@@mSpatial Patterns
(CSP) algorithm (Ramoser et al, 2000) (Blankertz et al, B)0Bhis algorithm has
greatly contributed to the increase of performances ofkimd of BCI, and, thus,
has become a standard tool in the repertoire of oscillatotiyity-based BCI de-
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signers. It is described in more detalils in the followingteet, together with some
of its variants.

7.3.3 Common Spatial Patterns and variants

Informally, the CSP algorihtm finds spatial filtenssuch that the variance of the
filtered signal is maximal for one class and minimal for theeotclass. Since the
variance of a signal band-pass filtered in barid actually the band-power of this
signal in bandb, this means that CSP finds spatial filters that lead to optymal
discriminant band-power features since their values wbelanaximally different
between classes. As such, CSP is particularly useful fori&Skd on oscillatory
activity since their most useful features are band-powatufes. As an example,
for BCl based on motor imagery, EEG signals are typicalleffét in the 8- 30
Hz band before being spatially filtered with CSP (Ramosel, &0#00). Indeed this
band contains both the and 3 rhythms.

Formally, CSP uses the spatial filtavsvhich extremize the following function:

WX X wT o wCw!
WX XJwl wCow’

Jesp(W) (7.2)
whereT denotes transposk; is the training band-pass filtered signal matrix for
classi (with the samples as columns and the channels as rowsTiathe spatial
covariance matrix from class In practice, the covariance mati is defined as
the average covariance matrix of each trial from clag@&ankertz et al, 2008b). In
this equationy; is the spatially filtered EEG signal from clasandwX X w' is
thus the variance of the spatially filtered signal, i.e.,liaad-power of the spatially
filtered signal. Therefore, extremizidgsp (W), i.e., maximizing and minimizing it,
indeed leads to spatially filtered signals whose band-pdsveraximally different
between classedzs (W) happens to be a Rayleigh quotient. Therefore, extremizing
it can be solved by Generalized Eigen Value DecompositideMB). The spatial
filtersw that maximize or minimizécsp (W) are thus the eigenvectors corresponding
to the largest and lowest eigenvalues, respectively, oBtE¥D of matrice<C; and
Cy. Typically, 6 filters (i.e., 3 pairs), corresponding to théaByest and 3 lowest
eigenvalues are used. Once these filters obtained, a CSRefdais defined as
follows:

f =log(wXXTw") = log(wCw") = log(var (wX)) (7.3)

i.e., the features used are simply the band power of theadlydiitered signals. CSP
requires more channels than fixed spatial filters such add@ipo Laplacian, how-
ever in practice, it usually leads to significantly higheasdification performances
(Ramoser et al, 2000). The use of CSP is illustrated in Figueln this figure, the
signals spatially filtered with CSP clearly show differemteariance (i.e., in band
power) between the two classes, hence ensuring high ctadgifi performances.
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Fig. 7.5 EEG signals spatially filtered using the CSP (Common Spatial fRajtalgorithm. The

first two spatial filters (top filters) are those maximizing the vac@of signals from class “Left
Hand Motor Imagery” while minimizing that of class “Right Hand Mo Imagery”. They corre-

spond to the largest eigen values of the GEVD. The last two fillmtom filters) are the opposite,
they maximize the variance of class “Right Hand Motor Imageryflevminimizing that of class

“Left Hand Motor Imagery” (They correspond to the lowest eigatues of the GEVD). This

can be clearly seen during the periods of right or left hand matagery, in light and dark grey
respectively.

The CSP algorithm has numerous advantages: first, it ledughaclassification
performances. CSP is also versatile, since it works for RRERS BCI. Finally,
it is computationally efficient and simple to implement. @gether this makes CSP
one of the most popular and efficient approach for BCI baseskoiflatory activity
(Blankertz et al, 2008b).

