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PREFACE

The study of data structures and algorithms is fundamental to computer science
and engineering. A mastery of these areas is essential for us to develop computer
programs that utilize computer resources in an effective manner. Consequently, all
computer science and engineering curriculums include one or more courses devoted
to these subjects. Typically, the first programming course introduces students to
basic data structures (such as stacks and queues) and basic algorithms (such as
those for sorting and matrix algebra). The second programming course covers more
data structures and algorithms, The next one or two courses are usually dedicated
to the study of data structures and algorithms.

The explosion of eourses in the undergraduate computer science and engineering
curriculums has forced many universities and colleges to consolidate material into
fewer courses. At the University of Florida, for example, we offer a single one-
semester undergraduate data structures and algorithms course. Students coming
into this course have had a one-semester course in Java programming and another
in discrete mathematics /structures.

Data Structures, Algorithms, and Applications in C++ has been developed for
use in programs that cover this material in a unified course as well as in programs
that spread out the study of data structures and algorithms over two or more
courses. The book is divided into three parts. Part [, which consists of Chapters 1
through 4, is intended as a review of C++4 programming concepts and of methods
to analyze and measure the performance of programs. Students who are familiar
with programming in C should be able to read Chapter 1 and bridge the gap be-
tween C and C++. Although Chapter 1 is not a primer on C++4, it covers most
of the C4++ constructs with which students might have become rusty. These con-
cepts include parameter passing, template functions, dynamic memory allocation,
recursion, classes, inheritance, and throwing and catching exceptions. Chapters 2
and 3 are a review of methods to analyze the performance of a program-—operation
counts, step counts, and asymptotic notation (big oh, omega, theta, and little ohj.
Chapter 4 reviews methods to measure performance experimentally. This chapter
also has a brief discussion of how cache affects measured run times. The applica-
tions considered in Chapter 2 explore fundamental problems typically studied in
a beginning programming course—simple sort methods such as bubble, selection,
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insertion, and rank (or count) sort; sequential search; polynomial evaluation us-
ing Horner's rule; and matrix operations such as matrix addition, transpose, and
multiply. Chapter 3 examines binary search. Even though the primary purpose of
Chapters 2 through 4 is to study performance analysis and measurement methods,
these chapters also ensure that all students are familiar with a set of fundamental
algorithms. . :

Chapters 5 through 16 form the second part of the book. These chapters provide
an in-depth study of data structures. Chapters 5 and 6 form the backbone of this
study by examining the array and pointer {or linked) methods of representing data.
These two chapters develop C++ classes to represent the linear list data structure,
using each representation method. We compare the different representation schemes
with respect to their effectiveness in representing linear lists by presenting exper-
imental data. The remaining chapters on data structures use the representation
methods of Chapters 5 and 6 to arrive at representations for other data structures
such as arrays and matrices (Chapter T), stacks (Chapter B), gqueues {Chapter 9),
dictionaries (Chapters 10, 14, and 15), binary trees (Chapter 11), priority queues
(Chapter 12), tournament trees (Chapter 15), and graphs (Chapter 16).

In our treatment of data structures, we have attempted to maintain compati-
bility with similar or identical structures that are available in the C++ Standard
Templates Library (STL). For example, the linear list data structure that is the
subject of Chapter 5 is modeled after the STL class vector. Throughout the hook

we make use of STL functions such as copy, min, and max so students becomes
familiar with these functions.

The third part of this book, which comprises Chapters 17 through 21 (Chapters
20 and 21 are available from the Web site for this book), is a study of common
algorithm-design methods. The methods we study are greedy (Chapter 17), di-
vide and conquer (Chapter 18), dynamie programming (Chapter 19), backtracking
(Chapter 20), and branch and bound {Chapter 21). Two lower-bound proofs {one
for the minmax problem and the other for sorting) are provided in Section 15.4;
approximation algorithms for machine scheduling (Section 12.6.2), bin packing (Sec-
tion 13.5), and the 0/1 knapsack problem {Section 17.3.2) are also covered. NP-hard
problems are introduced, informally, in Section 12.6.2.

A unique feature of this book is the emphasis on applications. Several real-world
applications illustrate the use of each data structure and algorithm-design method
developed in this book. Typically, the last section of each chapter is dedicated to
applications of the data structure or design method studied earlier in the chapter.
In many cases additional applications are also introduced early in the chapter. We
have drawn applications from various areas—sorting (bubble, selection, insertion,
rank, heap, merge, quick, bin, radix, and topological sort); matrix algebra (ma-
trix addition, transpose, and multiplication); electronic design automation (finding
the nets in a cireuit, wire routing, component stack folding, switch-box routing,
placement of signal boosters, crossing distribution, and backplane board ordering);
compression and coding (LZW compression and Huffman coding); computational
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geometry (convex hull and closest pair of points); simulation (machine shop simu-
lation); image processing (component labeling); recreational mathematies (Towers
of Hanoi, tiling a defective chessboard, and rat in a maze); scheduling (LPT sched-
ules); optimization (bin packing, container loading, 0/1 knapsack, and matrix mul-
tiplication chains); statistics (histogramming, finding the minimum and maximum,
and finding the kth smallest); and graph algorithms (spanning trees, components,
shortest paths, max clique, bipartite graph covers, and traveling salesperson). Our
treatment of these applications does not require prior knowledge of the application
areas. The material covered in this book is self-contained and gives students a flavor
for what these application areas entail.

By closely tying the applications to the more basic treatment of data structures
and algorithm-design methods, we hope to give the student a greater appreciation
of the subject. Further enrichment can be obtained by working through the more
than 800 exercises in the book and from the associated Web site.

WEB SITE
The URL for the Web site for this book is

http://wuvw.cise.ufl.edu/ sahni/dsaac

From this Web site you can obtain all the programs in the book together with
sample data and generated output. The sample data are not intended to serve as a
good test set for a given program; rather they are just something you can use to run
the program and compare the output produced with the given output. Solutions to
many of the exercises that appear in each chapter, codes for these solutions, sample
tests and solutions to these tests, additional applications, and enhanced discussions
of some of the material covered in the text also appear in the Web site.

HOW TO USE THIS BOOK

There are several ways in which this book may be used to teach the subject of
data structures and/or algorithms. Instructors should make a decision based on
the background of their students, the amount of emphasis instruetors want to put
on applications, and the number of semesters or quarters devoted to the subject.
We give a few of the possible course outlines below. We recommend that the
assignments require students to write and debug several programs, beginning with
a collection of short programs and working up to larger programs as the course
progresses. Students should read the text at a pace commensurate with classroom
coverage of topics.
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TWO-QUARTER SCHEDULE—QUARTER 1
One week of review. Data structures and algorithms sequence.

Week || Topic Reading
1 || Review of C++ and program per- Chapte?s 1-4.  Assignment 1
formance. given out.
2 || Array-based representation. Chapter 5. Assignment 1 due.
3 || Linked representation. Sections 6.1-6.4. Assignment 2
given out.
4 || Bin sort and equivalence classes. Sections 6.5.1 and 6.5.4. Assign-
ment 2 due.
5 || Arrays and matrices. Chapter 7. Examination.
6 || Stacks and queues. Chapters 8 and 9. Assignment 3
given out.
7 || Skip lists and hashing. Chapter 10. Assignment 3 due.
8 [ Binary and other trees. Sections 11.1-11.8. Assignment 4
given out.
9 (| Union-find application. Heaps and || Sections 11.9.2, 12.1-12.4, and
heap sort. 12.6.1. Assignment 4 due.
10 ‘ Leftist trees, Huffman codes, and || Sections 12.5 and 12.6.3 and
tournament trees. | Chapter 13.
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TWO-QUARTER SCHEDULE—QUARTER 2
Data structures and algorithms sequence.

Week [[ Topic Reading
1 || Binary search trees. Either AVL or || Chapters 14 and 15. Assignment
red-black trees. Histogramming. 1 given out.
2 || Graphs. i i Sections 16.1-16.7. Assignment 1
due.
3 || Graphs. Sections 16.8 and 16.9. Assign-
ment 2 given out.
4 || The greedy method. Sections 17.1-17.3.5. Assignment
2 due.
5 || The greedy method and the divide- || Sections 17.3.6 and 18.1. Assign-
and-conquer method. ment 3 given out.
6 || Divide-and-conquer applications. Section 18.2. Examination.
7 || Solving recurrences, lower bounds, ﬂ Sections 18.3, 18.4, and 19.1. As-
and dynamic programming. signment 3 due.
8 || Dynamic-programming  applica- || Sections 19.2.1 and 19.2.2. As-
tions. signment 4 given out.
9 || Dynamic-programming  applica- || Sections 19.2.3-19.2.5. Assign-
tions. ment 4 due.
10 || Backtracking and branch-and- || Chapters 20 and 21.

bound methods.
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SEMESTER SCHEDULE
Two weeks of review. Data structures course.

Week || Topic

Reading

1 || Review of C++.

Ghapte; 1. Assignment 1 given
out.

[ =]

Review of program performance.

Chapters 2-4.

L]

——

Array-based representation.

Chapter 5. Assignment 1 due.

Linked representation.

Sections 6.1-6.4. Assignment 2
given out.

Bin sort and equivalence classes.

Sections 6.5.1 and 6.5.4.

Arrays and matrices.

Chapter 7. Assignment 2 due.
First examination.

Stacks and queues. One or two ap-

plications.

Chapters 8 and 9. Assignment 3

given out.

Skip lists and hashing.

Chapter 110

Binary and other trees,

Sections 11.1-11.8. Assignment 3
due.

Union-find application.

Section 11.9.2.  Assignment 4
given out. Second examination.

Priority queues, heap sort, and
Huffman codes.

Chapter 12.

Tournament trees and bin packing.

Chapter 13. Assignment 4 due.

Binary search trees. Either AVL or
red-black trees. Histogramming,.

ﬁmpter:-: 14 and 15. Assignment
5 given out.

Graphs.

Sections 16.1-16.7.

Graphs. Shortest paths.

Sections 16.8. 16.9. 17.3.5, and
19.2.3. Assignment 5 due.

Minimum-cost spanning trees.

Merge sort and quick sort.

Sections 17.3.6. 1822
18.2.3.

and
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SEMESTER SCHEDULE
One week of review. Data structures and algorithms course.

Week || Topic Reading
1 || Review of program performance Chapters 1-4.
2 || Array-based representation Chapter 5. Assignment 1 given
. out.
'3 || Linked representation. Chapter 6.
4 || Arrays and matrices. Chapter 7. Assignment 1 due.
5 || Stacks and queues. One or two ap- || Chapters 8 and 9. Assignment 2
plications. given out.
6 || Skip lists and hashing. Chapter 10. Assignment 2 due.
First. examination.
7 || Binary and other trees. Sections 11.1-11.8. Assignment 3
given out,
& || Union-find application. Heaps and || Sections 11.9.2, 12.1-12.4, and
heap sort. 12.6.1.
9 || Leftist trees, Huffman codes, and || Sections 12.5 and 1263 and |
tournament trees. Chapter 13. Assignment 3 due.
10 || Binary search trees. Either AVL or || Chapters 14 and 15. Assignment
red-black trees. Histogramming, 4 given out. Second examination.
11 || Graphs. Sections 16.1-16.7.
12 || Graphs and the greedy method. Sections 16.8, 16.9, 17.1, and
17.2. Assignment 4 due.
13 || Container loading, 0/1 knapsack, || Section 17.3. Assignment 5 given
shortest paths, and spanning trees. || out.
14 || Divide-and-conquer method. Chapter 18.
15 || Dynamic Programiming. Chapter 19. Assignment 5 due.
16 || Backtracking and branch-and- || Chapters 20 and 21,

bound methods.
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| CHAPTER 1
C++ REVIEW

BIRD'S-EYE VIEW

Well, folks, we are about to begin a journey through the world of data structures, al-
gorithms, and computer programs that solve many real-life problems. The program
development process will require us to (1) represent data in an effective way and (2)
develop a suitable step-by-step procedure (or algorithm) that can be implemented as
a computer program. Effective data representation requires expertise in the field of
data structures, and the development of a suitable step-by-step procedure requires
expertise in the field of algorithm design methods.

Before you embark on the study of data structures and algorithm design meth-
ods, you need to be a proficient C++ programmer and an adept analyst of computer
programs. These essential skills are typically gained from introductory C+<+ and
discrete structures courses. The first four chapters of this book are intended as a
review of these skills, and much of the material covered in these chapters should
already be familiar to you. _

In this first chapter we discuss some features of the C++ language. However,
this chapter is not intended as a C++ primer, and we do not cover basic constructs
such as assignment statements, if statements, and looping statements (e.g., for
and while). This chapter covers the following C++ language features:

= The different modes of parameter passing in C++ (by value, by reference, and
by const reference).
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e The different modes in which a function or method may return a value (by
value, by reference. and by const reference).
e Template functions.

s Recursive functions, I AdTYAHD

s Constant functions.

« The C:+ memery slocation and desllocalo Aol Sk b dekerd )

® The C++ exception handling constructs try, catch, and throw.
o (Classes and template classes.

e Public, protected, and private class members.
» Friends of a class.

s Operator overloading.

o The standard templates library.

Additional C++ features that may not have been covered in a first C4-<4 course
are introduced in later chapters as needed. Chapter 1 also includes codes for the
following applications: WHIV AYH-2'dHId
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Section 1.2 Structure of a C++ Program , 3

1.1 INTRODUCTION U

Some of the questions we should ask when examining 4 tomputer program are”
e [s it correct?
o How easy is it to rE.Eu:I the program a.m:l understand the code?

S T I i S S S S m——

. Isthepmgrnmwel]dncumented‘? Sl e s abs e L] ire 1807
# How easy is it to make changes to the program?

How much memory is needed to run the program?
» For how long will the program run?'"’

+ How general is the code? 'Will it solve pmhlemﬂ over a large ranE;Eﬂf inputh
without modification?, | [t

o Can the code be mq:p;led and run on a variety of mmputera or are modlﬁm- |
tions needed tunm lt.l]l]d.lﬂﬂ‘-ﬂl]t mmputﬂra'-‘ _' i . Al

The relative importance of some of these questions: l:lu-p-end;s on lhe npphmtmh
environment. For example, if we aré writing a'program that’ is to/be rin ‘onte
and discarded, then ecorrectness, memory and time requirements, and the ability
to'compile and ruan:the code on a single computer. are: the dominating eonsideras
tions. ;Regardless of the application, the most important attribute of & program is'
correctness. ' An incorrect program; no matter how fast, how general, or-how well -
documented, is-of' little use’ (until it is corrected). ' Although 'we do not explicitly
dwell on techniques to establish program correctness, we provide informal protfs.of -
correctness and implicitly develop programming -habits conducive to'the production
of correct codes. . The goal is to teach techmiques that w:umﬂbleynutudevﬂap
carrect, elegant, and efficient solutions.

Before we can begin the study of these m&nuqm We THust review: some ess
sential aspects of the C++ language, techniques to test and debug programs, and /!
techniques to analyze and measure the performance of a program. This chapter
focuses on the first two items. Chapters 2 through, 4-reviewy pﬂf@n’fﬁﬂpqq analysis |
and measurement t.ar:lmmues

1 2 FUNGTIDNS AND PAHAMETERS N _
1.2.1 + Value Parameterﬁ ' wol J o 14 e odin :-':r:!-

Consider the C++ function abe (Program 1.1). This function mmputea t.he f:rqnerﬁ-
sion a + b * ¢ for the case when a, b, a.ud-:urEmtegers Thereaultlb.ﬂl:anﬂu
integer. -
In Program 1.1 a, b, and ¢ are the i'urmal pa.ramaters of the fum:tmn al'u:
Each is of type integer. If the function is invoked by the statement
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int abc(int a, int b, int c)
{
return a + b * ¢;

}

Program 1.1 Compute an integer expression

z = abc(2,x,y)

then 2, x, and y are the actual parameters that correspond to a, b, and c,
respectively. )

In Program 1.1 the formal parameters a, b, and ¢ are actually value formal
parameters. At run time the value of the actual parameter that corresponds to a
value formal parameter is copied into the formal parameter before the function is
executed. This copying is done using the copy constructor for the data type of
the formal parameter. If the actual and value formal parameters are of different
data types, a type conversion is performed from the type of the actual parameter
to that of the value formal parameter provided such a type conversion is defined.

When the invocation abe(2,x,y) is executed, a is assigned the value 2, b is
assigned the value of x, and c is assigned the value of y. In case x and/or y are not
of type int, then a type conversion between their type and int is performed prior
to the assignment of values to b and ¢ (provided such a type conversion is defined).
For example, if x is of type double and has the value 3.8, then b is assigned the
value 3.

When a function terminates, destructors for the data types of the formal pa-
rameters destroy the value formal parameters. When a function terminates, formal
parameter values are not copied back into the actual parameters. Consequently,
function invocation does not change the actual parameters that correspond to value
formal parameters.

1.2.2 Template Functions

Suppose we wish to write another function to compute the same expression as
computed by Program 1.1. However, this time a, b, and ¢ are of type float, and
the result is also of this type. Program 1.2 gives the code. Programs 1.1 and 1.2
differ only in the data type of the formal parameters and of the value returned.

Rather than write a new version of the code for every possible data type of the
formal parameters, we can write a generic code in which the data type is a variable
whose value is to be determined by the compiler. This generic code is written using
the template statement as shown in Program 1.3.

From this generic code the compiler can construct Program 1.1 by substituting
int for T and Program 1.2 by substituting float for T. In fact, the compiler can
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float abc(float a, float b, float c)
{

return a + b * ¢;

}

Program 1.2 Compute a floating-point expression

template<class T>
T abe(T a, Th, T c)
{

return a + b * c;

}

Program 1.3 Compute an expression using a template function

construct a double-precision version or a long-integer version (or both) of the code
by substituting double or long for T. Writing abe as a template function eliminates
the need to know the data type of the formal parameters when we write the code.

1.2.3 Reference Parameters

The use of value parameters in Program 1.3 increases the run-time cost. For ex-
ample, consider the operations involved when a function is invoked and when it
terminates. When a, b, and ¢ are value parameters, the copy constructor for type
T copies the values of the corresponding actual parameters into the formal param-
eters a, b, and ¢ upon entry into the function. At the time of exiting the function,
the destructor for type T is invoked, and the formal parameters a, b, and ¢ are
destroyed.

Suppose that T is the user-defined data tvpe matrix whose copy constructor
copies all entries of the matrix and whose destructor destroys the matrix entries
one by one (assume that the operators +, *, and / have been defined for the data
type matrix). If abe is invoked with each actual parameter being a matrix with
1000 elements, then copying the three actual parameters into a, b, and c would
require 3000 operations. When abc terminates, the matrix destructor is invoked to
destroy a, b, and ¢ at a cost of an additional 3000 operations.

In the code of Program 1.4, a, b, and ¢ are reference parameters. If abc
is invoked by the statement abc(x,y,=) where x, y, and z are of the same data
type, then these actual parameters are bound to the names a, b, and ¢, respectively.
Therefore, during execution of the function abc, the names x, y, and z, respectively,
are used in place of the names a, b, and ¢. Unlike the case of value parameters, this
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~program does not opy actual parameter values at the time of i m'mcatmu a.m:l &Jﬂ

not invoke the type T destructor upon'éxit;0.% .7 f=so0i .78 T

— -

r

template<class T>
-T-abe(Tk-a, T& b, Th-o) - e v - £ 8 J
{ T BEIEED Bl SRR T o A
return a + b * c;
R e Ak A - e it | A E, . ] - S S 18—
S T e Bl Tl W s T

ey : ES

Program 1.4 Compute an expression using reference paraméters = ¢ 7)odc |

Consider the case when the actual parameters that correspond to-a;byand ¢
are matrices x, y, and z with 1000 elements each. Since the values of x, vy, and'z
are now not copied into the formal parameters, we save the Bﬂﬂmmﬁﬁ

S ———— P p———

to do the -:npym&whﬂn value parameters are used; . o0 B asrgortl

1.2.4 Const Reference Parﬂmﬂterﬂ |
¥ vl lie I...,|||| v |_||I Prilnby Es Cema JNREAFs s d B0 RR L@ hGad TdRRETLNEE [

C++, pmvp.dqﬁ yet .pnut.har mode of, pﬂrﬂmﬂter pa.pu'gg, nnpﬁt ;mfﬂrqnu Thm
made, tes reference parmmeters that are not changed by the function, For
example, in rng:‘nmldthevaluaaufmb and ¢ do not change, so we may rewrite
the code as shown in Program 1.5.

LR T

srafaiasieqd anr laH L.

i : ‘ T 5 0 P 0 AR Y OO S L R T TR A (e B LR B
Fmpllf'?‘t'}ﬂf W T;" vutfed 3 vnie Lowele rod cpod peeaggo ald wbiamon alipias
T abc(const Tk a, const Tk b, comst Tk c) S e I e RO
TRl Ar et ongb b oarhiel =t MEIETRAT FALITsE e IREEMAY FER 1 H PR RS BT 1| w11 --|i|||.-'| T
'r'ﬂlll’:l":"lm'.'k 8, P*--‘i-‘-:' bt et M it i) s g1 pdpii = fuge A L8 TS
= 1T ol LB SRR Fgarnt abt fan Isesmnwribl =5 T wy L1 vl s tTealy ol
i et——t—
Pmﬂmlﬁﬁmmwﬂmrmwmmmm e
: Ilr:-’ 11 1At reisly el bnns wivie I"l'- 11119 lie 291
- &wcmtqun]ﬁiﬂrtqhmtﬁmfﬂmmmmthﬂmlw
!i‘i_"ﬁ Wﬂﬂﬂfhﬂﬂmmmmﬂwwm%ﬁm@m
ik ;ﬁ %FNWWFM“MWM la (W]
"j FF-K ﬂFPIPEEHlﬁsﬂ-HHF gbtain, & more general version of Pro-

Int € new VErsion e fqrnﬂ]ﬂ:matermn}'b&ufndlﬂﬂrﬁntmmd
tll?e J;&nult of the same W;:-a as the first parameter (for example). -

J'I.I. R

125 Rﬂt{iifn Valiies

A fimetion may wiake a value return, a reference return, or a const reference rﬁi:ﬂrﬁ
The —pmmdhig examples make value returns. In such a return, the object that 'is

1 _-\.I 1=

IJ""J

fLerpti &1
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%mmdfﬂ? mlwr'[&i%a rigaly o1 utilide od T vurtengie suns "I-|||
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Program 1.6 A more general version of Program 1.5 SR TAY |

ithe invokiog (o return) enyirgnment,  This copying

IEH&HH“%‘L E"éf’
u % o o gtion ﬂhqqﬂuheaﬁuli% e expression com-
2,

i nclion
terlmnnt.es, space Hﬂm‘:a m{ﬂ’l “'LJP eq}ﬁ‘e%wm ‘gﬁ‘ ﬁ'l;hﬂfx;fﬁ | other

temporary variables, local vanabla: and value tml pﬂ.rameterb is freed and its
value is no longer available. To avoid losing t-hlE value, we copy it from the tem-
porary variable into the return environment before releasing the space allocated to
temporary variables, local variables and value formal f:.ﬁ.rﬂﬂtbteﬁa Ul n) Ll
We specify a reference return by adding the Qﬁﬁhﬁlfﬁ Hﬁ‘ﬁ.lﬂff‘tuct'ﬂ‘!‘re\thm

type. The function header X = qmed Ini
" |

Tk mystery(int i, Tk z) OEes =y

-defines a_function mystery that makes &Wimw

example, return z using the follewing statement: . boy el T 0 mmstgon®l

return z;

b AARISTINOO0 10 1ot el t gt pT-n T 2agad pwdbyid olsNpear 8 usidy L

Such a return would not mvulﬂbﬂpﬁng I:he]va.hne df zinté thHe feturm Ei'.[ﬂ'mnment
When function gystery terminates, the space allocated to the value forr

"gter FR:E&‘MHDKF PiRabIds s released.” be 23 DY & réferénce' r
parameter, it is not affected, e

s A gt pteremee Tet g i5 SreciTpdbu 24ding the beyord caRat o tﬁ%ﬂ.ﬁpﬂﬂn

vtk [T

const Tk l&ﬁt!rI[;E}Li,"T!t$l e Tl b RAog propicrl wiglepr sk a adin N B
A const reference return is similar to a reference return except that tﬂ:a item returned
s designated & carmtant oREGt,. - 1 - acroe 22 ikl ot Lot g atitd 0

|| (EF TINT 'I-_'!-i

1.2. ﬁ Dverlnaded Fum:l:mns

3 it Hate bezpges b g adinl S
The signature of a t'um::tmn is dehned b thg ,rlat.u, t,'_'r].'lEﬁ ﬂf t]]ﬁ method’s formal
parameters and the number of formal parameters. The signature of the method
abe:ioff Programn 1.1 s {ant, ‘int, int). C+4allows you to definetwolér more
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functions with the same name provided no two functions with the same name have
the same signature. The ability to define several functions with the same name is
called function overloading. Because of the availability of function overloading,
we can write a program that includes both the function abc of Program 1.1 and
the function abc of Program 1.2. By matching the signature used by a function
invocation statement to the signature in a function definition, the C++ compiler
can determine which of the overloaded functions is meant.

EXERCISES

T,

1. Explain why the swap method of Program 1.7 fails to swap (i.e., interchange)
the values of the integer actual parameters that correspond to the formal
parameters x and y. How would you change this code so that it correctly
swaps the values of the actual parameters.

void swap(int x, int y)

{// swap the integers x and y
int temp = x;
X ®Yi
y = temp;

}

Program 1.7 Incorrect code to swap two integers
2. Write a template function count that returns the number of occurrences of
value in the array a[0:n-1]. Test your code.

3. Write a template function £i11 that sets a[start:end-1] to value. Test
your code.

4. Write a template function inner _product that returns E:‘:-nl ali] = bfi]. Test
yvour code.

5. Write a template function iota that sets a[i] = value + 1,0 < i < n. Test
your code.

6. Write a template function is_sorted that returns true iff a[0:n-1] is sorted.
Test your code.

7. Write a template function mismatch that returns the smallest 1, 0 € i <n
such that a[i| # b[i]. Test your code.

K. Do the following headers define functions with different signatures? Why?
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(a) int abc{int a, int b, int c)
(b) fleat abc{int a, int b, int c)

9. Suppose we have a program that contains both of the abe functions given in
Programs 1.1 and 1.2. Which abe function is invoked by each of the following
statements. Which will result in a compile-time error? Why?

(a) cout << abe(1l, 2, 3);) << endln;

(b) cout << abc(1.0F, 2.0F, 3.0F);) < endln;
(e) cout << abe(1, 2, 3.0F);) < endln;

(d) cout << abe(1.0, 2.0, 3.0);) << endln;

1.3 EXCEPTIONS
1.3.1 Throwing an Exception

Exceptions are used to signal the occurrence of errors. For example, the evaluation
of the expression a+bsc+b/c witha = 2, b = 1, and ¢ = 0 requires us to divide by
zero, which is an error., Although this error is not detected by C4+, vour hardware
will detect the error and throw an exception.

We can write C++ programs that check for exceptional conditions and throw an
exception when such a condition is detected. For example, the task performed by
function abe (Program 1.1) may be defined only when each of its three parameters is
greater than 0. In this case we would modify the code of Program 1.1 to first check
that the values of a, b, and ¢ are actually > 0. If one or more of these parameters
is < 0, we can signal an exceptional condition by throwing an exception as is done
in Program 1.8. The exception thrown by this program is of type chars.

int abe(int a, int b, int ¢)

{
if (a<=0 |l b<=01]] c <=0)
throw "All parameters should be > 0";
return a + b #* c;
X

Program 1.8 Throwing an exception of type chars

We get more flexibility in processing exceptions when we define an exception
class for each of the different kinds of exceptions (e.g., divide by zero, illegal param-
eter value, illegal input value, array index out of range) that our program may throw.
For example, C+4++ has a hierarchy of exception classes with the class exception
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as root. Standard C++ functions signal exceptional conditions by throwing excep-
tions of a type that is derived from the root or base class exception. For example,
the C++4 operator new that does dynamic memory allocation throws an exception
of type bad_alloc when it is unable to make the requested memory allocation;
bad_alloc is derived from the base class exception. Similarly, the C++ func-
tion typeid, which determines the type of an object, throws an exception of type
bad.typeid when you attempt to determine the type of the NULL object; bad.typeid
also is derived from the base class exception. In Section 1.6 we shall see how to
define an exception class.

1.3.2 [Handling Exceptions

Exceptions that might be thrown by a piece of code can be handled by enclosing
this code within a try block. The try block is then followed by zero or more catch
blocks. Each catch block has a parameter or argument whose type determines the
type of exception that may be caught by that catch block. For example, the block

catch (char» e) {}
catches exceptions of type chars while the block
catch (bad_alloc e) {}

catches exceptions of type bad_alloc. The block

catch (exceptionk e) {}

catches exceptions of type exception as well as of all (ypes derived from exception
(e.g., bad_alloc and bad_typeid). The block

catch (...) {}

catches all exceptions regardless of their type.

A catch block typically contains code to recover from the exception that has
occurred, or if recovery is not possible, the code in the catch block prints out an
error message. Program 1.9 shows an example of the try-catch construct. The
method abe that is invoked within the try block is the one given in Program 1.8.

Although Program 1.9 has a single catch block following the try block, it is
possible to follow a try block with several catch blocks. When the code within
a try block terminates with no exception, we bypass the catch blocks. When an
exception is thrown, nermal execution of the try block terminates and we enter the
first catch block that can catch an exceptio:: of the type thrown. Following the
execution of the code within this matching catch block, we bypass the remaining
catck blocks. If no catch block matches the thrown exception type, then the
exception prupagates through the hierarchy of nested enclosing try blocks to the
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int main()
{
try {cout << abc(2,0,4) << endl;}
catch (char* a)
{
cout << "The parameters to abc were 2, 0, and 4" << endl;
cout << "An exception has been throwa" << endl;
cout << @ << andl;
return 1;

¥

recurn 0;

+

Program 1.9 Catching an exception of type chars

first catch block in this hierarchy that can handle the exception. If the exception
is not caught by any catch block, the program terminates abnormally.

When Program 1.9 executes, abc throws an exception of type chars+, This
exception causes abe to terminate without the evaluation of the expression. Also,
the try block terminates immediately (the cout in the try block doesn't complete).
Since the type of the exception thrown by abc is the same as that of the catch
block's parameter e, the exception is caught by this catch block; e is assigned
the thrown exception; and the catch block is entered. Figure 1.1 gives the output
generated by Program 1.9, :

The parameters to abc were 2, 0, and 4
An exception has been thrown
All parameters should be > O

Figure 1.1 Output from Program 1.9

EXERCISES

10. Modify Program 1.8 so that it throws an exception of type int. The value of
the thrown exception should be 1 if a, b, and ¢ are all less than 0; the value
should be 2 if all three equal 0. When neither of these conditions is satisfied,
no exception is thrown. Write a main function that uses your modified code;
catches the exception if thrown; and outputs a message that depends on the
value of the thrown exception. Test vour code.
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11. Do Exercise 2. Ynurmdefnrthefunctmnshnuldthrﬂwanexceptmnuftype
char#* in case n < 1. Test your code.

1.4 DYNAMIC MEMORY ALLOCATION

1.4.1 The Operator new

Run-time or dynamic allocation of memory may be done using the C++ operator
new. This operator returns a pointer to the allocated memory. For example, to
dynamically allocate memory for an integer, we must declare a variable (e.g., y) to
be a pointer to an integer using this statement: .

int *y;

When the program needs to actually use the integer, memory may be allocated to
it using this syntax:

¥ = new int;
The operator new allocates enough memory to hold an integer, and a pointer to this
memory is returned and saved in y. The variable y references the pointer to the

integer, and *y references the integer. To store an integer value, for example 10, m
the newly allocated memory, we can use the following syntax:

*y = 10;

We can combine the three steps—declare y, allocate memory, and assign a value to
*y-into a smaller number of steps as shown in the following examples:

int *y = nev int;
*»y = 10;

or
int *y = new int (10);

or

int *y;
¥ = new int (10);
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1.4.2 One-Dimensional Arrays

This text includes many examples of functions that work with one- and two-dimen-
sional arrays. The size of these arrays may not be known at compile time and
may, in fact, change from one invocation of the function to the next. Consequently,
memory for these arrayvs needs to be allocated dynamically.

To create a one-dimensional floating-point array x at run time, we must declare
x a8 a pointer to a float and then allocate enough memory for the array. For
example, a floating-point array of size n may be created as follows:

float *x = new float [n]:

The operator newv allocates memory for o Hoating-point numbers and returns a
pointer to the first of these. The array elements may be addressed using the syntax
x[0], x[1], ..., x[n-1].

