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Chapter 7
A Tutorial on EEG Signal Processing Techniques
for Mental State Recognition in Brain-Computer
Interfaces

Fabien LOTTE

Abstract This chapter presents an introductory overview and a tutorial of signal
processing techniques that can be used to recognize mental states from electroen-
cephalographic (EEG) signals in Brain-Computer Interfaces. More particularly, this
chapter presents how to extract relevant and robust spectral, spatial and temporal
information from noisy EEG signals (e.g., Band Power features, spatial filters such
as Common Spatial Patterns or xDAWN, etc.), as well as a few classification algo-
rithms (e.g., Linear Discriminant Analysis) used to classify this information into a
class of mental state. It also briefly touches on alternative, but currently less used
approaches. The overall objective of this chapter is to provide the reader with prac-
tical knowledge about how to analyse EEG signals as well as tostress the key points
to understand when performing such an analysis.

7.1 Introduction

One of the critical steps in the design of Brain-Computer Interface (BCI) applica-
tions based on ElectroEncephaloGraphy (EEG) is to process and analyse such EEG
signals in real-time, in order to identify the mental state of the user. Musical EEG-
based BCI applications are no exception. For instance, in (Miranda et al, 2011),
the application had to recognize the visual target the user was attending to from
his/her EEG signals, in order to execute the corresponding musical command. Un-
fortunately, identifying the user’s mental state from EEG signals is no easy task,
such signals being noisy, non-stationary, complex and of high dimensionality (Lotte
et al, 2007). Therefore, mental state recognition from EEG signals requires specific
signal processing and machine learning tools. This chapteraims at providing the
reader with a basic knowledge about how to do EEG signal processing and the kind
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2 Fabien LOTTE

of algorithms to use to do so. This knowledge is - hopefully - presented in an ac-
cessible and intuitive way, by focusing more on the conceptsand ideas than on the
technical details.

This chapter is organized as follows: Section 7.2 presents the general architec-
ture of an EEG signal processing system for BCI. Then, Section 7.3 describes the
specific signal processing tools that can be used to design BCI based on oscilla-
tory EEG activity while Section 7.4 describes those that canused for BCI based on
Event Related Potentials (ERP), i.e., brain responses to stimulus and events. Sec-
tion 7.5 presents some alternative tools, still not as popular as the one mentioned
so far but promising, both for BCI based on oscillatory activity and those based on
ERP. Finally, Section 7.6 proposes a discussion about all the tools covered and their
perspectives while Section 7.7 concludes the paper.

7.2 General EEG signal processing principle

In BCI design, EEG signal processing aims at translating rawEEG signals into the
class of these signals, i.e., into the estimated mental state of the user. This translation
is usually achieved using a pattern recognition approach, whose two main steps are
the following:

• Feature Extraction: The first signal processing step is known as “feature extrac-
tion” and aims at describing the EEG signals by (ideally) a few relevant values
called “features” (Bashashati et al, 2007). Such features should capture the in-
formation embedded in EEG signals that is relevant to describe the mental states
to identify, while rejecting the noise and other non-relevant information. All fea-
tures extracted are usually arranged into a vector, known asa feature vector.

• Classification: The second step, denoted as “classification” assigns a classto a
set of features (the feature vector) extracted from the signals (Lotte et al, 2007).
This class corresponds to the kind of mental state identified. This step can also
be denoted as “feature translation” (Mason and Birch, 2003). Classification al-
gorithms are known as “classifiers”.

As an example, let us consider a Motor Imagery (MI)-based BCI, i.e., a BCI
that can recognized imagined movements such left hand or right hand imagined
movements (see Figure 7.1). In this case, the two mental states to identify are imag-
ined left hand movement on one side and imagined right hand movement on the
other side. To identify them from EEG signals, typical features are band power
features, i.e., the power of the EEG signal in a specific frequency band. For MI,
band power features are usually extracted in theµ (about 8−12 Hz) andβ (about
16−24 Hz) frequency bands, for electrode localized over the motor cortex areas of
the brain (around locations C3 and C4 for right and left hand movements respec-
tively) (Pfurtscheller and Neuper, 2001). Such features are then typically classified
using a Linear Discriminant Analysis (LDA) classifier.
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Fig. 7.1 A classical EEG signal processing pipeline for BCI, here in the context of a motor
imagery-based BCI, i.e., a BCI that can recognized imagined movements from EEG signals.

It should be mentioned that EEG signal processing is often built using machine
learning. This means the classifier and/or the features are automatically tuned, gen-
erally for each user, according to examples of EEG signals from this user. These
examples of EEG signals are called a training set, and are labeled with their class of
belonging (i.e., the corresponding mental state). Based onthese training examples,
the classifier will be tuned in order to recognize as appropriately as possible the
class of the training EEG signals. Features can also be tunedin such a way, e.g., by
automatically selecting the most relevant channels or frequency bands to recognized
the different mental states. Designing BCI based on machinelearning (most current
BCI are based on machine learning) therefore consists of 2 phases:

• Calibration (a.k.a., training) phase: This consists in 1) Acquiring training EEG
signals (i.e., training examples) and 2) Optimizing the EEGsignal processing
pipeline by tuning the feature parameters and/or training the classifier.

• Use(a.k.a., test) phase: This consists in using the model (features and classifier)
obtained during the calibration phase in order to recognizethe mental state of the
user from previously unseen EEG signals, in order to operatethe BCI.

Feature extraction and classification are discussed in moredetails hereafter.
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7.2.1 Classification

As mentioned above, the classification step in a BCI aims at translating the features
into commands (McFarland et al, 2006) (Mason and Birch, 2003). To do so, one can
use either regression algorithms (McFarland and Wolpaw, 2005) (Duda et al, 2001)
or classification algorithms (Penny et al, 2000) (Lotte et al, 2007), the classification
algorithms being by far the most used in the BCI community (Bashashati et al,
2007) (Lotte et al, 2007). As such, in this chapter, we focus only on classification
algorithms. Classifiers are able to learn how to identify theclass of a feature vector,
thanks to training sets, i.e., labeled feature vectors extracted from the training EEG
examples.

Typically, in order to learn which kind of feature vector correspond to which
class (or mental state), classifiers try either to model which area of the feature space
is covered by the training feature vectors from each class - in this case the classi-
fier is a generative classifier - or they try to model the boundary between the areas
covered by the training feature vectors of each class - in which case the classifier is
a discriminant classifier. For BCI, the most used classifiersso far are discriminant
classifiers, and notably Linear Discriminant Analysis (LDA) classifiers.

The aim of LDA (also known as Fisher’s LDA) is to use hyperplanes to sepa-
rate the training feature vectors representing the different classes (Duda et al, 2001)
(Fukunaga, 1990). The location and orientation of this hyperplane is determined
from training data. Then, for a two-class problem, the classof an unseen (a.k.a.,
test) feature vector depends on which side of the hyperplanethe feature vector is
(see Figure 7.2). LDA has very low computational requirements which makes it
suitable for online BCI system. Moreover this classifier is simple which makes it
naturally good at generalizing to unseen data, hence generally providing good re-
sults in practice (Lotte et al, 2007). LDA is probably the most used classifier for
BCI design.