Nevertheless, despite all these advantages, CSP is nopekem limitations
and is still not the ultimate signal processing tool for EB&ed BCI. In particu-
lar, CSP has been shown to be non-robust to noise, to naorstdties and prone
to overfitting (i.e., it may not generalize well to new datd)em little training data
is available (Grosse-Wentrup and Buss, 2008) (Grosse+tWest al, 2009) (Reud-
erink and Poel, 2008). Finally, despite its versatility Fo&ly identifies the relevant
spatial information but not the spectral one. Fortunatabte are ways to make CSP
robust and stable with limited training data and with norsyrting data. An idea is
to integrate prior knowledge into the CSP optimization alpon. Such knowledge
could represent any information we have about what shoulal drmod spatial filter
for instance. This can be neurophysiological prior, dataGEsignals) or meta-data
(e.g., good channels) from other subjects, etc. This knbgdds used to guide and
constraint the CSP optimization algorithm towards goodtsahs even with noise,
limited data and non-stationarities (Lotte and Guan, 20E@jmally, this knowl-
edge is represented in a regularization framework thatlizesaunlikely solutions
(i.e., spatial filters) that do not satisfy this knowledderefore enforcing it. Simi-
larly, prior knowledge can be used to stabilize statististimates (here, covariance
matrices) used to optimize the CSP algorithm. Indeed, esitig covariance matri-
ces from few training data usually leads to poor estimatesi¢it and Wolf, 2004).
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Formally, a Regularized CSP (RCSP) can be obtained by maixigiboth equa-
tion 7.4 and 7.5:

. V\/élWT
Jrese1 (W) = WEWT + AP(W) (7.4)
_ WCM2WT
Jresp2(W) = m (7.5)
with
G =(1-yC+yG (7.6)

In these equation$(w) is the penalty term that encodes the prior knowledge.
This a positive function of the spatial filter, whose value will increase i does
not satisfy the knowledge encoded. Since the filters areir@ateby maximizing
Jresei, this means that the numerator (which is positive) must brinmaed and
the denominator (which is also positive) must be minimiZidceP(w) is positive
and part of the denominator, this means tat) will be minimized as well, hence
enforcing that the spatial filterg satisfy the prior knowledge. Matrig; is another
way of using prior knowledge, in order to stabilize the esties of the covariance
matrice<C;. If we have any idea about how these covariance matriceddsheuthis
can be encoded iG; in order to define a new covariance matwhich is a mix of
the matrixC; estimated on the data and of the prior knowle@yeWe will present
below what kind of knowledge can be encodedP{w) andG;.

For the penalty terr®(w), a kind of knowledge that can be used is spatial knowl-
edge. For instance, from a neurophysiological point of yieevknow that neighbor-
ing neurons tend to have similar functions, which supptisdea that neighboring
electrodes should measure similar brain signals (if theteddes are close enough
to each other), notably because of the smearing effect. idigbboring electrodes
should have similar contributions in the spatial filtersother words, spatial filters
should be spatially smooth. This can be enforced by usingdi@ving penalty
term:

P(w) = Prox(i, j)(w —w;j)? (7.7)
]

WhereProx(i, j) measures the proximity of electrodeand j, and (wj —w;)? is
the weight difference between electrodesnd j, in the spatial filter. Thus, if two
electrodes are close to each other and have very differaghtgethe penalty term
P(w) will be high, which would prevent such solutions to be seddatluring the
optimization of the CSP (Lotte and Guan, 2010b). Anothenmikedge that can be
used is that for a given mental task, not all the brain regazasnvolved and useful.
As such, some electrodes are unlikely to be useful to classine specific mental
tasks. This can be encodedrfw) as well:
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channel i “uselessness’” if i=]
0 otherwise
(7.8)

Basically, the value oD(i,i) is the penalty for thé!" channel. The higher this
penalty, the less likely this channel will have a high cdnition in the CSP fil-
ters. The value of this penalty can be defined according toopéysiological prior
knowledge for instance, large penalties being given to casnunlikely to be use-
ful and small or no penalty being given to channels that delylito genuinely
contribute to the filter. However, it may be difficult to preely define the extent
of the penalty from the literature. Another alternative he tuse data previously
recorded from other subjects. Indeed, the optimized CSérdililready obtained
from previous subject give information about which chasnehve large contri-
butions on average. The inverse of the average contributicgach channel can
be used as the penalty, hence penalizing channels with sxeathge contribution
(Lotte and Guan, 2011). Penalty terms are therefore alseceaway to perform
subject-to-subject transfer and re-use information frahreosubjects. These two
penalties are examples that have proven useful in pradttus. usefulness is no-
tably illustrated in Figure 7.6, in which spatial filters alited with the basic CSP
are rather noisy, with strong contributions from channelsexpected from a neu-
rophysiological point of view. On the contrary the spatiliéfis obtained using the
two RCSP penalties described previously are much clegpatially smoother and
with strong contributions localized in neurophysiolodfigaielevant areas. This in
turns led to higher classification performances, with CSRinlmg 731% classi-
fication accuracy versus 786 and 77%6% for the regularized versions (Lotte and
Guan, 2011). It should be mentioned, however, that strongribations from non-
neurophysiologically relevant brain areas in a CSP spéflief may be present to
perform noise-cancellation, and as such does not mean atialdter is bad per se
(Haufe et al, 2014). It should also be mentioned that otherésting penalty terms
have been proposed, in order to deal with known noise soRlaskertz et al,
2008a), non-stationarities (Samek et al, 2012) or to perfeimultaneous channel
selection (Farquhar et al, 2006) (Arvaneh et al, 2011).