1.4.3 Exception Handling
What happens when the statement

float #*x = new float [m];

is executed and the computer doesn't have enough memory for n floating-point
numbers? In this case new cannot possibly allocate the desired amount of memory,
and an exception of type bad_alloc is thrown. We may detect the failure of new
by catching the exception with the try - catch construct:

float =*=x;

try {x = new float [n];}

catch (bad_alloc e)

{// enter only when new fails
cerr << "Qut of Memory" << endl;
exit(1); '

}

1.4.4 The Operator delete

Dynamically allocated memory should be freed when it is no longer needed. The
freed memory can then be reused to create new dynamieally allocated structures.
We can use the C44 operator delete to free space allocated using the operator
new. The statements

delete y;
delete [] x;

free the memory allocated to *y and the one-dimensional array x.
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1.4.5 Two-Dimensional Arrays

Although C++ provides several mechanisms for declaring two-dimensional arrays,
most of these mechanisms require that both dimensions be known at compile time.
Further, when these mechanisms are used, it is difficult to write functions that
allow a formal parameter which is a two-dimensional array whose second dimension
is unknown. This is so because when a formal parameter is a two-dimensional array,
we must specifv the value of the second dimension. For example, a[] [10] is a valid
formal parameter for a function; a[] [1 is not.

An effective way to overcome these limitations is to use dynamic memory al-
location for all two-dimensional arrays. Throughout this text we use dynamically
allocated two-dimensional arrays.

When both dimensions of the array are known at compile time, the array may be
created using a syntax similar to that used for one-dimensional arrays. For example,
a seven by five array of type char may be declared using the syntax:

char <[7][5];

When at least one of the dimensions is unknown at compile time, the array must
be created at run time using the new operator. A two-dimensional chardcter array
for which the number of columns—for example, 5-is known at compile time may be
allocated using the following syntax:

char (*c)[5];

try {c = new char [n][5];}

catch (bad_alloc)

{// enter only when new fails
carr << "(Out of Memory" << endl;
exit(1);

}

The number of rows n may be determined at run time either via computation or user
input, When the number of eolumns is not known at compile time, the array cannot
be allocated by a simple invocation of new (even if the number of rows is known). To
construct the two-dimensional array, we view it as composed of several rows. Each
row is a one-dimensional array and may be created using new as discussed earlier.
Pointers to each row may be saved in another one-dimensional array. Figure 1.2
shows the structure that needs to be established for the case of a three by five array
X.

x[0]1, x[1], and x[2] point to the first element of rows 0, 1, and 2, respectively.
So if x is to be a character array, then x[0:2] are pointers to characters and x is
itself a pointer to a pointer to a character. x may be declared using the following
syntax:

char #»x;
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Figure 1.2 Memory structure for a three hy five array

To create the memory structure of Figure 1.2, we can use the code of Program 1.10,
which creates a two-dimensional array of tvpe T. The arrav has numberQfRows
rows and number0fCols columns. The code frst gets memory for the pointers
x[0] through x[number0fRows-1]. Next it gets memory for each row of the array.
This code invokes new numberOfRows + 1 times. If one of these invocations of new
throws an exception, program control is transferred to the eatch block and the value
false is returned. If none of the invocations of new throws an exception, the array
construction is successful and make2dArray returns the value true. The elements
of the created array x may be indexed using the standard x[i] [j] notation, 0 <
i < numberOfRows, (0 < j < number0fColumns.

template <class T>
bool makeZ2dArray(T #=* &x, int number0OfRows, int numberOfColumns)
{// Create a two dimensional array.

try {
// create pointers for the rows
x = new T = [number0fRows];

/{ get memory for each row
for (int i = 0; i < number0fRous; i++)
x[i] = new int [number0fColumns];
return true;
}
catch (bad_allec) {return false;}

Program 1.10 Aliocate memory for a two-dimensional array

In Program 1.10 the exception (if any) thrown by newv is reported to the invoking



16 Chapter 1 C++ Review

function as the Boolean value false. The failure of make2dArray may also be
reported to the invoking function by simply doing nothing. If we use the code of
Program 1.11, the invoking function can catch any exception thrown by new.

template <class T>
void make2dArray(T *+ kx, int number0OfRows, int number0fColumns)
{// Create a two-dimensional array.

// create pointers for the rows
¥ = new T * [numberOfRows]:

// get memory for each row
for (int 1 = 0; i < numberOfRows; i++)
x[i] = new T [number0fColumns];
}

Program 1.11 Make a two-dimensional array but do not catch exceptions

When make2dArray is defined as in Program 1.11, we can use the code

try {make2dArray(x,r.c);}

catch (bad_alloc)

{
cerr << "Could not create x" << endl;
exit(1);

}

to determine a shortage of memory. Not catching the exception within make2dArray
not only simplifies the code for this function but also allows the exception to be
caught at a point where the user is better able to report a meaningful error or
altempt error recovery.

We can free the memory allocated to a two-dimensional array by Program 1.10
by first freeing the memory allocated in the for loop to each row and then freeing
the memory allocated for the row pointers, as shown in Program 1.12. Notice that
this code sets x to zero, which prevents the user from accessing the memory that
was freed.

EXERCISES

12. Write a general version of make2dArray (Program 1.11) whose third parameter

~ is a one-dimensional array rowSize rather than the integer number0fColumns.

Your funetion should create a two-dimensional array in which row i has row-
Size[i] positions.
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template <class T>
void delete2dArray(T =+ kx, int numberOfRows)
{// Delete the two-dimensicnal array x.

// delete the memory for each row
for (int i = 0; i < numberOfRows; i++)
delete [] x[i];

// delete the row pointers
delete [] x;
x = NULL;

}

Program 1.12 Free the memory allocated by make2dArray

13. Write a template function changeLengthiD to change the length (i.e., num-
ber of positions) of a one-dimensional array from oldLength to newLength.
Your function should allocate space for a new one-dimensional array of length
newLength; copy the first min{cldLength, newLength} elements of the old
array into the new one; and free the space allocated to the old array. Test
your code.

14. Write a function changeLength2D that changes the dimensions of a two-
dimensional array (see Exercise 13). Test your code.

1.5  YOUR VERY OWN DATA TYPE
1.5.1 The Class currency

The C++ language supports data types such as int, float, and char. Many of
the applications we develop in this text require additional data types that are not
supported by the language. The most flexible way to define your own data types
in C4++4 is to use the class construct. Suppose you wish to deal with objects
(also referred to as instances) of type currency. Objects of type currency have a
sign component (plus or minus), a dollar component, and a cents component. Two
examples are $2.35 (sign is plus, 2 dollars, and 35 cents) and —$6.05 (sign is minus,
6 dollars, and 5 cents). Some of the functions or operations we wish to perform on
objects of this type follow:

& Set their value.

¢ Determine the components (i.e., sign, dollar amount, and number of cents).
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s Add two objects of type currency.
¢ Increment the value.
= Output.

Suppose we choose to represent objects of type currency using an unsigned long
variable dollars, an unsigned integer cents, and a variable sign of type signType
where the data type signType is defined as

enum signType {plus, minus};

We may declare a C++ class currency using the syntax of Program 1.13. The first
line simply says that we are declaring a class whose name is currency. The class
declaration is then enclosed in braces ({}). The class declaration has been divided
into two sections public and private. The public section declares functions (or
methods) that operate on objects (or instances) of type currency. These functions
are wisible to the users of the class and are the only means by which users can
interact with objects of type currency. The private section declares functions
and data members (simple variables, arrays, and so on that may hold data values)
that are not visible to users of the class. By having a public section and a private
section, we can let the user see only what he or she needs to see while we hide
the remaining information (generally having to do with implementation details).
Although C++ syntar permits you to declare data members in the public section,
good software-engineering practice discourages this procedure.

The first function in the public section has the same name as the class name.
Member functions that have the same name as that of the class are called con-
strnctor functions. Constructor functions specify how to create an object of a
given type and are not permitted to return a value. In our case the constructor
has three parameters whose default values are plus, 0, and 0. The implementation
of the constructor function is provided later in this section. Constructor functions
are invoked automatically when an object of type currency is being created. Two
ways to create objects of type currency are

currency f, g(plus, 3, 45), himinus, 10);
currency *m = new currency (plus, &, 12);

The first line declares three variables (£, g, and k) of type currency. f is to be
initialized using the default values plus, 0, and 0, whereas g is to be initialized
to 33.45 and h to —510.00. Notice that the initialization values correspond to the
constructor parameters from left to right., If the number of initialization values
is less than the number of constructor parameters, the remaining parameters are
assigned their default values. Line 2 declares m as a pointer to an object of type
currency. Ye invoke the new operator to create an object of type currency and
store a pointer to this object in m. The created object is to be initialized to $8.12.
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- class currency

{
public:
// comnstructor
currency({signType theSign = plus,
unsigned long theDollars = 0,
unsigned int theCents = 0);
// destructor
“currency() {}
void setValue(signType, unsigned long, unsigned int);
void setValue(double);
signType getSign() const {return sign;}
unsigned long getDollars{) const {return dollars;}
unsigned int getCents() const {return cents;}
currency add(const currencyf) const;
currencyk increment(const currencyk);
void output() const;
private:
signType sign; // sign of object
unsigned long dollars; // number of dollars
unsigned int cents; // number of cents
ki

Program 1.13 Declaration of the class currency

The next function, “currency, has a name that is the class name preceded by
a tilde (7 ). This function is called the destructor. It is automatically invoked
whenever an object of type currency goes out of scope. The object is destroyed
using this function. In our case the destructor is defined as the null function ({}).
For other classes, the class constructor might create dynamic arrays (for example)
and the destructor will need to free the space allocated to these arrayvs when the
object goes out of scope. Destructor functions are not permitted to return a value.

The next two functions allow the user to set the value of a currency object. The
first requires the user to provide three parameters, while the second permits setting
the value by providing a single number. The implementations are provided later in
this section. Notice first that both functions have the same name. The compiler
and user are able to tell the functions apart because they have different signatures.
C++ allows the reuse of function names as long as their signatures are different!
MNotic: =0 that we have not specified the name of the object whose sign, dollars,
and cents values are to be set. This is because the syntax to invoke a class member
function is
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g-setValue(minus,33,0);
h.setValue(20.52);

where g and h are variables of type currency. In the first case g is the object that
invokes setValue, while in the second the object h invokes setValue. When we
write the code for the setValue functions, we will have a away to access the object
that invoked them. Therefore we do not need to include the name of the invoking
object in the parameter list. '

The functions getSign, getDollars, and getCents return the appropriate data
member of the invoking object. The key word const states that these functions
do not change the invoking object. We refer to functions of this type as constant
functions.

The function add sums the currency amounts of the invoking object and the
parameter currency object and then returns the resultant amount. Since this func-
tion does not change the invoking object, add is a constant function. The function
increment adds the parameter currency object to the invoking object. This fune-
tion changes the invoking object and so is not a constant function. The last public
member function is output, which displays the invoking object by inserting it into
the output stream cout. The function cutput, which does not change the invoking
object, is a constant function.

Although both add and increment return objects of type currency, add does
a value return, while increment does a reference return. As mentioned in Sec-
tion 1.2.5, value and reference returns work like value and reference parameters. In
the case of a value return, the object being returned is copied into the return envi-
ronment. A reference return avoids this copying, and the return environment makes
direct use of the return object. Reference returns are faster than value returns, as
no copying is done. The code for add shows that it returns a local object, which
is destroved when the function terminates. Therefore the return statement must
copy this object. In the case of increment, a global object is returned and there is
no need to copy it.

A copy constructor performs the copying for value returns as well as for
value parameters. Program 1.13 does not specify a copy constructor, so C++ uses
the default copy constructor, which copies the data members only. The use of the
default copy constructor is adequate for the class currency. We will also see classes
where the use of the default copy constructor is not sufficient.

In the private section, we declared the three data members needed to represent
an object of type currency. Each object of type currency has its own copy of these
three data members.

The functions whose implementation is not given inside the class declaration
must be defined outside of it by using the scope resolution operator :: to spec-
ify that the function we are defining is a member of the class currency. So the
syntax currency: :currency denotes the constructor of the class currency, while
currency: : output denotes the output function of this class. Program 1.14 gives the
currency constructor, which simply invokes the three-parameter setValue function
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to initialize the object’s data members.

currency::currency(signType theSign, unsigned long theDollars,
unsigned int theCents)
{// Create a currency object.
setValue(theSign, theDollars, theCents);

}

Program 1.14 Constructor for currency

Program 1.15 gives the codes for the two setValue functions. The first function
validates the input and sets the private data members of the invoking object only
if the parameter values pass the validation test. In case the parameters do not pass
the validation test, an exception of tvpe illegalParametervalue is thrown (defined
later in Section 1.6). The second function does not perform validation and uses only
the first two digits after the decimal point. Numbers of the form d;.dsdy may not
have an exact computer representation. For example, the computer representation
of the number 5.29 is slightly smaller than 5.29. This representation creates an
error when extracting the cents component using the following statement:

cents = (unsigned int) ((theAmount - dollars) * 100);

(theAmount - dollars) #* 100 is slightly smaller than 29, and when the program
does the conversion to an unsigned integer, it assigns cents the value 28 rather
than 29. Adding 0.001 to theAmount solves our problem so long as the computer
representation of d.dyds is not less by more than 0.001 or more by = 0.009. For
example, if the computer representation of 5.29 is equivalent to 5.28999, then adding
0.001 vields 5.29099 and the computed cents amount is 29,

Program 1.16 gives the code for the add function. This function begins by
converting into integers the two currency values to be added. The amount $2.32
becomes the integer 232, and —%$4.75 becomes the integer —475. Notice the dif-
ference in syntax used to reference the data members of the invoking object and
those of the parameter x. x.dollars specifies the dellars data member of x, while
the use of dellare with no object name before it refers to the dellars member
of the invoking object. When function add terminates. the local variables a1, a2,
a3, and ans are destroyed by the destructor for long and the space allocated to
these variables freed. Since the currency object ans is to be returned as the value
of the invocation, it must be copied into the invoking environment. So add must do
a value return.

Program 1.17 gives the increment and output codes. In C+-+, the reserved
word this points to the invokiug ubject; *this is the invoking object itself. Con-
sider the invocation g.increment (h). The first line of function increment invokes
the public member function add, which adds x (i.e., h) to the invoking object g.
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void currency::setValue(zignType theSign, unsigned long theDollars,
unsigned int theCents)
{// Set currency value.
if (theCents > 93)
/{ too many cents
throw illegalParameterValue("Cents should be < 100");

sign = the3ign,
dollars = theDollars;
canta = theCents;

}

void currency::setValue(double theAmount)
{// Set currency value.
if (theAmount < 0) {zign = minus;
. theAmount = -theAmount;}
else sign = plus;

dollars = (unsigned long) theAmount;
/{/ extract integer part
cents = (unsigned int) ((theAmount + 0.001 - dollars) * 100);
// get two decimal digits
}

Program 1.15 Setting the private data members

The result is returned and assigned to the object »this, which is g. So the value
of g is incremented by h. The function returns =this, which is the invoking object.
Since this object is not local to function increment, it will not be automatically
destroyved upon termination of the function. Hence we may do a reference return
and save the copying that would take place during a value return.

By making the data members of the class currency private, we deny access to
these members to the user. So the user cannot change their values using statements
such as

h.cents = zZ0;
h.dollars = 100;
h.sign = plus;

We can assure the integrity of the data members by writing the member functions
to leave behind valid values if they begin with valid data member values. Our codes
for the constructor and setValue functions validate the data before using it. The
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currency currency::add(const currencyk x) const
{// Rdd x and =this.
long al, a2, a3;
currency result;
// convert invoking object to signed integers
al = dollars = 100 + cents;
if (sign == minus) al = -al;

// convert x to signed intveger
a2 = x.dollars = 100 + x.cents;
if (x.sign == minus) a2 = -a2;

ad = al + a2;

/{ convert to currency representation

if (a3 < 0) {result.sign = minus; a3 = -a3;}
else result.sign = plus;

result.dollars = a3 / 100;

result.cents = a3 - result.dollars = 100;

return result;

¥

Program 1.16 Adding two currency values

currencyk currency::increment{const currencyk z)
{// Increment by x.

*this = add(x);

return *this;

}

void currency::output{) const

{// Dutput currency value.
if (sign == minus) cout << '-';
cout << '§° << dollars << '.';
if (cents < 10) cout << *0*;
cout << Ccents;

Program 1.17 increment and output
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remaining functions have the property they leave behind valid data if they start
with valid data. As a result, the codes for functions such as add and output do not
need to verify that the number of cents is, in fact, between 0 and 99. If the data
members are declared as public members, their integrity cannot be assured. The
user might (erroneously) set cents equal to 305, which would cause functions such
as output to malfunction. As a result, all functions would need to validate the data
before proceeding with their tasks. This validation would slow down the codes and
also make them less elegant.

Program 1.18 gives a sample application of the class currency. This code
assumes that the class declaration and all implementation codes are in the file
currency.h. We would normally keep the class declaration and the function im-
plementations in separate files. However, such a separation causes difficulties with
template functions and template classes that we use heavily in subsequent sections
and chapters.

Line 1 of the function main declares four variables, g, h, i, and j of type
currency. The class constructor initializes all but h to $0.00. h has the initial
value $3.50. In the two calls to setValue, g and i are, respectively, set to —§2.25
and —$6.45. The call to function add adds h and g and returns the resulting object
whose value is $1.25. The returned object is assigned to j, using the default assign-
ment procedure that copies the data members of the object on the right side into
the corresponding data members of the object on the left side. This copying results
in j having the value $1.25. This values of h, g and j are output by the next few
lines of code. The remaining lines of code are self explanatory.

1.5.2 Using a Different Representation

Suppose that many application codes have been developed using the class currency
of Program 1.13. Now we desire to change the representation of a currency object
to one that results in faster codes for the more frequently performed operations of
add and increment and hence speed the application codes. Since the user interacts
with the class currency only through the interface provided in the public section,
changes made to the private section do not affect the correctness of the application
codes. Hence we can change the private section without making any changes in
the applications!

The new representation of a currency object has just one private data member,
which is of type long. The number 132 represents $1.32, while =20 represents
—$0.20. Programs 1.19, 1.20, and 1.21 give the new declaration of currency and
the implementation of the various member functions.

Notice that if the new code is placed in the file currency.h, we can run the ap-
plication code of Program 1.18 with no change at all! An important benefit of hiding
the implementation details from the user 15 that we can replace old representations
with new more efficient ones without changing the application codes.
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#include <iostream>
#include "currency.h"

using namespace std;

int main()

{
currency g, h(plus, 3, 50), i, j;

// try out both forms of setValue
g.setValue(minus, 2, 26);
i.setValua(-6.45);

/f do an add and output
j = h.add(g);

h.output();

cout << " + U
g-output();

cout << " = "
j.output(); cout << endl;

// do two adds in a sequence
j = i.add(g).add(h);
// output statements omitted

/{ do an increment and add
j = i.increment(g).add(h);
// output statements omittaed

// test the exception

cout << "Attempting to initialize with cents = 152" << endl;
try {i.setValue(plus, 3, 152);}

catch (illegalParameterValue e)

{
cout << "Caught thrown exception" << endl;

e.outputMessage() ;
}

raturn 0;

}

Program 1.18 Application of the class currency
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class currancy
{
public:
f/ constructor
currency(signType theSign = plus,
unsigned long theDollars = 0,
unsigned int theCents = 0);

// destructor
“currency() {}
void setValue(signType, unsigned long, unsigned int);
void setValue(double);
signType getSign() const

{if (amount < 0) return minus;

else return plus;}
unsigned long getDollars() const

{if (amount < 0) return (-amount) / 100;

else return amount / 100;}
unsigned int getCents() comst .

{if (amount < 0) return -amount - getDollars() * 100;

else return amount - getDollars() = 100;}
currency add(const currencyk) const;
currencyf increment(const currency& x)

{amount += x.amount; return =*this;}
void ocutput() const;

private:

long amount;

};

Program 1.19 New declaration of the class currency

1.5.3 Operator ﬂ'._rerlnading

The class currency includes several member functions that resemble some of the
standard operators of C++. For example, add does what + does, and increment
does what += does. Using these standard C++ operators is more natural than
defining new ones such as add and increment. We can use + and += by a process
called operator overloading that permits us to extend the applicability of existing
C+44 operators so that they work with new data tyvpes or classes.

Program 1.22 gives the class declaration that substitutes the standard operators
+ and += for add and increment. The output function now takes the name of
an output stream as a parameter. Program 1.23 gives the new codes for add and
output. This program also includes code to overload the C++ stream insertion
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currency: :currency(signType theSign, unsigned long theDollars,
unsigned int theCents)
{// Create a currency object.
setValue(theSign, theDollars, theCents);
}

void currency::setValue(signType theSign, unsigned long theDollars,
unsigned int theCents)
{// Set currency value.
if (theCents > 98)
// too many cents
throw illegalParameterValue("Cents should be < 100");

amount = theDollars #* 100 + theCents;
if (theSign == minus) amount = -amount;

}

void currency::setValue(double theAmount)
{// Set currency value.
if (theAmount < Q)
amount = (long) ((theAmount - 0.001) = 100);
else
amount = (long) ({theAmount + 0.001) = 100);
// 2 decimal digits only :
}

Program 1.20 New constructor and set value codes

operator <<,

Notice that we overload the stream insertion operator without declaring a corre-
sponding member function in the class currency, and overload + and += by defining
these operators as members of the class. We can also overload the stream extraction
operator >» without defining this operator as a class member. Further, notice the
use of the function output to assist in the overloading of <<. Since the private
members of currency objects are not accessible from functions that are not class
members (the overloaded << is not a class member, while the overloaded + is), the
code that overloads << may not reference the private members of the object x that
it is to insert into the output stream. In particular, the code

// overload <<
ostreamé operator<<(ostreami out, const currencyk x)
{out << x.amount; return out;}
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currency currency::add(const currencyk x) const
{// Add x and #*this.

currency y;

y.amocunt = amount + X.amount;

return y;

}

void currency::output() const
{// ODutput currency value.
long theAmount = amount;
if (theAmount < 0) {cout << '-7;
theAmcunt = -thedmount;}
long dollars = theAmount / 100; // dollars
cout << *$* << dollars << *.*';
int cents = thedmount - dollars * 100; // cents
if (cents < 10) cout << '0°;
cout << cents;

}

Program 1.21 New code for add and cutput

is erroneous, as the member amount is not accessible.

Program 1.24 is a version of Program 1.18 that assumes that operators have
been overloaded and that the codes of Programs 1.22 and 1.23 are in the file
currencylverload.h.

1.5.4 Friends and Protected Class Members

As pointed out earlier, private members of a class are visible only to class member
functions. In some applications, we must grant access to these private members
to other classes and functions. This access may be granted by declaring these other
classes or functions as friends.

In our currency class example (Program 1.22), we defined a member function
output to facilitate the overloading of the operator <<. Defining this member
function was necessary, as the function

ostreamk operator<<(ostreamk, const currencyi)

cannot access the private member amount. We may avoid dehning the addi-
tional function output by declaring ostreami operator<< a friend of the class
currency. Thus we grant this function access to all members (private and public)
of currency. To make friends, we introduce friend statements into the declaration
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class currency
{
public:
// constructor
currency(signType theSign = plus,
unsigned long theDollars = 0,
unsigned int theCents = 0);
// destructor
“currency() {}
void setValue(signType, unsigned long, unsigned int);
void setValue(double);
signType getSign() const
{if (amount < Q) return minus;
else return plus;}
unsigned long getDollars() const
{if (amount < Q) return (-amount) / 100;
else return amount / 100;}
unsigned int getCents() const
{if (amount < 0) return -amount - getDollars() * 100;
else return amount - getDollars() =* 100;}
currency operator+(const currencyk) const;
currencyk operator+=(const currencyk x)
{amount += x.amount; return *this;}
void output(ostreamk) const;
private:
long amount;
};

Program 1.22 Class declaration using operator overloading

of the class currency. For consistency, we shall always place friend statements
just after the class header statement as in

class currency {
friend ostreamk operator<<(ostreamk, const currencyk);
public:

With this friend declaration in place, we may overload the << operator using the
code of Program 1.25. When the private members of currency are changed, we
will need to examine its friends and make appropriate changes.

Later we shall see how a class A may be derived from another class B. Class
A is called the derived class, and B is the base class. The derived class will
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currency currency::operator+(const currencyk x) const
{// Add x and *this.

currency result;

result.amount = amount + X.amount;

return result;

}

void currency::output(ostreamk out) const
{// Insert currency value into stream out.
long theAmount = amount;
if (theAmount < 0) {out << *-*:
theAmount = -theAmount;}
long dollars = theAmount / 100; // dollars
out << '§' << dollars << '.’;
int cents = theAmount - dollars = 100; // cents
if (cents < 10) out << *07;
out << cants;

}

S/ overload <<
ostreamk operator<<(ostreamk out, comnst currencyk x)
{x.output{out); return out;}

Program 1.23 Codes for +, output, and <<

need access to some or all of the data members of the base class. To facilitate
granting this access, C++ allows for a third category of members called protected.
Protected members behave like private members except that derived classes can
access protected members.

Class members that are to be accessible by user applications should be declared
public members. Data members should never be in this category. The remain-
ing members should be divided between the categories protected and private.
Good software-engineering principles dictate that data members remain private.
By adding member functions to access and change the value of data members, de-
rived classes obtain indirect access to the data members of the base class. At the
same time, we can change the implementation of the base class without having to
change its derived classes.

1.5.5 Addition of #ifndef, #define, and #endif Statements

The entire contents of the file currency.h (or currencyOverload.h) that contains
the declaration and implementation of the class currency should be preceded by
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#include <iostream>
#include "currencylverload.h"

using namespace std;

int main()

{
currency g, h(plus, 3, 50), i, j;

/f try out both forms of setValue
g.setValue(minus, 2, 25);
i.setValue(-6.45);

// do an add and output
j-h+E;
cout << h €< " + " <€ g << M = " << j << endl;

/f do two adds in a sequence

J=1+g+h;

cout €< 4 €€ M + " < g M+ "
<C h << " = " << j << endl;

// de an increment and add
cout << "Increment " << i << " by " << g
<< " and then add " << h << endl;
j=(1i+=g +h;
cout << "Result is " << j << endl;
cout << "Incremented object is " << i << endl;

// test the exception

cout << "Attempting to initialize with cents = 152" << endl;
try {i.setValue(plus, 3, 152);}

catch (illegalParameterValue )

{
cout << "Caught thrown exception" << endl;
e.outputMessage() ;

}

return 0;

¥

Program 1.24 Using overloaded operators
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f/ overload <<
ostream operator<<(ostreamk out, comst currencyk x)
{// Insert currency value into stream out.
long theAmount = x.amount;
if (theAmount < 0) {out << *-*;
theAmount = -theAmount;}
long dollars = theAmount / 100; // dollars
out €< '§$' << dollars << *'.*;
int cents = theAmount - dollars = 100; // cents
if (cents < 10) out << '0°;
out << cents;
return out;

}

Program 1.25 Overloading the friend <<

the statements

#ifndef currency_
#define currency_

and followed by the statement
#endif

These statements ensure that the code for currency gets included and compiled
only once per program. You should add corresponding statemends lo the program
listings provided for the remaining class definitions in this book.

EXERCISES

15. (a) What are the maximum and minimum currency values permissible when
the representation of Program 1.13 is used? Assume that objects of type
unsigned long and unsigned int are represented using 4 bytes. So
objects of these types have the range 0 throngh 2% - 1,

(b} What are the maximum and minimum currency values permissible when
the representation of Program 1.13 is used and the data types of dollars
and cents are changed to int?

(¢} If function add (Program 1.16) is used to add two currency amounts,
what are their largest possible values so that no error oceurs when con-
verting from type currency to type long as is done to set al and a27
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16. Extend the class currency of Program 1.13 by adding the following public
member functions:

(a) input() inputs a currency value from the standard input stream and
assign it to the invoking object.

(b) subtract(x) subtracts the value of the currency object x from that of
the invoking object and returns the result.

(¢) percent(x) returns a currency object whose value is x percent of the
value of the invoking object. The data type of x is double.

(d) multiply(x) returns the currency object that results from multiplying
the invoking object and the number x, which is of type double.

(e) divide(x) returns the currency object that results from dividing the
invoking object by the number x, which is of type double.

Implement all member functions and test their correctness using suitable test
data.

17. Do Exercise 16 using the implementation of Program 1.19.

18. (a) Do Exercise 16 using the implementation of Program 1.22. Owverload
the operators >>, -, i, =, and /. When overloading >>, declare it as a
friend function and do not define a public input function to facilitate
the input.

(b) Replace the two setValue functions by overloading the assignment op-
erator =. An overload of the type operator=(int x) that assigns an
integer to an object of type currency should replace the three-parameter
setValue function. x represents the sign, dollar amount, and cents rolled
into a single integer. An overload of the type operator=({double x)
should replace the single-parameter setValue function.

1.6 THE EXCEPTION CLASS illegalParameterValue

Program 1.26 shows a user-defined class i1legalParameterValue that may be used
when signaling errors in which the valve of an actual parameter to a function is
improper. Program 1.27 is a version of Program 1.8 in which an exception of
type illegalParameterValue is thrown instead of an exception of type chars.
Program 1.28 shows how to catch an exception of type illegalParameterValue.

1.7 RECURSION

A recursive function or method invokes itself. In direct recursion the code
for function £ contains a statement that invokes £, whereas in indirect recursion
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class illegalParameterValue
i
public:
illegalParameterValue()
message("Illegal parameter value”) {1}
illegalParameterValue(char * theMessage)
{message = theMessage;}
void cutputMessage() {cout << message << endl;}
private:
char * message;

I H

Program 1.26 Defining an exception class

int abc(int a, int b, int c)

{
if (a<=0 |l b<=0]|| c<=20)
throw illegalParameterValue ("All parameters should be > 0");
raturn a + b ® ¢;
}

Program 1.27 Throwing an exception of type illegalParameterValue

int main()
{
try {cout << abc(2,0,4) << endl;}
catch (illegalParameterValue e)
{
cout << "The parameters to abc were 2, 0, and 4" << endl;
cout << "illegalParameterValue exception thrown" << endl;
e.outputMessage() ;
return 1;

}

raturn 0;

}

Program 1.28 Catching an exception of type illegalParameterValue
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the function f invokes some other function g, which invokes yet another function
h, and so on until function £ is again invoked. Before delving into recursive C++
functions, we examine two related concepts from mathematics—recursive definitions
of mathematical functions and proofs by induction.

1.7.1 Recursive Mathematical Functions

In mathematics we often define a function in terms of itself. For example, the
factorial function f(n) = n!, for n an integer, is defined as follows:

n<l

”“}z{ rli_f{n—l]l n>1 (1.1)

This definition states that f{n) equals 1 whenever n is less than or equal to 1;
for example, f(-3) = f(0) = f(1) = 1. However, when n is more than 1, f(n) is
defined recursively, as the definition of f now contains an occurrence of f on the
right side. This use of f on the right side does not result in a circular definition,
as the parameter of f on the right side is smaller than that on the left side. For
example, from Equation 1.1 we obtain f(2) = 2f(1). From Equation 1.1 we also
obtain f({1) = 1, and substituting for f(1) in f(2) = 2f(1), we obtain f(2) = 2.
Similarly, from Equation 1.1 we obtain f(3) = 3f(2). We have already seen that
Equation 1.1 yields f(2) = 2. So f(3) = 3+2 = 6.

For a recursive definition of f(n) (we assume direct recursion) to be a complete
specification of f, it must meet the following requirements:

¢ The definition must include a base component in which f(n) is defined di-
rectly (i.e., nonrecursively) for one or more values of n. For simplicity, we
assume that the domain of f is the nonnegative integers and that the base
covers the case 0 < n < k for some constant k. (It is possible to have recursive
definitions in which the base covers the case n > k instead, but we encounter
these definitions less frequently.)

e In the recursive component all occurrences of f on the right side should
have a parameter smaller than n so that repeated application of the recursive
component transforms all oceurrences of f on the right side to occurrences of
f in the base.

In Equation 1.1 the base is f(n) = 1 for n < 1; in the recursive component
f(n) = nf(n — 1), the parameter of f on the right side is n — 1, which is smaller
than n. Repeated application of the recursive component transforms f(n — 1) to
fin—2), fin—=3), -- -, and finally to f{1) which is included in the base. For example,
repeatc] application of the recursive component gives the following:

f(5) = 5f(4) = 20£(3) = 60f(2) = 120f(1)
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Notice that each application of the recursive component gets us closer to the base.
Finally, an application of the base gives f(5) = 120. From the example, we see that
fin)=nn-1)n-2)---1forn = 1.