Fig. 7.2 Discriminating two types of motor imagery with a linear hyperplane using a Linear Dis-
criminant Analysis (LDA) classifier.
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Another very popular classifier for BCI is the Support VectorMachine (SVM)
(Bennett and Campbell, 2000). An SVM also uses a discriminant hyperplane to
identify classes (Burges, 1998). However, with SVM, the selected hyperplane is
the one that maximizes the margins, i.e., the distance from the nearest training
points, which has been found to increase the generalizationcapabilites (Burges,
1998) (Bennett and Campbell, 2000).

Generally, regarding classification algorithms, it seems that very good recogni-
tion performances can be obtained using appropriate off-the-shelf classifiers such as
LDA or SVM (Lotte et al, 2007). What seems to be really important is the design
and selection of appropriate features to describe EEG signals. With this purpose,
specific EEG signal processing tools have been proposed to design BCI. In the rest
of this chapter we will therefore focus on EEG feature extraction tools for BCI. For
readers interested to learn more about classification algorithms, we refer them to
(Lotte et al, 2007), a review paper on this topic.

7.2.2 Feature extraction

As mentioned before, feature extraction aims at representing raw EEG signals by
an ideally small number of relevant values, which describe the task-relevant infor-
mation contained in the signals. However, classifiers are able to learn from data
which class corresponds to which input features. As such, why not using directly
the EEG signals as input to the classifier? This is due to the so-called “curse-of-
dimensionality”, which states that the amount of data needed to properly describe
the different classes increases exponentially with the dimensionality of the feature
vectors (Jain et al, 2000) (Friedman, 1997). It has been recommended to use from
5 to 10 times as many training examples per class as the input feature vector di-
mensionality1 (Raudys and Jain, 1991). What would it mean to use directly the
EEG signals as input to the classifier? Let us consider a common steup with 32
EEG sensors sampled at 250Hz, with one trial of EEG signal being 1 second long.
This would mean a dimensionality of 32∗250= 8000, which would require at least
40000 training examples. Obviously we cannot ask the BCI user to perform each
mental task 40000 times to calibrate the BCI before he/she could use it. A much
more compact representation is therefore needed, hence thenecessity to perform
some form of feature extraction.

With BCI, there are 3 main sources of information that can be used to extract
features from EEG signals:

• Spatial information: Such features would describe where (spatially) the relevant
signal comes from. In practice, this would mean selecting specific EEG channels,
or focusing more on specific channels than on some other. Thisamounts to fo-
cusing on the signal originating from specific areas of the brain.

1 note that this was estimated before SVM were invented, and thatSVM are generally less sensitive
- although not completely immune - to this curse-of-dimensionality
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• Spectral (frequential) information: Such features would describe how the
power in some relevant frequency bands varies. In practice,this means that the
features will use the power in some specific frequency bands.

• Temporal information: Such features would describe how the relevant signal
varies with time. In practice this means using the EEG signals values at different
time points or in different time windows.

Note that these three sources of information are not the onlyones, and alterna-
tives can be used (see Section 7.5). However, they are by far the most used one,
and, at least so far, the most efficient ones in terms of classification performances.
It should be mentioned that so far, nobody managed to discover nor to design a set
of features that would work for all types of BCI. As a consequence, different kinds
of BCI currently use different sources of information. Notably, BCI based on oscil-
latory activity (e.g., BCI based on motor imagery) mostly need and use the spectral
and spatial information whereas BCI based on event related potentials (e.g., BCI
based on the P300) mostly need and use the temporal and spatial information. The
next sections detail the corresponding tools for these two categories of BCI.

7.3 EEG signal processing tools for BCI based on oscillatory
activity

BCI based on oscillatory activity are BCI that use mental states which lead to
changes in the oscillatory components of EEG signals, i.e.,that lead to change in the
power of EEG signals in some frequency bands. Increase of EEGsignal power in a
given frequency band is called an Event Related Synchronisation (ERS), whereas a
decrease of EEG signal power is called an Event Related Desynchronisation (ERD)
(Pfurtscheller and da Silva, 1999). BCI based on oscillatory activity notably includes
motor imagery-based BCI (Pfurtscheller and Neuper, 2001),Steady State Visual
Evoked Potentials (SSVEP)-based BCI (Vialatte et al, 2010)as well as BCI based
on various cognitive imagery tasks such as mental calculation, mental geometric
figure rotation, mental word generation, etc. (Friedrich etal, 2012) (Millán et al,
2002). As an example, imagination of a left hand movement leads to a contralateral
ERD in the motor cortex (i.e., in the right motor cortex for left hand movement)
in the µ andβ bands during movement imagination, and to an ERS in theβ band
(a.k.a., beta rebound) just after the movement imaginationending (Pfurtscheller and
da Silva, 1999). This section first describes a basic design for oscillatory activity-
based BCI. Then, due to the limitations exhibited by this design, it exposes more
advanced designs based on multiple EEG channels. Finally, it presents a key tool to
design such BCIs: the Common Spatial Pattern (CSP) algorithm, as well as some of
its variants.
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7.3.1 Basic design for an oscillatory activity-based BCI

Oscillatory activity-based BCI are based on change in powerin some frequency
bands, in some specific brain areas. As such, they naturally need to exploit both the
spatial and spectral information. As an example, a basic design for a motor-imagery
BCI would exploit the spatial information by extracting features only from EEG
channels localized over the motor areas of the brain, typically channels C3 for right
hand movements, Cz for foot movements and C4 for left hand movements. It would
exploit the spectral information by focusing on frequency bandsµ (8−12 Hz) andβ
(16−24 Hz). More precisely, for a BCI that can recognize left handMI versus right
hand MI, the basic features extracted would be the average band power in 8−12 Hz
and 16−24 Hz from both channels C3 and C4. Therefore, the EEG signalswould
be described by only 4 features.

There are many ways to compute band power features from EEG signals (Her-
man et al, 2008) (Brodu et al, 2011). However, a simple, popular and efficient one
is to first band-pass filter the EEG signal from a given channelinto the frequency
band of interest, then to square the resulting signal to compute the signal power, and
finally to average it over time (e.g., over a time window of 1 s). This is illustrated in
Figure 7.3.

Fig. 7.3 Signal processing steps to extract band power features from rawEEG signals. The EEG
signal displayed here was recorded during right hand motor imagery (the instruction to perform
the imagination was provided att = 0 s on the plots). The contralateral ERD during imagination is
here clearly visible. Indeed, the signal power in channel C3 (left motor cortex) in 8-12 Hz clearly
decreases during this imagination of a right hand movement.