Matrix G; in equation 7.6 is another way to add prior knowledge. Thisrima
can notably be defined as the average covariance matrixhebtéiom other sub-
jects who performed the same task. At such it enables to defgeod and stable
estimate of the covariance matrices, even if few trainingEtata is available for
the target subject. This has been shown to enable us toa@iBCl system with 2
to 3 times less training data than with the basic CSP, whilietaiaing classification
performances (Lotte and Guan, 2010a).

Regularizing CSP using a-priori knowledge is thus a nice toaeal with some
limitations of CSP such as its sensitivity to overfitting atslnon-robustness to
noise. However, these regularized algorithms cannot addhe limitation that CSP
only optimizes the use of the spatial information, but neait thf the spectral one.
In general, independently of the use of CSP, there are davaya to optimize the
use of the spectral information. Typically, this consistgdientifying, in one way or
another, the relevant frequency bands for the current subajel mental tasks per-

P(w) =wDw' with D(i,j):{
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Fig. 7.6 Spatial filters (i.e., weight attributed to each channetpoted to classify left hand versus
right hand motor imagery. The electrodes, represented by blaisk dre here seen from above,
with the subject nose on top. a) basic CSP algorithm, b) RCSP witbnalty term imposing
spatial smoothness, ¢) RCSP with a penalty term penalizing iyitkennels according to EEG
data from other subjects.

formed. For instance, this can be done manually (by trialemars), or by looking
at the average EEG frequency spectrum in each class. In aantimmatic way, pos-
sible methods include extracting band power features iriphelfrequency bands
and then selecting the relevant ones using feature sale(taite et al, 2010), by
computing statistics on the spectrum to identify the redeequencies (Zhong
et al, 2008), or even by computing optimal band-pass filtersfassification (De-
vlaminck, 2011). These ideas can be used within the CSP fvarkein order to
optimize the use of both the spatial and spectral informat®everal variants of
CSP has been proposed in order to optimize spatial and apéltéars at the same
time (Lemm et al, 2005) (Dornhege et al, 2006) (Tomioka e2@06) (Thomas
et al, 2009). A simple and computationally efficient methsdviorth describing:
the Filter Bank CSP (FBCSP) (Ang et al, 2012). This methddstitated in Figure
7.7, consists in first filtering EEG signals in multiple fremey bands using a filter
bank. Then, for each frequency band, spatial filters arexoptid using the clas-
sical CSP algorithm. Finally, among the multiple spatigkf#é obtained, the best
resulting features are selected using feature selectgoritims (typically mutual
information-based feature selection). As such, this $&leath the best spectral and
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spatial filters since each feature corresponds to a singtpiémcy band and CSP
spatial filter. This algorithm, although simple, has proverbe very efficient in
practice. It was indeed the algorithm used in the winningies of all EEG data
sets from the last BCI competitidifAng et al, 2012).

Filter Bank

y

Vil

A
N,

Raw
EEG signals

zan

v

Fig. 7.7 Principle of Filter Bank Common Spatial Patterns (FBCSP): d)dspass filtering the
EEG signals in multiple frequency bands using a filter bank; 2)naping CSP spatial filter for
each band; 3) selecting the most relevant filters (both spatibpectral) using feature selection
on the resulting features.