As another example of a recursive definition, consider the Fibonacci numbers
that are defined recursively as below:

Fo=0, =1 F,=F,_1+F,_2 for n>1 (1.2)

In this definition, F; = 0 and F} = 1 make up the base component, and F,, =
Fo_1 4+ Fu-2 is the recursive component. The function parameters on the right side
are smaller than n. For Equation 1.2 to be a complete recursive specification of F,
repeated application of the recursive component beginning with any value of n > 1
should transform all occurrences of F on the right side to occurrences in the base.
Since repeated subtraction of 1 or 2 from an integer n > 1 reduces it to either 0
or 1, right-side occurrences of F' are always transformed to base occurrences. For
example, Fy = Fy+ Fo=F, + L+ F + Fa =3F, +2F, = 3.

1.7.2 Induction

Now, we turn our attention to the second concept related to recursive computer

functions—proofs by induction. In a proof by induction, we establish the validity
of a claim such as

n

Y i=n(n+1)/2,n20 (1.3)

sl
by showing that the claim is true for one or more base values of n (generally, n = 0
suftices ); we assume the claim is true for values of n from 0 through m where m is
an arbitrary integer greater than or equal to the largest n covered in the base; and
finally using this assumption, we show the claim is true for the next value of n {i.e.,
m + 1). This methodology leads to a proof that has three components—induction
base, induction hypothesis, and induction step.

Suppaose we are to prove Equation 1.3 by induction on n. In the induction base
we establish correctness for n = 0. At this time the left side is $"0_ i = 0, and the
right side is also 0. So Equation 1.3 is valid when n = 0. In the induction hypothesis
we assume the equation is valid for n < m where m is an arbitrary integer > 0.
(For the ensuing induction step proof, it is sufficient to assume that Equation 1.3 is
valid only for n = m.) In the induction step we show that the equation is valid for
n = m+ 1. For this value of n, the left side is 3_/~¢ i, which equals m+1+ %" i.
From the induction hypothesis we get 5°7 i = m{m + 1)/2. So when n = m + 1,
the left side becomes m + 1 4+ m(m 4+ 1)/2 = (m + 1){m + 2)/2, which equals the
right side.

At first glance, a proof by induction appears to be a circular proof—we establish
a result assuming it is correct. However, a proof by induction is not a circular proof
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for the same reasons that a recursive definition is not circular. A correct proof
by induction has an induction base similar to the base component of a recursive
definition, and the induction step proves correctness using correctness for smaller
values of n. Repeated application of the induction step reduces the proof to one
that is solely in terms of the base.

1.7.3 Recursive C4+ Functions

C++ allows us to write recursive functions. A proper recursive function must
include a base component. The recursive component of the function should use
smaller values of the function parameters so that repeated invocation of the function
results in parameters equal to those included in the base component.

Example 1.1 [Factorial] Program 1.29 gives a C++ recursive function that uses
Equation 1.1 to compute n!. The base component covers the cases when n <
1. Cousider the invocation factorial(2). To compute 2#factorial(l) in the
else statement, the computation of factorial(2) is suspended and factorial
invoked with n = 1. When the computation of factorial(2) is suspended, the
program state (i.e., values of local variables and value formal parameters, bindings
of reference formal parameters, location in code, etc.) is saved in a recursion stack.
This state is restored when the computation of facterial(l) completes. The
invocation factorial(1) returns the value 1. The computation of factorial(2)
resumes, and the expression 2 « 1 is computed.

int factorial(int n)
{// Compute n!

if (n <= 1) return 1;
else return n * factorial(m - 1);
} .

Program 1.29 Recursive method to compute n!

When computing factorial(3), the computation is suspended when the else
statement is reached so that factorial(2) may be computed. We have already seen
how the invocation factorial(2) works to produce the result 2. When the com-
putation of factorial(2) completes, the computation of facterial(3) resumes
and the expression 3 = 2 is computed.

Because of the similarity between the code of Program 1.29 and Equation 1.1,
the correctness of the code follows from the correctness of the equation. ]

Example 1.2 The template function sum (Program 1.30) computes the sum of
elements a[0] through a[n-1] (abbreviated a[0:n-1]). When n is 0, the method
returns the value 0.
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template<class T>
T sum(T a[], int n)
{// Return sum of the numbers a[0:n-1].
T thaeSum = J;
for (int i = 0; i € n; i++)
theSum += a[i];
return theSum;

}

Program 1.30 Add a[0:n-1]

Program 1.31 is a recursive method to compute the sum of the elements a[0:n-1].
The code for rSum results from a recursive formulation of the problem—when n is
0, the sum is 0; when n is greater than 0, the sum of n elements is the sum of the
first n — 1 elements plus the last element. |

template<class T>
T rSum(T all, int n)
{// Return sum of numbers a[0O:n - 1].
if (n > 0)
return rSum(a, n-1) + a[n-1];
return 0; .
}

Program 1.31 Recursive code to add a[0:n~1]

Example 1.3 [Permutations] Often we wish to examine all permutations of n dis-
tinct elements to determine the best one. For example, the permutations of the
elements a, b, and ¢ are abe, ach, bac, bea, cha, and cab. The number of permuta-
tions of n elements is n!.

Although developing a nonrecursive C++ function to output all permutations of
n elements is quite difficult, we can develop a recursive one with modest effort. Let
E = {ey, - .,e,} denote the set of n elements whose permutations are to be gener-
ated; let E; be the set obtained by removing element i from E; let perm(X) denote
the permutations of the elements in set X: and let e;.perm(X) denote the permu-
tation list obtained by prefixing each permutation in perm(X) with element e;. For
example, if E = {a,b, ¢}, then E; = {b, ¢}, perm(E;) = (be,ch), and e,.perm(E;)
= (abc, ach).

For the recursion base, we use n = 1. Since only one permutation is possible
when we have only one element, perm( E) = (e) where e is the lone element in E.
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When n > 1, perm(E) is the list e;.perm(E;) followed by es.perm{E;) followed
by ej.perm(Es) - - - followed by e, perm(E,). This recursive definition of perm(E)
defines perm(E) in terms of n perm(X)s, each of which involves an X with n — 1
elements. Both the base component and recursive component requirements of a
complete recursive definition are satisfied.

When n = 3 and E = (a,b,c), the preceding definition of perm(E) vields
perm(E) = a.perm({b,c}), b.perm{{a,c}), c.perm({b,a}). From the recursive defi-
nition perm({b,c}) is b.perm({c}), c.perm({h}). So a.perm({b,e}) is ab.perm({c}),
ac.perm({b}) = ab.c,ac.h = (abc,ach). Proceeding in a similar way, we obtain
b.perm({a.c}) is ba.perm({c}), be.perm({a}) = ba.c, be.a = (bae, bea) and e.perm({b,
a}) is ch.perm({a}), ca.perm{{b}) = ch.a, ca.b = (cha, cab). So perm(E) = (abe, ach,
bac, bea, cha, cab).

Notice that a.perm({b,c}) is actually the two permutations abe and ach. o is
the prefix of these permutations, and perm({b.c}) gives their suffixes. Similarly,
ac.perm({b}) denotes permutations whose prefix is ac and whose suffixes are the
permutations perm({b}).

Program 1.32 transforms the preceding recursive definition of perm(E) into a
C++ function. This code outputs all permutations whose prefix is 1ist [0:k-1] and
whose suffixes are the permutations of 1ist[k:m]. The invocation permutations-
{list,0,n-1) outputs all n! permutations of ligt [0:n-1]. With this invocation,
k is 0 and m is n~1. So the prefix of the generated permutations is null, and their
suffixes are the permutations of 1ist[0:n-1]. When k equals m, there is only one
suffix 1ist[m], and now 1ist[0:m] defines a permutation that is to be output.
When k < m, the else clanse is executed. Let E denote the elements in 1ist [k:m]
and let E; be the set obtained by removing e; = 1list[i] from E. The first swap
in the for loop has the effect of setting list([k] = ¢, and list [k+1:m] = E,.
Therefore, the following call to permutations computes e, perm(E;). The second
swap restores list(k:m] to its state prior to the first swap.

Figure 1.3 shows the progress of Program 1.32 when invoked with k = 0, m
= 2, and 1ist[0:2] = [a, b, €]. The figure shows the contents of 1ist[0:2]
immediately after each call to permutations, as well as immediately after the second
swap is done following a return from permutations. The unshaded entries denote
list [0:k=1], and the shaded entries denote list[k:m]. Configuration numbers
are shown outside the array. Each edge of Figure 1.3 is traversed twice during the
execution of permutations(list, 0, 2): once when a call to permutations is
made in the for loop and once when a return from permutations is made.

We begin with configuration 1. The first swap done in the for loop has no effect
on the array: configuration 2 shows the state just after permutations is invoked
from within the for loop.” From configuration 2 we move to configuration 3. Config-
uration 3 is output hecanse, in this configuration, k = m. Following this output, we
make a return and execute the sc- o swap statement in the for loop. As a result,
we restore configuration 2. From configuration 2 we move forward to configuration
4, and the permutation acb is output. Then we back up through earlier configura-
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template<class T>
void permutations(T list[], int k, int m)
{// Generate all permutations of list[k:m].
int i;
if (k == m) {// list(k:m] has one permutation, output it
copy(list, list+m+1,
ostream_iterator<T>(cout, ""));
cout << endl;
}
else // list[k:m] has more than one permutation
// generate these recursively
for (i = k; i €= m; i++)

{
swap(list[k], list[il);
permutations(list, k+l1, m);
swap(list[k], list[il);

}

}

Program 1.32 Hecursive method for permutations

9
L€

Figure 1.3 Generating the permutations of abe

tions until we can move forward again. We back up through configurations 2 and
1. From configuration 1 we move forward to configurations 5 and 6. The sequence
of configurations encountered in the complete execution is 1, 2, 3, 2, 4, 2, 1, 5, 6, 5,
7,5, 1,89 8 10, 8, 1. [ |
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EXERCISES

19. Write a nonrecursive function to compute n!. Test your code.

20. (a) Write a recursive function to compute the Fibonacci number F,,. Test
your code.

(b) Show that your code for part (a) computes the same F, more than once
when it is invoked to compute Fj, for any n > 2.

(c) Write a nonrecursive function to compute the Fibonacci number F,.
Your code should compute each Fibonacel number just once. Test your
code.

21. Consider the function f, which is defined in Equation 1.4. n is a nonnegative
integer.

n/2 7 15 even
f{“}={ f(3n+1) nis odd (1.4)

(a) Use Equation 1.4 to manually compute f(5) and f(7).

(b) Identify the base and recursive components of the function definition.
Show that repeated application of the recursive component transforms
the occurrence of f on the right side to the occurrence of f in the base

component.

(c) Write a recursive C++ function to compute f(n). Test your code.

(d) Use your proof for part (b) to arrive at a nonrecursive C++ function to
compute f. Your code should have no loops. Test your code.

22. [Ackermann's Function] Equation 1.5 defines Ackermann's function. In this
definition, i and j are integers that are > 1.

93 i=landj>1
Ali,f) =4 A(i-1,2) i>2andj=1 (1.5)

(a}) Use Equation 1.5 to manually compute A(1,2), A(2,1), and A(2,2).
(b) Identify the base and recursive components of the function definition.
(c) Write a recursive C++ function to compute A(i, 7). Test your code.
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23.

24.

25,
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[GCD] The greatest common divisor (GCD) of two nonnegative integers
r and y is 0 when exactly one of them is 0. When at least one of r and y is
nonzero, their GCD, ged(x, y), is the greatest integer that evenly divides both.
So ged(0,0) = 0, ged(10.0) = ged(0, 10} = 10, and ged(20, 30) = 10. Euclid's
GCD algorithm is a recursive algorithm that is believed to date back to 375
B.C.; it is perhaps the earliest example of a recursive algorithm. Eueclid's
algorithm implements the recursive definition given in Fquation 1.6.

=10

£
ged(r,y) = { ged(y,x mod y) y >0 (1.6)

In Equation 1.6 mod is the modulo operator that is implemented in C++ as
the operator %. r mod y is the remainder of x,/y.

(a) Use Equation 1.6 to manually compute ged(20, 30) and ged(112, 42).

(b) Identify the base and recursive components of the function definition.
Show that repeated application of the recursive component transforms
the oceurrence of god on the right side to the occurrence of ged in the
base component.

(c) Write a recursive C++ function to compute ged(x, ). Test your code.

Write a recursive template function to determine whether element x is one of
the elements in the array a[0:n=1].

[Subset Generation] Write a recursive C++ funetion to output all subsets of
n elements. For example, the subsets of the three-element set {a,b, ¢} are {}
(empty set), {a}, {b}, {c}. {a.b}, {a,c}, {b.c}, and {a,b,c}. These subsets
may be denoted by the 0/1 vector sequence 000, 100, 010, 001, 110, 101, 011,
and 111, respectively (a 0 means that the corresponding element is not in
the subset, and a 1 means that it is). So it is sufficient that your C++ code
output all 0/1 sequences of length n.

[Gray Code] The Hamming distance between two vectors is the number of
positions in which the vectors differ. For example. the Hamming distance
between 100 and 010 is 2. A {binary} Gray code is a subset sequence in which
the Hamming distance between every pair of consecutive vectors (also called
codes) is 1. The three-element subset sequence given in Exercise 25 is not a
Gray code. However, the three-element subscet sequence 000, 100, 110, 010,
011, 111, 101. 001 is a Gray code, This sequence also has the property that
the first and last vectors differ in exactly one place. In some applications of
subset sequences, the cost of going from one subset to the next depends on
the Hamming distance between these two subsets. In these applications, we
desire a subset sequence that is a Gray code. A Gray code may be compactly
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represented by giving the sequence of positions in which the vectors of the code
change. For the three-element Gray code given above, the position change
sequence is 1, 2, 1, 3, 1, 2, 1. Let g(n) be the position change sequence for a
Gray code for n elements. Equation 1.7 gives a recursive definition for g(n).

1 n=1

g(m) = { gn-1),n,gn-=1) n>1 (1.7)

(a} Use Equation 1.6 to manually compute g{4).

(b) Identify the base and recursive components of the function definition.
Show that repeated application of the recursive component transforms
both occurrences of g on the right side to the occurrence of g in the base

component.,

(¢} Write a recursive C++ function to compute g(n). Test yvour code.

1.8 THE STANDARD TEMPLATES LIBRARY

The C++ standard templates library (STL) is a collection of containers, adaptors,
iterators, function objects (also known as functors) and algorithms. Through the
judicious use of elements of the STL, the task of writing application codes is greatly
simplified. In this book, we shall often solve a problem first using basic C++
language constructs to illustrate the mechanies of solving the problem. Later, we
will show how the same problem can be solved more simply by using an element of
the STL.

Example 1.4 [The STL algorithm accumulate] The STL has an algorithm accumulate
that may be used to sum the elements in a sequence. The syntax is

accumulate(start, end, initialValue)

where start points to the first element to be accumulated and end points to one
position after the last element to be accumulated. So, elements in the range [start,
end) are accumuilated. The invocation

accumulate(a, a+n, initialValue)

where a is a one-dimensional array, for example, returns the value
n=1
initialValue + % al
=0
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template<class T>

T sum(T a(], int n)

{// Return sum of the numbers al[0:n-1].
T theSum = 0;
return accumulate(a, a+n, theSum);

}

Program 1.33 Summing a[0:n-1] using the STL algorithm accumulate

Program 1.33 uses the STL algorithm accumulate to provide the same func-
tionality as is provided by Programs 1.30 and 1.31.

The STL algorithm accumulate accesses successive elements of the sequence
to be summed by performing the ++ operator on start and terminating when the
pointer value becomes end. So, this algorithm may be used to sum the values of any
sequence whose elements may be obtained by repeated application of the ++ oper-
ator. One-dimensional arrays and the STL container vector are two examples of
sequences whose elements may be accessed in this way, We shall see other examples
later in this book.

The STL has a more general form of the accumulate algorithm, which has the
following syntax

accumulate(start, end, initialValue, operator)

where operator is a function that defines the operation to be used during the
accumulation process. Using the 5TL functor multiplies, for example, we can
find the product of an array of elements using the code of Program 1.34. |

template<class T>
T product(T a[l, int n)
{// Return sum of the numbers a[0:mn-1].
T theProduct = 1;
return accumulate(a, a+n, theProduct, multiplies<T>());

}

Program 1.34 Compute the product of the elements a[0:n-1]

Example 1.5 [The STL algorithms copy and nett _permutation] The copy algo-
rithm copies a sequence of elements from one location to another. The syntax is

copy(start, end, to)
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where to gives the location to which the first element is to be copied. So, elements
are copied from locations start, start + 1, ---, end - 1 to the locations te, to
+1,--+, to + end - start.

The algorithm next_permutation, which has the syntax

next_permutation(start, end)

creates the next lexicographically larger permutation of the elements in the range
[start, end); it returns the value true iff such a next permutation exists. By
starting with the smallest lexicographic permutation of a sequence of distinet ele-
ments and making successive calls to next_permutation, we can obtain all permu-
tations. Program 1.35 does just this. The invocation of copy in this program copies
the elements 1ist [0:m] to the output stream cout; each copied element is followed
by the null string (""). Program 1.35 is equivalent to Program 1.32 provided the
initial sequence is the smallest lexicographic sequence. Notice that Program 1.35
outputs no permutation that is lexically smaller than the initial sequence whereas
Program 1.32 outputs all permutations regardless of the initial ordering. The exer-
cises examine ways to modify Program 1.35 so as to obtain all permutations.

template<class T>
veid permutations(T list[], int k, int m)
{// Generate all permutations of list[k:m].
// Assume k <= m.
{// output the permutations one by one
do {
copy(list, list+m+i,
ostream_iterator<T>{cout, ""));
cout << andl;
} while (next_permutation(list, list+m+1));
1 .

Program 1.35 Permutations using the STL algorithm next_permutation

A more general form of the next_permutation algorithm takes a third parameter
compare as in '

next_permutation{start, end, compare)

When this form is used, the binary function compare is used to determine whether
one element is smaller than another. In the two-parameter version, this comparison
is done using the operator <. ]

The STL contains many algorithms in addition to the ones used in the preceding
examples. Exercises 2 through T are solved quite easily using the appropriate STL
algorithms. The exercises for this section explore STL algorithms further.
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EXERCISES

27.

28,

31.

32,

Write C4+4 code for the three-parameter template function accumulate. Test
your code.

Write C++ code for the four-parameter template function accumulate. Teat
your code.

Write C++ code for the template function copy. Test your code.

Modify Program 1.35 so that it outputs all permutations of distinct elements.
Do this by sorting the list elements into ascending order pnnr to generating
the permutations. To sort, use the STL algorithm

gort{start, end)

which sorts elements in the range [start, end) into ascending order. Test
your code.

Modify Program 1.35 so that it outputs all permutations of distinct elements.
Do this by first using next_permutation to generate permutations that are
lexically larger than the initial permutation and then using the STL algorithm
prev_permutation to generate permutations that are lexically smaller than
the initial permutation. Test your code.

Modify Program 1.35 so that it outputs all permutations of distinct elements.
Do this by using the fact that when next_permutation returns the value
false, the sequence [start, end) is the lexically smallest sequence. Hence,
subsequent invocations of next_permutation will get vou the remaining (if
any) permutations you need. Test your code.

Do Exercise 2 using the STL algorithm count, which has the syntax

count (start, end, value)

Do Exercise 3 using the STL algorithm £111, which has the syntax
fill(start, end, valuae)

Do Exercise 4 using the STL algorithm inner_product, which has the syntax
inner_product(startl, endl, start2, initialValue)

Do Exercise 5 using the STL algorithm iota. which has the syntax
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iota(start, end, value)

37. Do Exercise 6 using the STL algorithm is_serted, which has the syntax
is_sorted(start, end)

38. Do Exercise T using the STL algorithm mismatch. which has the syntax
mismatch(startl, endl, start2)

39. Write C++ code for the STL template function count of Exercise 33. Test
your code.

40. Write C++ code for the STL template function £ill of Exercise 34. Test
your code.

41. Write C++ code for the STL template function inner_product of Exercise 35.
Test your code.

42. Write C+4++ code for the STL template function iota of Exercise 36. Test
your code.

43. Write C++ code for the ETL template function is_sorted of Exercise 37.
Test your code.

44. Write C++ code for the STL template function mismatch ol Exercise 38, Test
your code.

1.9 TESTING AND DEBUGGING

1.9.1 What Is Testing?

As indicated in Section 1.1, correctness is the most important attribute of a pro-
gram. Because providing a mathematically rigorous proofl of correctness for even
a small program is quite difficult, we resort to a process called program testing
in which we execute the program on the target computer using input data, called
test data, and compare the program’s behavior with the expected behavior. If
these two behaviors are different, we have a problem with the program. Unfortu-
nately, however, even if theifwo behaviors are the same, we cannot conclude that
the program is correct, as the two behaviors may not be the same on other input
data. By using many sets of input data and verifying that the observed and ex-
pected behaviors are the same, we can increase our confidence in the correctness of
the program. By using all possible input d'ﬂt,a, we can verily that the program is
correct. However, for most practical programs, the number of possible input data
is too large to perform such exhaustive testing. The ﬁtl‘hﬁﬁl t of the input data space
that is actually used for testing is called the test set. 0
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Example 1.6 [Quadratic Roots] A quadratic function {ur simply a quadratic)
in r is a function that has the form

ar’ + br + ¢

where the values of a, b, and ¢ are real numbers and a # 0. 3z% - 2z 44, =92 - Tz,
3.5x% + 4, and 5.82% + 3.2z + 5 are examples of quadratic functions. 5z + 3 is not
a quadratic function.

The roots of a quadratic function are the values of r at which the function value
is 0. For example, the roots of f(x) = 2 — 5z +6 are 2 and 3, as f(2) = f(3) =
Every quadratic has exactly two roots, and these roots are given by the formula:

—b:i:ﬁ.,.-'?—alm:
2a

For the function f(z) = z* =5z +6,a = 1, b = =5, and ¢ = 6. Substituting these
into the above formula, we get

5:|:1.-'E—44=1¢E_5:I:1
2 2

So the roots of f(z) are r = 3 and r = 2.

When d = b* - d4ac = 0, the two roots are the same; when d > 0, the two roots
are different and real numbers; and when d < 0, the two roots are different and-
complex numbers. In this last case each root has a real part and an tmaginary part.
The real part is real = —b/(2a), and the imaginary part is imag = +/—d/(2a). The
complex roots are real + imag = 1 and real — imag * i where i = '.,J"—_l

The function outputRoots (Program 1.36) computes and outputs the roots of
a quadratic. We shall not attempt a formal correctness proof for this function.
Rather, we wish to establish correctness by testing. The number of possible inputs
is the number of different triples (a,b,¢) with a # 0. Even if we restrict a, b, and
e to 16-bit nonnegative integers, the number of possible input triples is too large
for us to test the program on all inputs. With 16 bits per integer, there are 216
different values for b and ¢ and 2'® = 1 for a (recall that a cannot be 0). The
number of different triples is 2%%(2'% — 1). If our target computer can test at the
rate of 1,000,000 triples per second, it would take almost 9 years to complete! A
faster computer executing at the rate of 1,000,000,000 triples per second would take
almost 3 days. So a practical test set can contain only a small subset of the entire
space of input data.

If we run the program using the data set (a,b,c) = (1,-5,6), the roots 2 and
3 are output. The program behavior agrees with the expected behavior, and we
conclude that the program is correct for this input. However, verifying agreement
between observed and expected behavior on a proper subset of the possible inputs
does not prove that the program works correctly on all inputs. ]
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— ——

void outputRoots(const doublek a, conet double& b, const doublek c)
{// Compute and output the roots of the gquadratic.

double d = b » b - 4 % a *= C;
if (d » 0) {// two real roots
double sqrtd = sqrt(d);
cout << "There are two real roots "
<< (-b + sqrtd) / (2 % a) << " and "
<< (-b - sqrtd) / (2 » a)
<< endl;
}
else if (d == 0)
// both roots are the same
cout << "There is only one distinct root "
<< -b / (2 = 2)
<< endl;
else // complex conjugate roots
cout << "The roots are complex"
<< endl
<< "The real part is "
<¢ =b J (2 % a) << endl
<< "The imaginary part is "
<< sgrt(-d) / (2 = a) << endl;
}

Program 1.38 Compute and output the roots of the quadratic az® + br + ¢

Since the number of different inputs that can be provided to a program is gener-
ally very large, testing is often limited to a very small subset of the possible inputs.
Testing with this subset cannot conclusively establish the correctness of the pro-
gram. As a result, the objective of testing is not to establish correctness, but to
expose the presence of errors, The test set must be chosen so as to expose any
errors that may be present in the program. Different test sets can expose different

errors in a program.

Example 1.7 The test data (a, b, c) = (1,—5,6) causes outputRoots to execute the
code for the case when there are two real roots. If the roots 2 and 3 are output, we
can have some confidence that the statements executed during this test are correct.
Notice that an erroneous code could still give the correct results. For example, if
we ouutted the a from the expression for d and mistakenly typed

double d = b * b - 4 * c;
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the value of 4 is the same for our test data because a = 1. Since the test data
(1,-5.6) did not execute all statements of the code, we have less confidence in the
correctness of the statements that are not executed.

The test set {(1,-5,6), (1,3,2), (2,5,2)} can expose errors only in the first seven
lines of outputRoots, as each triple in this test set executes only these seven lines
of code. However, the test set {(1,-5,6), (1,-8,16), (1,2,5)} causes all statements
of outputRoots to execute and so has a better chance of exposing the errors in the
code, n

1.9.2 Designing Test Data

When developing test data, we should keep in mind that the objective of testing is
to expose the presence of errors. If data designed to expose errors fails to expose
any errors, then we may have confidence in the correctness of the program. To tell
whether or not a program malfunctions on given test data, we must be able to verify
the correctness of the program behavior on the test data.

Example 1.8 For our quadratic roots example, the behavior on any test data may
be verified in one of two ways. First, we might know the roots of the test guadratic.
For example, the roots of the quadratic with (a,b,e) = (1,—5,6) are 2 and 3. We
can verify the correctness of Program 1.36 on the test data (1,-=5.6) by comparing
the output roots with the correct roots 2 and 3. Another possibility is to substitute
the roots produced by the program into the quadratic function and verify that the
function value is 0. So if our program outputs 2 and 3 as the roots, we compute f{2)
=22 -5+2+6=0and f(3) = 32 -5+3+6 = 0. We can implement these verification
methods as computer programs. In the first case, the test program inputs the triple
{a,b,c) as well as the expected roots and then checks the computed roots against
the expected ones. For the second method we write code to evaluate the quadratic
at the computed roots and verify that the result is 0. =

We can evaluate any candidate test data using the following criteria:
& What is these data’s potential to expose errors?
o Can we verify the correctness of the program behavior on this data?

Techniques for test data development fall into two categories: black box methods
and white box methods. In a black box method, we consider the program's
function, not the actual code, when we develop test data. In a white box method,
we examine the code in an attempt to develop test data whose execution results in
a good coverage of the program’'s statements and execution paths.

Black Box Methods

The most popular black box methods are 1/0 partitioning and cause-effect graphing,
This section elaborates on the 1/0 partitioning method only. In this method we
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partition the input and/or output data space into classes. The data in different
classes cause the program to exhibit qualitatively different behaviors, while data in
the same class cause qualitatively similar behaviors. The quadratic roots example
has three different qualitative behaviors: the roots are complex, the roots are real
and distinet, and the roots are real and the same. We can use these three behaviors
to partition the input space into three classes. Data in the first class cause the first
kind of behavior; data in the second cause the second kind of behavior; and data
in the third canse the third kind of behavior. A test set should include at least one
input from each class.

White Box Methods

White box methods create test data based on an examination of the code to be gen-
erated. The weakest condition we can place on a test set is that it results in each
program statement being executed at least once. This condition is called state-
ment coverage. For our quadratic roots example, the test set {(0,1,2), (1,-5.6),
(1,-8,16), (1,2,5)} causes all statements in Program 1.36 to execute. So this test
set provides statement coverage. The test set {(0, 1, 2), (1,-5.6), (1,3,2), (2,5.2)}
does not provide statement coverage,

In decision coverage we require the test set to cause each conditional in the
program to take on both true and false values. The code of Program 1.36 has three
conditionals: a == 0,d > 0, and d == 0. In decision coverage we require at least
one set of test data for which a == 0.0 is true and at least one for which it is false.
We also require at least one test data for which d > 0 is true and at least one for
which it is false; there should also be at least one set of test data for whichd == 0
is true and at least one for which it is false.

Example 1.9 [Maximum Element] Program 1.37 returns the position of the largest
element in the array a[0:n]. The program finds this position by scanning the array
from positions 0 to n, using the variable index0fMax to keep track of the position of
the largest element seen so far. The data set {(a,-1), (a,4)} with a[0:4] = |2,
4, 6, 8, 9] provides statement coverage, but not decision coverage, as the condition
a[index0fMax] < alil] never becomes false. When al0:4] = [4, 2, 6, 8, 9]}, we
get both decision and statement coverage. n

We can strengthen the decision coverage criterion to require each clause of each
conditional to take on both true and false values. This strengthened criterion is
called clause coverage. A clause is formally defined to be a Boolean expression
that contains no Boolean operator (i.e., &&, ||, !). The expressions r >y, r+y <
y* z, and ¢ (where ¢ is of type Boolean) are examples of clauses. Consider the
statement

if ((C1 &k C2) || (C3 &k C4)) 81;
alse £2;
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template<class T>
int indexOfMax(T a[l, int n)
{// Locate the largest element in a[0:n-1].
if (n <= Q)
throw illegalParameterValue("r must ba > 0"};

int indexOfMax = 0;
for {int 1 = 1; i € n; i++)
if (a[indexO0fMax] < a[i])
index0fMax = i;
return indexOfMax;

¥

Program 1.3T Finding the position of the largest element in a[0:n-1]

where C1, C2, C3, and C4 are clauses and 81 and 52 are statements. Under the
decision coverage criterion, we need to use one test set that causes ({(Cl kk C2)
Il (C3 k& C4)) to be true and another that results in this conditional being false.
Clause coverage requires us to use a test set that causes each of the four clauses C1
through C4 to evaluate to true at least once and to false at least once.

We can further strengthen clause coverage to require testing for all combinations
of clause values. In the case of the conditional ({C1 k& C2)|| (C3 k& C4)), this
strengthening requires the use of 16 sets of test data: one for each truth combination
of the four conditions. However, several of these combinations may not be possible.

If we sequence the statements of a program in their order of execution by a
certain set of test data, we get an execution path. Different test data may vield
different execution paths. Program 1.36 has only four execution paths—lines 1
through 7 (lines are numbered beginning with the line double d = ...); 1, 2, 8
through 12; and lines 1, 2, 8, 13 through 19. The number of execution paths of
Program 1.37 grows as n increases. When n < 0, there is just one execution path—
1, 2 (line 1 is the first if statement and line 3 is a blank line); when n = 0, there
is again just one path—Ilines 1, 4, 5, 8; when n = 1, there are two paths—lines 1, 4,
5, 6,5 8and 1,4, 5,6, 7,5, 8; and when n = 2, there are four paths—1, 4, 5, 6, 5,
6,58 1,4,56/7,5,6,5,81,4,5,6,56,7,58and1,4,5 67,56 7, 5 8
For a general n, n > 0, the number of execution paths is 2",

Execution path coverage requires the use of a test set that causes all execution
paths to be executed. For the quadratic roots code, statement coverage, decision
coverage, clause coverage, and execution path coverage are equivalent requirements.
But for Program 1.37, statement coverage, decision coverage, and execution path
coverage are different, and decision and clause coverage are equivalent.

Of the white box coverage eriteria we have discussed, execution path coverage
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is generally the most demanding. A test set that results in total execution path
coverage also results in statement and decision coverage. It may, however, not result
in clause coverage. Total execution path coverage often requires an infinite number
of test data or at least a prohibitively large number of test data. Hence total path
coverage is often impossible in practice.

Many exercises in this book ask vou to test the correctness of your codes. The
test data you use should at least provide statement coverage. Additionally, you
should test for special cases that could cause your program to malfunction. For
example, a program designed to sort n > ( elements should be tested with n = 0
and 1 in addition to other values of n. If such a program uses an array a[0:99],
it should also be tested with n = 100. n = 0, 1, and 100 represent the boundary
conditions empty, singleton, and full.

1.9.3 Debugging

Testing exposes the presence of errors in a program. Once a test run produces a
result different from the one expected, we know that something is wrong with the
program. The process of determining and correcting the cause of the discrepancy
between the desired and observed behaviors is called debugging. Although a
thorough study of debugging methods is beyond the scope of this book, we do
provide some suggestions for debugging.