Unfortunately, this basic design is far from being optimal.Indeed, it uses only
two fixed channels. As such, relevant information, measuredby other channels
might be missing, and C3 and C4 may not be the best channels forthe subject at
hand. Similarly, using the fixed frequency bands 8−12 Hz and 16−24 Hz may not
be the optimal frequency bands for the current subject. In general, much better per-
formances are obtained when using subject-specific designs, with the best channels
and frequency bands optimized for this subject. Using more than two channels is
also known to lead to improved performances, since it enables to collect the rele-
vant information spread over the various EEG sensors.
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7.3.2 Towards advanced BCI using multiple EEG channels

Both the need to use subject-specific channels and the need touse more than 2
channels lead to the necessity to design BCI based on multiple channels. This is
confirmed by various studies which suggested that, for motorimagery, 8 channels
is a minimum to obtain reasonnable performances (Sannelli et al, 2010) (Arvaneh
et al, 2011), with optimal performances achieved with a muchlarger number, e.g.,
48 channels in (Sannelli et al, 2010). However, simply usingmore channels will not
solve the problem. Indeed, using more channels means extracting more features,
thus increasing the dimensionality of the data and suffering more from the curse-
of-dimensionality. As such, just adding channels may even decrease performances
if too little training data is available. In order to efficiently exploit multiple EEG
channels, 3 main approaches are available, all of which contribute to reducing the
dimensionality:

• Feature selectionalgorithm: These are methods to select automatically a subset
of relevant features, among all the features extracted.

• Channel selectionalgorithms: These are similar methods that select automati-
cally a subset of relevant channels, among all channels available.

• Spatial Filtering algorithms: These are methods that combine several channels
into a single one, generally using weighted linear combinations, from which fea-
tures will be extracted.

They are described below.

7.3.2.1 Feature selection:

Feature selection are classical algorithms widely used in machine learning (Guyon
and Elisseeff, 2003) (Jain and Zongker, 1997) and as such also very popular in
BCI design (Garrett et al, 2003). There are too main familiesof feature selection
algorithms:

• Univariate algorithms: They evaluate the discriminative (or descriptive) power
of each feature individually. Then, they select the N best individual features (N
needs to be defined by the BCI designer). The usefulness of each feature is typ-
ically assessed using measures such as Student t-statistics, which measures the
feature value difference between two classes, correlationbased measures such
asR2, mutual information, which measures the dependence between the feature
value and the class label, etc. (Guyon and Elisseeff, 2003).Univariate methods
are usually very fast and computationally efficient but theyare also suboptimal.
Indeed, since they only consider the individual feature usefulness, they ignore
possible redundancies or complementarities between features. As such, the best
subset of N features is usually not the N best individual features. As an example,
the N best individual features might be highly redundant andmeasure almost the
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same information. As such using them together would add verylittle discrimi-
nant power. On the other hand, adding a feature that is individually not very good
but which measures a different information from that of the best individual ones
is likely to improve the discriminative power much more.

• Multivariate algorithms: They evaluate subsets of features together, and keep the
best subset with N features. These algorithms typically usemeasures of global
performance for the subsets of features, such as measures ofclassification per-
formances on the training set (typically using cross-validation (Browne, 2000))
or multivariate mutual information measures, see, e.g., (Hall, 2000) (Pudil et al,
1994) (Peng et al, 2005). This global measure of performanceenables to actu-
ally consider the impact of redundancies or complementarities between features.
Some measures also remove the need to manually select the value of N (the num-
ber of features to keep), the best value of N being the number of features in the
best subset identified. However, evaluating the usefulnessof subsets of features
leads to very high computational requirements. Indeed, there are many more pos-
sible subsets of any size than individual features. As such there are many more
evaluations to perform. In fact, the number of possible subsets to evaluate is
very often far too high to actually perform all the evaluations in practice. Con-
sequently, multivariate methods usually rely on heuristics or greedy solutions in
order to reduce the number of subsets to evaluate. They are therefore also sub-
optimal but usually give much better performances than univariate methods in
practice. On the other hand, if the initial number of features is very high, multi-
variate methods may be too slow to use in practice.

7.3.2.2 Channel selection:

Rather than selecting features, one can also select channelsand only use features
extracted from the selected channels. While both channel andfeature selection re-
duce the dimensionality, selecting channels instead of features has some additional
advantages. In particular using less channels means a faster setup time for the EEG
cap and also a lighter and more comfortable setup for the BCI user. It should be
noted, however, that with the development of dry EEG channels, selecting channels
may become less crucial. Indeed the setup time will not depend on the number of
channel used, and the BCI user will not have more gel in his/her hair if more chan-
nels are used. With dry electrodes, using less channels willstill be lighter and more
comfortable for the user though.

Algorithms for EEG channel selection are usually based or inspired from generic
feature selection algorithm. Several of them are actually analogous algorithms that
assess individual channel useufulness or subsets of channels discriminative power
instead of individual features or subset of features. As such, they also use similar
performance measures, and have similar properties. Some other channel selection
algorithms are based on spatial filter optimization (see below). Readers interested
to know more about EEG channel selection may refer to the following papers and
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associated references (Schröder et al, 2005) (Arvaneh et al, 2011) (Lal et al, 2004)
(Lan et al, 2007), among many other.

7.3.2.3 Spatial filtering:

Spatial filtering consists in using a small number of new channels that are defined
as a linear combination of the original ones:

x̃ =∑
i

wixi = wX (7.1)

with x̃ the spatially filtered signal,xi the EEG signal from channel i,wi the weight
given to that channel in the spatial filter andX a matrix whoseith row isxi, i.e.,X is
the matrix of EEG signals from all channels.

It should be noted that spatial filtering is useful not only because it reduces the
dimension from many EEG channels to a few spatially filtered signals (we typically
use much less spatial filters than original channels), but also because it has a neu-
rophysiological meaning. Indeed, with EEG, the signals measured on the surface
of the scalp are a blurred image of the signals originating from within the brain. In
other words, due to the smearing effect of the skull and brain(a.k.a., volume con-
duction effect), the underlying brain signal is spread overseveral EEG channels.
Therefore spatial filtering can help recovering this original signal by gathering the
relevant information that is spread over different channels.