7.3.4 Summary for oscillatory activity-based BCI

In summary, when designing BCI aiming at recognizing mesitaies that involve
oscillatory activity, it is important to consider both theestral and the spatial in-
formation. In order to exploit the spectral informationjngsband power features
in relevant frequency bands is an efficient approach. Feaelection is also a nice
tool to find the relevant frequencies. Concerning the spetfarmation, using or
selecting relevant channels is useful. Spatial filtering \@ry efficient solution for
EEG-based BCI in general, and the Common Spatial Patter@B)@lgorithm is
a must-try for BCI based on oscillatory activity in partiaul Moreover, there are
several variants of CSP that are available in order to makabiist to noise, non-
stationarity, limited training data sets or to jointly aptze spectral and spatial fil-
ters. The next section will address the EEG signal procgdsiols for BCI based

2 BCI competitions are contests to evaluate the best signal pragemsil classification algorithms
on given brain signals data sets. See http://www.bbci.de/ctitope for more info.
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on evoked potentials, which are different from the ones rilesd so far, but share
some general concepts.

7.4 EEG signal processing tools for BCI based on event related
potentials

An Event Related Potential (ERP) is a brain responses dusne specific stimulus
perceived by the BCI user. A typical ERP used for BCI desighés?300, which is a
positive deflection of the EEG signal occurring about 300ftes ¢he user perceived
a rare and relevant stimulus (Fazel-Rezai et al, 2012) (sed-&yure 7.8).

Averaged ERP waveforms (electrode CZ) for targets and non targets - S1 - Standing
4 T T T T

"Target
Non target -------

5 I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6

Time (s)

Fig. 7.8 An exemple of an average P300 ERP after a rare and relevant séirfidrget). We can
clearly observe the increase in amplitude about 300ms afterithelgs, as compared to the non-
relevant stimulus (Non target).

ERP are characterized by specific temporal variations vegipect to the stim-
ulus onset. As such, contrary to BCI based on oscillatoriviagtERP-based BCI
exploit mostly a temporal information, but rarely a spdctiae. However, as for
BCI based on oscillatory activity, ERP-based can also beadfit from using the
spatial information. Next section illustrates how the gdand temporal informa-
tion is used in basic P300-based BCI designs.
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7.4.1 Basic signal processing tools for P300-based BCI

In P300-based BCI, the spatial information is typically lexied by focusing mostly

on electrodes located over the parietal lobe (i.e., by etitrg features only for these
electrodes), where the P300 is know to originate. As an el@rifpusienski et al

recommand to use a set of 8 channels, in positions Fz, CzZPBAPPO7, Oz, PO8
(see Figure 7.9) (Krusienski et al, 2006).
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Fig. 7.9 Recommended electrodes for P300-based BCI design, accordifigusienski et al,
2006).

Once the relevant spatial information identified, heregidior instance, only the
electrodes mentioned above, features can be extractdwfergnal of each of them.
For ERP in general, including the P300, the features gdgpexrgbloit the temporal
information of the signals, i.e., how the amplitude of theGEgignal varies with
time. This is typically achieved by using the values of poggssed EEG time points
as features. More precisely, features for ERP are genexdifgcted by 1) low-pass
or band-pass filtering the signals (e.g., in 1-12 Hz for th@d®ERP being generally
slow waves, 2) downsampling the filtered signals, in ordeethuce the number of
EEG time points and thus the dimensionality of the problemh &ngathering the
values of the remaining EEG time points from all consideteghnels into a feature
vector that will be used as input to a classifier. This proée#kistrated in Figure
7.10 to extract features from channel Pz for a P300-basecBadriment.

Once the features extracted, they can be provided to a fatasshich will be
trained to assigned them to the target class (presence dRBh @ to the non-target
class (absence of an ERP). This is often achieved usingicdassassifiers such
as LDA or SVM (Lotte et al, 2007). More recently, automatigaégularized LDA
have been increasingly used (Lotte and Guan, 2009) (Blankeal, 2010), as well
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Bi\ll({—Pa§5 Downsampling
filtering in (1 sample
1-12 Hz out of 64)

Raw EEG signal at Pz Features for
channel Pz

Fig. 7.10 Typical process to extract features from a channel of EEG fdata P300-based BCI
design. On this picture we can see the P300 becoming more visithielva different processing
steps.

as Bayesian LDA (Hoffmann et al, 2008) (Rivet et al, 2009)ttBeariants of LDA
are specifically designed to be more resistant to the curslgvensionality through
the use of automatic regularization. As such, they havegurtw be very effective in
practice, and superior to classical LDA. Indeed, the nunobésatures is generally
higher for ERP-based BCI than for those based on oscilladotivity. Actually,
many time points are usually needed to describe ERP but ofdgyvarequency
bands (or only one) to describe oscillatory activity. Attatively, feature selection or
channel selection techniques can also be used to deal wsthith dimensionality
(Lotte et al, 2009a) (Rakotomamonjy and Guigue, 2008) (kenski et al, 2006).
As for BCI based on oscillatory activity, spatial filters caso prove very useful.