# Try to determine the cause of an error by logical reasoning. If this method
fails, then you may wish to perform a program trace (using a debugger such as
the one that comes with Microsoft Visual C++ .NET) to determine when the
program started performing incorrectly. This approach becomes infeasible
when the program executes many instructions with that test data and the
program trace becomes too long to examine manually. In this case you must
try to isolate the part of the code that is suspect and obtain a trace of this

part.

e Do not attempt to correct errors by creating special cases. The number of
special cases will soon become very large, and your code will look like a dish
of spaghetti. Errors should be corrected by first determining their cause and

then redesigning your solution as necessary.

» When correcting an error, be certain that your correction does not result in
errors where there were none before. Run vour corrected program on the
test data on which it originally worked correctly to ensure that it still works
correctly on these data.

o When testing and debugging a multimethod program, begin with a single
method that is independen’. of the others. This method would typically be an
input or output method. Then introduce additional methods one at a time,
testing and debugging the larger program for correciness. This strategy is
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called incremental testing and debugging. When this strategy is used,
the cause of a detected error can reasonably be expected to lie in the most

recently introduced method.

EXERCISES

45. Show that test sets that provide statement coverage for Program 1.36 also
provide decision and execution path coverage.

46. Develop a test set for Program 1.37 that provides execution path coverage for
the for ivop when n = 3.

47. How many execution paths are in Program 1.307
48. How many execution paths are in method rSum of Program 1.317

1.10 REFERENCES AND SELECTED READINGS

A good introduction to programming in C++ can be found in the texts C++
Program Design: An Introduction to Programming and Object-Oriented Design by
J. Cohoon and J. Davidson, 3rd Edition, McGraw Hill, NY, 2002 and C++ How fo
Program, 4th Edition, by H. Deitel and P. Deitel, Prentice Hall, Englewood Cliffs,
NI, 2002. ) 5

You can find a description of all componenis of the STL at the Web site
http://codeguru.earthweb.com/spp/stlguide.

The Art of Software Testing by G. Myers, John Wiley, New York, NY, 1979
and Software Testing Techniques by B. Beizer, Second Edition, Van Nostrand Rein-
hold, New York, NY, 1990 have more thorough treatments of software testing and
debugging techniques.



CHAPTER 2

PERFORMANCE ANALYSIS

BIRD'S-EYE VIEW

The most important attribute of a program is correctness. A program that does not
correctly perform the task it was designed to do is of little use. However, correct
programs may also be of little use. This is the case, for example, when a correct
program takes more memory than is available on the computer it is to run on as
well as when a correct program takes more time than the user is willing to wait. We
use the term program performance to refer to the memory and time requirements of
a program. To appreciate the need for good data structures and algorithm design
methods, you must be able to evaluate the performance of a program.

This chapter focuses on paper-and-pencil methods to determine the memory and
time requirements of a program. The operation count and step-count approaches
to estimate run time are developed, and the notions of best-case, worst-case, and
average run time are introduced. A more advanced measure of run time—amortized
complexity—is developed in the Web site for this book. You should not attempt to
read the material on amortized complexity until you have completed Chapter 9.

Chapter 3 reviews asymptotic notations such as big oh, omega, theta, and little
oh, which make up the lingua franca for performsance analysis. The use of asymptotic
notation often simplifies the analysis. Chapter 4 shows vou how to measure the-
actual run time of a progroi bv weirg a clocking method.
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Many application codes are developed in this chapter. These applications, which
will prove useful in later chapters, include .

e Searching an array of elements for an element with a specified characteristic.

e Sorting an array of elements. Codes for the rank (or count) sort, selection
sort, bubble sort, and insertion sort methods are developed.

e Evaluating a polynomial using Horner's rule.

o Performing matrix operations such as add, transpose, and multiply.
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2.1 WHAT IS PERFORMANCE?

By the performance of a program, we mean the amount of computer memory
and time needed to run a program. We use two approaches to determine the per-
formance of a program. One is analytical, and the other experimental. In perfor-
mance analysis we use analytical methods, while in performance measurement
we conduct experiments.

The space complexity of a program is the amount of memory it needs to run
to completion. We are interested in the space complexity of a program for the
following reasons:

o If the program is to be run on a multiuser computer system, then we may
need to specify the amount of memory to be allocated to the program.

& For any computer system, we would like to know in advance whether or not
sufficient memory is available to run the program.

e A problem might have several possible solutions with different space require-
ments. For instance, one C++ compiler for your computer might need only
1 MB of memory, while another might need 4 MB. The 1 MB compiler is
the only choice if your computer has less than 4 MB of memory. Even users
whose computers have the extra memory will prefer the smaller compiler if
its capabilities are comparable to those of the bigger compiler. The smaller
compiler leaves the user with more memory for other tasks.

e We can use the space complexity to estimate the size of the largest problem
that a program can solve. For example, we may have a circuit simulation
program that requires 10% + 100(c + w) bytes of memory to simulate circuits
with ¢ components and w wires. If the total amount of memory available is
5.01 # 10® bytes, then we can simulate circuits with ¢ 4 w < 5,000, 000.

The time complexity of a program is the amount of computer time it needs
to run to completion. We are interested in the time complexity of a program for
the following reasons:

e Some computer systems require the user to provide an upper limit on the
amount of time the program will run. Once this upper limit is reached, the
program is aborted. An easy way out is to simply specify a time limit of a few
thousand years. However, this solution could result in serious fiscal problems
if the program runs into an infinite loop caused by some discrepancy in the
data and you actually get billed for the computer time used. We would like
to provide a time limit that is just slightly above the expected run time.

¢ The program we are developing might need to provide a satisfactory real-time
response. For example, all interactive programs must provide such a response.
A text editor that takes a minute to move the cursor one page down or one
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page up will not be acceptable to many users. A spreadsheet program that
takes several minutes to reevaluate the cells in a sheet will be satisfactory only

to very patient users. A database management system that allows its users
adequate time to drink two cups of coffee while it is sorting a relation will not
find too much acceptance. Programs designed for interactive use must provide
satisfactory real-time response. From the tiine complexily of the program or
program module, we can decide whether or not the response time will be

acceptable. If not, we need to either redesign the algorithm or give the user a
faster computer.

If we have alternative ways to solve a problem, then the decision on which
to use will be based primarily on the expected performance difference among
these solutions. We will use some weighted measure of the space and time
complexities of the alternative solutions.

EXERCISES

1. Give two more reasons why analysts are interested in the space complexity of
a program.

2. Give two more reasons why analysts are interested in the time complexity of
A Program.

2.2 SPACE COMPLEXITY

2,.2.1 Components of Space Complexity
The space needed by a program has the following components:

o [nstruction space
Instruction space is the space needed to store the compiled version of the
program instructions.

o [ata space
Data space is the space needed to store all constant and variable values. Data
space has two components:

1. Space needed by constants (for example, the numbers 0 and 1 in Pro-
grams 1.29 and 1.30) and simple variables (such as a, b, and ¢ in Pro-
gram 1.1).

2. Space needed by dynamically allocated objects such as arrays and class
instances.
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o Environment stack space.
The environment stack is used to save information needed to resume ﬂxacutmn
of partially completed functions and methods. For example, if function foo
invokes function goo, then we must at least save a pointer to the instruction
of foo to be executed when goo terminates.

Instruction Space

The amount of instruction space that is needed depends on factors such as
o The compiler used to compile the program inio machine code.
o The compiler options in effect at the time of compilation.
o The target computer.

The compiler is a very important factor in determining how much space the
resulting code needs. Figure 2.1 shows three possible codes for the evaluation of
a+b+bec+(a+b-c)/(a+b)+4. These codes need a different amount of space, and the
compiler in use determines exactly which code will be generated.

Even with the same compiler, the size of the generated program code can vary.
For example, a compiler might provide the user with optimization options. These
could include code-size optimization as well as execution-time optimization. In
Figure 2.1, for instance, the compiler might generate the code of Figure 2.1(b) in
nonoptimization mode. In optimization mode, the compiler might use the knowl-
edge that a+b+bsc = b*c+(a+b) and generate the shorter and more time-efficient
code of Figure 2.1(c). The use of the optimization mode will generally increase the
~ time needed to compile the program.

The example of Figure 2.1 brings to light an additional contribution to the space
requirements of & program. Space is needed for temporary variables such as t1, 2,

I - R

Another option that can have a significant effect on program space is the overlay
option in which space is assigned only to the program module that is currently
executing. When a new module is invoked, it is read in from a disk or other device,
and the code for the new module overwrites the code of the old module. So program
space corresponding to the size of the largest module (rather than the sum nf the
module sizes) is needed.,

The configuration of the target computer also can affect the size of the compiled
code. If the computer has floating-point hardware, then floating-point operations
will translate into one machine instruction per operation. If this hardware is not
installed, then code to simulate floating-point computations will be generated.

Data Space

The C++ language does not specify the space to be allocated for the various C4+4-
data types. Figure 2.2 gives the space allocation used by most C++ compilers. The
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LOAD a LOAD a LOAD a
ADD b ADD b ADD b
STORE t1 STORE t1 STORE t1
LOAD b SUB c SUB ¢
MULT ¢ DIV o | DIV t1
STORE t2 STORE t2 STORE t2
LOAD t1 LOAD b LOAD b
ADD €2 MUL c MIL ¢
STORE t3 STORE t3 ADD  t2
LOAD a LOAD t1 ADD  t1
ADD b ADD t3 ADD 4
SUB ¢ ADD t2
STORE t4 ADD 4
LOAD a
ADD b
STORE t5
LOAD t4
DIV t5
STORE t6
LOAD t3
ADD t6
ADD 4

(a) (b) (c)

Figure 2.1 Three equivalent codes

data type int is typically assigned as many bytes (1 byte = 8 bits) as there are in a
word. So, on a 4-byte per word computer, an int is 4 bytes long while on a 2-byte
per word computer, an int is typically 2 bytes. We shall use the data of Figure 2.2
when computing the space required by variables and constants.

We can obtain the space requirement for a structured variable by adding up
the'space requirements of all its components. Similarly, we can obtain the space
requirement of an array by multiplying the array size and the space needs of a single
array element.

Consider the following array declarations:

double a[100];
int maze[rows] [cols];

When computing the space allocated to an array, we shall be concerned only with
the space allocated for the array elements. The array a has space for 100 elements of
type double, each taking ¥ bytes. The total space allocated to the array is therefore
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Type Space (bytes) _Range
bool 1 {true, falee}
char 1 [-128, —127]
unsigned char 1 [0,255]
short 2 [—32768, 32767
unsigned short 2 0, 65535]
long 4 [_2:!1! o4l _ 1]
unsigned long 4 0,272 — 1)
Zi.l'lt. _,1 [—2:!1,231 _ l]
unsigned int 4 !ﬂu 932 _ 1]
foat 4 +3.4F + 38 (7 digits)
double 8 +1.7TE £ 308 (15 digits)
long double 10 +1.2E + 4932 (19 digits)
pointer 2 (near, s, s, _es, ss pointers)
pointer 4 (far, huge pointers)

Figure 2.2 Space typically allocated to C++ data types on a 32-bit /word computer

800 bytes. The array maze has space for rows*cols elements of type int. The total
space taken by this array is 4*rows*cols hytes,

Environment Stack

Beginning performance analysts often ignore the space needed by the environment
stack because they don’t understand how functions (and in particular recursive ones)
are invoked and what happens on termination. Each time a function is invoked the
following data are saved on the environment stack:

e The return address.

# The values of all local variables and formal parameters in the function being
invoked (necessary for recursive funetions only).

Each time the recursive function rSum (Program 1.31) is invoked, whether from
outside the function or from within, the current values of a and n and the program
location to return to on completion are saved in the environment stack.

It is worth noting that some compilers may save the values of the local variables
and formal parameters for both recursive and nonrecursive methods, while others
may do so for recursive methods alone. So the compiler in use will affect the amount
of space needed by the environment stack.
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Summary

The space needed by a program depends on several factors. Some of these factors
are not known at the time the program is conceived or written (e.g., the computer
or the compiler that will be used). Until these factors have been determined, we
cannot make an accurate analysis of the space requirements of a program.

We can, however, determine the contribution of those components that depend
on characteristics of the problem instance to be solved. These characteristics typ-
ically include factors that determine the size of the problem instance (e.g., the
number of inputs and outputs or magnitude of the numbers involved) being solved.
For example, if we have a program that sorts n elements, we can determine space
requirements a= a function of n. For a program that adds two n x n matrices, we
may use n as the instance characteristic, and for one that adds two m x n matrices,
we may use m and n as the instance characteristics. )

The size of the instruction space is relatively insensitive to the particular problem
instance being solved. The contribution of the constants and simple variables to
the data space is also independent of the characteristics of the problem instance to
be solved except when the magnitude of the numbers involved becomes too large
for the chosen data type. At this time we will need to either change the data type
or rewrite the program using multiprecision arithmetic and then analyze the new
Program.

The space needed by some of the dynamically allocated memory may also be
independent of the problem size. The environment stack space is generally inde-
pendent of the instance characteristics unless recursive functions are in use. When
recursive functions are in use, the instance characteristics will generally (but not
always) affect the amount of space needed for the environment stack.

The amount of stack space needed by recursive functions is called the recursion
stack space. For each recursive function this space depends on the space needed
by the local variables and the formal parameters, the maximum depth of recursion
(i.e., the maximum number of nested recursive calls), and the compiler being used.
For Program 1.31 recursive calls get nested until o equals 0. At this time the nesting
resembles Figure 2.3. The maximum depth of recursion for this program is therefore
n+1l. A smart compiler would replace a recursive call that is the last statement of a
method (known as tail recursion) by equivalent iterative code. This technique could
reduce, even eliminate, the recursion stack space,

We can divide the total space needed by a program into two parts:

e A fixed part that is independent of the instance characteristics. This part
typically includes the instruction space (i.e., space for the code), space for
simple variables, space for constants, and so on.

e A variable part that consists of the dynamically allocated space (to the extent

that this space depends on the instance characteristics); and the recursion
stack space (insofar as this space depends on the instance characteristics).
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r3um(a,n)
rSum(a,n-1)
rSum(a,n-2)

ésum{a, 1)
rSum(a,0)

Figure 2.3 Nesting of recursive calls for Program 1.31

The space requirement of any program PP may therefore be written as

¢+ Sp(instance characteristics)

where ¢ is a constant that denotes the fixed part of the space requirements and Sp
denotes the variable component. An accurate analysis should also include the space
needed by temporary variables generated during compilation (refer to Figure 2.1).
This space is compiler dependent and, except in the case of recursive functions,
independent of the instance characteristics. We will ignore the space needs of these
compiler-generated variables.

When analyzing the space complexity of a program, we will concentrate solely
on estimating Sp (instance characteristics). For any given problem we need to first
determine which instance characteristics to use to measure the space requirements.
The choice of instance characteristics is very problem specific, and we will resort
to examples to illustrate the various possibilities. Generally speaking, our choices
are limited to quantities related to the number and magnitude of the inputs to and
outputs from the program. At times we also use more complex measures of the
interrelationships among the data items.

2.2.2 Examples

Example 2.1 Consider Program 1.1. Before we can determine Sp, we must select”
the instance characteristics to be used for the analysis. Suppose we use the mag-
nitudes of a, b, and ¢ as the instance characteristic. Since a, b, and ¢ are of type
int, 4 bytes are allocated to each of the formal parameters. In addition, space is
needed for the code. Neither the data space nor the instruction space is affected by -
the magnitudes of a, b, and c¢. Therefore, Sy (instance characteristics) = 0. [ |

Example 2.2 [Sequential Search] Program 2.1 examines the elements of the array
a from left to right to see whether one of these elements equals x. If an element
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template<class T>
int sequentialSearch(T a[], int n, const T& x)
{// Search the uncrdered list a[0:n-1] for x.
// Return position if found; return -1 otherwise.
int i;
for (1 = 0; 1 <n k& a[i] != x; i++);
if (i == n) return -1;
alse return 1i;

}

Program 2.1 Sequential search

equal to x is found, the function returns the position of the first occurrence of x. If
the array has no element equal to x, the function of Program 2.1 returns —1.

We wish to obtain the space complexity of Program 2.1 in terms of the instance
characteristic n. Although we need space for the formal parameters a, x and n, the
constants 0 and —1, and the code, the space needed is independent of n. Therefore,
anmn.ua.u:h':ﬂ:' =0.

Note that the array a must be large enough to hold the n elements being searched.
The space neaded by this array (n + s bytes, where s is the number of bytes needed
by an object of type T). This space is, however, allocated in the function where
the actual parameter corresponding to a is declared. As a result, we do not add
the space requirements of this array into the space requirements of the function
sequentialSearch. u

Example 2.3 For method sum (Program 1.30), suppose we are interested in mea-
suring space requirements as a function of the number of elements to be summed.
Space is required for the formal parameters a and n, the local variables 1 and
theSum, the constant (), and the instructions. The amount of space needed does not
depend on the value of n, so Sge(n) =0, .

Example 2.4 Consider the function rSum (Program 1.31). As in the case of sum,
assume that the instances are characterized by n. The recursion stack space includes
space for the formal parameters a and n and the return address. In the case of a,
a reference (4 bytes) is saved, while in the case of n, a value of type int (also 4
bytes) is saved on the recursion stack. If we assume that the return address also
takes 4 bytes, we determine that each call to rSum requires 12 bytes of recursion
stack space. Since the depth of recursion is n+1, the recursion stack space needed
is 12(n+1) bytes. So S;ge(n) = 12(n+1).

Program 1.30 has a smaller space requirement than does Program 1.31. ]



Section 2.2 Space Complexity 65

Example 2.5 [Factorial] The space complexity of Program 1.29, which computes
the factorial funection, is analyzed as a function of n rather than as a function of the
number of inputs (one) or outputs (one). The recursion depth is max{n,1}. The
- recursion stack saves a return address (4 bytes) and the value of n (4 bytes) each
time factorial is invoked. No additional space that is dependent on n is used, so
Stacteria1 (0) = B+ max{n,1}. u

Example 2.6 [Permutations] Program 1.32 outputs all permutations of a list of
elements. With the initial invocation permutations(list,0,n-1), the depth of
recursion is n. Since each recursive call requires 20 bytes of recursion stack space
(4 for each of return address, 1ist, k, m, and 1), the recursion stack space needed
is 200 bytes, 80 Spermutations () = 20m. [

EXERCISES

3. Compile a sample C++ program using two C++ compilers. Is the code length
the same or different?

4. List additional factors that may influence the space complexity of a program.

5. Using the data provided in Figure 2.2, determine the number of bytes needed
by the following arrays:
(a) double y[3]
(b) int matrix[10] [100]
(c) double x[100] [5] [20]
(d) float z[10] [10] [10] [5]
(e) bool al2][3] [4]
(f) lomg b[3][3] [3] [3]
6. Program 2.2 gives a recursive function rSequentialSearch that searches the
elements of the array a[0:n-1] for the element x. If x is found, the function

returns the position of x in a. Otherwise, the function returns —1. Determine
SP{H]- Determine Sﬂmmm;.m_h{n].

7. Write a nonrecursive function to compute n! (see Example 1.1). Compare the
space requirements of your nonrecursive function and those of the recursive
version (Program 1.29).
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template<class T>
int rSequentialSearch(T a[l, int n, const T& x)
{// Search the unordered list a[0:n-1] for x.
// Return position if found; return -1 otherwise.
if {n < 1) return -1;
if (a[n-1] == x) return n - 1;
return rSequentialSearch(a, n-1, x);

}

Program 2.2 Recursive sequential search

2.3 TIME COMPLEXITY
2.3.1 Components of Time Complexity

The time complexity of a program depends on all the factors that the space com-
plexity depends on. A program will run faster on a computer capable of executing
10" instructions per second than on one that can execute only 107 instructions per
second. The code of Figure 2.1(c) will require less execution time than the code
of Figure 2.1(a). Some compilers will take less time than others to generate the
corresponding computer code. Smaller problem instances will generally take less
time than larger instances.

The time taken by a program P is the sum of the compile time and the run (or
execution) time, The compile time does not depend on the instance characteristics.
Also, we can assume that a compiled program will be run several times without
recurnpilation. Consequently, we will concern ourselves with just the run time of a
program. This run time is denoted by tp(instance characteristics).

Because many of the factors tp depends on are not known when a program is
conceived, it is reasonable to only estimate tp. If we knew the characteristics of
the compiler to be used, we could determine the number of additions, subtractions,
multiplications, divisions, compares, loads, stores, and so on that the code for P
would make. Then we could obtain a formula for fp. Letting n denote the instance
characteristics, we might have an expression for ¢p(n) of the form

tp(n) = e, ADD(n) + ¢, SUB(n) + ¢, MUL(n) + ¢qDIV(n) + - - - (2.1)

where ¢, ¢4, Cm, and cy respectively denote the time needed for an addition, sub-
traction, multiplication, and division, and ADD, SUB, MUL, and DIV are funec-
tions whose value is the number of additions, subtractions, multiplications, and
divisions that will be performed when the code for P is used on an instance with
characteristic n.
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Since the time needed for an arithmetic operation depends on the type (int,
float, double, etc.) of the numbers in the operation, an exact formula for run
time must separate the operation counts by data type. Fine-tuning Equation 2.1
in this way still does not give us an accurate formula to predict run time because
today’s computers do not necessarily perform arithmetic operations in sequence. For
example, computers can perform an integer operation and a floating-point operation
at the same time. Further, the capability to pipeline arithmetic operations and the
fact that modern computers have a memory hierarchy (Section 4.5) means that the
time to perform m additions isn’t necessarily m times the time to perform one.

Since the analytical approach to determine the run time of a program is fraught
with complications, we attempt only to estimate run time. Two more manageable
approaches to estimating run time are (1) identify one or more key operations and
determine the number of times these are performed and (2) determine the total
number of steps executed by the program.

2.3.2 Operation Counts

One way to estimate the time complexity of a program or method is to select one or
more operations, such as add, multiply, and compare, and to determine how many
of each is done. The suceess of this method depends on our ability to identify the
operations that contribute most to the time complexity. Several examples of this
method follow.

Example 2.7 [Max Element] Program 1.37 returns the position of the largest ele-
ment in the array a[0:n=1]. The time complexity of Program 1.37 can be estimated
by determining the number of comparisons made between elements of the array a.
When n < 0, an exception is thrown and the number of comparisons is 0. When
n = 1, the for loop is not entered. So no comparisons between elements of a are
made. When n > 1, each iteration of the for loop makes one comparison between
two elements of a, and the total number of element comparisons is n=1. Therefore,
the number of element comparisons is max{n-1, 0}. The function index0fMax per-
forms other comparisons (for example, each iteration of the for loop is preceded
by a comparison between i and n) that are not included in the estimate. Other
operations such as initializing index0fMax and incrementing the for loop index i
are also not included in the estimate. If we included these other operations into our
count, the count would increase by a constant factor. |

Example 2.8 [Polynomial Evaluation] Consider the polynomial P(z) = 3.0 eiz™.
If ¢, # 0, P(z) is a polynomial of degree n. Program 2.3 gives one way to compute
FP(zx) for a given value of z. It's time complexity can be estimated by determining
the number of additions and multiplications performed inside the for loop. We will
use the degree n as the instance characteristic. The for loop is entered a total of n
times, and each time we enter the for loop one addition and two multiplications are
done. (This operation count excludes the add performed each time the loop variable
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i is incremented.) The number of additions is n, and the number of multiplications
is 2n.

template<class T>
T polyEval(T coeff[], int n, const T& x)
{// Evaluate the degree n polynomial with
// coefficients coeff[0:n] at the point x.
Ty=1, value = coeff[0];
for (int i = 1; i <= n; i++)
{// add in next term
¥ *= x;
value += y = coeff[i];
}
return value;

}

Program 2.3 Evaluating a polynomial
Horner's rule evaluates P(r) as shown below.

Plz)=(-(cn*T+en 1) *T+cnz)*T+Cp3)*sT--)2x+en

So Plx)=5+1" ~d#2? + x4+ 7is computed as ((5+x—-4)s2+1)2x+7. The
corresponding C-+-+ function is given in Program 2.4. Using the same measure as
used for Program 2.3, we estimate the complexity of Program 2.4 as n additions
and n multiplications. Since Program 2.3 performs the same number of additions
but twice as many multiplications as does Program 2.4, we expect Program 2.4 to
be faster. L

Example 2.9 [Ranking] The rank of an element in a sequence is the number of
smaller elements in the sequence plus the number of equal elements that appear to
its left. For example if the sequence is given as the array a = [4, 3, 9, 3, 7], then
the ranks are r = [2, 0, 4. 1, 3]. Function rank (Program 2.5) computes the ranks
of the elements in the array a. We can estimate the complexity of rank by counting
the number of comparisons between elements of a. These comparisons are done in
the if statement. For each value of i, the number of element comparisons is i. So
the total number of element comparisons is 1 + 2+ 3+ - +n-1= (n-1)n/2
(see Equation 1.3).

Note that our complexity estimate excludes the overhead associated with the
for loops, the cost of initializing the array r, and the cost of incrementing r each
time two elements of a are compared. |
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template<class T>
T horner(T coeff[], int n, const Tk x)
{// Evaluate the degree n polynomial with
// coefficients coeff[0:n] at the poiut x.
T value = coeffn];
for (int 1 = 1; 1 <= n; i++)
value = value * x + coeff(n - i];
return value;

}

Program 2.4 Horner's rule for polynomial evaluation

template<class T>
void rank(T a(l], int n, int r[])
{// Rank the n elements a[0:n-1].
// Element ranks returned in r[0:n-1]
for (int i = 0; 1 < n; 1i++)
r(i] = 0; // initialize

// compare all element pairs
for (int i = 1; i < n; i++)
for (int § = @; j < i; j++)
if (alj]) <= a[il) rlil++;
else r[jl++;

}

Program 2.5 Computing ranks

Example 2.10 [Rank Sort] Once the elements have been ranked using Program 2.5.
they may be rearranged in increasing order so that a[0] < af1] £ --- € a[n-1]
by moving elements to positions corresponding to their ranks. If we have space for
an additional array u, we can use the function rearrange given in Program 2.6.
Assume that the invocation of new succeeds 1n allocating space to the array u.
The number of element moves performed during the execution of function rearr-
ange is 2n. The complete sort requires (n — 1)n/2 comparisons and 2n element
moves. This method of sorting 1s known as rank or count sort. An alternative
method to rearrange the elements is cousidered later | Program 2.11). This alterna-
tive metnod does not use an ac Litional array such as u. ]
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template<class T>
void rearrange(T a[l, int n, int r(J)
{// Rearrange the elements of a into sorted order
// using an additional array u.
T *u = new T [n]; // create additional array

// move to correct place in u
for (int i = 0; i < n; i++)

ulr(il] = alil;

/{ move back to a
for (i = 0; i € n; i++)
alil = u[i];

delete [] u;
}

Program 2.6 Rearranging elements using an additional array

Example 2,11 [Selection Sort] Example 2.10 examined one way to rearrange the
elements in an array a so that a[0] < a[1] <.-- < a[n-1]. An alternative strategy
is to determine the largest element and move it to l[nul] then determine the largest *
of the remaining n — 1 elements and move it to a[n — 2|, and so on. Figure 2.4(a)
shows an example in which selection sort is used to sort the six-element array a[0:5]
= [6, 5, 8, 4, 3, 1. Shaded array positions designate the, as yet, unsorted part of
the array. A heavy bar over an array position marks the maximum element, and a
light bar marks the position into which the maximum element is to move.

Line 1 of the figure shows the initial configuration; the entire array is mumdem:l
unsorted, the maximum element is in a[2], and this maximum element is to be
moved to a[58]. The move is accomplished by swapping the elements at the posi-
tions designated by the bars. Following the swap, we need concern ourselves only
with sorting the elements a[0:4] because a[8] is known to contain the maximum
element. Line 2 shows the configuration after the swap; the maximum element of
a[0:4] is a[0], and this element is to be swapped with a[4]. Line 3 shows the
result. Line 6 shows the result following three more stages of find the max and
swap. At this time the unsorted part of the array (al0:0]) has a single element
that is known to be less than or equal to the other elements in the array. So the
entire array is sorted.

Program 2.7 gives the C++ function, selectionSort, which implements the
above strategy. Program 1.37 gave the function indexOfMax. We can estimate
the complexity of selectionSort by counting the number of element comparisons



Section 2.3 Time Complexity T1

0123 435 012 0123 435

ad o
—| A

line 1

line 2

= l
L..n1
Y
L
1
L"J I

line 3

line 4 3

- !
i}
=

=

lines BEMI4]5[6]8]  [5[6]4[3 [BIM . BHEE
line6 [{374[576]8] 5[674[371]8] [ 3[4]5]6]8
(a) Selection sort (b) A bubbling pass (c¢) Bubble sort

Figure 2.4 Selection and bubble sort

"made. From Example 2.7 we know that each invocation index0fMax(a,size).

size > 1, results in size-1 comparisons being made. So the total number of
comparisons isn=1+n-=2+:-- + 1 = (n-1)n/2. The number of element moves
i8 3(n — 1). Selection sort uses the same number of comparisons rank sort uses
(Example 2.10) but requires 50 percent more element moves, We consider another

version of selection sort in Example 2.16. |

template<class T>
void selectionSort(T a[], int n)
{// Sort the n elements a[0:n-1].
for (int size = n; size > 1; size--)
{
int j = index0fMax{a, size);
swap(a[j], alsize - 1]);
}
}

Program 2.7 Selection sort

Example 2.12 [Bubble Sort] Bubble sort is another simple way to sort elements.
This sort employs a “bubbling strategy” to get the largest element to the right. In a
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bubbling pass, pairs of adjacent elements are compared. The elements are swapped
in case the one on the left is greater than the one on the right. Suppose we have
six integers in the order [6, 5, 8, 4, 3, 1] (see line 1 of Figure 2.4(b)). First the 6
and the 5 are compared and swapped to get the sequence shown in line 2. Next
the 6 and 8 are compared, and no swap takes place. Then 8 and 4 are compared
(line 3) and swapped; line 4 shows the result. The next comparison is between ¥
and 3, and the two are swapped. The last comparison is between 8 and 1; these
are swapped to get the configuration shown in line 6. The bubbling pass is now
complete. At the end of the bubbling pass, we are assured that the largest element
15 in the right-most position.

The function bubble (Program 2.8) performs a bubbling pass over a[0:n-1].
The number of comparisons between pairs of elements of a is n-1.

template<class T>
void bubble(T all, int m)
{// Bubble largest element in a[0:n-1] to right.
for (int 1 = 0; 11€ n - 1; 1i++)
if (afi] > a[i+1]) swap(a[il, ali + 11);
}

Program 2.8 A bubbling pass

Since bubble causes the largest element to move to the right-most position, it can
be used in place of index0fMax in selectionSort (Program 2.7) to obtain a new
sorting function (Program 2.9). The number of element comparisons is (n — 1)n/2
as it is for selectionSort. Figure 2.4(c) shows an initial array configuration as
well as the array configuration after each bubbling pass. n

template<ciass T>
void bubbleSort(T all, int n)
{// Sort al0:n - 1] using bubble sort.
for (int 41 = n; i » 1; i=-=)
bubble(a, 1);
}

Program 2.9 Bubble sort
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2.3.3 Best, Worst, and Average Operation Counts

In the examples so far, the operation counts were nice functions of fairly simple
instance characteristics like the number of inputs and/or outputs. Some of our
examples would have been more complicated if we had chosen to count some other
operations. For example, the number of swaps performed by bubble (Program 2.8)
depends not only on the instance characteristic n but also on the particular values
of the elements in the array a. The number of swaps varies from a low of 0 to a
high of n — 1. Since the operation count isn't always uniquely determired by the
chosen instance characteristics, we ask for the best, worst, and average counts. The
average operation count is often quite difficult to determine. As a result, in several
of the following examples we limit our analysis to determining the best and worst
counts.

Example 2.13 [Sequential Search] We are interested in determining the number of
comparisons between x and the elements of a during an execution of the sequential
search code of Program 2.1. A natural instance characteristic to use is n. Unfortu-
nately, the numbier of comparisons isn't uniquely determined by n. For example, if
n = 100 and x = a[0], then only 1 comparison is made. However, if x isn't equal
to any of the a[]s, then 100 comparisons are made.

A search is successful when x is one of the a[ls. All other searches are un-
successful. Whenever we have an unsuccessful search, the number of comparisons
is n. For successful searches the best comparison count is 1, and the worst is n.
For the average count assume that all array elements are distinet and that each is
searched for with equal frequency. The average count for a successful search is

1i (n +1)/2 .

Ti

Example 2.14 [Insertion into a Sorted Array] You are to insert a new element into
a sorted array so that the result is also a sorted array. For example, when you
insert 3 into a[0:4] = [2,4,6,8,9], the result is a[0:5] = [2,3,4,6,8,9]. The insertion
may be done by beginning at the right end and successively moving array elements
one position right until we find the location for the new element. Figure 2.5(a)
illustrates the process. In our example we moved 9, 8, 6, and 4 one position right
and inserted 3 into the now-vacant spot a[1].