There are different ways to define spatial filters. In particular, the weightswi can
be fixed in advance, generally according to neurophysiological knowledge, or they
can be data driven, that is, optimized on training data. Among the fixed spatial filters
we can notably mention the bipolar and Laplacian which are local spatial filters that
try to locally reduce the smearing effect and some of the background noise (McFar-
land et al, 1997). A bipolar filter is defined as the differencebetween 2 neighboring
channels, while a Laplacian filter is defined as 4 times the value of a central chan-
nel minus the values of the 4 channels around. For instance, abipolar filter over
channel C3 would be defined asC3bipolar = FC3−CP3, while a Laplacian filter
over C3 would be defined asC3Laplacian = 4C3−FC3−C5−C1−CP3, see also
Figure 7.4. Extracting features from bipolar or Laplacian spatial filters rather than
from the single corresponding electrodes has been shown to significantly increase
classification performances (McFarland et al, 1997). An inverse solution is another
kind of fixed spatial filter (Michel et al, 2004) (Baillet et al, 2001). Inverse solutions
are algorithms that enable to estimate the signals originating from sources within
the brain based on the measurements taken from the scalp. In other words, inverse
solutions enable us to look into the activity of specific brain regions. A word of
caution though: inverse solutions do not provide more information than what is al-
ready available in scalp EEG signals. As such, using inversesolutions will NOT
make a non-invasive BCI as accurate and efficient as an invasive one. However, by
focusing on some specific brain areas, inverse solutions cancontribute to reducing
background noise, the smearing effect and irrelevant information originating from
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other areas. As such, it has been shown than extracting features from the signals spa-
tially filtered using inverse solutions (i.e., from the sources within the brain) leads to
higher classification performances than extracting features directly from scalp EEG
signals (Besserve et al, 2011) (Noirhomme et al, 2008). In general, using inverse so-
lutions has been shown to lead to high classification performances (Congedo et al,
2006) (Lotte et al, 2009b) (Qin et al, 2004) (Kamousi et al, 2005) (Grosse-Wentrup
et al, 2005). It should be noted that since the number of source signals obtained with
inverse solutions is often larger than the initial number ofchannels, it is necessary
to use feature selection or dimensionality reduction algorithms.

Fig. 7.4 Left: channels used in bipolar spatial filtering over channelsC3 and C4. Right: channels
used in Laplacian spatial filtering over channels C3 and C4.

The second category of spatial filters, i.e., data driven spatial filters, are opti-
mized for each subject according to training data. As any data driven algorithm, the
spatial filter weightswi can be estimated in an unsupervised way, that is without the
knowledge of which training data belongs to which class, or in a supervised way,
with each training data being labelled with its class. Amongthe unsupervised spatial
filters we can mention Principal Component Analysis (PCA), which finds the spa-
tial filters that explain most of the variance of the data, or Independent Component
Analysis (ICA), which find spatial filters whose resulting signals are independent
from each other (Kachenoura et al, 2008). The later has been shown rather useful to
design spatial filters able to remove or attenuate the effectof artifacts (EOG, EMG,
etc. (Fatourechi et al, 2007)) on EEG signals (Tangermann etal, 2009) (Xu et al,
2004) (Kachenoura et al, 2008) (Brunner et al, 2007). Alternatively, spatial filters
can be optimized in a supervised way, i.e., the weights will be defined in order to
optimize some measure of classification performance. For BCI based on oscillatory
EEG activity, such a spatial filter has been designed: the Common Spatial Patterns
(CSP) algorithm (Ramoser et al, 2000) (Blankertz et al, 2008b). This algorithm has
greatly contributed to the increase of performances of thiskind of BCI, and, thus,
has become a standard tool in the repertoire of oscillatory activity-based BCI de-
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signers. It is described in more details in the following section, together with some
of its variants.

7.3.3 Common Spatial Patterns and variants

Informally, the CSP algorihtm finds spatial filtersw such that the variance of the
filtered signal is maximal for one class and minimal for the other class. Since the
variance of a signal band-pass filtered in bandb is actually the band-power of this
signal in bandb, this means that CSP finds spatial filters that lead to optimally
discriminant band-power features since their values wouldbe maximally different
between classes. As such, CSP is particularly useful for BCIbased on oscillatory
activity since their most useful features are band-power features. As an example,
for BCI based on motor imagery, EEG signals are typically filtered in the 8− 30
Hz band before being spatially filtered with CSP (Ramoser et al, 2000). Indeed this
band contains both theµ andβ rhythms.

Formally, CSP uses the spatial filtersw which extremize the following function:

JCSP(w) =
wX1XT

1 wT

wX2XT
2 wT

=
wC1wT

wC2wT (7.2)

whereT denotes transpose,Xi is the training band-pass filtered signal matrix for
classi (with the samples as columns and the channels as rows) andCi the spatial
covariance matrix from classi. In practice, the covariance matrixCi is defined as
the average covariance matrix of each trial from classi (Blankertz et al, 2008b). In
this equation,wXi is the spatially filtered EEG signal from classi, andwXiXT

i wT is
thus the variance of the spatially filtered signal, i.e., theband-power of the spatially
filtered signal. Therefore, extremizingJCSP(w), i.e., maximizing and minimizing it,
indeed leads to spatially filtered signals whose band-poweris maximally different
between classes.JCSP(w) happens to be a Rayleigh quotient. Therefore, extremizing
it can be solved by Generalized Eigen Value Decomposition (GEVD). The spatial
filtersw that maximize or minimizeJCSP(w) are thus the eigenvectors corresponding
to the largest and lowest eigenvalues, respectively, of theGEVD of matricesC1 and
C2. Typically, 6 filters (i.e., 3 pairs), corresponding to the 3largest and 3 lowest
eigenvalues are used. Once these filters obtained, a CSP feature f is defined as
follows:

f = log(wXXT wT ) = log(wCwT ) = log(var(wX)) (7.3)

i.e., the features used are simply the band power of the spatially filtered signals. CSP
requires more channels than fixed spatial filters such as Bipolar or Laplacian, how-
ever in practice, it usually leads to significantly higher classification performances
(Ramoser et al, 2000). The use of CSP is illustrated in Figure7.5. In this figure, the
signals spatially filtered with CSP clearly show differencein variance (i.e., in band
power) between the two classes, hence ensuring high classification performances.
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Fig. 7.5 EEG signals spatially filtered using the CSP (Common Spatial Patterns) algorithm. The
first two spatial filters (top filters) are those maximizing the variance of signals from class “Left
Hand Motor Imagery” while minimizing that of class “Right Hand Motor Imagery”. They corre-
spond to the largest eigen values of the GEVD. The last two filters(bottom filters) are the opposite,
they maximize the variance of class “Right Hand Motor Imagery” while minimizing that of class
“Left Hand Motor Imagery” (They correspond to the lowest eigen values of the GEVD). This
can be clearly seen during the periods of right or left hand motor imagery, in light and dark grey
respectively.

The CSP algorithm has numerous advantages: first, it leads tohigh classification
performances. CSP is also versatile, since it works for any ERD/ERS BCI. Finally,
it is computationally efficient and simple to implement. Altogether this makes CSP
one of the most popular and efficient approach for BCI based onoscillatory activity
(Blankertz et al, 2008b).