7.4.2 Spatial filters for ERP-based BCI

As mentionned above, with ERP the number of features is lysgaite large, with

many features per channel and many channels used. The &sulskted for oscilla-
tory activity-based BClI, i.e., feature selection, charsedéction or spatial filtering
can be used to deal with that. While feature and channel smbealgorithms are
the same (these are generic algorithms), spatial filtedopgrighms for ERP are dif-
ferent. One may wonder why CSP could not be used for ERP fitagiin. This

is due to the fact that a crucial information for classifylB&P is the EEG time
course. However, CSP completely ignores this time coursecsdy considers the
average power. Therefore, CSP is not suitable for ERP &lzeson. Fortunately,
other spatial filters have been specifically designed fartésk.

One useful spatial filter available is the Fisher spatia¢ffifHoffmann et al,
2006). This filter uses the Fisher criterion for optimal slasparability. Informally,
this criterion aims at maximizing the Between class-varggri.e., the distance be-
tween the different classes (we want the feature vectons fhe different classes to
be as far apart from each other as possible, i.e., as diffasgpossible) while mini-
mizing the within class-variance, i.e., the distance betwthe feature vectors from
the same class (we want the feature vectors from the sanwtolag as similar as
possible). Formally, this means maximizing the followirtgeztive function:
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(S
Jrisher = tr(SN) (7.9)
with N
S=3 Pi&—9 (%9 (7.10)
K=1
and N
Su=3 P} (X = %) (6 — %) (7.11)
k=1 ieCy

In these equationsg, is the between-class varian®, the within-class variance,
N is the number of classes, is theit" feature vectory is the average of all vectors
v, C is thek!" class andpy the probability of clas.

This criterion is widely used in machine learning in genéElda et al, 2001),
and can be used to find spatial filters such that the resuldiamifes maximize this
criterion, and thus the discriminability between the otssS his is what the Fisher
spatial filter does. It finds the spatial filters such that thetially filtered EEG time
course (i.e., the feature vector) is maximally differentwmen classes, according
to the Fisher criterion. This is achieved by replaciagthe feature vector) bwX;
(i.e., the spatially filtered signal) in equations 7.10 aridl7This gives an objective
function of the formJ(w) = V"\‘I’g";lvvg which, like the CSP algorithm, can be solved
by GEVD. This has been showed to be very efficient in practiteffmann et al,
2006).

Another option, that has also proved very efficient in pragtis the XDAWN
spatial filter (Rivet et al, 2009). This spatial filter, alseditated to ERP classifica-
tion, uses a different criterion from that of the Fisher gddilter. xDAWN aims at
maximizing the signal to signal plus noise ratio. Informgaihis means that xDAWN
aims at enhancing the ERP response, at making the ERP mdke iisthe mid-
dle of the noise. Formally, xXDAWN finds spatial filters that rimaize the following
objective function:

WADDTATW'
WXXTwT
whereA is the time course of the ERP response to detect for each ehéesii-
mated from data, usually using a Least Square estimatelpasé matrix contain-
ing the positions of target stimuli that should evoke the EIRRhis equation, the
numerator represents the signal, i.e., the relevant irdtion we want to enhance.
Indeed WADDT ATw' is the power of the time course of the ERP responses after
spatial filtering. On the contrary, in the denominat@XXTw' is the variance of all
EEG signals after spatial filtering. Thus, it contains bdth signal (the ERP) plus
the noise. Therefore, maximizingpayn actually maximizes the signal, i.e., it en-
hances the ERP response, and simultaneously minimizegted plus the noise,
i.e., it makes the noise as small as possible (Rivet et aQ20Mis has indeed been
shown to lead to much better ERP classification performance.