Program 2.10 implements the above strategy to insert an element x into a sorted
array a[0:n-1].

We wish to determine the number of comparisons made between x and the
elements of a. The natural instance characteristic to use is the number n of elements
initially in a. The best or minimum number of comparisons is 1, which happens
when the new element x is to be inserted at the right end. The maximum number
of comparisons is n, which happens when x is to be inserted at the left end. For
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template<class T>
void insert(T a[], intk n, const Tk x)
{// Insert x into the sorted array a[0:n-1].
// Assume a is of size > n
int 1i;
for (1 = n-1; 1 >= 0 &k x < a[i]; i--)
ali+1] = a[i];
ali+l] = x;
n++; // one element added to a

¥

Program 2.10 Inserting into a sorted array

the average assume that x has an equal chance of being inserted into any of the
possible n+1 positions. If x i1s eventually inserted into position i+1 of a, 1 = 0,
then the number of comparisons is n-i. If x is inserted into a[0], the number of
comparisons is n. So the average count is

1 n—1 ‘ 1 i .
u+1[§{n-t}+n} = EE'LZ”":'

=1
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So the average count is almost 1 more than half the worst-case count. ]

Example 2.15 [Rank Sort Revisited] Suppose the elements of an array have been
ranked using method rank (Program 2.5, Example 2.9). We can perform an in-place
rearrangement of elements into sorted order by examining the array positions one
at a time beginning with position 0. If we are currently examining position i and
r[i] = i, then we may advance to the next position. If r[i] # i, then we swap
the elements in positions 1 and r[i]. This swap moves the element previously in
position i into its correct sorted position. The swap operation is repeated at position
i until the element that belongs in position i in the sorted order is swapped into
position 1. Then we advance i to the next position.

Parts (b) and (¢) of Figure 2.5 show how the above rearrangement strategy
works. The initial array is a[0:5] = [d,aef,c,b]. Element ranks are shown above
the elements. So the initial rank array is r[0:5] = [3.0,4,5.2,1]. We begin at array
position 0. Since r[0] # 0, a[0] and a[r[0]] = a[3] are to be swapped. The
configurations of parts (b) and (c) of Figure 2.5 have a heavy bar above the position
a[i] being examined (initially, i = 0) and a light bar above the position a[r[i]]
where a[i] is to move to. When rfa[i]] = 1, the figure has only a heavy bar
above a[il. Shaded array positions denote elements that are not in their proper
place (i.e., elements with r[1] # 1i).

We begin with i = 0 and swap elements a[i] and a[r[i]] = a[3]; r[0] and
r[3] are also swapped. This process results in the second configuration. Notice
that a[3] now contains the proper element and r[3] = 3. Next elements a[0] and
alr[0]] = al5]) together with their ranks are swapped to get the third config-
uration of Figure 2.5(b). When a[0] and a[r[0]] = a[1] (and their ranks) are
swapped, we get the fourth conrfiguration. Now r[0] = 0, and we increment i to
the next position 1. The new configuration is shown at the top of Figure 2.5(c).
Since r[i] = r[1] = 1, we advance 1 to the next position 2 (see the second con-
figuration of Figure 2.5(c)). Now a[i] = a[2] and al[r[2]] = a(4] (as well as
their ranks) are swapped. Following the swap, r[2] = 2. Even though the rear-
rangement is complete at this time, our code will not be able to detect this and we
continue to advance i to the right, making sure that each element is in its proper
position. So i is advanced to the next position 3 (see the third configuration of
Figure 2.5(c)). Then i is advanced to positions 4 and 5.

Program 2.11 gives the in-place rearrangement function rearrange.

The number of swaps performed varies from a low of 0 (when the elements are
initially in sorted order) to a high of 2({n — 1). Notice that each swap involving
the alls moves at least one element into its sorted position (i.e., element a[i]).
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e —————————————

template<class T>
void rearrange(T a[], int n, int r[])
{// In-place rearrangement into sorted order.
for (int i = 0; 1 € n; i++)
// get proper element to al[i]
while (r[i] 1= 1)

{
int t = r[i];
swap(a[i], alt]);
swap(r[il, r[t]);
}

}

Program 2.11 In-place rearrangement of elements

So after at most n — 1 swaps, all n elements must be in sorted order. Exercise 20
establishes that this many element swaps may be needed on certain inputs. Hence
the number of swaps is 0 in the best case and 2(n - 1) in the worst case (includes
rank swaps). When this in-place rearrangement function is used in place of the
one in Program 2.6, the worst-case execition time increases becanse we need more
element moves (each swap requires three moves). However, the space requirements
are reduced. [ |

Example 2.16 [Selection Sort Revisited] A shortcoming of the selection sort code
of Program 2.7 is that it continues to work even after the elements have been sorted.
For example, the for loop iterates n —'1 times, even though the array may be sorted
after the second iteration. To eliminate the unnecessary iterations, during the scan
for the largest element we can check to see whether the array is already sorted.
Program 2.12 gives the resulting selection sort function. Here we have incorporated
the loop to find the largest element directly into selectionSort, rather than write
it as a separate method.

Figure 2.6(a) shows the progress of Program 2.12 when started with a[0:5] =
[6,5,4,3,2,1). In the first itération of the outer for loop, size = & and the line
sorted = false is executed when 1 = 1,2, 3, 4, and 5. So following the swap of
a[0] and a[5], which results in the configiration of line 2, the outer for loop is
reentered with size = 5. This time the line sorted = false is executed when i
= 2, 3, and 4. Therefore, following the swap of a[1] and a[4], the outer for loop
is reentered; this time size = 4. Now ‘the line gorted = false is executed when
i = 4, and following the swap of a[2] and a[3], the outer for loop is reentered.
This time we are working with the array conhguration of line 4; the line sorted
= false is not executed, and execution of the outer for loop terminates. On the
initial data of line 1 of Figure 2.6(a), the early terminating version makes one less
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tenplate<class T

void selectionSert(T a[l, int mn)

{//- Early-terminating version of selection sort.
bool sorted = false;
for (int' size ='n; !sorted k& (size > '1); size--)

{
int indexOfMax = 0;
sorted = true;
// find largest _
for (int i =1; 1 < gize; i++)
if (a[indexOfMax] <= a[i]) indexOfMax = i;
else sorted = false; // out of order
swap(a[index0fMax], alsize - 1]);
}

}

Program 2.12 Early-terminating version of selection sort

pass than it does when started with the data shown in line 1 of Figure 2.4(a).
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Figure 2.6 Sorting examples

The best case for the early-terminating version of selection sort arises when the
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array a is sorted to begin with. Now the outer for loop iterates just once, and the
number of comparisons between elements of a is n — 1. In the worst case the outer
for loop is iterated until size = 1 and the number of comparisons is (n — 1)n/2.
The best- and worst-case number of swaps remains the same as for Program 2.7.
Notice that in the worst case we expect the early-terminating version to be slightly
slower because of the additional work to maintain the variable sorted. [ |

Example 2.17 [Bubble Sort Revisited] As in the case of selection sort, we can devise
an early-terminating version of bubble sort. If a bubbling pass results in no swaps,
then the array is in sorted order and no further bubbling passes are necessary.
Program 2.13 gives the early-terminating version of bubble sort.

template<class T>
bool bubble(T all, int n)
{// Bubble largest element in a[0:n-1] to right.
bool swapped = false; // no swaps so far
for (int i = 0; i € m - 1; i++)
if (alil > a[i+1])
{
swap(a[i]l, ali + 1]);
swapped = true; // swap was done

}

return svapped;

}

template<class T>

void bubbleSort(T a[l, int n)

{// Early-terminating version of bubble sort.
for (int i = n; 1 > 1 &k bubble(a, i); i=--);

}

Program 2.13 Early-terminating bubble sort

Line 1 of Figure 2.6(b) shows an instance on which at least one swap is done
when going from line 1 to line 2 (the invocation bubble(a,6)) and in going from
line 2 to line 3 (the invocation bubble(a,5)). No swaps are done in the invocation
bubble(a,4), and =0 the sort terminates following this invocation.

The worst-case number of comparisons made by Program 2.13 is unchanged
from the original version (Program 2.9). The best-case number of comparisons is
n = 1. [ |

Example 2.18 [Insertion Sort] Program 2.10 can be used as the basis of a method
to sort n elements. Since an array with one element is a sorted array, we start with
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an array that contains just the first of the n elements to be sorted. By inserting
the second element into this one-element array, we get a sorted array of size 2. The
insertion of the third element yields a sorted array of size 3. Continuing in this way,
we obtain a sorted array of size n.

Line 1 of Figure 2.6(c) shows the unsorted array a[0:5]. We start with a sorted
segment a[0:0]; the remaining elements a[1:5] define the unsorted segment. The
unsorted segment is the shaded segment in Figure 2.6{c). Fimst a[1] is inserted
into the sorted segment a[0:0] to get the configuration of line 2; al0:1] is now
the sorted segment, and a[2:5] is the unsorted segment. Next a[2] is inserted
into the sorted segment, and we get line 3 of the figure. a[0:2] becomes the sorted
segment, and a[3:5] is the unsorted segment. After three more inserts, the entire
array is sorted.

Function insertionSort (Program 2.14) implements this strategy. We have
rewritten function insert for this application, as the original version (Program 2.10)
performs some unnecessary operations. Actually, we could have embedded the code
of the new insert function directly into the sort function to get the insertion sort
version of Program 2.15. Equivalently, we could make insert an inline function.

template<class T>

void insert(T a[l], int n, const Tk x)

{// Insert x into the sorted array a[0:n-1].
int i;
for (i = n-1; i >= 0 && x < ali]l; i--)

afi+1] = a[il;

ali+1] = x;

}

template<class T>
void insertionSort(T al[l, int n)
{// Sort a[0:n-1] using the insertion sort method.
for (int 1 = 1; i < n; i++)
{
Tt=ali];
insert{a, i, t);

}

Program 2.14 Insertion sort

Both versions of insertion sort perform the same number of comparisons. In the
best case the number of comparisons is n — 1, and in the worst case it is (n—1)n/2.
=
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template<class T>
void insertionSort(T afl, int n)
{// Bort al0:n-1] using the insertion sort method.
for (int i = 1; i < n; i++)
{// insert a[i] into a[0:i-1]
Tt = al[il;
int j;
for (j = i-1; j >= 0 &k t < aljl; j==)
alj+1] = aljl;
alj+1] = t;

}

Program 2.15 Another version of insertion sort

2.3.4 5Step Counts

As noted in some of the examples on operation counts, the ﬂperatiun—mu:it method
of estimating time complexity omits accounting for the time spent on all but the
chosen operations. In the step-count method, we attempt to account for the time
spent in all parts of the program/method. As was the case for operation counts,
the step count is a function of the instance characteristics. Although any specific,
instance may have several characteristics (e.g., the number of inputs, the number of
outputs, the magnitudes of the inputs and outputs), the number of steps is computed
as a function of some subset of these. Usually we choose the characteristics that
are of interest to us. For example, we might wish to know how the computing (or
run) time (i.e., time complexity) increases as the number of inputs increases. In this
case the number of steps will be computed as a function of the number of inputs
alone. For a different program we might want to determine how the computing time
increases as the magnitude of one of the inputs increases. In this case the number
of steps will be computed as a function of the magnitude of this input alone. Thus
before the step count of a program can be determined, we need to know exactly
which characteristics of the problem instance are to be used. These characteristics
define not only the variables in the expression for the step count but also how much
computing can be counted as a single step.

After the relevant instance characteristics have been selected, we can define a
step. A step is any computation unit that is independent of the selected character-
istics. Thus 10 additions can be one step; 100 multiplications can also be one step;
but n additions, where n is an instance characteristic, cannot be one step. Nor can
m/2 additions or p + g subtractions, where m, p, and g are instance characteristics,
be counted as one step.
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Definition 2.1 A program step is loosely defined to be a syntactically or seman-
tically meaningful segment of a program for which the erecution time is independent
of the instance characteristics. [ ]

The amount of computing represented by one program step may be different
from that represented by another. For example, the entire statement

return a+b+b=c+(a+b-c)/(a+b)+4;

can be regarded as a single step if its execution time is independent of the instance
characteristics we are using. We may also count a statement such as

x=y;

as a single step.

We can determine the number-of steps that a program or method takes to com-
plete its task by creating a global variable stepCount with initial value 0. Next we
introduce statements into the program to increment stepCount by the appropriate
amount. Therefore, each time a statement in the original program or method is
executed, stepCount is incremented by the step count of that statement. The value
of stepCount when the program or method terminates is the number of steps taken.

Example 2,19 When statements to increment stepCount are introduced into Pro-
gram 1.30, the result is Program 2.16. The change in the value of stepCount by
the time this program terminates is the number of steps executed by Program 1.30.

template<class T>
T sum(T a[], int n)
{// Return sum of numbers a[0:n - 1].

T theSum = O;

stepCount++; J/ for theSum = 0
for (int 1 = 0; 1 < n; i++)

{

stepCount++; // for the for statement
theSum += alil;
stepCount++; // for assignment
}
stepCount++; // for last execution of for statement
stepCount++; // for return
return theSum;

}

Program 2.16 Counting steps in Program 1.30
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Program 2.17, which is a simplified versior of Program 2.16, determines only the
change in the value of stepCount. We see that for every initial value of stepCount,
both Programs 2.16 and 2.17 compute the same final value for stepCount. In the
for loop of Program 2.17, the value of stepCount increases by a total of 2n. If
stepCount is 0 to start with, then stepCount will be 2n+3 on termination. There-
fore, each invocation of sum (Program 1.30) executes a total of 2n+3 steps. ]

template<class T>

T sum(T al[l, imt n)

{// Return sum of numbers a[0:n - 1].
for (int 1 = 0; 1 < n; i++)

stepCount += 2;

stepCount += 3;
return 0;

}

Program 2.17 Simplified version of Program 2.16

Example 2.20 When we introduce statements to increment stepCount into fune-
tion rSum (Program 1.31), we obtain Program 2.18. Note that since Program 1.31
is a recursive function, it requires space for the recursion stack. Thus the function
may fail to complete its task for lack of sufficient memory for the recursion stack.
For the step-count analysis, we will assume that sufficient memory is available for
the function rSum to successfully complete its task.

template<class T>
T rSum(T all, int n)
{// Return sum of numbers a[0:n - 1].
stepCount++; // for if conditiomal
if (n > 0) {stepCount++; // for return and rSum invocation
return rSum(a, n-1) + a[n-1];}
stepCount++; // for return
return 0;

1

Program 2.18 Counting steps in Program 1.31

Let treue(n) be the increase in the value of stepCount between the time rSum
is initially invoked and the tiine it terminates. We see that fre.(0) = 2. When n
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> 0, stepCount increases by 2 plus whatever increase results from the invoeation
of rSum from within the then clause. From the definition of t,gs, it follows that
this additional increase is f.9.5{n=-1). So if the value of stepCount is 0 initially, its
value at the time of termination is 2 + s (n=1). 0 > 0.

When analyzing a recursive program for its step count, we often obtain a re-
cursive formula for the step count (such as trg(n) = 2 + tya(n-1), n > 0 and
traum(0) = 2). This recursive formula is referred to as a recurrence equation (or
simply as a recurrence). We can solve this recurrence by repeatedly substituting
for t 5. as shown:

trewal(n) = 24 trgm(n—1)
242+ trgu(n - 2)
-'i""'tm{_ﬂ - 2]

2 + tesaa(0)
nm+2 n=x=0

So the step count for function rSum (Program 1.31) is 2n+2. »

Comparing the step counts of Programs 1.30 and 1.31, we see that the count
for Program 1.31 is less than that for Program 1.30. However, we cannot conclude
that Program 1.30 is slower than Program 1.31, because a step doesn’t correspond
to a definite time unit. A step of rSum may take more time than a step of sum, so
rSum might well be (and we expect it to be) slower than sum.

The step count is useful in that it tells us how the run time for a program changes
with changes in the instance characteristics. From the step count for sum, we see
that if n is doubled, the run time will also double (approximately); if n increases by
a factor of 10, we expect the run time to increase by a factor of 10; and so on. So
we expect the run time to grow linearly in n.

Rather than introduce statements to increment stepCount, we can build a ta-
hle in which we list the total number of steps that each statement contributes to
stepCount. We can arrive at this figure by first determining the number of steps
per execution (s/e) of the statement and the total number of times (i.e., frequency)
each statement is executed. Combining these two quantities gives us the total con-
tribution of each statement. We can then add the contributions of all statements to
obtain the step count for the entire program. This approach to obtaining the step
count is called profiling.

The 8/e of a statement is the amount by which stepCount changes as a result
of the execution of that statement. An important difference between the step count
of a statement and its s/e is illustrated by the following example. The statement
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x = sum{a,m);

has a step count of 1, while the total change in ntnp{‘:uunt reaultmg from the exe-l
cution of this statement is actually 1 plus the change rﬁultmg from the invocation
of sum (i.e., 2m+3). Therefore, the s/e of the above statement is 142m+3 = EI‘Hl

Figure 2.7 lists the number of steps per execution and the frequency of each of
the statements in function sum (Program 1 30} The total number of steps requiired
by the progtam is 2n+3. Note that the frequency of the for statement is n+1 and
not n because i has to be incremented to n before the for loop {:an t.ermmute

Statement s/e  Frequency  lotal steps
T sum(T all], int n) 0 1] 1]
{ 0 0 0
T theSum = 0} 1 1 1
for (int i = 0; 1 < m; i#+) | 1 n+1 n4l
theSum += a[i]; 1 i n
return theSum; 1 1 1
} i L] ]
[ Total T ' 2n + 3

Figure 2.7 Step count for Program 1.30

" Program 2.19 transposes'a rows X rows mafrix a[0:rovs-1] [0:rows-1]. Re
call that b is the transpose of a iff (if and only if) b[1] [§] = a[3] [i] for all i and
i. . it

template<class T>
void transpose(T *#a, int rows)
{// In-place transpose of matrix a[0:rows-1][0: rmm-l]
for (int i = 0; i < rows; i++)
for (int j = i+1; j < rows; j++)
swap(a[i]) [j], al(jl[il);
}

Program 2.19 Matrix transpose

Figure 2.8 gives the step-count table. Let us -n:_lerive the frequency of the second
for statement. For each value of i, this statement is executed rows-1 times. So its
frequency is

Foice—1 FOCE

Y (rows—i)=Y q= rous(rows +1)/2

=0 g=1
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[ Statement ae Frequem::.r Total steps
void trulpnuﬁ_ sy, int rows) 0 0 0
i 0 0 0
for (int 1 = 0; 1 < rows; i++) 1 rows + 1 rows 4 1
for (int j = i+1; j < rows; j++) | 1 rews(rows + 1)/2  rows{rows + 1)/2
swap(a[1]1[§], alj]1(i]); 1 rows(rows — 1)/2  rows(rows — 1)/2
} 0 0 « 0
Total rows® + rows + 1
Figure 2.8 Step count for Program 2.19
The frequency for the swap statement is
rows—1 rows—1
Y (rows—i-1)= > q=rows(rows-1)/2

In some cases the number of steps per execution of a statement varies from one
execution to the next, for example, for the assignment statement of function inef
(Program 2.20). Function inef is a very inefficient way to compute the prefix sums

blj].
Ei[j]=Zu[i| for j=0,1,-«,n~=1

=0}

template <class T>

void inef(T all, T bl], int n)

{// Compute prefix sums.

for (int j = 0; j < m; j++)
b(j] = sum{a, j + 1);

} .

Program 2.20 Inefficient prefix sums

The step count for sum{a,m) has already been determined to be 2m+3 (see Exam-
ple 2.19). Therefore, the number of steps per execution of the assignment statement
b[j] = sum{a, j + 1) of inef is 2j+6. To arrive at this step count, we have added
1 to the step count of sum to account for the cost of invoking the function sum and
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of assigning the function value to b[j]. The frequency of this assignment statement
is n. But the total number of steps resulting from this statement is not (2j+6)n.
Instead, the number of steps is

n—1

S (2j +6) =n(n+5)

i=0

Figure 2.9 gives the complete analysis for this function.

Statement B Frequency  Total steps
void inef(T all, T B[], int n) | O 1] i
{ 0 0 o
for (int § = 0; j < m; j++) | 1 n+l n+l
blj] = sum{a, § + 1); 2j+6 mn nin 4+ 5)
1 ] (1]} 0
" Total n® + 6m + 1

Figure 2.9 Step count for Program 2.20

The notions of best, worst, and average operation counts are easily extended to
the case of step counts. Examples 2.2]1 and 2.22 illustrate these notions.

Example 2.21 [Sequential Search| Figures 2.10 and 2.11 show the best- and worst-
case step-count analyses for function sequentialSearch (Program 2.1).

Statement
int sequential3earch(T a[l, int n, const Tk x)
i

equency  Total steps

T
L]

int i;

for (4 = 0; 4 < n &k all] = x; f++);
if (i == n) return -1;

else return i;

(=T ] ]
Ot O O

}
Tatal

Elo === o

Figure 2.10 Best-case step count for Program 2.1

For the average step-count analysis for a successful search, we assume that the
n values in a are distinct and that in a successful search, x has an equal probability
of being any one of these values. Under these assumptions the average step count
for a successful search is the sum of the step counts for the n possible successful
searches divided by n. To obtain this average, we first obtain the step count for the
case x = alj] where j is in the range [0, n — 1] (see Figure 2.12).

Now we obtain the average step count for successful searches:
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Statement g/e  Frequency  Total steps
int llq'lunti.u.lﬁ"r:hlf'l'_-;ﬁ_, int n, conat Tk x) | 0 ] ]
{ 0 H 0
int &: [ 1 1 1
for (i = 0; 41 < o ki ali] != x; f++); Il n+1 n+1
if (i == n) return -1; 1 1 1 1
else raturn i; 1 0 0
|} 0 ] 0
Total n+3
Figure 2.11 Worst-case step count for Program 2.1
Statement /¢  Frequency  Total steps
int sequentialSearch(T a[], int n, const Tk x) | O i i
{ L 0 (1]
int i; 1 1 I
for (1 = 0; 1 <« o Bk ali] '=s x; G++); 1 i+1 i+1
if (i == n) retorn -1; 1 1 1
alse return i; 1 1 1
} 1 i L1
Total 1+4

Figure 2.12 Step count for Program 2.1 when x = a[j]

n—1

1 . _
;EI{J+4}—{H+ 7)/2

y=0

This value is a little more than half the step count for an unsuccessful search.
Now suppose that successful searches occur only 80 percent of the time and that

each a[i] still has the same probability of being searched for. The average step

count for sequentialSearch is

8 = (average count for successful searches) + .2 » (count for an unsuccessful search)

= Bn+7)/24+.2(n4+3)

= bn + 3.4 B

Example 2.22 [Insertion into a Sorted Array] The best- and worst-case step counts
for function insert (Program 2.10) are obtained in Figures 2.13 and 2.14, respec-
tively.
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I |

" Statement sfe Frequency  lotal steps
void inmsert(T a[], intk n, const Tk x) 1] 0 0
{ L] ] ]
int i; 1 1 1
for (i = n = 1; 1 >= 0 bk x < afi); i--) | 1 1 1
afi+1] = a[i]; 1 ] 0
ali#l] = x; 1 1 1
n++; // one element added to a 1 1 1
} 0 0 0
Total 4
Figure 2.13 Best-case step count for Program 2.10
Statement s/e  Frequency lotal steps
void imsert(T al), intk m, comst TR x} 0 ] V)
{ L] 1] o .
int 1; 1 1 1
for (i = n - 1; 4 >= 0 kk x < afil; i--) | 1 n+l 41
ali+1] = a[il]; 1 n "
afi#xl] = x; 1 1 1
o++; /f one element added to a 1 1 1
} 1] 1] 0

Figure 2.14 Worst-case step count for Program 2.10

For the average step count, assume that x has an equal chance of being inserted
into any of the possible n+1 positions. If x is eventually inserted into position j, j
> 0, then the step count is 2n=-2j+4. So the average count is

1 T - . ' 1 I'I. . ) mn .
arT L Cn ) = oY )+ )
=0 i=0 je=ib

1 T
=;ﬁjm2?qu+m

Il

n+1l

(n+4)(n+1)

n+1

n+4

in{n+1)+4(n+1)]
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The average count is 2 more than half the worst-case count. [ ]
EXERCISES
K. According to the analysis in Example 2.8, Program 2.3 makes four additions

10.

11.

12.

13.

14.

15.

16.

18.

and eight multiplications when evaluating the polynomial 3z% +42% 4+ 5% +6x+
7, and Program 2.4 makes four additions and four multiplications. Identify
these additions and multiplications for the case x = 2. Do this by showing
the precise numbers that are being added or multiplied.

. Give the rank array r for the case when a[0:8] = [3, 2,6, 5,9, 4,7, 1, § (see

Example 2.9).

Consider the selection sort function of Program 2.7. Draw a figure similar to
Figure 2.4(a) for the case when a[0:6] = [3, 2, 6, 5, 9, 4, 8]

Consider the bubbling pass function of Program 2.8. Draw a figure similar to
Figure 2.4(b) for the case when a[0:6] = [3, 2, 6, 5, 9, 4, 8].

For the bubble sort function of Program 2.9, draw a figure similar to Fig-
ure 2.4(c) for the case when a[0:6] = [3, 2, 6, 5, 9, 4, §|.

Suppose that we are to insert 3 into the sorted array a[0:6] = [1, 2, 4, 6,
7. 8, 9]. Draw a figure similar to Figure 2.5(a). Your figure should show the
progress of Program 2.10.

The array a[0:8] = [g, h, i, [, ¢, a, d, b, €] is to be sorted using a rank sort.
The ranks are determined to be r[0:8] = [6, 7, 8, 5, 2,0, 3, 1, 4. Draw a
figure similar to Figures 2.5(b) and (¢) to show the progress of the in-place
rearrangement function of Program 2.11.
(a) Suppose that the array a[0:9] =9, 8, 7.6, 5,4, 3, 2, 1, 0] is sorted using
the early-terminating version of selection sort (Program 2.12). Draw a
figure similar to Figure 2.6(a} to show the progress of the sort.

(b} Do part (a) for the case when a[0:8] = [8,4,5,2,1,6,7, 3, 0.
The array al0:9] = [4, 2, 6, 7, 1, 0, 9, 8, 5, 3] is sorted using the early-

terminating version of bubble sort (Program 2.13). Draw a figure similar to
Figure 2.6(b) to show the progress of the sort.

. The array a[0:9] = [4,2,6,7,1,0,9, 8, 5, 3 is to be sorted using insertion

sort (Program 2.14). Draw a figure similar to Figure 2.6(c) to show the
progress of the sort.

How many additions (i.e., invocations of increment) are done in the for loop
of function sum (Program 1.30)7
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19. How many multiplications are performed by the function factorial (Pro-
gram 1.29)7

20. Create an input array a that causes function rearrange (Program 2.11) to
do n — 1 element reference swaps and n — 1 rank swaps.

21. How many additions are performed between pairs of array elements by func-
tion matrixAdd (Program 2.21)7

template<class T>
vold matrixAdd( T =+a, T *=b, T #*+c, int number0fRows,
int number0fColumns)
{// Add matrices a and b to obtain matrix c.
for (int i = 0; i < numberOfRows; i++)
for (int j = 0; j < number0fColumns; j++)
cli1 (41 = ali) (3] + wvlil(j]1;
}

Program 2.21 Matrix addition

22. How many swap operations are performed by function transpose (Program 2.19)7

23. Determine the number of multiplications done by function squareMat ri:Hu]t.iplg,r
(Program 2.22), which multiplies two n x n matrices.

template<class T>
void squareMatrixMultiply(T #+a, T *+b, T *#c, int n)
{// Multiply the n x n matrices a and b to get c.
for (int 1 = Q; i < m; i++)
for (int j = 0; j < n; j++)
{
T sum = 0;
for (int k = 0; k < n; k++)
sum += a[i] [k] * b(k][j];
eli]l[j] = sum;

}

Program 2.22 Multiply two n x n matrices

24. Determine the number of multiplications done by function matrixMultiply
(Program 2.23), which multiplies an m * n matrix and an n = p matrix.
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template<class T>
void matrixMultiply(T ##a, T #+b, T #*#c, int m, int n, int p)
{// Multiply the m x n matrix a and the o x p matrix b
// to get c.
for (int i = 0; 1 < m; i+4)
for (int j = 0; j < p; j++)
{
T sum = 0;
for (int k = 0; k < n; k++)
sum += a[i] (k] += blk][j]1;
c[i) (] = sum;
¥
}

Program 2.23 Multiply an m % n and an n x p matrix

25. Determine the number of swap operations performed by function permutations
(Program 1.32).

26. Method minmax (Program 2.24) determines the locations of the minimum
and maximum elements in an array a. Let n be the instance characteristic.
What is the number of comparisons between elements of a7 Program 2.25
gives an alternative function to determine the locations of the minimum and
maximum elements. What are the best-case and worst-case numbers of com-
parisons between elements of a7 What can you say about the expected relative
performance of the two functions?

27. How many comparisons between the a[]s and x are made by the recursive
function rSequentialSearch (Program 2.2)7

28. Program 2.26 gives an alternative iterative sequential search function. What
is the worst-case number of comparisons between x and the elements of a?

Compare this number with the corresponding number for Program 2.1. Which
function should run faster? Why?

20. (a) Introduce statements to increment stepCount at all appropriate points
in Program 2.27.

(b) Simplify the resulting program by eliminating statements. Both the sim-
plified program and the program of part (a) should compute the same
value for stepCount.

(c) What is the exact value of stepCount when the program terminates?
You may assume that the initial value of stepCount is 0.
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template<class T>

bool minmax(T a[], int n, intk index0fMin, intk indexOfMax)
{// L ~ate min and max elements in a[0:n-1].
// Returi false if less than one element.

if (n < 1) return false;

index0fMin = index0OfMax = 0; // initial guess
for (int i = 1; 1 < n; i++)
{

if (a[index0fMin] > a[i]) index0fMin = i;

if (a[index0fMax] < a[i]) indexOfMax = i;
}

return trus;

}

Program 2.24 Finding the minimum and maximum

template<class T>

bool mimmax(T a[], int n, intk index0fMin, intk indexOfMax)
{// Locate min and max elements in a[0:n-1].

/f Return false if less than one element.
if (n € 1) return false;

index0fMin = indexOfMax = 0; // initial guess
for (int 1 = 1; i < n; i++)
if (alindex0fMin] > a[i]) indexDfMin = i;

else if (a[indexOfMax] < a[i]) indexOfMax = i;
return true,;

}

Program 2.25 Another function to find the minimum and maximum

(d) Use the frequency method to determine the step count for Program 2.27
Clearly show the step-count table.

30. Do Exercise 29 for each of the following functions:
(a) index0fMax (Program 1.37).
(b) minmax (Program 2.24).
(c) minmax (Program 2.25). Determine the worst-case step count.
(d) factorial (Program 1.29).
(e) polyEval (Program 2.3).
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template<class T>

int sequentialSearch(T a[], int n, const Tk x)

{// Search the unordered list a[0:n-1] for x.

// Return position if found; return -1 otherwise.
aln] = x; // assume extra position available
int i;
for (i = Q; a[i] 1= x; i++);
if (i == pn) return -1;
return 1i;

¥

Program 2.26 Another sequential search function

void d(int x[], int n)

{
for (int i = 0; i € n; i += 2)
x[i] += 2;
i=1;
while (i <= n/2)
{
x[1] += x[i+1];
iH-;
}
}

Program 2.27 Method for Exercise 29

(f) horner (Program 2.4).

(g) rank (Program 2.5).

(h) permutations (Program 1.32).

(i) sequentialSearch (Program 2.26). Determine the worst-case step count.

(j) selectionSort (Program 2.7). Determine the best- and worst-case step
counts.

(k) selectionSort (Program 2.12). Determine the best- and worst-case
step counts.

(1) insertionSort (Program 2.14). Determine the worst-case step count.
(m) insertionSort (Program 2.15). Determine the worst-case step count.
(n) bubbleSort (Program 2.9). Determine the worst-case step count.
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(0) bubbleSort (Program 2.13). Determine the worst-case step count.
(p) matrixAdd (Program 2.21).

(q) squareMatrixMultiply (Program 2.22). |
31. Do Exercise 29 parts (a), (b), and [c}fnrtheful]nmngﬁm:tlﬂns

(a) transpose (Program 2.19).
(b) inef (Program 2.20).

32. Determine the average step counts for the following functions:

(a) rSequentialSearch (Program 2.2).
(b) sequentialSearch (Program 2.26).
(¢} insert (Program 2.10).
33. (a) Do Exercise 29 for Program 2.23.
(b) Under what conditions will it be profitable to interchange the two out-
ermost for loops?