Nevertheless, despite all these advantages, CSP is not exempt from limitations
and is still not the ultimate signal processing tool for EEG-based BCI. In particu-
lar, CSP has been shown to be non-robust to noise, to non-stationarities and prone
to overfitting (i.e., it may not generalize well to new data) when little training data
is available (Grosse-Wentrup and Buss, 2008) (Grosse-Wentrup et al, 2009) (Reud-
erink and Poel, 2008). Finally, despite its versatility, CSP only identifies the relevant
spatial information but not the spectral one. Fortunately,there are ways to make CSP
robust and stable with limited training data and with noisy training data. An idea is
to integrate prior knowledge into the CSP optimization algorithm. Such knowledge
could represent any information we have about what should bea good spatial filter
for instance. This can be neurophysiological prior, data (EEG signals) or meta-data
(e.g., good channels) from other subjects, etc. This knowledge is used to guide and
constraint the CSP optimization algorithm towards good solutions even with noise,
limited data and non-stationarities (Lotte and Guan, 2011). Formally, this knowl-
edge is represented in a regularization framework that penalizes unlikely solutions
(i.e., spatial filters) that do not satisfy this knowledge, therefore enforcing it. Simi-
larly, prior knowledge can be used to stabilize statisticalestimates (here, covariance
matrices) used to optimize the CSP algorithm. Indeed, estimating covariance matri-
ces from few training data usually leads to poor estimates (Ledoit and Wolf, 2004).
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Formally, a Regularized CSP (RCSP) can be obtained by maximizing both equa-
tion 7.4 and 7.5:

JRCSP1(w) =
wC̃1wT

wC̃2wT +λ P(w)
(7.4)

JRCSP2(w) =
wC̃2wT

wC̃1wT +λ P(w)
(7.5)

with

C̃i = (1−γ)Ci +γGi (7.6)

In these equations,P(w) is the penalty term that encodes the prior knowledge.
This a positive function of the spatial filterw, whose value will increase ifw does
not satisfy the knowledge encoded. Since the filters are obtained by maximizing
JRCSPi, this means that the numerator (which is positive) must be maximized and
the denominator (which is also positive) must be minimized.SinceP(w) is positive
and part of the denominator, this means thatP(w) will be minimized as well, hence
enforcing that the spatial filtersw satisfy the prior knowledge. MatrixGi is another
way of using prior knowledge, in order to stabilize the estimates of the covariance
matricesCi. If we have any idea about how these covariance matrices should be, this
can be encoded inGi in order to define a new covariance matrixC̃i which is a mix of
the matrixCi estimated on the data and of the prior knowledgeGi. We will present
below what kind of knowledge can be encoded inP(w) andGi.

For the penalty termP(w), a kind of knowledge that can be used is spatial knowl-
edge. For instance, from a neurophysiological point of view, we know that neighbor-
ing neurons tend to have similar functions, which supports the idea that neighboring
electrodes should measure similar brain signals (if the electrodes are close enough
to each other), notably because of the smearing effect. Thusneighboring electrodes
should have similar contributions in the spatial filters. Inother words, spatial filters
should be spatially smooth. This can be enforced by using thefollowing penalty
term:

P(w) =∑
i, j

Prox(i, j)(wi −w j)
2 (7.7)

WhereProx(i, j) measures the proximity of electrodesi and j, and(wi −w j)
2 is

the weight difference between electrodesi and j, in the spatial filter. Thus, if two
electrodes are close to each other and have very different weights, the penalty term
P(w) will be high, which would prevent such solutions to be selected during the
optimization of the CSP (Lotte and Guan, 2010b). Another knowledge that can be
used is that for a given mental task, not all the brain regionsare involved and useful.
As such, some electrodes are unlikely to be useful to classify some specific mental
tasks. This can be encoded inP(w) as well:
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P(w) = wDwT with D(i, j) =

{

channel i “uselessness′′ i f i = j
0 otherwise

(7.8)
Basically, the value ofD(i, i) is the penalty for theith channel. The higher this

penalty, the less likely this channel will have a high contribution in the CSP fil-
ters. The value of this penalty can be defined according to neurophysiological prior
knowledge for instance, large penalties being given to channels unlikely to be use-
ful and small or no penalty being given to channels that are likely to genuinely
contribute to the filter. However, it may be difficult to precisely define the extent
of the penalty from the literature. Another alternative is the use data previously
recorded from other subjects. Indeed, the optimized CSP filters already obtained
from previous subject give information about which channels have large contri-
butions on average. The inverse of the average contributionof each channel can
be used as the penalty, hence penalizing channels with smallaverage contribution
(Lotte and Guan, 2011). Penalty terms are therefore also a nice way to perform
subject-to-subject transfer and re-use information from other subjects. These two
penalties are examples that have proven useful in practice.This usefulness is no-
tably illustrated in Figure 7.6, in which spatial filters obtained with the basic CSP
are rather noisy, with strong contributions from channels not expected from a neu-
rophysiological point of view. On the contrary the spatial filters obtained using the
two RCSP penalties described previously are much cleaner, spatially smoother and
with strong contributions localized in neurophysiologically relevant areas. This in
turns led to higher classification performances, with CSP obtaining 73.1% classi-
fication accuracy versus 78.7% and 77.6% for the regularized versions (Lotte and
Guan, 2011). It should be mentioned, however, that strong contributions from non-
neurophysiologically relevant brain areas in a CSP spatialfilter may be present to
perform noise-cancellation, and as such does not mean the spatial filter is bad per se
(Haufe et al, 2014). It should also be mentioned that other interesting penalty terms
have been proposed, in order to deal with known noise sources(Blankertz et al,
2008a), non-stationarities (Samek et al, 2012) or to perform simultaneous channel
selection (Farquhar et al, 2006) (Arvaneh et al, 2011).

Matrix Gi in equation 7.6 is another way to add prior knowledge. This matrix
can notably be defined as the average covariance matrix obtained from other sub-
jects who performed the same task. At such it enables to definea good and stable
estimate of the covariance matrices, even if few training EEG data is available for
the target subject. This has been shown to enable us to calibrate BCI system with 2
to 3 times less training data than with the basic CSP, while maintaining classification
performances (Lotte and Guan, 2010a).