Joavn = (7.12)
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In practice, spatial filters have proven to be useful for ERBed BCI (in particu-
lar for P300-based BClI), especially when little trainingedia available. From a the-
oretical point of view, this was to be expected. Actuallypitary to CSP and Band
Power which extract non-linear features (the power of tgealiis a quadratic oper-
ation), features for ERP are all linear and linear operatieme commutative. Since
BCI classifiers, e.g., LDA, are generally also linear, thisams that the classifier
could theoretically learn the spatial filter as well. Indelkdth linearly combining
the original featureX for spatial filtering £ = WX), then linearly combining the
spatially filtered signals for classificatiop£ wF = w(WX) =WX) or directly lin-
early combining the original features for classificatiga=(\WX) are overall a simple
linear operation. If enough training data is available dlassifier, e.g., LDA, would
not need spatial filtering. However, in practice, there iemflittle training data
available, and first performing a spatial filtering easessiiesequent task of the
classifier by reducing the dimensionality of the problentogéther, this means that
with enough training data, spatial filtering for ERP may netecessary, and leav-
ing the classifier learn everything would be more optimahedvise, if few training
data is available, which is often the case in practice, tipatia filtering can benefit
a lot to ERP classification (see also (Rivet et al, 2009) forentiscussion of this
topic).

7.4.3 Summary of signal processing tools for ERP-based BCI

In summarry, when designing ERP-based BCI, it is importanide the temporal
information. This is mostly achieved by using the amplitedg@reprocessed EEG
time points as features, with low-pass or band-pass fitjesimd downsampling as
preprocessing. Feature selection algorithms can alseprseful. It is also impor-
tant to consider the spatial information. To do so, eithéngisr selecting relevant
channels is useful. Using spatial filtering algorithms sasixDAWN or Fisher spa-
tial filters can also prove a very efficient solution, partéely when little training
data is available. In the following, we will briefly descriseme alternative signal
processing tools that are less used but can also prove usgifiactice.

7.5 Alternative methods

So far, this chapter has described the main tools used tgmemmental states in
EEG-based BCI. They are efficient and usually simple toas lave become part
of the standard toolbox of BCI designers. However, thereotiter signal process-
ing tools, and in particular other kinds of features or infation sources that can
be exploited to process EEG signals. Without being exhaydtiis section briefly
presents some of these tools for interested readers, ageith corresponding ref-
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erences. The alternative EEG feature representationsdnabe used include the
following 4 categories:

e Temporal representations: temporal representations measure hevsigmal
varies with time. Contrary to basic features used for ERRclvBimply con-
sist in the EEG time points over time, some measures have dmatopped in
order to characterize and quantify those variations. Thieesponding features
include Hjorth parameters (Obermeier et al, 2001) or TimenBio Parameters
(TDP) (Vidaurre et al, 2009). Recent research results heea suggested that
TDP could be more efficient that the gold-standard Band Pésetures (Vidau-
rre et al, 2009) (Ofner et al, 2011).

e Connectivity measures: they measure how much the signal from two channels

are correlated, synchronized or even if one signal may bedhse of the other
one. In other words, connectivity features measure howithabkof two chan-
nels are related. This is particularly useful for BCI sintésiknown that, in
the brain, there are many long distance communicationsdetvgeparated ar-
eas (Varela et al, 2001). As such, connectivity featuresnareasingly used for
BCI and seem to be a very valuable complement to traditioeaiufes. Con-
nectivity features include coherence, phase lockingeshr Directed Transfer
Function (DFT) (Krusienski et al, 2012) (Grosse-WentrupQ®?) (Gouy-Pailler
et al, 2007) (N. Caramia, 2014).

e Complexity measures: they naturally measure how complex the EEG sigmal
be, i.e., they measure its regularity or how predictableit be. This has also
been shown to provide information about the mental statbefser, and also
proved to provide complementary information to classieatfires such as band-
power features. The features from this category used in B&lide approximate
entropy (Balli and Palaniappan, 2010), predictive comipjgBrodu et al, 2012)
or waveform length (Lotte, 2012).

e Chaos theoryinspired measures: another category of features thatders dx-
plored is chaos-related measures, which assess how chi@tEG signal can
be, or which chaotic properties it can have. This has alsa beewn to extract
relevant information. Examples of corresponding featimeluide fractal dimen-
sion (Boostani and Moradi, 2004) or multi-fractal cumuta¢Brodu et al, 2012).

While these various alternative features may not be as effieie the standards
tools such as Band Power features, they usually extract aleomentary informa-
tion. Consequently, using band power features togethdr same of these alter-
native features has led to increase classification perfaces higher that the per-
formances obtained with any of these features used alonmiigge et al, 2004)
(Brodu et al, 2012) (Lotte, 2012).