34. Compare the worst-case number of element reference moves made by functions
selectionSort (Program 2.12), insertionSort (Program 2.15), bubbleSort
(Program 2.13), and rank sort using Program 2.11.

35. Must a program exhibit its worst-case time behavior and worst-case space
behavior at the same time (i.e., for the same input)? Prove your answer.

36. Use repeated substitution to solve the following recurrences (see Example 2.20).

n=~0

(a) t(n) = {2+t{n—1} n>0
0 n=1>0

(b) t(n)=¢{ 1 n=1
14tn-2) n>0

0 n=10

(c) tn) = {2n+t{ﬂ—1] n>0
1 n=1[

(d) t(n) ={2u{n—1} n>0
1 =)

© ) ={ §ura_1) w0



CHAPTER 3 |
ASYMPTOTIC NOTATION

BIRD'S-EYE VIEW

Chapter 2 showed you how to analyze the space and time complexities of a program.
The methods of that chapter are somewhat cumbersome because they attempt to
obtain exact counts, rather than estimates. In this chapter we review asymptotic
notation, which is used to make statements about program performance when the
instance characteristics are large. When we use this notation, we need only estimate
the step count. Although the big oh notation is the most popular asymptotic
notation used in the performance analysis of programs, the omega, theta, and little
oh notations also are in common use.

Asymptotic notation is first introduced in an informal manner in Section 3.2.
The informal treatment of this section is adequate to follow all the analyses done
in this book. A more rigorous treatment is presented in Section 3.3. You may omit
Section 3.3 and not face any dire consequences.

The use of asymptotic notation is illustrated through the applications developed
in Chapters 1 and 2. Additionally, an important and efficient search method—
binary search of a sorted array—is developed and analvzed in this chapter. This
search method is also available as the STL algorithm binary Search.

95
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3.1 INTRODUCTION

Two important reasons to determine operation and step counts are (1) to predict
the growth in run time as the instance characteristics increase and (2) to com-
pare the time complexities of two programs that perform the same task. When
using operation counts, we focus on certain “key” operations and ignore all others.
Therefore, vou must be very cautious when using an operation count for either .of
the above purposes. For example, a program may do 2n comparisons, but the total
number of computation steps could be 6n? + 8n. It would be incorrect to use the
comparison count of 2n to conclude that the run time grows linearly in n. It would
also be incorrect to conclude that a program that makes 2n comparisons is faster
than a program, for the same task, that makes in comparisons; the 3n compari-
son program may actually do less total work than is done by the 2n comparison
program.

The operation count method accounts for only some of the work that is done in
a program. Step counts attempt fo overcome this deficiency by accounting for all
work. However, the notion of a step is inexact. Both the instructions x = y and x
= y+z+(x/y) count as one step. Therefore, two analysts may arrive at 4n® 4+ 6n + 2
and Tn*® + 3n + 4 as the step count for the same program. We cannot conclude that
the run time will grow as either 4n? + 6n + 2 or Tn? + 3n + 4, because any step
count of the form e;n? + ean + ¢4, where ¢; > 0, ¢4, and ¢y are constants, could
be a correct step count for the program. Because of the inexactness of what a step
stands for, the exact step count isn’t very useful for comparative purposes either.
However, when the difference in the step counts of two programs is very large as in -
3n + 3 versus 900n 4+ 10. We might feel quite safe in predicting that the program
with step count 3n -+ 3 will run in less time than the one with step count 900n + 10.

We can use the step count to accurately predict the growth in run time for large
instance sizes (i.e.. in the asymptote as n approaches infinity) and to predict the
relative performance of two programs when the instance size becomes large. Suppose
that the step count of a program is determined to be cyn® +can+cy, ¢ > 0. When n
becomes large, the ¢;n? term will be much larger than the remaining terms czn 4+ ca.
The ratio of these two expressions is r(n) = (egn+ca)/(e1n?) = ez /(eyn)+ea/(e1n?).
Figure 3.1 plots r(n) for the case ¢ = 1, ¢ = 2, and ¢3 = 3. Even though r{n)
never equals 0 for any finite n, r(n) gets closer and closer to 0 as we make n higger
and bigger.

Regardless of the values of ¢; > 0, ¢y, and ey, the ratio r(n) approaches 0 as n
approaches infinity; that is,

lim (i + iz) =0
n—oo L &0 LR

So for large n, e9n + ¢y is insignificant when compared to ¢;n?, and run time may
be approximated by the cyn? term. Let n; and ny be two large values of n. We
conclude that
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rimn)

Figure 3.1 Plot of r(n) = 2/n + 3/n*

) cai_ (m’

t(na) ~ eni T \ng

Therefore, the run time is expected to increase by a factor of 4 {approximately)
when the instance size is doubled; the run time increases by a factor of 9 when the
instance size is tripled; and so on. To make this conclusion, all we need to know is
that the biggest term in the step count is an n? term; the value of the coefficient ¢;
is irrelevant to the conclusion.

Suppose that programs A and H perform the same task. Assume that John
has determined the step counts of these programs to be f4(n) = n? + 3n and
tp(n) = 43n. It is entirely possible that Mary's analysis of the same programs
yields t4(n) = 2n? + 3n and tp(n) = 83n. In fact, assuming that John's analysis
is correct, all other correct analyses would result in t4(n) = eyn? + can + c3 and
tp(n) = eyn, where ey, €3, 4, and ey are constants, ¢; > 0, and ¢4 > 0.

To see what conclusion we can draw about the relative performance of programs
A and L knowing that the constant coefficients may vary from analyst to analyst,
examine the plot of Figure 3.2. First, look at the curves for John's analysis, f4(n) =
n? + 3n and tp(n) = 43n. We conclude that for n < 40, program A is faster; for
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n > 40, program B is faster; and n = 40 is the break-even point between the two
programs. Now suppose that the analysis had instead concluded that tg(n) = 83n.
In this case we would conclude that for n < 80, program A is faster; for n > 80,
program B is faster; and n = 80 is the break-even point between the two programs.
Or conclusion that program B is faster than program A for large n does not change;
only the break-even point changes.

10000

zuf+3n/

8000 _ n*+3n

Figure 3.2 Comparing run time functions

What if John's analysis had concluded f4(n) = 2n? + 3n? From Figure 3.2, we
see that regardless of whether Iq{n} = 43n or 83n, program B remains faster than
program A when n is suitably large (n > 20 when tp(n) = 43n and n > 40 when
tp(n) = 83n).

To arrive at the conclusion that program B is faster than program A when n is
large, all we need to know is that the biggest term in the step count for program A
is an n? term while that for program B is an n term; the values of the coefficients
e through e, are irrelevant to this conclusion. Asymptotic analysis focuses on
determining the biggest terms (but not their coefficients) in the complexity function.
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3.2 ASYMPTOTIC NOTATION

3.2.1 Big Oh Notation (0)
Definition 3.1 Let p(n) and g(n) be two nonnegative functions. p(n) is asymp-
totically bigger (p(n) asymptotically dominates g(n)) than the function g(n) iff

. gln) '
Jim S =0 (3.1)

q(n) is asymptotically smaller than p(n) iff p(n) is asymptotically bigger than
gin). p(n) and g(n) are asymptotically equal iff neither is asymptotically bigger
than the other. [ |

Example 3.1 Since

. 10n +7 10/n + 7/n®
e iont6 dromaemE
dn? + 2n + 6 is asymptotically bigger than 10n + 7 and 10n + 7 is asymptotically
smaller than 3n?4-2n+6. A similar derivation shows that 8n*4+9n? is asymptotically
bigger than 100n® —3, and that 2n? 4 3n is asvmptotically bigger than 83n. 12n 46
is asymptotically equal to 6n + 2. n

In the following discussion the function f{n) denotes the time or space complex-
ity of a program as a function of the instance characteristic n. Since the time or
space requirements of a program are nonnegative quantities, we assume that the
function f has a nonnegative value for all values of n. Further, since n denotes an
instance characteristic, we assume that n > 0. The function f{n) will, in general, be
a sum of terms. For example, the terms of f(n) = 9n? +3n+12 are 9n?, 3n, and 12,
We may compare pairs of terms to determine which is bigger (see Definition 3.1).
The biggest term in the example f(n) is 9n°.

Figure 3.3 gives the terms that occur frequently in a step-count analysis. Al-
though all the terms in Figure 3.3 have a coefficient of 1, in an actual analysis, the
coefficients of these termé may have a different value.

We do not associate a logarithmic base with the functions in Figure 3.3 that
include log n because for any constants a and b greater than 1, log, n = log, n/ log, a.
So log, n and log, n are asymptotically equal.

Using Definition 3.1, we obtain the following ordering for the terms of Figure 3.3
(< is to be read as “is asymptotically smaller than"):

l1<logn<n<nlogn<n®<n® <2 <nl
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Term | Name

1 constant
logn logarithmic
n linear
nlogn | nlogn

n? quadratic
n? cubic

2n exponential
n! factorial

Figure 3.3 Commonly occurring terms

Asymptotic notation describes the behavior of the time or space complexity
for large instance characteristics. Although we will develop asymptotic’ notation
with reference to step counts alone, our development also applies to space complex-
ity and operation counts. The terms time complerity and step count are used as
synonyms. When the instance characteristic is described by a single variable, say
n, asymptotic notation describes the complexity using a single term, the asymptot-
ically biggest term in the step count.

The notation f(n) = O(g(n)) (read as “f(n) is big oh of g{n)”) means that f(n)
is asymptotically smaller than or equal to g(n). Therefore, in an asymptotic sense
g{n) is an upper bound for f(n). You may use this as a working definition of “big
oh™; a formal definition is provided in Section 3.3.1.

Example 3.2 From Example 3.1 and the working definition of big oh, it follows
that 10n + 7 = O(3n? + 2n + 6); 100n® — 3 = O(8n* 4+ 9n?); 12n + 6 = O(6n + 2);
3n? + 2n 4+ 6 £ O(10n + 7); and 8n? 4+ 0n? &£ O(100n3 - 3). -

Although Example 3.2 uses the big oh notation in a correct way, it is customary
to use g(n) functions that are unit terms (i.e., g(n) is a single term whose coefficient
iz 1) except when f{n) = 0. In addition, it is customary to use, for g(n), the smallest
unit term for which the statement f(n) = Q{g(n)) is true. When f(n) = 0, it is
customary to use g(n) = 0.

Example 3.3 The customary way to describe the asymptotic behavior of the func-
tions used in Example 3.2 is 10n + 7 = O(n); 100n® — 3 = O(n?®); 12n + 6 = O(n);
3n? + 2n + 6 # O(n); and 8n + 9n? # O(n?). .

In asymptotic complexity analysis, we determine the biggest term in the com-
plexity; the coefficient of this biggest term is set to 1. The unit terms of a step-count
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funetion are step-count terms with their coefficients changed to 1. For example, the
unit terms of 3n® +6nlogn + Tn+ 5 are n?, nlogn, n, and 1; the biggest unit term
is n®. So when the step count of a program is 3n? + 6nlogn + Tn + 5, we say that
its asymptotic complexity is O(n?).

Example 3.4 In Example 2.19, we determined that fy.(n) = 2n + 3. Since the
biggest unit term in fy.(n) is n, teein) = O(n). :

Since trgea(n) = 2n + 2 (see Example 2.20), tg.a(n) = O(n).

The step count for Program 2.19 is rows® + rows + 1 (see Figure 2.8). The
biggest unit term is rows?. Therefore, tyramspose(rows) = O(rows®). m

Notice that f(n) = O(g(n)) is not the same as Q{g(n)) = f(n). In fact, saying
that O(g(n)) = f(n) is meaningless. The use of the symbol = is unfortunate, as this
symbol commonly denotes the equals relation. We can avoid some of the confusion
that results from the use of this symbol (which is standard terminology) by reading
the symbol = as “is" and not as “equals.”

Definition 3.2 Let t(m,n) and u(m,n) be two terms. t(m,n) is asymptotically
bigger than u(m,n) (equivalently, u(m,n) is asymptotically smaller than t(m,n))
iff either

u(m,n) u(m,n)

nli-rlnzl:v t(m,n) =0 and mlﬂrnm t(m,n) 7 o0
or
. u{m,n) . ulm.n)
nlingn t(m,n) ¥ oo and m@m tim.,n) .

We may obtain a working definition of big oh for the case of functions in more
than one variable as follows.

e Let f(m,n) be the step count of a program. From f{m,n) remove all terms
that are asymptotically smaller than at least one other term in f(m,n).

¢ Change the coefficients of all remaining terms to 1.

Example 3.5 Consider f(m,n) = 3m*n+m® + 10mn+2n®. 10mn is smaller than
3m?n because

I 10mn
im
n—me Jmn

10 £ 4 lim lhmn . 10
= — #£ o0 an _—
Im m—a 3min  m—oc 3m

None of the remaining terms is smaller than another. Dropping the 10mn term
and changing the coefficients of the remaining terms to 1, we get f(m,n) = O(m®*n+
m? + n?). n
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3.2.2 Omega (1) and Theta (8) Notations

Although the big oh notation is the most frequently used asymptotic notation, the
omega and theta notations are sometimes used to describe the asymptotic complex-
ity of a program. We provide a working definition of these notations in this section.
See Sections 3.3.2 and 3.3.3 for a more formal definition.

The notation f(n) = ¥g(n)) (read as “f(n) is omega of g(n)" ) means that f(n)
is asymptotically bigger than or equal to g{n). Therefore, in an asymptotic sense,
g(n) is a lower bound for f{n). The notation f{n) = B(gin)) (read as “f(n) is
theta of g(n)") means that f(n) is asvmptotically equal to gin).

Example 3.6 10n+7 = ()(n) because 10n+7 is asymptotically equal to n; 100n" -
3=0(n?); 12n+6 = Qn); In®+2n+6 = Qn); 8n +9n? = Q(n?); In® +2n +6 #
(n®); and 8n* + 9n? # Q(n?).

1 +7 = 8(n) because 10n+7 is ﬂsjrmptutlcﬂ.]l]r equal to n; 1I:IDn3 3= E'[na},
12n+6 = &(n); 3n® + 2n + 6 # O(n); 8nt + 9n? # B(n?); 3In? + 2n + 6 £ B(nd);
and 8n? + 9n? # B(n®).

Since tew(n) = 2n + 3 (see Example 2.19) and 2n + 3 is asymptotically equal to
n, tee(n) = B(n).

Since trge(n) = 2n + 2 (see Example 2.20) and 2n + 2 asymptotically equals n,
trgaa(nt) = B(n).

The step count for Program 2.19 is rows? + rows+-1 (see Figure 2.8), and rows®+
rows + 1 asymptotically equals rows?. Therefore, fyransposs(rows) = B(rows?).

The best-case step count for sequentialSearch (Program 2.1) is 4 (Figure 2.10),
the worst-case step count is n 4 3, and the average step count is 0.6n + 3.4. So the-
best-case asymptotic complexity of sequentialSearch is ©(1), and the worst-case
and average complexities are &(n). It is also correct to say that the complexity of
sequentialSearch is {1(1) and O(n) because 1 is a lower bound (in an asymptotic
sense) and n is an upper bound (in an asymptotic sense) on the step count.

From Figures 2.13 and 2.14, it follows that 4 < t.ee(n) < 2n + 4. Therefore,
tinsert(n) is Doth €2(1) and O(n). n

At times it is useful to interpret Q(g(n}), f}(g(n)), and S(g(n)) as being the
following sets:

Og(n)) = {f(n)|f(n) = Og(n))}
Hg(n)) = {f(n)|fin) = Qg(n))}
B(g(n)) = {f(n)|f(n) = B(g(n))}

Under this interpretation, statements such as O(g,(n)) = O(ga(n)) and 6(g,(n))
= B{ga(n)) are meaningful. When using this interpretation, it is also convenient to
read f(n) = g(n)) as “fof n is in {(or is a member of) big oh of g of n" and so
ol
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The working definitions of big oh, omega, and theta are all you need to un-
derstand the analyses done in this book. The next section contains a more formal
treatment of asymptotic notation that will help you with more complex analyses.

EXERCISES

1. Use Equation 3.1 to show that p(n) is asymptotically bigger than g(n) for the
following functions:
(a) p(n) = 3nt + 2n2, g(n) = 100n? + 6
(b) p(n) =6n'% + 12, g(n) = 100n
(¢) p(n) = Tn?logn, q(n) = 10n?
(d) p(n) = 17n22", g(n) = 100n2" + 33n
2. Express the following step counts using big oh notation. Your g(n) function
should be the smallest possible unit term.
(a) 2n® — 6n + 30
(b) 44n' + 33n — 200
(¢) 16n? logn + 5n®
(d) 31n* + 17Tn?logn
(e) 23n2™ — 3nd

L .

3. Use the working definition of big oh and Equation 3.1 to show the following:
(a) 2n+T#0O(1) '
(b) 12n% + 8n + 7 # O(n)
(¢) 5n® 4+ 6n? #£ O(n?)
(d) 150 logn + 16n* £ O(n?)
4. Express the step counts of Exercise 2 using omega notation.

5. Use the working definition of omega and Equation 3.1 to show the following:
(a) 2n+ 7 # Q(n?)
(b) 12n? + 8n + 7 # Q(n?)
(¢) 5n? + 6n? # 0(n®logn)
(d) 157 logn + 16n? # (n?)
6. Express the step counts of Exercise 2 using theta notation.

7. Let t(n) be the step count of a program. Express the following step-count
information using asymptotic notation. Use the most appropriate g(n) func-
tions.
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(a) 6 < t(n) <20

(b) 6 <t(n) <2n

(el dnf+1<tn)<4n®*+3n+9

(d) 3n? + 1 < t(n) < 4nlogn + 3n® +9
(e) t{n) = 5n* + 7

(f) t{n) > 32nlogn+TTn - 6

(g) t(n) = 17Tn? + 3n

3. Express the following step counts using big oh notation. m and n are instance

characteristics.

(a) Tm?n® + 2m*n + mn + 5mn?

(b) 2m?logn + 3mn + 5mlogn + m®n?
(c) m*+n? + m*n?

(d) 3mn® + Tm?n + dmn 4+ 8m 4+ 2n + 16

3.3 ASYMPTOTIC MATHEMATICS (OPTIONAL)

3.3.1 Big Oh Notation (0)

The big oh notation describes an upper bound on the asymptotic growth rate of
the function f.

Definition 3.3 [Big oh] f(n) = O(g(n)) iff positive constants ¢ and ng exist such
that fin) < cg(n) for all n, n = ny. u

The definition states that the function f is at most ¢ times the function g except
possibly when n is smaller than ng. Here ¢ is some positive constant. Thus g is
an upper bound (up to a constant factor ¢) on the value of f for all suitably large
n (i.e., n = ng). Figure 3.4 illustrates what it means for a function g(n) to upper
bound {up to a constant factor ¢) another function f(n). Although f(n) may be less
than, equal to, or greater than cg(n) for several values of n, there must exist a value
m of n beyond which f{n) is never greater than cg(n). The ng in the definition of
big oh could be any integer > m.

When providing an upper-bound function g for f, we will normally use only sim-
ple functional forms. These typically contain a single term in n with a multiplicative
constant of 1.

Example 3.7 [Linear Function] Consider f(n) = 3n + 2. When n is at least 2,
In+2<3n+4+n<dn So f(n) = O(n). Thus f(n) is bounded from above by a
linear function. We can arrive at the same conclusion in other ways. For example,
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m n—

Figure 3.4 g(n) is an upper bound (up to a constant factor ¢) on f(n)

dn +2 < 10n for n > 0. Therefore, we can also satisfy the definition of big oh by
selecting ¢ = 10 and ng equal to any integer greater than 0. Alternatively, 3n + 2
< 3+ 2n = 5n for n > 1, so we can satisfy the definition of big oh by setting ¢
= 5 and np = 1. The values of ¢ and ng used to satisfy the definition of big oh are
not important because we will be saying only that f(n) is big oh of g(n) and in this
statement neither ¢ nor ng play a role.

For fin) = 3n + 3, we note that forn > 3, In + 3 < 3n+n < 4n. So f(n) =
O(n). Similarly, f(n) = 100n + 6 < 100n + n = 101n for n > ng = 6. Therefore,
100n+6 = O(n). As expected, 3n+ 2, 3n+ 3, and 100n + 6 are all big oh of n; that
is, they are bounded from above by a linear function (for suitably large n). ]

Example 3.8 [Quadratic Function] Suppose that f(n) = 10n? + 4n + 2. We see
that for n = 2, f(n) < 10n? + 5n. Now we note that for n > 5, 5n < n?. Hence for
n>ng =5, f(n) < 10n? + n? = 11n?. Therefore, f(n) = O(n?).

As another example of a quadratic complexity, consider f(n) = 1000n? + 100n—
6. We easily see that f(n) < 1000n? + 100n for all n. Furthermore, 100n < n? for
n = 100. Hence f(n) < 1001n? for n = ng = 100. So f(n) = O(n?). &

Example 3.9 [Exponential Function] As an example of exponential complexity, con-
sider fin) = 6+ 2" + n?. Observe that for n > 4, n® < 2", So f(n) <6+2" + 2"
= 7% 2" for n > 4. Therefore, 6 + 2" + n* = O(2"). b
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Example 3.10 [Constant Function] When f(n) is a constant, as in f(n) = 9 or
f(n) = 2033, we write f(n) = O(1). The correctness of this is easily established.
For example, f(rn) = 9 < 9% 1; setting ¢ = 9 and ny = 0 satisfies the definition of
big oh. Similarly, f(n) = 2033 < 2033 # 1, and the definition of big oh is satisfied
by setting ¢ = 2033 and ny = 0. ]

Example 3.11 [Loose Bounds] 3n + 3 = O(n?) as 3n + 3 < 3n? for n > 2. Al-
though n? is an upper bound for 3n + 3, it is not a tight upper bound; we can find
a smaller function {in this case linear) that also satisfies the big oh relation.

10n* + 4n + 2 = O(n) as 10n* + 4n + 2 < 10n* for n > 2. Once again, n’
does not provide a tight upper bound for 100n* + 4n + 2.

Similarly, 6n2™ +20 = O(n*2"), but it is not a tight upper bound because we can
find a smaller function, namely, n2", for which the definition of big oh is satisfied.
That is, 6r2™ + 20 = O(n2"). u

Note that the strategy in each of the preceding derivations is to replace the low-
order terms by higher-order terms until only a single term remains.

Example 3.12 [Incorrect Bounds] 3n + 2 # O(1), as there is no ¢ > 0 and ng such
that 3n + 2 < ¢ for all n, n > nyg. We can use contradiction to prove this condition
formally. Suppose that such a ¢ and ng exist. Then n < (e = 2)/3 for all n, n > ng.
This is not true for n > max{ng, (c — 2)/3}.

To prove 10n% 44n+4-2 £ O(n), suppose the equality holds. That is, 10n? +4n+2
= O(n). There exists a positive ¢ and an ny such that 10n* + 4n + 2 < en for all
n 2 ng. Dividing both sides of the relation by n, we get 10n + 4 + 2/n < ¢ for n
= ng. This relation cannot be true because the left side increases as n increases,
whereas the right side does not change. In particular, we get a contradiction for n
> max{ng, (¢ — 4)/10}.

f(n) = 3n*2" +4n2" +8n? # O(2"). To prove this inequality, suppose that f(n)
= ((2"). Then a ¢ > 0 and an n; exist such that f(n) < c+2" for n > ny. Dividing
both sides by 27, we get 3n® + 4n + Bn?/2" < ¢ for n = ng. Once again, the left
side of the relation is an increasing function of n while the right side is constant.
50 the relation cannot hold for “large” n. n

As illustrated in Example 3.11, the statement f(n) = O{g(n)) states only that
cgin) is an upper bound on the value of f(n) for all n, n > ng. It doesn’t say
anything about how good or tight this bound is. Notice that n = O(n?), n =
O(n*%), n = O(n*), and n = O(2"). For the statement f(n) = O(g(n)) to be
informative, g(n) should be as small a function of n as possible for which f(n) =
O(g{n})). So although we often say 3n + 3 = (n). we almost never say 3n + 3 =
O(n?), even though the latter statement is correct.

Theorem 3.1 obtains a very useful result concerning the order of f(n) (i.e., the
gin) in f(n) = O{g(n))) when f(n) is a polynomial in n.
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Theorem 3.1 If fin) = amn™ + -+ ayn + ag and ay, > 0, then fin) = Om™ ).

Proof f(n) < S ladn’ < n™ 55 lagJn'=™ < n™ 5" [a;] for n > 1. So f(n) =
O(n™). ™

Example 3.13 Let us apply Theorem 3.1 to the functions of Examples 3.7, 3.8,
and 3.10. For the three linear functions of Example 3.7, m = 1, and so these
functions are (}(n). For the functions of Example 3.8, m = 2, and so all are O(n?).
For the constants of Example 3.10, m = (), s0 both constants are O(1). [ ]

We can extend the strategy used in Example 3.12 to show that an upper bound
is incorrect to the case when an upper bound is correct, as shown in the following
theorem. It is usually easier to show f(n) = Ofg(n)) by using this theorem than by
using the definition of big oh.

Theorem 3.2 [Bigoh ratio theorem)] Let f(n) and g(n) be such that lim,, ... f(n)/g(n)
erists. f(n) = Ofg(n)) iff im, .. f(n)/g(n) < c for some finile constant .

Proof ¥ f(n) = O(g(n)), then positive ¢ and an ng exist such that f(n)/g(n) < ¢
for all n > ng. Hence lim,_ . f(n)/g(n) < e Suppose that lim,_... f(n)/g(n) <
c. It follows that an ny exists for which f(n) < max{1l,c}*g(n) foralln Zn;. =

Example 3.14 3142 = O(n) as lim,—(3n+2)/n = 3. 10n® + 4n + 2 = 0(n?) as
lifm,, o0 (1002 +dn+2)/n2 = 10. 62" + n? = O(2") as lim,_..c (6+2" +n?)/2" = 6.
21?2 -3 = O(n?) as lim,, .o (2n% = 3) /m* = 0. 3n® +5 # O(n) as limy (302 +5)/n_
= 00, ]

3.3.2 Omega Notation (1)

The omega notation, which is the lower-bound analog of the big oh notation, permits
us to bound the asymptotic growth rate of f from below.

Definition 3.4 [Omega] f(n) = Q(g(n)) iff positive constants ¢ and ng exist such
that fin) = cgin) for alln, n = ny. L

When we write f(n) = Q(g(n)), we are saying that f is at least ¢ times the
function g except possibly when n is smaller than ny. Here ¢ is some positive
constant. Thus g is a lower bound (up to a constant factor ¢) on the value of f for
all suitably large n (i.e., n > ng). Figure 3.5 illustrates what it means for a function
g(n) to lower bound (up to a constant factor ¢) another function f(n). Although
f(n) may be less than, equal to, or greater than cg(n) for several values of n, there
must exist a value m of n bevond which f(n) is never less than cg{n). The ny in
the definition of omega could be any integer = m.

As in the case of the big oh notation, we normally use only simple functional
forms for g.
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m n—

Figure 3.5 g(n) is a lower bound {up to a constant factor ¢) on fin)

Example 3.15 f(n) = In+ 2 > 3n for all n. So f(n) = {I(n). Also, fin) =
dn+3 > 3n, and so f(n) = §1(n). Since f(n) = 100n + 6 > 100n, 100n +6 = O(n).
Sodn+ 2, In+3, and 100n + 6 are all bounded from below by a linear function.

fin) =10n? +4n+2 > 10n? for n = 0. So f(n} = n?). Similarly, 1000n* +
100n — 6 = }(n?). Furthermore, since 6+ 2" +n* > 6+2", 6+ 2" +n? = OQ(2").

Observe also that 3n + 3 = (1); 10n? + 4n + 2 = Q(n); 10n® + 4n + 2 =
N1); 62" 4+ n? = Dn'): 642" 4 n? = Wn30?); 62" + n? = Qn?); 62"
+ n? = Q(n); and 6+ 2" + n? = Q(1).

To see that 3n + 2 # 12(n?), suppose that 3n + 2 = (}{n?). Then positive ¢ and
ng exist such that 3n+2 > en® forall n > ny. Soen?/(3n +2) < 1 for all n > ny.
This relation cannot be true because its left side increases to infinity as n becomes
large. | |

As in the case of the big oh notation, there are several functions g(n) for which
fin) = f{g(n)). g(n) is only a lower bound (up to a constant factor) on f(n). For
the statement f(n) = {}{g(n)) to be informative, g(n) should be as large a function
of n as possible for which the statement f{n) = f){g(n}) is true. So although we
say that 3n + 3 = (}(n) and that 6 » 2" + n® = (2"}, we almost never say that
3n + 3 = Q1) or that 6 « 2" + n? = }(1), even though both these statements are
correct.

Theorem 3.3 is the analog of Theorem 3.1 for the omega notation.

Theorem 3.3 If fin) =ap,n™ + - +an+ay and o, =0, then f(n} ={n™).
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Proof See Exercise 12. [

Example 3.16 From Theorem 3.3, it follows that 3n + 2 = Q(n), 10n? + 4n + 2
= {}(n?), and 100n* + 3500n% + 82n + & = Q(n?). u

Theorem 3.4 is the analog of Theorem 3.2, and it is usually easier to show f(n)
= {} g{n)) by using Theorem 3.4 than by using the definition of omega.

Theorem 3.4 [Omega ratio theorem)] Let f(n) and g(n) be such that lim, .. g(n)/f(n)
exists. f(n) = Q(g(n)) iff lim,_.c g(n)/f(n) < ¢ for some finite constant c.

Proof See Exercise 13. n

Example 3.17 3n + 2 = {}n) as lim, .o n/(3n + 2) = 1/3. 1m? + dn + 2 =
N(n?) as limp—se n?/ (1002 +4n+2) = 0.1. 62" 4+ n? = Q2") as limy o 2" /(6 +
2" +n?) = 1/6. 6n® + 2 = Q(n) as limy—oe n/(6n% +2) = 0. 3n? + 5 # Qn?) as
limy —oe n?/(3n? + 5) = 0. ]

3.3.3 Theta Notation (©)

The theta notation is used when the function f can be bounded both from ahmfe
and below by the same function g.

Definition 3.5 [Theta] f(n) = &(g(n)) if positive constants ¢, and ¢z and an no
exist such that c;g(n) < f(n) < exg(n) for alln, n = ny. L B

When we write f(n) = ©(g(n)), we are saying that f lies between ¢; times the
function g and ¢; times the function g except possibly when n is smaller than ng.
Here ¢; and ¢y are positive constants. Thus g is both a lower and upper bound
(up to a constant factor ¢) on the value of f for all suitably large n (i.e., n 2 ng).
Another way to view the theta notation is that it savs f(n) is both £}{g(n)) and
Olg(n)).

Figure 3.6 illustrates what it means for a function g{n) to both upper and lower
bound (up to a constant factor) another function f(n). There must exist a value m
of n beyond which f(n) lies between ¢;g(n) and cag{n). The ny in the definition of
theta could be any integer > m.

As in the case of the big oh and omega notations, we normally use only simple
functional forms for g.

Example 3.18 From Examples 3.7, 3.8, 3.9, and 3.15, it follows that 3n + 2 =
B(n); 3n + 3 =6(n); 100n + 6 = B(n); 10n? + 4n + 2 = B(n?); 1000n? + 100n
— 6 = B8(n?); and 6+ 2" 4+ n? = B(2").

10 =logyn +4 = B(logyn) as logyn < 10logyn + 4 < 1llogyn for n = 16. As
remarked earlier, log, n is log, n times a constant, and we write B(log, n) simply
as B(logn).
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Figure 3.6 g(n) is a lower and upper bound (up to a constant factor) on f(n)

In Example 3.12 we showed that 3n + 2 # O(1). So 3n+ 2 # 6(1). Similarly,
we may show that 3n+3 # (1) and 100n+ 6 # ©(1). Since 3n+3 # ((n?), 3n +
3 # 8(n?). Since 10n? + 4n 4+ 2 # O(n), 10n* 4+ 4n + 2 # B(n). Also, since 10n?
+ 4n + 2 # 0O(1), it is not ©(1). .

Since 6+ 2™ + n? is not O(n?), it is not O(n?). Similarly, 6+2™ + n? £ 8(n'™);
and 6 = 2" + n® # O(1). n

As mentioned earlier it is common practice to use only g functions with a mul-
tiplicative factor of 1. We almost never say that 3n + 3 = O(3n) or 10 = O(100)
or 2 +4dn+2=04+n*) or6+2" + n? = Q(6+2") or 6+2" + n? = B(4+2"),
even though each of these statements is true.

Theorem 3.5 If fin) = apn™ +---+ayn+ ap and ap, > 0, then fin) = (n™ ).
Proof See Exercise 12. _ |

Example 3.19 From Theorem 3.5 it follows that 3n 4+ 2 = 8(n), 10n? + dn + 2
= B(n?), and 100n* + 3500n? + 82n + 8 = B(n?). n

Theorem 3.6 is the analog of Theorems 3.2 and 3.4.