Regularizing CSP using a-priori knowledge is thus a nice wayto deal with some
limitations of CSP such as its sensitivity to overfitting andits non-robustness to
noise. However, these regularized algorithms cannot address the limitation that CSP
only optimizes the use of the spatial information, but not that of the spectral one.
In general, independently of the use of CSP, there are several ways to optimize the
use of the spectral information. Typically, this consists in identifying, in one way or
another, the relevant frequency bands for the current subject and mental tasks per-
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Fig. 7.6 Spatial filters (i.e., weight attributed to each channel) obtained to classify left hand versus
right hand motor imagery. The electrodes, represented by black dots, are here seen from above,
with the subject nose on top. a) basic CSP algorithm, b) RCSP with apenalty term imposing
spatial smoothness, c) RCSP with a penalty term penalizing unlikely channels according to EEG
data from other subjects.

formed. For instance, this can be done manually (by trial anderrors), or by looking
at the average EEG frequency spectrum in each class. In a moreautomatic way, pos-
sible methods include extracting band power features in multiple frequency bands
and then selecting the relevant ones using feature selection (Lotte et al, 2010), by
computing statistics on the spectrum to identify the relevant frequencies (Zhong
et al, 2008), or even by computing optimal band-pass filters for classification (De-
vlaminck, 2011). These ideas can be used within the CSP framework in order to
optimize the use of both the spatial and spectral information. Several variants of
CSP has been proposed in order to optimize spatial and spectral filters at the same
time (Lemm et al, 2005) (Dornhege et al, 2006) (Tomioka et al,2006) (Thomas
et al, 2009). A simple and computationally efficient method is worth describing:
the Filter Bank CSP (FBCSP) (Ang et al, 2012). This method, illustrated in Figure
7.7, consists in first filtering EEG signals in multiple frequency bands using a filter
bank. Then, for each frequency band, spatial filters are optimized using the clas-
sical CSP algorithm. Finally, among the multiple spatial filters obtained, the best
resulting features are selected using feature selection algorithms (typically mutual
information-based feature selection). As such, this selects both the best spectral and
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spatial filters since each feature corresponds to a single frequency band and CSP
spatial filter. This algorithm, although simple, has provento be very efficient in
practice. It was indeed the algorithm used in the winning-entries of all EEG data
sets from the last BCI competition2 (Ang et al, 2012).

Fig. 7.7 Principle of Filter Bank Common Spatial Patterns (FBCSP): 1) band-pass filtering the
EEG signals in multiple frequency bands using a filter bank; 2) optimizing CSP spatial filter for
each band; 3) selecting the most relevant filters (both spatial and spectral) using feature selection
on the resulting features.

7.3.4 Summary for oscillatory activity-based BCI

In summary, when designing BCI aiming at recognizing mentalstates that involve
oscillatory activity, it is important to consider both the spectral and the spatial in-
formation. In order to exploit the spectral information, using band power features
in relevant frequency bands is an efficient approach. Feature selection is also a nice
tool to find the relevant frequencies. Concerning the spatial information, using or
selecting relevant channels is useful. Spatial filtering isa very efficient solution for
EEG-based BCI in general, and the Common Spatial Patterns (CSP) algorithm is
a must-try for BCI based on oscillatory activity in particular. Moreover, there are
several variants of CSP that are available in order to make itrobust to noise, non-
stationarity, limited training data sets or to jointly optimize spectral and spatial fil-
ters. The next section will address the EEG signal processing tools for BCI based

2 BCI competitions are contests to evaluate the best signal processing and classification algorithms
on given brain signals data sets. See http://www.bbci.de/competition/ for more info.
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on evoked potentials, which are different from the ones described so far, but share
some general concepts.

7.4 EEG signal processing tools for BCI based on event related
potentials

An Event Related Potential (ERP) is a brain responses due to some specific stimulus
perceived by the BCI user. A typical ERP used for BCI design isthe P300, which is a
positive deflection of the EEG signal occurring about 300ms after the user perceived
a rare and relevant stimulus (Fazel-Rezai et al, 2012) (see also Figure 7.8).
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Fig. 7.8 An exemple of an average P300 ERP after a rare and relevant stimulus (Target). We can
clearly observe the increase in amplitude about 300ms after the stimulus, as compared to the non-
relevant stimulus (Non target).

ERP are characterized by specific temporal variations with respect to the stim-
ulus onset. As such, contrary to BCI based on oscillatory activity, ERP-based BCI
exploit mostly a temporal information, but rarely a spectral one. However, as for
BCI based on oscillatory activity, ERP-based can also benefit a lot from using the
spatial information. Next section illustrates how the spatial and temporal informa-
tion is used in basic P300-based BCI designs.
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7.4.1 Basic signal processing tools for P300-based BCI

In P300-based BCI, the spatial information is typically exploited by focusing mostly
on electrodes located over the parietal lobe (i.e., by extracting features only for these
electrodes), where the P300 is know to originate. As an example, Krusienski et al
recommand to use a set of 8 channels, in positions Fz, Cz, P3, Pz, P4, PO7, Oz, PO8
(see Figure 7.9) (Krusienski et al, 2006).

Fig. 7.9 Recommended electrodes for P300-based BCI design, according to(Krusienski et al,
2006).

Once the relevant spatial information identified, here using, for instance, only the
electrodes mentioned above, features can be extracted for the signal of each of them.
For ERP in general, including the P300, the features generally exploit the temporal
information of the signals, i.e., how the amplitude of the EEG signal varies with
time. This is typically achieved by using the values of preprocessed EEG time points
as features. More precisely, features for ERP are generallyextracted by 1) low-pass
or band-pass filtering the signals (e.g., in 1-12 Hz for the P300), ERP being generally
slow waves, 2) downsampling the filtered signals, in order toreduce the number of
EEG time points and thus the dimensionality of the problem and 3) gathering the
values of the remaining EEG time points from all considered channels into a feature
vector that will be used as input to a classifier. This processis illustrated in Figure
7.10 to extract features from channel Pz for a P300-based BCIexperiment.

Once the features extracted, they can be provided to a classifier which will be
trained to assigned them to the target class (presence of an ERP) or to the non-target
class (absence of an ERP). This is often achieved using classical classifiers such
as LDA or SVM (Lotte et al, 2007). More recently, automatically regularized LDA
have been increasingly used (Lotte and Guan, 2009) (Blankertz et al, 2010), as well
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Fig. 7.10 Typical process to extract features from a channel of EEG datafor a P300-based BCI
design. On this picture we can see the P300 becoming more visible with the different processing
steps.

as Bayesian LDA (Hoffmann et al, 2008) (Rivet et al, 2009). Both variants of LDA
are specifically designed to be more resistant to the curse-of-dimensionality through
the use of automatic regularization. As such, they have proven to be very effective in
practice, and superior to classical LDA. Indeed, the numberof features is generally
higher for ERP-based BCI than for those based on oscillatoryactivity. Actually,
many time points are usually needed to describe ERP but only afew frequency
bands (or only one) to describe oscillatory activity. Alternatively, feature selection or
channel selection techniques can also be used to deal with this high dimensionality
(Lotte et al, 2009a) (Rakotomamonjy and Guigue, 2008) (Krusienski et al, 2006).
As for BCI based on oscillatory activity, spatial filters canalso prove very useful.

7.4.2 Spatial filters for ERP-based BCI

As mentionned above, with ERP the number of features is usually quite large, with
many features per channel and many channels used. The tools described for oscilla-
tory activity-based BCI, i.e., feature selection, channelselection or spatial filtering
can be used to deal with that. While feature and channel selection algorithms are
the same (these are generic algorithms), spatial filtering algorithms for ERP are dif-
ferent. One may wonder why CSP could not be used for ERP classification. This
is due to the fact that a crucial information for classifyingERP is the EEG time
course. However, CSP completely ignores this time course asit only considers the
average power. Therefore, CSP is not suitable for ERP classification. Fortunately,
other spatial filters have been specifically designed for this task.