It is also important to realize that while several spati&fd have been designed
for BCI, they are optimized for a specific type of feature. Fmtance, CSP is the
optimal spatial filter for Band Power features and xDAWN oreisspatial filters
are optimal spatial filters for EEG time points features. ldegr, using such spa-
tial filters with other features, e.g., with the alternatfeatures described above,
would be clearly suboptimal. Designing and using spatiedrfil dedicated to these
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alternative features is therefore necessary. Resultswatreform length features
indeed suggested that dedicated spatial filters for eathréesignificantly improve
classification performances (Lotte, 2012).

7.6 Discussion

Many EEG signal processing tools are available in order assify EEG signals
into the corresponding user’s mental state. However, EEBasiprocessing is a
very difficult task, due to the noise, non-stationarity, bexity of the signals as
well as due to the limited amount of training data availale.such, the existing
tools are still not perfect, and many research challengestdropen. In particular,
it is necessary to explore and design EEG features that amefinformative, in
order to reach better performances;@just to noise and artifacts, in order to use the
BCI outside laboratories, potentially with moving userkj®ariant, to deal with
non-stationarity and session-to-session transfer andi¥grsal, in order to design
subject-independent BClI, i.e., BCI that can work for anyruséhout the need for
individual calibration. As we have seen, some existinggaaln partially address,
or at least, mitigate such problems. Nevertheless, these fiar no EEG signal pro-
cessing tool that has simultaneously all these propentidstaat is perfectly robust,
invariant and universal. Therefore, there are still ergitiesearch works ahead.

7.7 Conclusion

In this chapter, we have provided a tutorial and overview BEEsignal processing
tools for users’ mental state recognition. We have preskthie importance of the
feature extraction and classification components. As we Baen, there are 3 main
sources of information that can be used to design EEG-ba€dd1B the spectral
information, which is mostly used with band power featu®she temporal infor-
mation, represented as the amplitude of preprocessed EgSpibints and 3) the
spatial information, which can be exploited by using chauseéection and spatial
filtering (e.g., CSP or xXDAWN). For BCI based on oscillatoryity, the spectral
and spatial information are the most useful, while for ERBda BCI, the temporal
and spatial information are the most relevant. We have aisflypexplored some
alternative sources of information that can also compléntie®m 3 main sources
mentioned above.

This chapter aimed at being didactic and easily accessildeder to help people
not already familiar with EEG signal processing to startkirg in this area or to
start designing and using BCI in their own work or activitigsdeed, BCI being
such a multidisciplinary topic, it is usually difficult to darstand enough of the
different scientific domains involved to appropriately €l systems. It should
also be mentioned that several software tools are now feeelifable to help users
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design BCI systems, e.g., Biosig (Sabl et al, 2007), BCI2000 (Mellinger and
Schalk, 2007) or OpenViBE (Renard et al, 2010). For instanith OpenVIBE, it
is possible to design a new and complete BCI system withaititiyra single line of
code. With such tools and this tutorial, we hope to make BGlgteand use more
accessible, e.g., to design musical BCI.

7.8 Questions

Please find below 10 questions to reflect on this chapter gd grasp the essential
messages:

1. Do we need feature extraction? In particular why not ustiegraw EEG signals
as input to the classifier?

2. What part of the EEG signal processing pipeline can beddiaptimized based
on the training data?

3. Can we design a BCI system that would work for all users {eatled subject-
indepedent BCI)? If so, are BCI designed specifically for suabject still rele-
vant?

4. Are univariate and multivariate feature selection methaoth suboptimal in gen-
eral? If so, why using one type or the other?

5. By using an inverse solution with scalp EEG signals, cdwéags reach a similar
information about brain activity as | would get with invasikecordings?

6. What would be a good reason to avoid using spatial filterB€ir?

7. which spatial filter to you have to try when designing arilizory activity-based
BCI?

8. Let us assume that you want to design an EEG-based BClewdrats type: can
CSP be always useful to design such a BCI?

9. Among typical features for oscillatory activity-base@IHi.e., band power fea-
tures) and ERP-based BCI (i.e., amplitude of the prepreceSEG time points),
which ones are linear and wich ones are not (if applicable)?

10. Let us assume you want to explore a new type of featurdassify EEG data:
could they benefit from spatial filtering and if so, which one?
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