Theorem 3.6 [Theti ratio theorem| Let f(n) and g(n) be such that lim,—. f(n)/g(n)
and limy, .o g(n)/ f(n) exist. f(n) =B(g(n)) iff lim,,—... f(n)/g(n) < c and lim,_.

g(n)/fin) < ¢ for some finite constant c.
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Proof See Exercise 13. ]

Example 3.20 3n + 2 = 8(n) as lim,—(3n + 2)/n = 3 and limy—..c n/(3n + 2)
= 1/3 < 3 10n® 4+ 4n + 2 = O(n?) as lim,_...(10n* + 4n + 2)/n® = 10; and
liMy e 12 /(1002 +4n42) = 0.1 < 10. 642" + n? = B(2") as lim,, _. .. (642" +n?) /2"
=6 and limp—oc 2°/(6%2" +n2) = 1/6 < 6. 612 +2 £ O(n) a5 limyne(6n? +2)/n
= o0 |

3.3.4 Little Oh Notation (o)

The little oh notation describes a strict upper bound on the asymptotic growth
rate of the function f. Informally, f(n) is little oh of g(n) iff f(n) is asymptotically
smaller than g(n) (recall that f(n) is big oh of g{n) iff fin) is asymptotically smaller
than or equal to g(n)).

Definition 3.6 [Little oh] fin) ;ﬂfg{n}} (read as “f of n 1s little oh of g of ﬂ-.”}
iff fin) = Ofg(n)) and f(n) # Qg(n)). "

Example 3.21 [Little oh] 3n + 2 = o(n®) as 3n + 2 = O(n®) and 3n + 2 % Q(n?).
However, 3n + 2 # o{n). Similarly, 10n? + 4n + 2 = o(n?), but is not o(n?). =

The little oh notation is often used in step-count analyses. A step count of 3n
+ o(n) would mean that the step count is 3n plus terms that are asymptotically
smaller than n. When performing such an analysis, one can ignore portions of the
program that are known to contribute less than 8(n) steps.

3.3.5 Properties

The following theorem is useful in computations involving asymptotic notation.

Theorem 3.7 These statements are true for every real number x, x > 0 and for
every real €, € = 0:

1. An ny exists such that (logn)* < (logn)*™* for everyn, n > ny.
2, An ng exists such that (logn)® < n* for every n, n > ny.
3. An ng erists such that n® < n™* for everyn, n 2 .-

4. For every real y, an ng exists such that n*(logn)¥ < n®** for everyn, n >
g,

5. An ng erists such that n* < 2" for everyn, n = ny.

Proof Follows from the definition of the individual functions. ]
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Example 3.22 From Theorem 3.7 we obtain the following: n? +n®logn = B&na};
2" /n? = ((n*) for every natural number k; n* +n?®log” n = B(n'); 2"n'log’ n+
2"nt/ logn = 8(2"n% log? n). u

Figure 3.7 lists some of the more useful identities involving the big oh, omega,
and theta notations. In this table all symbols other than n are positive constants.
Figure 3.8 lists some useful inference rules for sums and products.

Sara B
E2 Yipen' ®(n*)
E3 YI,i ®(n?)
E4 ¥, &(n?)

E5 T k=0 s(nkt)
E6 Yol orhr>1 &(r")
ET n! &(ynln/e)") .

Es 3,1/ @(log n)
& can be any one of O, {1, and &

Figure 3.T Asymptotic identities

Figures 3.7 and 3.8 prepare vou to use asymptotic notation to describe the time
complexity (or step count) of a program.

The definitions of O, {}, 8, and o can be extended to include functions of more
than one variable. For example, f(n,m) = O(g(n,m)) iff positive constants ¢, ng,
and my exist such that f(n,m) < eg(n,m) for all n > ng and all m > my,.

EXERCISES

9. Show that the following equalities are correct, using the definitions of O, (0,
B, and o only. Do not use Theorems 3.1 through 3.6, or Figures 3.7 and 3.8,

(a) 5n? — 6n = B(n?).
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11 {f(n) = &(g(n))} = Tn_, f(n) = &(Th_, 9(n)-

12 {fi(n) = ®(gi(n)),1 < i < k} — L0, filn) = @(max; <i<i{gi(n)}).

13 {fi(n) = @(gi(n)),1 < i <k} = [Ti2, filn) = &([TE., eiln).

14 {fi(n) = O(gi(n)), fan) = B(g2(n))} — fr(n) + fa(n) = Olga(n) + ga(n)).
I5 {filn) =0B(g(n)), fa(n) = Qga(n))} — filn) + fo(n) = Vag1(n) + ga(n)).
16 {fi(n) = O(g(n)), fa(n) = B(g(n))} — filn) + fa(n) = B(g(n)).

Figure 3.8 Inference rules for & € {0,101, 8}

(b) n!=0O(n").
(¢) 2n*2" + nlogn = &(n?2"),
{d.} E:.-ﬂ iE = B[ﬂ"&]r
(e) Xicoi® = B(n?).
(f) n¥" +6+2" = B(n?").
(g} n® + 10802 = &(n?).
(h) 6n?/(logn + 1) = O(n?).
(i) n'P L nlogn = B(n!™1),
(i) n*** + n*logn = G(n*+*) forall k and ¢, k > 0, and € > 0.
10. Do Exercise 9 using Theorems 3.2, 3.4, and 3.6.
11. Show that the following equalities are incorrect:
(a) 10n* +9 = O(n).
(b} n?logn = &(n?).
(¢) n?/logn = B(n?).
(d) n?2" 4 6n?3" = O(n2").
12, Prove Theorems 3.3 and 3.5.
13. Prove Theorems 3.4 and 3.6.
14. Prove that fin) = o(g(n)) iff lim, .~ f(n)/g(n) = 0.
15. Prove that equivalences E5 to E8 (Figure 3.7) are correct.
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16. Prove the correctness of inference rules 11 to I6 (Figure 3.8).

17. Which of the following inferences are true? Why?

B(F(n)),g(n) = (G(n))} — f(n)/g(n) = QF(n)/G(n)).
B(F(n)),g(n) = &(G(n))} — f(n)/g(n) = O(F(n)/G(n)).

h) {f(n
{ ) {f(n

(a) {f(n) = O(F(n}),g(n) = O(G(n))} — fin)/g(n) = O(F(n)/G(n)).
(b} {fin) = O(F(n)),g(n) = O(G(n))}} = f(n)/g(n) = UF(n)/G(n)).
(c) {f(n) = O(F(n)),g(n) = O(G(n))} — f(n)/g(n) = B(F(n)/G(n)).
(d) {f(n) = Q(F(n)),g(n) = G(n))} = f(n)/g(n) = QF(n)/G(n)).
(e) {f(n) = Q(F(n)).g(n) = QAGC(n))} — f(n)/g(n) = O(F(n)/G(n)).
(£) {f(n) = Q(F(n)),g(n) =2G(n))} — f(n)/g(n) = B(F(n)/G(n)).
{E ) {f(n) =©(F(n)),g(n) = O(G(n))} — f(n)/g(n) = B(F(n)/G(n)).

) =

) =

3.4 COMPLEXITY ANALYSIS EXAMPLES

In Section 3.2 we saw several examples in which we started with the step count of a
program and then arrived at its asymptotic complexity. Actually, we can determine
the asymptotic complexity quite easily without determining the exact step count.
The procedure is to first determine the asymptotic complexity of each statement (or
group of statements) in the program and then add up these complexities. Figures 3.9
to 3.12 determine the asvmptotic complexity of several methods without performing
an exact step-count analysis. These figures use the following fact that when fiin) =

B(gi(n)) and fa(n) = B(ga(n)), then fi(n)+ fa(n) = B(max{gi(n), g2(n)}).

Statement e Frequency Total Steps
T sun(T a[], int n} 0 e(0)
{ o g'[ﬂ}'

T theSum = 0; 1 (1)

= = =] K]

for (int i = 0; i € n; i++) n+4+1 ain)
theBum += a[i]; i )
raturn theSum: 1 a(1)

} 0 {0}

tsun(n) = B(max{gi(n)}) = B(n)

Figure 3.9 Asymptotic complexity of sum {Program 1.30)

While the analyses of Figures 3.9 through 3.12 are actually carried out in terms
of step counts, it is correct to interpret tp(n) = 8(g(n)), tpin) = Og(n)), or tp(n)
= Y g(n)) as a statement about the computing time of program P because each
step takes only 8(1) time to execute.
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Statement 5/e  Frequency Total Steps
void transpose(T #*a, int rows) 0 0 20}
{ 0 0 8(0)
for (int 4 = 0; i < rows; i++) I rons + 1 B rows)
for (int j = i+1; j < rows; j+=+) | 1 rows(rows + 1)/2  S(rows?)
swap{a[i]l (i1, al(jl(il); 1 rows(rows — 1)/ E(rows?)
} 0 0 = L))

Leransposs|TOWS) = H{rme.'sj}

Figure 3.10 Asymptotic complexity of transpose (Program 2.19)

Statement g8/ Frequency  Total Steps
void inef(T all, T BL], int n) | O 0 a0
{ 0 1] a(n)
for {int j = 0; j < m; j++) | 1 n+1l Bin)
b[§] = sum{a, j + 1}; 2946 = B(n?)
} ] 1] (0}

le:!i_n::' = H[.ui}

Figure 3.11 Asymptotic complexity of inef (Program 2.20)

Statement a/e Frequency  Total Steps
int sequentialSearch(T all, int n, const Tk x) | 0 0 B(0)
i 0 1] 8(0)
imt 1; 1 1 21}

for (i = 0; 4 < n kk a[i] 1= x; i+4); I (1), dn) I, OMn)
if (1 == pn) return -1; 1 1 21}

else return i; I M0y, (1) D), O(1)
} | 0 1] &(0)
Lmuuntlll&lu:h{”] = (1) :aﬂqu-ntillﬂllrcn[ﬂ} =0(n)

Figure 3.12 Asymptotic complexity of sequentialSearch (Program 2.1)

After vou have had some experience using the table method, you will be in a
position to arrive at the asymptotic complexity of a program by taking a more
global approach. We elaborate on this method in the following examples.

Examnip.e 3.23 [Permutations] Consider the permutation generation code of Pro-
gram 1.32. Assume that m = n-1. When k = m, the time taken is en, where ¢ is a con-
stant. When k < m, the else clause is entered. At this time the for loop is entered
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m-k+1 times. Each iteration of this loop takes di eraurations (k+1,m) time, where
d is a constant. S0 tpermutaticns (K,m) = d(m-k+1)tpermrations (k+1,m) when k<m.
Using the substitution method, we obtain fpersurations (0,m) = G((m+1)*(m+1)!)
= B(n*n!). |

Example 3.24 [Binary Search| Program 3.1 is a method to search a sorted array
a for the element x. The STL algorithm binary Search is quite similar. The
variables left and right keep track of the two ends of the array segment to be
searched. Initially we are to search between positions 0 and n-1. So left and right
are, respectively, initialized to these values. We maintain the following invariant
throughout:

x is one of a[0:n-1] iff x is one of a[left:right]

template<class T>
int binarySearch(T all], int n, comst Tk x)
{// Search a[0] <= a[1] <= ... <= a[n-1] for x.
/{ Return position if found; return -1 otherwise.
int left = 0; // left end of segment
int right = n - 1; // right end of segment
while (left <= right) {
int middle = (left + right)/2; // middle of segment
if (x == a[middle]) return middle;
if (x > a[middle]) left = middle + 1;
else right = middle - 1;
}

return -1; // x not found

}

Program 3.1 Binary search

The search begins by comparing x with the element in the middle of the segment
to be searched. If x equals this element, the search terminates. If x is smaller than
this element, then we need only search the left half and so right is updated to
middle-1. If x is bigger than the middle element, only the right half needs to be
searched and left is updated to middle+1.

Each iteration of the vhile loop—except the last one—results in a decrease in
the size of the segment of a that has to be searched by a factor of about 2. So this
loop iterates &(log n) times in the worst case. As each iteration takes 8(1) time,
the overall worst-case complexity is B(log n). [



Section 3.5 Practical Complexities 117

Example 3.25 [Insertion Sort] Program 2.15 uses the insertion sort method to sort
n elements. For each value of i, the innermost for loop has a worst-case complexity
A(i). As a result, the worst-case time complexity of Program 2.15is ©(1 + 2 + 3
+ oo+ n—1) = B(n?*). The best-case time complexity of Program 2.15 is €(n).
[ |

EXERCISE

18. Determine the asymptotic time complexity of the following methods. Set up

a frequency table similar to Figures 3.9 through 3.12.
(a) factorial (Program 1.29).

(b) minmax (Program 2.24).

(c¢) minmax (Program 2.25).

(d) matrixAdd (Program 2.21).

(e) squareMatrixMultiply (Program 2.22).

(f) matrixMultiply (Program 2.23).

(g) indexCfMax (Program 1.37).

(h) polyEval (Program 2.3).

(i) horner (Program 2.4).

(j) rank (Program 2.5).

(k) permutations (Program 1.32).

(1) selectionSort (Program 2.7).

(m) selectionSort (Program 2.12).

(n) insertionSort (Program 2.14).

(o) insertionSort (Program 2.15).

(p) bubbleSort (Program 2.9).

(q) bubbleSort (Program 2.13).

3.5 PRACTICAL COMPLEXITIES

We have seen that the time complexity of a program is generally some function of
the instance characteristics. This function is very useful in determining how the
time requirements vary as the instance characteristics change. We can also use the
complexity function to compare two programs P and @ that perform the same task.
Assume that program P has complexity &(n) and that program @ has complexity
'El'{nz]l, We can assert that program P s fasier than program @ is for “sufficiently
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large™ n. To see the validity of this assertion, observe that the actual computing
time of P is bounded from above by en for some constant ¢ and for all n, n > ny,
while that of @ is bounded from below by dn? for some constant d and all n, n >
ng. Since en < dn? for n > ¢/d, program P is faster than program @ whenever
n > max{n,, na,c/d}.

One should always be cautiously aware of the presence of the phrase sufficiently
large in the assertion of the preceding discussion. When deciding which of the
two programs to use, we must know whether the n we are dealing with is, in fact,
sufficiently large. If program P actually runs in 10°n milliseconds while program Q
runs in n? milliseconds and if we always have n < 10°%, then program @ is the one
Loy s,

To get a feel for how the various functions grow with n, you should study Fig-
ures 3.13 and 3.14 very closely. These figures show that 2" grows very rapidly with
n. In fact, if a program needs 2" steps for execution, then when n = 40, the number
of steps needed is approximately 1.1#10'%. On a computer performing 1,000,000,000
steps per second, this program would require about 18.3 minutes. If n = 50, the
same program would run for about 13 days on this computer. When n = 60, about
310.56 vears will be required to execute the program, and when n = 100, about
4+ 10" years will be needed. We can conclude that the utility of programs with
exponential complexity is limited to small n (typically n < 40). ]

logn || n || nlogn n* n” "
U O 1 1 2

1 2 2 4 8 4

20 4 H 16 64 16

3 8 24 G4 al2 256

41 16 64 256 4096 65,536

9 F 32 160 1024 32,768 4,294 59672096

Figure 3.13 Value of various functions

Programs that have a complexity that is a high-degree polynomial are also of
limited utility. For example, if a program needs n'" steps, then our 1,000,000,000
steps per second computer needs 10 seconds when n = 10; 3171 vears when n =
100; and 3.17 # 10" years when n = 1000. If the program’s complexity had been
n’ steps instead, then the computer would need 1 second when n = 1000, 110.67
minutes when n = 10,000, and 11.57 days when n = 100,000.

Figure 3.15 gives the time that a 1,000,000,000 instructions per second computer
needs to execute a program of complexity f(n) instructions. One should note that
currently only the fastest computers can execute about 1,000,000,000 instructions
per second. From a practical standpoint, it is evident that for reasonably large n
(say n > 100) only programs of small complexity (such as n, nlogn, n?, and n?)
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nlogn

logn
= = 23
) 9 10

Figure 3.14 Plot of various functions

are feasible. Further, thiz is the case even if we could build a computer capable
of executing 1012 instructions per second. In this case the computing times of
Figure 3.15 would decrease by a factor of 1000, Now when n = 100, it would take
3.17 vears to execute n'” instructions and 4 « 10" years to execute 2" instructions.

EXERCISES

19. Let A and B be two programs that perform the same task. Let {4in) and
tin), respectively, denote their run times. For each of the following pairs,
find the range of n values for which program A is faster than program H.
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fin)

n logs n n* n” n® i an
03 s 1 s 1 us 10 pis 10s 1 us
09 s 4 s B us 160 ps 284 h 1 ms
A5 s 9 s 27 us B10 s 6.83d ls
21 e 1.6 us 64 us 2.56 ms 121 d 18 m
o8 s 2.5 us 125 us 6.25 ms 3.1y 13d
£l s 10 ps Ilms |~ 100 ms 317l y 410V y
0.96 us 1 ms ls 1667Tm | 3.1T«10M y | 321078

130 e | 100 ms | 16.6T m 1157d | 3.17+10 y

1.66 ms 10s | 1157d M7y | 31T«10My

1992 ms | 1667Tm | 3171y | 317107 y | 317« 109 y

ps = microsecond = 107% seconds; ms = milliseconds = 10~% seconds
s = seconds; m = minutes; h = hours; d = days; y = years

Figure 3.15 Run times on a 1,000,000,000 instruction per second computer

(a) ta(n) = 1000n, tz(n) = 10n?
(b) tal(n) = 2n?, tg(n) =n’.

(c) ta(n) = 2", tg(n) = 100n.

(d) ta(n) = 1000nlog, n, tg(n) = n?.

20. Hedo Figure 3.15 assuming a computer capable of doing 1 trillion instructions
per second.

21. Suppose that using a certain program and computer, it is possible to solve
problems of size up to n = N in a “reasonable amount of time.” Create a
table that shows the largest value of n for which solutions can be found in
reasonable time using the same program and a computer that is r times as
fast. Do this exercise for = = 10, 100, 1000, and 1,000,000 and t4(n) = n, n?,

n* n? and 2".

3.6 REFERENCES AND SELECTED READINGS

The following books provide asymptotic analyses for several programs: Fundamen-
tals of Computer Algorithms by E. Horowitz, 5. Sahni, and S. Rajasekaran, W. H.
Freeman and Co., New York, NY, 1998; Introduction to Algorithms, Second Edition,
by T. Cormen, C. Leiserson, and R. Rivest, McGraw-Hill, New York, NY, 2002; and
Compared to What: An Introduction to the Analysis of Algorithms by G. Rawlins,
W. H. Freeman and Co., New York, NY, 1992,



CHAPTER 4

PERFORMANCE
MEASUREMENT

BIRD'S-EYE VIEW

You can analyze and dissect all you like, but the proof of the pudding lies in the
tasting. When you try to market an application code, vour customer will want to
know how many megabytes and seconds it’s going to take to solve his/her problem
on his/her computer. We can get a good handle on the memory requirements from
the size of the compiled code and the size of the data space needed. The size of the
data space is usually easy to figure out once vou know what size instances the user
is interested in solving. Determining the number of seconds the program will run
requires you to actually perform experiments and measure run times. This chapter
goes through the steps required to perform such an. experiment.

The performance of your program depends not only on the number and type
of operations you perform but also on the memory access pattern for the data and
instructions in your program. Your computer has different kinds of memory—L1
cache, L2 cache, and main memory (for example)}—and the time needed to access
data from each is quite different. So a program with a large operation count and
a small number of accesses to slow memory may take less time than a program
with a small operation count and a large number of accesses to slow memory. This
phenomenon is demonstrated using the matrix multiplication problem.

121
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4.1 INTRODUCTION

Performance measurement is concerned with obtaining the actual space and
time requirements of a program. As noted in earlier sections, these quantities are
very dependent on the particular compiler and options used as well as on the specific
computer on which the program is run. Unless otherwise stated, all performance
values in this book were obtained using a 1.7 GHz Intel Pentium 4 PC with 512MB
RAM and Microsoft Visual Studio NET 2003. Time optimized code was generated
using the statement

#pragma optimize("t", omn)

We ignore the space and time needed for compilation because each program
(after it has been fully debugged) will be compiled once and then executed several
times. However, the space and time needed for compilation are important during
program testing when more time may be spent on this task than in actually nmning
the compiled code.

We do not explicitly consider measuring the run-time space requirements of a
program for the following reasons:

# The size of the instruction and statically allocated data space is the size of the
compiled code created by the compiler. This size may be determined using
operating system commands to obtain the size of the file that contains the
executable code. -

» We can get a fairly accurate estimate of the recursion stack space and the
space needed by dynamically allocated variables using the analyvtical methods
of the earlier sections.

To obtain the execution (or run) time of a program, we need a clocking mecha-
nism. In this book, we shall use the C++ function clock(), which measures time
in ticks. The constant CLOCKS_PER_SEC, which is defined in the header file time.h,
gives us the number of ticks in one second. This constant is used to convert from
ticks to seconds. For our system, CLOCKS_PER_SEC = 1000. So, 1 tick equals 1
millisecond. Although more accurate time measurements are possible using sys-
tem functions such as QueryPerformanceCounter, the C++ function clock() is
adequate for our purposes. _

Suppose we wish to measure the worst-case time requirements of function
insertionSort (Program 2.15). First we need to

1. Decide on the values of n for which the times are to be abtained.

2. Determine, for each of the above values of n, the data that exhibit the worst-
case behavior,
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4.2 CHOOSING INSTANCE SIZE

We decide on which values of n to use according to two factors: the amount of
timing we want to perform and what we expect to do with the times. Suppose
we want to predict how long it will take, in the worst case, to sort an array a of
n ohjects using insertionSort. From Example 3.25 we know that the worst-case
complexity of insertionSort is ©(n?); that is, it is quadratic in n. In theory, if we
know the times for any three values of n, we can determine the quadratic function
that describes the worst-case run timne of insertionSort and we can obtain the
time for all other values of n from this quadratic function. In practice, we need the
times for more than three values of n for the following two reasons:

1. Asvmptotic analysis tells us the behavior only for sufficiently large values of
n. For smaller values of n, the run time may not follow the asymptotic curve.
To determine the point beyond which the asymptotic curve is followed, we
need to examine the times for several values of n.

2. Even in the region where the asymptotic behavior is exhibited, the times may
not lie exactly on the predicted curve (quadratic in the case of insertionSort)
because of the effects of low-order terms that are discarded in the asymptotic
analysis. For instance, a program with asymptotic complexity ©(n?) can have
an actual complexity that is ¢yn® +con log n +¢3n +c4—or any other function
of n in which the highest order term is cyn? for some constant ¢;, ¢; > 0.

We expect the asymptotic behavior of Program 2.15 to begin for some n that is
smaller than 100. So for n > 100 we will obtain the run time for just a few values,
A reasonable choice is n = 200, 300, 400, -- -, 1000. There is nothing magical about
this choice of values. We can just as well use n = 500, 1000, 1500, - -+, 10,000 or n =
512, 1024, 2048, - --, 2%, The latter choices will cost us more in terms of computer
time and probably will not provide any better information about the run time of
our method.

For n in the range [0, 100], we will carry out a more refined measurement,
as we aren't quite sure where the asvinptotic behavior begins. Of course, if our
measurements show that the quadratic behavior doesn’t begin in this range, we will
have to perform a more detailed measurement in the range [100, 200] and so on until
we detect the onset of this behavior, Times in the range [0, 100] will be obtained
in steps of 10 beginning at n = 0.

4,3 DEVELOPING THE TEST DATA

For many programs we can generate manually or by computer the data that exhibit
the best- and worst-case time complexity. The average complexity, however, is
usually quite difficult to demonstrate. For insertionSert the worst-case data for
any n are a decreasing sequence such as n. n — 1, n — 2, -+, 1. The best-case data
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are a sorted sequence such as 0, 1, 2, .-+, n — 1. It is difficult to envision the data
that would cause insertionSort to exhibit its average behavior.

When we are unable to develop the data that exhibit the complexity we want
to measure, we can pick the least (maximum, average) measured time from some
randomly generated data as an estimate of the best (worst, average) behavior.

4.4 SETTING UP THE EXPERIMENT

Having selected the instance sizes and developed the test data, we are ready to write
a program that will measure the desired run times. For our insertion sort example
this program takes the form given in Program 4.1. The measured times are given
in Figure 4.1.

int main()

{
int a[1000], step = 10;
double clocksPerMillis = double(CLOCKS_PER_SEC) / 1000;
// clock ticks per millisecond
cout << "The worst-case time, in milliseconds, are" << endl;
cout << "n \t Time" << endl;
// times for m = 0, 10, 20, ..., 100, 200, 300, ..., 1000
for (int n = 0; n <= 1000; n += step)
{
// initialize with worst-case data
for (int 1 = 0; 1 < n; i++)
afi] = n - i;
clock_t startTime = clock( );
insertionSort(a, n);
double elapsedMillis = (clock( )} - startTime) / clocksPerMillis;
cout << n << "\t' << glapsedMillis << endl;
if (n == 100) step = 100;
}
raturn 0;
1

Program 4.1 Program to obtain worst-case run times for insertion sort
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Figure 4.1 Times using Program 4.1

Figure 4.1 suggests that no time is needed to sort n elements for any of the
tested values of n other than n = 800. Furthermore, to sort 800 numbers we need
15 milliseconds in the worst case while we can sort 1000 mumbers in no time. This
conclusion, of course, isn't true. The problem is that the time needed for our worst-
case sorts is too small for clock() to measure. Although the C+4 language does
not specify the accuracy of clock(), let us assume that this function is accurate
to within 100 ticks, which equals 100 milliseconds on our system. Therefore, if the
method returns a time of t, the actual time lies between max{0, ¢ — 100} and ¢+ 100.
The reported time (see Figure 4.1) for n = 1000 is 0 milliseconds. So the actual time
could be anywhere between 0 and 100 milliseconds. If we wish our measurements
to be accurate to within 10 percent, clock() - startTime should be at least 1000
ticks, which equals 1 second for our system. The times in Figure 4.1 do not meet
this criterion. '

To improve the accuracy of our measurements, we need to repeat the sort several
times for each value of n. Since the sort changes the arrav a, we need to initialize
this array before each sort. Program 4.2 gives the new timing program. Notice
that now the measured time is the time to sort plus the time to initialize a and the
overhead associated with the while loop. Figure 4.2 gives the measured times, and
Figure 4.3 is a plot of these times.

We can determine the overhead associated with the while loop and the initial-
ization of the array a by running Program 4.2 without the statement

insertionSort(a, n);

Figure 4.4 gives the output from this run for selected values of n. Subtracting the
overhead time from the time per sort (Figure 4.2) gives us the worst-case time for
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int main()

i
int a[1000], step = 10;
double clocksPerMillis = double(CLOCKS_PER_SEC) / 1000;
// clock ticks per millisecond
cout << "The worst-case time, in milliseconds, are" << aendl;
cout << "n \tRepetitions \t Total Ticks \tTime per Sort" << endl;
// times for n = 0, 10, 20, ..., 100, 200, 300, ..., 1000
for (int n = 0; n <= 1000; n += step)
{
// get time for size n
long numberOfRepetitions = 0;
clock_t startTime = clock({ );
do
{
number0fRepetitions++;
// initialize with worst-case data
for {int i = 0; 1 < n; i++)
alil = n - i;
insertionSort(a, n);
} while (clock( ) - startTime < 1000);
// repeat until enough time has elapsed
double elapsedMillis = {(clock( } - startTime) / clocksPerMillis;
cout << n << '\t' << number(fRepetitions << '\t' << elapsedMillis
€< '\t' << elapsedMillis / numberOfRepetitions
<< endl;
if (n == 100) step = 100;
}
return 0;
}

Program 4.2 Program to obtain times with an accuracy of 10 percent

inserticaSort as a function of n. Notice how for larger n the times of Figure 4.2
almost quadruple each time n is doubled. We expect this pattern, because the
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n ﬁepetiti::-ns Total Time | Time per Sort
0 GEO5842 1000 0.00015
10 2461486 1000 0.00041
20 1020396 1000 0.000498
a0 asa217 10K 0.00171
40 a84T20 1000 0.00260
ol 262557 10H00 000381
6l 200216 1000 0.00499
70 150964 1000 0.00662
20 126457 1000 0.00791
00 Q9776 1000 0.01002
100 80252 1000 0.01246
200 20849 10H00) 0.04796
J00 0527 10HHD 0.10497
400 2037 1M 0. 18060
500 3576 1000 0.27964
GO0 2466 1000 0.40552
T00 1870 1M} 0.53476
800 1393 1000 0.71788
900 1156 1000 0.B86505
1000 a18 1M 1.08932

Times are in milliseconds

Figure 4.2 Output from Program 4.2

worst-case complexity is ©{n®).

EXERCISES

1. Why does Program 4.3 not measure run times to an accuracy of 10 percent?

2. Use Program 4.2 to obtain the worst-case run times for the two versions of
insertion sort given in Programs 2.14 and 2.15. Use the same values of n as
used in Program 4.2, Evaluate the relative merits of using the insert function

versus incorporating the code for an insert directly into the sort function.

3. Use Program 4.2 to obtain the worst-case run times for the versions of bubble
sort given in Programs 2.9 and 2.13. Use the same values of n as used in
Program 4.2. However, you will need to verify that the worst-case data used
by Program 4.2 is, in fact, worst-case data for the two bubble sort functions.
Present vour results as a table with three columns: n, Program 2.9, and
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Figure 4.3 Plot of worst-case insertion sort times

n | Repetitions | Total Time | Overhead
0 B5RER05 1000 0.00015
10 6120343 1000 0.00016
50) 3014729 1000 0.00033
100 2085688 1000 0.00033
500 009538 1000 000110
1000 482291 1000 0.00207

Times are in milliseconds

Figure 4.4 Overhead in measurements of Figure 4.2

Program 2.13. What can vou say about the worst-case performance of the
two bubble sorts?

4. (a) Devise worst-case data for the two versions of selection sort given in
Programs 2.7 and 2.12,

(b) Use a suitably modified version of Program 4.2 to determine the worst-
case times for the two selection sort functions. Use the same values of n
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int main()

{
long number(OfRepetitions = 0;
clock_t elapsedTime = O;
do

{
number0fRepetitions++;
clock_t startTime = clock( );

doSomething();

elapsedTime += clock( ) - startTime;
} while (elapsedTime < 1000);
// repeat until emough time has elapsed

cout << "Time is (in ticks) "
<< ((double) elapsedTime) / numberOfRepetitions
<< endl;

return 0;

}

Program 4.3 Inaccurate way to time doSomething

as used in Program 4.2,

(¢) Present your results as a single table with three columns: n, Program 2.7,

and Program 2.12.

(d) What can you say about the worst-case performance of the two selection
sorts”?

5. This exercise compares the worst-case run times of insertion sort ( Program 2.15)
and the early-terminating versions of selection sort (Program 2.12) and bub-
ble sort (Program 2.13). To level the playing field, rewrite Program 2.13 as a
single function.

{a) Devise data that show the worst-case behavior of each function.

(b) Using the data of (a) and the timing program of Program 4.2, obtain
worst-case run times.

(¢) Provide these times both as a single table with columns labeled n, selec-
tion sort, bubble sort, and insertion sort and as a single graph showing
three curves (one for each function). The z-axis of the graph is labeled
by n values, and the y-axis by time values.
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(d) What conclusions ean you draw about the relative worst-case perfor-
mance of the three sort functions?

{e) Measure the overheads for each value of n and report these in a table as
in Figure 4.4. Subtract this overhead from the times obtained in (b) and
present a new table of times and a new graph. -

{f} Are there any changes to your conclusions about relative performance as
a result of subtracting the overhead?

(g) Using the data yvou have obtained, estimate the worst-case time to sort
2000; 4000; and 10,000 numbers using each sort function.

6. Modify Program 4.2 so that it obtains an estimate of the average run time of
insertionSort (Program 2.15). Do the following:

(a) Sort a random permutation of the numbers 0, 1, ---, n=1 on each itera-
tion of the while loop. This permutation is generated using a random
permutation generator. In case you don't have such a function available,
try to write one using a random number generator, or simply generate a
random sequence of n numbers.

(b) Set the while loop so that at least 20 random permutations are sorted
and so that at least 1 second has elapsed.

{c) Estimate the average sort time by dividing the elapsed time by the num-
ber of permutations sorted.

Present the estimated average times as a table.

7. Use the strategy of Exercise 6 to estimate the average run times of the bubble
sort functions given in Programs 2.9 and 2.13. Use the same values of n as in
Program 4.2. Present your results as a table and as a graph.