One useful spatial filter available is the Fisher spatial filter (Hoffmann et al,
2006). This filter uses the Fisher criterion for optimal class separability. Informally,
this criterion aims at maximizing the Between class-variance, i.e., the distance be-
tween the different classes (we want the feature vectors from the different classes to
be as far apart from each other as possible, i.e., as different as possible) while mini-
mizing the within class-variance, i.e., the distance between the feature vectors from
the same class (we want the feature vectors from the same class to be as similar as
possible). Formally, this means maximizing the following objective function:
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JFisher =
tr(Sb)

tr(Sw)
(7.9)

with

Sb =
Nc

∑
k=1

pk(x̄k − x̄)(x̄k − x̄)T (7.10)

and

Sw =
Nc

∑
k=1

pk ∑
i∈Ck

(xi − x̄k)(xi − x̄k)
T (7.11)

In these equations,Sb is the between-class variance,Sw the within-class variance,
Nc is the number of classes,xi is theith feature vector, ¯v is the average of all vectors
v, Ck is thekth class andpk the probability of classk.

This criterion is widely used in machine learning in general(Duda et al, 2001),
and can be used to find spatial filters such that the resulting features maximize this
criterion, and thus the discriminability between the classes. This is what the Fisher
spatial filter does. It finds the spatial filters such that the spatially filtered EEG time
course (i.e., the feature vector) is maximally different between classes, according
to the Fisher criterion. This is achieved by replacingxi (the feature vector) bywXi

(i.e., the spatially filtered signal) in equations 7.10 and 7.11. This gives an objective

function of the formJ(w) = wŜbwT

wŜwwT , which, like the CSP algorithm, can be solved
by GEVD. This has been showed to be very efficient in practice (Hoffmann et al,
2006).

Another option, that has also proved very efficient in practice, is the xDAWN
spatial filter (Rivet et al, 2009). This spatial filter, also dedicated to ERP classifica-
tion, uses a different criterion from that of the Fisher spatial filter. xDAWN aims at
maximizing the signal to signal plus noise ratio. Informally, this means that xDAWN
aims at enhancing the ERP response, at making the ERP more visible in the mid-
dle of the noise. Formally, xDAWN finds spatial filters that maximize the following
objective function:

JxDAW N =
wADDT AT wT

wXXT wT (7.12)

whereA is the time course of the ERP response to detect for each channel (esti-
mated from data, usually using a Least Square estimate) andD is a matrix contain-
ing the positions of target stimuli that should evoke the ERP. In this equation, the
numerator represents the signal, i.e., the relevant information we want to enhance.
Indeed,wADDT AT wT is the power of the time course of the ERP responses after
spatial filtering. On the contrary, in the denominator,wXXT wT is the variance of all
EEG signals after spatial filtering. Thus, it contains both the signal (the ERP) plus
the noise. Therefore, maximizingJxDAW N actually maximizes the signal, i.e., it en-
hances the ERP response, and simultaneously minimizes the signal plus the noise,
i.e., it makes the noise as small as possible (Rivet et al, 2009). This has indeed been
shown to lead to much better ERP classification performance.
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In practice, spatial filters have proven to be useful for ERP-based BCI (in particu-
lar for P300-based BCI), especially when little training data is available. From a the-
oretical point of view, this was to be expected. Actually, contrary to CSP and Band
Power which extract non-linear features (the power of the signal is a quadratic oper-
ation), features for ERP are all linear and linear operations are commutative. Since
BCI classifiers, e.g., LDA, are generally also linear, this means that the classifier
could theoretically learn the spatial filter as well. Indeed, both linearly combining
the original featuresX for spatial filtering (F = WX), then linearly combining the
spatially filtered signals for classification (y = wF = w(WX) = ŴX) or directly lin-
early combining the original features for classification (y=WX) are overall a simple
linear operation. If enough training data is available, theclassifier, e.g., LDA, would
not need spatial filtering. However, in practice, there is often little training data
available, and first performing a spatial filtering eases thesubsequent task of the
classifier by reducing the dimensionality of the problem. Altogether, this means that
with enough training data, spatial filtering for ERP may not be necessary, and leav-
ing the classifier learn everything would be more optimal. Otherwise, if few training
data is available, which is often the case in practice, then spatial filtering can benefit
a lot to ERP classification (see also (Rivet et al, 2009) for more discussion of this
topic).

7.4.3 Summary of signal processing tools for ERP-based BCI

In summarry, when designing ERP-based BCI, it is important to use the temporal
information. This is mostly achieved by using the amplitudeof preprocessed EEG
time points as features, with low-pass or band-pass filtering and downsampling as
preprocessing. Feature selection algorithms can also prove useful. It is also impor-
tant to consider the spatial information. To do so, either using or selecting relevant
channels is useful. Using spatial filtering algorithms suchas xDAWN or Fisher spa-
tial filters can also prove a very efficient solution, particularly when little training
data is available. In the following, we will briefly describesome alternative signal
processing tools that are less used but can also prove usefulin practice.

7.5 Alternative methods

So far, this chapter has described the main tools used to recognize mental states in
EEG-based BCI. They are efficient and usually simple tools that have become part
of the standard toolbox of BCI designers. However, there areother signal process-
ing tools, and in particular other kinds of features or information sources that can
be exploited to process EEG signals. Without being exhaustive, this section briefly
presents some of these tools for interested readers, together with corresponding ref-
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erences. The alternative EEG feature representations thatcan be used include the
following 4 categories:

• Temporal representations: temporal representations measure how the signal
varies with time. Contrary to basic features used for ERP, which simply con-
sist in the EEG time points over time, some measures have beendevelopped in
order to characterize and quantify those variations. The corresponding features
include Hjorth parameters (Obermeier et al, 2001) or Time Domain Parameters
(TDP) (Vidaurre et al, 2009). Recent research results have even suggested that
TDP could be more efficient that the gold-standard Band Powerfeatures (Vidau-
rre et al, 2009) (Ofner et al, 2011).

• Connectivity measures: they measure how much the signal from two channels
are correlated, synchronized or even if one signal may be thecause of the other
one. In other words, connectivity features measure how the signal of two chan-
nels are related. This is particularly useful for BCI since it is known that, in
the brain, there are many long distance communications between separated ar-
eas (Varela et al, 2001). As such, connectivity features areincreasingly used for
BCI and seem to be a very valuable complement to traditional features. Con-
nectivity features include coherence, phase locking-values or Directed Transfer
Function (DFT) (Krusienski et al, 2012) (Grosse-Wentrup, 2009) (Gouy-Pailler
et al, 2007) (N. Caramia, 2014).

• Complexity measures: they naturally measure how complex the EEG signalmay
be, i.e., they measure its regularity or how predictable it can be. This has also
been shown to provide information about the mental state of the user, and also
proved to provide complementary information to classical features such as band-
power features. The features from this category used in BCI include approximate
entropy (Balli and Palaniappan, 2010), predictive complexity (Brodu et al, 2012)
or waveform length (Lotte, 2012).

• Chaos theory-inspired measures: another category of features that has been ex-
plored is chaos-related measures, which assess how chaoticthe EEG signal can
be, or which chaotic properties it can have. This has also been shown to extract
relevant information. Examples of corresponding featuresinclude fractal dimen-
sion (Boostani and Moradi, 2004) or multi-fractal cumulants (Brodu et al, 2012).

While these various alternative features may not be as efficient as the standards
tools such as Band Power features, they usually extract a complementary informa-
tion. Consequently, using band power features together with some of these alter-
native features has led to increase classification performances, higher that the per-
formances obtained with any of these features used alone (Dornhege et al, 2004)
(Brodu et al, 2012) (Lotte, 2012).

It is also important to realize that while several spatial filters have been designed
for BCI, they are optimized for a specific type of feature. Forinstance, CSP is the
optimal spatial filter for Band Power features and xDAWN or Fisher spatial filters
are optimal spatial filters for EEG time points features. However, using such spa-
tial filters with other features, e.g., with the alternativefeatures described above,
would be clearly suboptimal. Designing and using spatial filters dedicated to these
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alternative features is therefore necessary. Results withwaveform length features
indeed suggested that dedicated spatial filters for each feature significantly improve
classification performances (Lotte, 2012).

7.6 Discussion

Many EEG signal processing tools are available in order to classify EEG signals
into the corresponding user’s mental state. However, EEG signal processing is a
very difficult task, due to the noise, non-stationarity, complexity of the signals as
well as due to the limited amount of training data available.As such, the existing
tools are still not perfect, and many research challenges are still open. In particular,
it is necessary to explore and design EEG features that are 1)moreinformative, in
order to reach better performances, 2)robust to noise and artifacts, in order to use the
BCI outside laboratories, potentially with moving users, 3) invariant, to deal with
non-stationarity and session-to-session transfer and 4)universal, in order to design
subject-independent BCI, i.e., BCI that can work for any user, without the need for
individual calibration. As we have seen, some existing tools can partially address,
or at least, mitigate such problems. Nevertheless, there isso far no EEG signal pro-
cessing tool that has simultaneously all these properties and that is perfectly robust,
invariant and universal. Therefore, there are still exciting research works ahead.

7.7 Conclusion

In this chapter, we have provided a tutorial and overview of EEG signal processing
tools for users’ mental state recognition. We have presented the importance of the
feature extraction and classification components. As we have seen, there are 3 main
sources of information that can be used to design EEG-based BCI: 1) the spectral
information, which is mostly used with band power features;2) the temporal infor-
mation, represented as the amplitude of preprocessed EEG time points and 3) the
spatial information, which can be exploited by using channel selection and spatial
filtering (e.g., CSP or xDAWN). For BCI based on oscillatory activity, the spectral
and spatial information are the most useful, while for ERP-based BCI, the temporal
and spatial information are the most relevant. We have also briefly explored some
alternative sources of information that can also complement the 3 main sources
mentioned above.

This chapter aimed at being didactic and easily accessible,in order to help people
not already familiar with EEG signal processing to start working in this area or to
start designing and using BCI in their own work or activities. Indeed, BCI being
such a multidisciplinary topic, it is usually difficult to understand enough of the
different scientific domains involved to appropriately useBCI systems. It should
also be mentioned that several software tools are now freelyavailable to help users
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design BCI systems, e.g., Biosig (Schlögl et al, 2007), BCI2000 (Mellinger and
Schalk, 2007) or OpenViBE (Renard et al, 2010). For instance, with OpenViBE, it
is possible to design a new and complete BCI system without writing a single line of
code. With such tools and this tutorial, we hope to make BCI design and use more
accessible, e.g., to design musical BCI.

7.8 Questions

Please find below 10 questions to reflect on this chapter and try to grasp the essential
messages:

1. Do we need feature extraction? In particular why not usingthe raw EEG signals
as input to the classifier?

2. What part of the EEG signal processing pipeline can be trained/optimized based
on the training data?

3. Can we design a BCI system that would work for all users (a so-called subject-
indepedent BCI)? If so, are BCI designed specifically for onesubject still rele-
vant?

4. Are univariate and multivariate feature selection methods both suboptimal in gen-
eral? If so, why using one type or the other?

5. By using an inverse solution with scalp EEG signals, can I always reach a similar
information about brain activity as I would get with invasive recordings?

6. What would be a good reason to avoid using spatial filters forBCI?
7. which spatial filter to you have to try when designing an oscillatory activity-based

BCI?
8. Let us assume that you want to design an EEG-based BCI, whatever its type: can

CSP be always useful to design such a BCI?
9. Among typical features for oscillatory activity-based BCI (i.e., band power fea-

tures) and ERP-based BCI (i.e., amplitude of the preprocessed EEG time points),
which ones are linear and wich ones are not (if applicable)?

10. Let us assume you want to explore a new type of features to classify EEG data:
could they benefit from spatial filtering and if so, which one?
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Lotte F, Ĺecuyer A, Arnaldi B (2009b) FuRIA: An inverse solution basedfeature
extraction algorithm using fuzzy set theory for brain-computer interfaces. IEEE
transactions on Signal Processing 57(8):3253–3263

Lotte F, Langhenhove AV, Lamarche F, Ernest T, Renard Y, Arnaldi B, Lécuyer A
(2010) Exploring large virtual environments by thoughts using a brain-computer
interface based on motor imagery and high-level commands. Presence: teleoper-
ators and virtual environments 19(1):54–70

Mason S, Birch G (2003) A general framework for brain-computer interface design.
IEEE Transactions on Neural Systems and Rehabilitation Engineering 11(1):70–
85

McFarland DJ, Wolpaw JR (2005) Sensorimotor rhythm-based brain-computer in-
terface (BCI): feature selection by regression improves performance. IEEE Trans-
actions on Neural Systems and Rehabilitation Engineering 13(3):372–379

McFarland DJ, McCane LM, David SV, Wolpaw JR (1997) Spatial filter selection
for EEG-based communication. Electroencephalographic Clinical Neurophysiol-
ogy 103(3):386–394

McFarland DJ, Anderson CW, M̈uller KR, Schl̈ogl A, Krusienski DJ (2006) BCI
meeting 2005-workshop on BCI signal processing: feature extraction and trans-
lation. IEEE Transactions on Neural Systems and Rehabilitation Engineering
14(2):135 – 138

Mellinger J, Schalk G (2007) Toward Brain-Computer Interfacing, in: g. dornhege,
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