8. Use the strategy of Exercise 6 to estimate the average run times of the selection
sort functions given in Programs 2.7 and 2.12. Use the same values of n as in
Program 4.2. Present your results as a table and as a graph.

9. Use the strategy of Exercise 6 to estimate and compare the average run times
of the functions of Programs 2.12, 2.13, and 2.15. Use the same values of n as
in Program 4.2, Present your results as a table and as a graph.

10. Devise experiments to determine the average time taken by sequential search

(Program 2.1) and binary search (Program 3.1) to perform a successful search.
Assume that each element of the array being searched is looked for with equal

probability. Present your results as a table and as a graph.

11. Devise experiments to determine the worst-case time taken by sequential
search (Program 2.1) and binary search (Program 3.1) to perform a successful
search. Present your results as a table and as a graph.
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12. Determine the run time of function matrixAdd (Program 2.21) for rows = 10,
20, 30, -- -, 100. Present your measured times as a table and as a graph.

13. C++ has a sort function sort(begin,end) that may be used to sort the ar-
ray a[0:n-1] using the invocation sort(a, a+n). This sort function, which
is defined in the header algorithm, uses a combination of the insertion sort,
quick sort (Section 18.2.3) and heap sort (Section 12.6.1) methods. The com-
plexity of the C++ function sort is O(nlogn). Measure the time C++'s sort
function takes on best- and worst-case insertion sort data. Compare these
times with those for Program 2.15.

14. Determine the run time of function transpose (Program 2.19) for rows = 10,
20, 30, -- -, 100. Present your measured times as a table and as a graph.

15. Determine the run time of function squareMatrixMultiply (Program 2.22)
for rows = 10, 20, 30, -+, 10{0. Present your measured times as a table and
as a graph.

4.5 YOUR CACHE AND YOU
4.5.1 A Simple Computer Model

Consider a simple computer model in which the computer’s memory consists of
an L1 (level 1) cache, an L2 cache, and main memory. Arithmetic and logical
operations are performed by the arithmetic and logic unit (ALU) on data resident
in registers (R). Figure 4.5 gives a block diagram for our simple computer model.

ALU

Ll

L

Figure 4.5 A simple computer model

Typically, the size of main memory is tens or hundreds of megabytes; L2 cache
sizes are typically a fraction of a megabyte; L1 cache is usually in the tens of
kilobytes; and the number of registers is between 8 ana 32, When you start your
program, all your data are in main memory.

To porform an arithmetic operation such as an add, in our computer model,
the data to be added are first loaded from memory into registers, the data in the
registers are added, and the result is written to memory.
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Let one cycle be the length of time it takes to add data that are already in
registers. The time needed to load data from L1 cache to a register is two cycles
in our model. If the required data are not in L1 cache but are in L2 cache, we get
an L1 cache miss and the required data are copied from L2 cache to L1 cache and
the register in 10 cycles. When the required data are not in L2 cache either, we
have an L2 cache miss and the required data are copied from main memory into L2
cache, L1 cache, and the register in 100 cycles. The write operation is counted as
one cycle even when the data are written to main memory because we do not wait
for the write to complete before proceeding to the next operation.

4.5.2 Effect of Cache Misses on Run Time

For our simple model, the statement a = b + ¢ is compiled into the computer
instructions

load a; load b; add; store c;

where the load operations load data into registers and the store operation writes
the result of the add to memory. The add and the store together take two cycles.
The two loads may take anywhere from 4 cycles to 200 cycles depending on whether
we get no cache miss, L1 misses, or L2 misses. So the total time for the statement
a = b + ¢ varies from 6 cycles to 202 cycles. In practice, the variation in time is
not as extreme because we can overlap the time spent on successive cache misses.

Suppose that we have two algorithms that perform the same task. The ﬁrst
algorithm does 2000 adds that require 4000 lead, 2000 add, and 2000 store opera-
tions and the second algorithm does 1000 adds. The data access pattern for the first
algorithm is such that 25 percent of the loads result in an L1 miss and another 25
percent result in an L2 miss. For our simplistic computer model, the time required
by the first algorithm is 2000+ 2 (for the 50 percent loads that cause no cache miss)
+ 1000 = 10 (for the 25 percent loads that cause an L1 miss) + 1000 + 100 (for the
25 percent loads that cause an L2 miss) 4+ 20001 (for the adds) + 2000=1 (for the
stores) = 118,000 cycles. If the second algorithm has 100 percent L2 misses, it will
take 2000 + 100 (L2 misses) + 1000+ 1 (adds) + 1000+ 1 (stores) = 202,000 cycles.
S0 the second algorithm, which does half the work done by the first, actually takes
76 percent more time than is taken by the first algorithm.

Computers use a number of strategies (such as preloading data that will be
needed in the near future into cache, and when a cache miss occurs, the needed data
as well as data in some number of adjacent bytes are loaded into cache) to reduce
the number of cache misses and hence reduce the run time of a program. These
strategies are most effective when successive computer operations use adjacent bytes
of main memory.

Although our discussion has focused on how cache is used for data, computers
also use cache to reduce the time needed to access instructions.
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4.5.3 Matrix Multiplication

This section is for the skeptics among you who do not believe that on a commercial
computer, a program that performs more operations may actually take less time
than another program that performs fewer operations. We are about to make a
believer out of you.

Program 2.22 is the real program we start with. This program multiplies two
square matrices that are represented as two-dimensional arrays. It performs the
following computation:

mn

clijl =) _afi][k] «bK][j], 1<i<m 1<j<n (4.1)
k=1

(You don't need to understand matrix multiplication to follow this demonstra-
tion. Matrix multiplication is motivated in Section 7.2.1.) Program 2.22 is a fairly
standard piece of code that you can find in many books. Program 4.4 is an al-
ternative code that produces the same two-dimensional array ¢ as is produced by
Program 2.22. We observe that Program 4.4 has two nested for loops that are not
present in Program 2.22 and does more work than is done by Program 2.22 with
respect to indexing into the array ¢. The remainder of the work is the same.

void fastSquaraHa.tri::Hultiply{int. #% a, int #= b, int ** ¢, int n)
{
for (int i = 0; 1 < n; i++)
for (int j = 0; j < n; j++)
c[il[j] = 0;

for (int i = 0; i < mn; i++)
for (int j = 0; j < m; j++)
for (int k = 0; k < n; k++)
c[i] [j] += alillk] = blk]l[j);
I

Program 4.4 Less efficient way than Program 2.22 to multiply square matrices

You will notice that if you permute the order of the three nested for loops in
Program 4.4, you do not affect the result array ¢. We refer to the loop order in
Program 4.4 as ijk order. When we swap the second and third for loops, we get
ikj order. In all, there are 3! = 6 ways in which we can order the three nested for
loops. All six orderings result in functions that perform exactly the same number of
operations of each type. So you might think all six take the same time. Not so. By
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changing the order of the loops, we change the data access pattern and so change
the number of cache misses. This in turn affects the run time.

In ijk order, we access the elements of a and ¢ by rows: the elements of b are
accessed by column. Since elements in the same row are in adjacent memory and
elements in the same column are far apart in memory, the accesses of b are likely
to result in many L2 cache misses when the matrix size is too large for the three
arrays to fit into L2 cache. In ikj order, the elements of a, b, and ¢ are accessed
by rows. Therefore, ikj order is likely to result in fewer L2 cache misses and so has
the potential to take much less time than taken by ijk order.

Figure 4.6 gives the run time for Program 4.4 using i jk and ikj order as well as
for Program 2.22. Figure 4.7 shows the normalized run times (i.e., the time taken
by a method divided by the time taken by ikj order).

f‘r-u::-gram 2,22 ﬁmgmm 4.4
n mult ijk order | ikj order
500 15| 26 0.9
1000 16.1 26.5 6.7
2000 7T19.8 8446 54.2

Figure 4.8 Run times (in seconds) for matrix multiplication

What a surprise: ikj order runs much faster than both ijk order and Pro-
gram 2.22! In fact, when n = 500, ikj order takes about 1/3rd the time taken by
ijk order and about 1/2 that taken by Program 2.22. When n = 1000, these ratios
are approximately 7/16 and 1/4; and when n = 2000, the ratios are approximately
1/13 and 1/16. Recall that ikj order does more work (as measured by the oper-
ation count} than is done by Program 2.22 and the same as is done by ijk order.
Only the run time for ikj order grows at the 8(n?) rate predicted by an asymptotic
analysis. The run time for ijk order and Program 2.22, for the tested values of n,
is dominated by effects (such as cache misses) other than the operation count. Are
wvou still skeptical?

The effect that memory hierarchy has on the performance of your code varies
with the programming language, compiler, compiler options, and computer config-
uration. For example, when our matrix multiply codes were run on a 2.4 GHz Intel
Pentium IV PC that has twice as much L2 cache as does the 1.7 GHz PC used in
the experiment of Figures 4.6 and 4.7, the ratios for n = 500 were about 9/16 and

2/5. For n = 1000, the ratios were about 1/2 and 1/3; and for n = 2000, the ratios
were about 1/4 and 1/5.
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i
| =y |
|

i

| |

n = 1000 n = 2000
[ mult EEEER ik 1 ikj

Figure 4.7 Normalized run times for matrix multiplication

EXERCISES

16. Hepeat the experiment of Figure 4.6 using all six orderings of the three nested
for loops of Program 4.4. Present your results as a table and as a bar chart.

17. In an alternative implementation of matrix multiplication, we first compute
the transpose array bt[j|[k] = blk|[j|. Equation 4.1 becomes

c[i][i] = ia[i][k] «bt{jlk], 1<i<m 1<j<p (4.2)
kel

{a) Write functions to compute the two-dimensional array ¢ by first comput-
ing bt and then using Equation 4.2. You should have seven functions:
one for each of the six permutations of the three nested for loops and
one that corresponds to Program 2.22.

(b) Measure the time taken by these seven functions for the cases n = 500,
1000, and 2000.

(] Present your results as a table and as a bar chart. Compare these times
with those of Exercise 16.
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18, Write a function to transpose an n x n array by blocks. That is, imagine
that the array is partitioned into k = k subarrays (or blocks) and transpose
one subarray at a time. Measure the run time of your transpose code for
large n; use k = 2, 4, 8, 16, 32, and 64; assume that n is a power of 2. How
does the performance of your code compare with that of the transpose code
of Program 2.19. Can you explain the relative performance?

4.6 REFERENCES AND SELECTED READINGS

To learn more about how a cache works, see Computer Organization and Design,
by J. Hennessey and D. Patterson, Second Edition, Morgan l{aufmmm Publishers,
Inc., San Francisco, CA, 1998, Chapter 7.



CHAPTER D

LINEAR LISTS—ARRAY
REPRESENTATION

BIRD'S-EYE VIEW

We are now ready to begin the study of data structures, which continues through
Chapter 16 of this book. Although Chapters 5 and 6 focus on the data structure
linear lisf, their primary purpose is to introduce the different ways in which data
may be represented or stored in a computer’s memory as well as on a disk. In
succeeding chapters we study the representation of other popular data structures
such as matrices, stacks, queues, dictionaries, priority queues, tournament trees,
search trees, and graphs.

The common data representation methods used by C++ programs are array
based and linked (or pointer based). The data structure linear list is used to il-
lustrate these representation methods. The current chapter develops the array
representation of a linear list and Chapter 6 develops the linked representation of a
linear list. .

The STL's containers—vector and list—are roughly equivalent to our array
and {doubly) linked representations of a linear list: the STL classes have many addi-
tional methods though. In our development of the array and linked representations
of a linear list, we have used the same function/method names and similar signa-

tures as used by the STL implementations. This approach will enable vou to switch
easily to the STL implementations.

137
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In an array representation, elements are stored in an array; a mathematical
formula is used to determine where to store each element. This formula gives the
array index where the element resides. In the simplest cases the formula stores
successive elements of a list in successive memory locations, and we obtain what is
commonly known as the sequential representation of a list.

The data structure concepts introduced in this chapter are

Abstract data types and their specification as C++ abstract classes.
o Linear lists.

o Changing array length (i.e., number of positions in the array) and array dou-
bling.

* Array representation.

e Data structure iterators.

The C++ concepts developed in this chapter are
* Abstract classes.

« [terators.

No new array applications are introduced in this chapter because several array
applications were developed in Chapters 1 through 3.
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5.1 DATA OBJECTS AND STRUCTURES

A data object is a set of instances or values. Some examples are
1. boolean = {false, true}
2. digit = {0, 1,2, 3, 4,5 6,7, 8 9}
3. letter={A,B,C,---,Z,a, b, -, z}
4. naturalNumber = {0, 1,2, .-}
integer = {0, £1, £2, £3, ---}

ot

6. string = {a, b, ---, aa, ab, ac, ---}

boolean, digit, letter, naturalNumber, integer, and string are data objects. true
and false are the instances of boolean, while 0, 1, -- -, and 9 are the instances of digit.
We may regard the individual instances of a data object as being either primitive
{or atomic) or composed of instances of another (possibly the same) data object.
In the latter case we use the term element to refer to the individual components
of an instance of an object. '

For example, each instance of the data object NaturalNumber can be regarded
as atomic. In this case we are not concerned with a further decomposition of
the instances of this data object. Another view is to regard each instance of a
naturalNumber as being composed of several instances of the data object digit. In
this view the number 675 comprises the digits 6, 7, and 5 (in that order).

The data object string is the set of all possible string instances. Each instance
of a string is composed of characters. Some examples of instances are good, a trip
to Hawaii, going down hill, and abeabedabede. The first string has the four elements
g, 0, 0, and d (in that order). Each element is an instance of the data object Letter.

The instances of a data object as well as the elements that constitute individual
instances are generally related in some way, For example, the natural number 0 is
the smallest natural number; 1 is the next; and 2 is the next. In the natural number
67D, the most significant digit is 6, the next is 7, and 5 is the least significant digit.
In the string good. g is the first letter. o the second and third, and d the last.

In addition to interrelationships, a set of operations (or functions) is generally
assoclated with any data object. These operations may transform one instance of
an object into another instance of that object, or into an instance of another data
object, or do both these transformations. The operation could simply create a new
instance without transforming the instances from which the new one is created, For
example, the operation add defined on the natural numbers creates a new natural
number that is the sum of the two numbers to be added; the two numbers that get
added are unaltered.

A data structure is a data object together with the relationships that exist
among the instances and among the individual elements that compose an instance.
These relationships are provided by specifying the operations of interest.
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When we study data structures, we are concerned with the representation of data
objects (actually of the instances) as well as the implementation of the operations
of interest for the data objects. The representation of each data object should
facilitate an efficient’ implementation of the operations. ~

The most frequently used data objects together with their frequently used oper-
ations are already implemented in C++ as primitive data types. The data objects
integer (int) and boolean (bool), defined above, fall into this category. All other
data objects can be represented using the primitive data types and the grouping
ability provided by the class, array, and pointer features of C++. Many of the
data objects we shall study in this text (for example, linear list, stack, queue, and
priority queue) have been implemented as classes in the STL.

5.2 THE LINEAR LIST DATA STRUCTURE

Each instance of the data structure linear list (or ordered list) is an ordered
collection of elements. Each instance is of the form (eg, €;, -+, €y~1) where n is a
finite natural number; the e; items are the elements of the list; the index of e; is i;
and n is the list length or size. The elements may be viewed as atomic, as their
individual structure is not relevant to the structure of the list. When n = 0, the
list is empty. When n > 0, e, is the zeroth (or front) element and e, _, is the
last element of the list. We say that e; comes before (or precedes) €, €; comes
before ez, and so on. Other than this precedence relation, no other structure exists
in a linear list.

Some examples of linear lists are (1) an alphabetized (i.e., ordered by name)
list of students in a class; (2) a list of exam scores in nondecreasing order; (3) an
alphabetized list of members of Congress; and (4) a list of gold-medal winners in the
Olympics men's basketball event ordered by vear. With these examples in mind,
we see the need to perform the following operations on a linear list:

o Create a linear list.

o Destroy a linear list.

® Determine whether the list is empty.
* Determine the size of the list.

o Find the element with a given index.

Find the index of a given element.
¢ Delete, erase or remove an element given its index.

o Insert a new element so that it has a given index.

'The term efficient is used here in a very liberal sense. It includes performance efficiency as
well as measures of the complexity of development and maintenance of associated software.
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o Output the list elements in order, left to right.

5.2.1 The Abstract Data Type [inearList

A linear list may be specified as an abstract data type (ADT) in which we pro-
vide a specification of the instances as well as of the operations that are to be
performed (see ADT 5.1). The ADT specification is independent of any representa-
tion and programming language we have in mind. All representations of the ADT
must satisfy the specification, and the specification becomes a way to validate the
representation. In addition, all representations that satisfy the specification may
be used interchangeably in applications of the data type. In ADT 5.1 we have
omitted specifying operations to create and destroy instances of the data type. All
ADT specifications implicitly include an operation to create an empty instance and,
optionally, an operation to destroy an instance.

.?.hﬂtmct])ataTypa linearList

instances
ordered finite collections of zero or more elements

operations
empty() : return true if the list is empty, false otherwise

size() : return the list size (i.e., number of elements in the list)
get(index): return the indexth element of the list

inderOf(z): return the index of the first oecurrence of r in the list,
return —1 if r is not in the list

erase(inder): remove/delete the inderth element, elements with higher in-
dex have their index reduced by 1

insert(index, x): insert x as the inderth element, elements with index > index
have their index increased by 1

output(): output the list elements from left to right

}

ADT 5.1 Abstract data type specification of a linear list
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5.2.2 The Abstract Class LinearList

C++ supports two types of classes—abstract and concrete. An abstract class is
a class that contains a member function for which no implementation has been
specified. Such a function, called a pure virtual function, is specified using the zero
initializer as in

virtual int myPureVirtualFunction(int x) = 0;

A concrete class contains no pure virtual function. Only concrete classes may be
instantiated. That is, we may create an instance or object only of a concrete class.
However, we can create pointers to objects of an abstract class.

Rather than use the informal English approach to specify an ADT as in ADT 5.1,
we may use a C++ abstract class as in Program 5.1.

template<class T>
class linearList

{
public:
virtual “linearList() {}
virtual bool empty() comst = 0;
// return true iff list is empty
virtual int size() comst = 0;
// return number of elements in list
virtual Tk get(int theIndex) comnst = 0;
/{ return element whose index is theIndex
virtual int index0f{const Tk theElement) const = 0;
// return index of first occurence of theElement
virtual void erase(int thelndex) = 0;
// remove the element whose index is thelndex
virtual void insert(int thelndex, const Tk theElement) = 0;
// insert theElement so that its index is thelndex
virtual void output(ostreamk out) const = 0;
// insart list into stream out
+;

Program 5.1 Abstract class specification of a linear list

Although the specification of Program 5.1 is quite similar to that of ADT 5.1,
this specification is programming-language dependent. In particular, many of the
keywords we have used are defined only in C++. Since a class that derives from
or extends an abstract class is itself abstract (and so cannot be instantiated) unless
it provides an implementation for all pure virtual functions of the base class, by
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requiring that every ADT implementation be derived from the abstract class for that
ADT, we ensure a complete and consistent (i.e., with the same public functions)
implementation of the ADT.

We provide a virtual destructor for our abstract class so that when a reference
to a linear list goes out of scope, the default destructor for linear list isn't invoked;
rather the destructor for the true data type of the referenced object is invoked.

EXERCISE

1. Let L = (a,b,c,d) be a linear list. What is the result of each of the following
operations?

(a) empty()
(b) size()

(c) get(D), get(2), get(6), get(—3)

(d) indexOf{a), indexOf(c), indexOf(q)

(e) erase(0), erase(2), erase(3)

(f) insert(0,€), insert(2, f), insert(3, g), insert(4, h), insert(6, h} insert(—3, h)

5.3 ARRAY REPRESENTATION
5.3.1 The Representation

In an array representation, we use an array to store the list elements. Although
we can pack several list instances into a single array (see Section 5.5), it is easier
to use a different array for each instance. Individual elements of an instance are
located in the array using a mathematical formula.

Suppose we decide to use a one-dimensional element to store the elements
of a linear list. The array element has positions (or locations) element [0] ---
element [arrayLength-1], where arrayLength is the length or capacity of the ar-
ray. Each array position can be used to store a single list element. We need to map
the elements of the list to positions in the array. Where does the zeroth element
reside? Where does the last element reside? The most natural mapping uses the

formula
location(i) = i (5.1)

Equation 5.1 states that the ith element of the list (if it exists) is stored in position
i of the array. Figure 5.1(a) shows how the list [5, 2, 4, 8, 1| is stored in the array
element using the mapping of Equation 5.1. The length of the array is 10, and the
size of the list is 5.
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element [0] [1] [2] [3] [4] (5] (6] [7] [8] [9]

(a) location (i)=i

element (0] (1] [2] (3] [4] [S] (6] [7) 8] [9]
| ARRBE L5 5

(b) location (i)=9 — i

element [0] [1] (2] (3] (4] [5) [6] (7] [8] [9]
]

|
L

(¢) location (i)=(7 + i) % 10

Figure 5.1 Different ways to map |5, 2, 4, 8, 1] into a one-dimensional array

Although Equation 5.1 15 a natural choice for a formula to map list elements
into array positions, other choices are possible. For example, the formula

location(i) = arrayLength — i — 1 (5.2)

stores the list elements backwards beginning at the right end of the array element,
and the formula

location(i) = (location(0) + i)%arrayLength (5.3)

stores elements beginning at any position in the array and wraps around to the front
of the array, if necessary, to store the remaining elements. Figure 5.1(b) shows how
the list [3, 2, 4. 8, 1] is stored when Equation 5.2 is used, and Figure 5.1(c) shows
how this list is stored using Equation 5.3 and location(()) = 7. Equation 5.3 is used
in Chapter 9 to map a quene into a one-dimensional array.

In our array representation of a linear list, we use a one-dimensional array
element that holds the list elements as per Equation 5.1, a variable 1istSize that
keeps track of the number of elements currently in the list, and a variable array-
Length that keeps track of the capacity of the array element. We may remove
element ; from the list by moving elements to its right down by 1. For example,
to remove the element £; = 2 from the list of Figure 5.1{a), we have to move the
elements e3 = 4, €4 = 8, and e4 = 1, which are to the right of £, to positions 1, 2,
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and 3 of the array element. Figure 5.2(a) shows the result. The shaded elements
were moved.

element (0] [1] 2] (3]- (4] 5] (6] (7] (8] (9]
S EEEREE | |

(a) 2 removed from element [1],listSize =4

element [0] (1] (2] (3] [4] [5] [6] (7] (8] [9]

ST [ [ [ [ |

(b) 7 inserted at element [2] ,1listSize = §

Figure 5.2 Removing and inserting an element

To insert an element so that it becomes element § of a list, we must first move
the existing element e, (if any) and all elements to its right one position right and
then put the new element into position ¢ of the array. For example, to insert 7 as
the second element of the list of Figure 5.2{a). we first move elements e; and e3 to
the right by 1 and then put T into position 2 of the array. Figure 5.2(b) shows the
result. The shaded elements were moved.

Before we can write an array class that implements the ADT lincarList, we
must decide on the data type of the array element and the length of this array.
. By making our linear list class a template class, we avoid having to make the first
~ decision. For the second decision, we note that the array element must be large

~ enough to hold the maximum number of elements that might be in the list at any

time. This maximum number is often difficult to estimate. To overcome this hurdle,
we can ask the user to provide an estimate and then dynamically increase the length
of the array element in case the user underestimated.

5.3.2 Changing the Length of a One-Dimensional Array

To increase or decrease the length of a one-dimensional array a that contains ele-
ments in positions a[0:n-1], we first define an array of the new length, then copy
the n elements from a to the new array, and finally change the value of a so that
it references the new array. Program 5.2 gives the method changeLengthlD, which
performs these three tasks.

It takes &(1) time to create an array of length m. Notice that the invocation
of new to create the new array may cause a bad_alloc exception to be thrown. If
new is successful in creating the new array, Program 5.2 spends 8(n) time copying
elements from the source array into the destination array. Therefore, the complexity
of Program 5.2 is O(n) = O(n).
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template<class T>
void changelengthlD(T+£ a, int oldLength, int newLength)
{
if (newLength < 0)
throw illegalParameterValue("new length must be >= 0");

T+ temp = new T[newLength]; ' [/ new array

int number = min(oldLength, newLength); // number to copy
copy(a, a + number, temp);

delate [] a; // deallocate old memory
a = temp;

}

Program 5.2 Changing the length of a one-dimensional array

When an array is used to represent a data structure whose size increases dy-
namically, the array length is often doubled whenever the array becomes full. This
process is referred to as array doubling. When array doubling is used, the total
time spent changing the array length is (in an asymptotic sense) no more than the
total time spent inserting elements into the data structure (see Theorem 5.1).

5.3.3 The Class arrayList
Class Definition for arrayList

We define a C++ class arrayList that implements the ADT linearlist using Equa-
tion 5.1. Program 5.3 gives the class header, the data members, and the func-
tion/method prototypes. Since arrayList is to be a concrete class that extends
the abstract class linearList, it must provide an implementation of all the meth-
ods of the abstract class linearList. The class arrayList may, however, contain
methods that are not declared in linearList. Our class, for example, contains
the methods capacity and checkIndex that are not declared in linearList. The
method capacity, gives the current length of the array element while the method
checkIndex verifies that a specified element index is in the permissible range 0
through listSize — 1.

Constructor and Copy Constructor for arrayList

Program 5.4 gives the class constructor as well as the copy constructor. The con-
structor creates an array whose length is initialCapacity; the default value for
this length i= 10. Also, it sets arrayLength to initialCapacity and listSize to
0. The copy constructor makes a copy or clone of an object. This constructor is
invoked, for example, when an object is passed by value to a function as well as
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template<class T>

class arraylList : public linearList<T>

{

public:

// constructor, copy constructor and destructor
arrayList(int initialCapacity = 10);
arrayList(const arrayList<T>k);
“arrayList() {delete [] element;}

// ADT methods

bool empty() const {return listSize == 0;}

int size() const {return listSize;}

Tk get(int thelndex) const;

int indexOf (const T& theElement) const;

void erase(int thelndex);

void insert(int thelndex, const Tk theElement);
void output(ostreamk out) comst;

// additional method
int capacity() const {return arrayLength;}

protected:
void checkIndex(int theIndex) const;
{// throw illegallndex if thelndex invalid
T+ element; // 1D array to hold list elements
int arraylLength; // capacity of the 1D array
int listSize; // number of elements in list

};

Program 5.3 Class definition for arrayList

when a function returns an object. Our code for this constructor employs the STL
algorithm copy (see Section 1.8).

Program 5.4 also gives the code for the empty, size, and capacity functions.
If we assume that the complexity of the new operator is (1), we see that the
complexity of the constructor is (J(1) when T is a primitive data type of C++ (e.g.,
int, float, and so on). When T is a user-defined data type, the complexity of the
constructor is (J(initialCapacity). This is so because when the array element is
created, the constructor for the user-defined data type T is invoked for each position
of the array. The complexity of empty, size, and capacity methods is (1) and
that of the copy constructor is (J(n), where n is the size of the list that is to be
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template<class T>
arrayList<T>::arrayList(int initialCapacity)
{// Constructor.

if (initialCapacity < 1)

{ostringstream s;

5 << "Initial capacity = " << initialCapacity << " Must be > 0";

throw illegalParameterValue(s.str());

}

arraylength = initialCapacity;

element = new T[arrayLength];

listSize = 0;
}

template<class T>
arrayList<T>::arrayList(const arraylList<T>k thelList)
{// Copy constructor.
arrayLength = thelist.arrayLength;
list3ize = theList.listSize;
element = new T[arrayLength];
copy(thelist. element, thelist.element + listSize, element);
1

Program 5.4 Constructors for arrayList

copied.

Instantiating arrayList

Linear lists that are represented as arrays may be created /instantiated using state-
ments similar to those given below.

// create two linear lists with initial capacity 100
linearList *x = (linearlList) new arrayList<int>(100);
arrayList<double> y(100);

// create a linear list with the default initial capacity
arraylList<char> z;

// create a linear list that is a copy of the list y
arrayList<double> w(y);
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Elementary Methods of arrayList

Program 5.5 gives the implementation of the checkIndex, get and indexDf meth-
ods. The code for the index0f method uses the STL function find that searches a
range for the first occurrence of a matching element.

template<class T>

void arrayList<T>::checkIndex(int thelndex) comst

{// Verify that thelndex is between 0 and listSize - 1.
if (theIndex < 0 || thelndex >= listSize)
{ostringstream s;
B << "index = " << thelndex << " size = " << listSize;
throw illegallIndex(s.str());
}

}

template<class T>
Tk arraylList<T>::get(int thelndex) const
{// Return element whose index is thelIndex.
// Throw illegalIndex exception if no such element.
checkIndex (thelndex);
return element[theIndex];

}

template<class T>

int arraylList<T>::index0f(const T& theElement) const
{// Return index of first occurrence of theElement.
// Return -1 if theElement not in list.

// search for theElement
int theIndex = (int) (find{element, element + listSize, theElement)
- element);

// check if theElement was found
if (thelndex == listSize)

// not found

return -1;
else return thelndex;

}

Program 5.5 checkIndex. get and index0f
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The complexity of checkIndex and get is &(1) and that of index0f is O(max{list-

Size,l}). For simplicity, we will often write complexities of this latter form as
O(listSize).

Removing an Element

To remove or delete the thelndexth element from a list, we need to first ascertain
that the list contains an element with this index and then delete this element. If
the list does not have a thelndexth element, an exception occurs because the ADT
fimearList (ADT 5.1) doesn’t tell us what to do at this time. Therefore, we throw
an exception of tvpe illegalIndex.

When there is a theIndexth element, we can perform the deletion by using
the copy algorithm to move elements theIndex+1, theIlndex+2, ---, listSize-1
down (left) one position and reducing the value of 1istSize by 1. Function erase
(Program 5.6) implements the delete/remove operation.

template<class T>

void arrayList<T>::erase(int thelndex)

{// Delete the elemsnt whose index is thelIndex.

// Throw illegallndex exception if no such element.
checkIndex(thelndex);

// walid index, shift elements with higher index
copylelement + thelndex + 1, element + listSize,.
element + thelndex);

element [--1listSize] ."T(); // invoke destructor

}

Program 5.6 Remove the theIndexth element

When there is no theIndexth element, an exception is thrown and the time taken
by erase is &(1). When the list has a thelndexth element, listSize-thelndex
elements are moved, taking ©{1listSize-thelndex) time (assuming each element
move takes (J(1) time). Hence the overall complexity is (}{1istSize-theIndex).

Inserting an Element

To insert a new element as the theIndexth element in the list. we need to first move
elements thelndex through 1listSize-1 one position up (right ), then insert the new
element in position theIndex. and finally increment 1istSize by 1. This upward
move of elements is accomplished using the copy.backward STL function rather
than the copy function. The copy_backward function moves elements beginning
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with the rightmost one that is to be moved. Program 5.7 gives the complete C++
code to insert an element. As yvou can see, the method doubles the length of the
array element in case the array has no space to accommodate the new element that
is to be inserted.

template<class T>
void arraylList<T>::insert(int thelndex, const Tk theElement)
{// Insert theElement so that its index is thelndex.
if (thelndex < 0 || theIndex > listSize)
{// invalid index
ostringstrear s;
8 << "index = " << thelndex << " gize = " << listSize;
throw illegallndex(s.str());
}

{/ walid index, make sure we have space
if (listSize == arraylLength)
{// no space, double capacity
changeLengthiD(element, arraylength, 2 * arrayLength);
arraylength == 2;
¥

// shift elements right one position
copy_backward(element + thelndex, element + listSize,
element + listSize + 1);

element [theIndax] = theElement:

listSiza++;

}

Program 5.7 Insert theElement as thelndexth element

It takes B(1) time to determine whether an exception is to be thrown, &(array-
Length) = ©(listSize) time to double the array length if this doubling is necessary,
and B(listSize-theIndex) time to shift elements. Therefore, the total time taken
by insert is O{listSize).

Why do we double the array length in Program 5.7 and not simply increase the
length by 1 or 2 {say)? Although increasing the array length by 1 or 2 every time
does not_affect the worst-case complexity of an insert (this worst-case complexity
remains ©(1istSize)), increasing array length in this way can affect the asymptotic
complexity of a sequence of inserts. Suppose we start with an empty list with initial
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capacity 1 and perform n = 2* 4+ 1 inserts. Assume that the inserts are performed
at the end of the list. Therefore, no insert requires a shift of previously inserted
elements and the time required to make the n inserts is ©(n) plus the time spent
increasing the array length. When the array lenip;th is a]wa;.rs increased by 1, the
time spent increasing the array Iength is O3 = B(n?). Therefore, the total
time needed for the n inserts is ©(n?).

If we double the array Ien,gth as is done in Program 5.7, the total time spent
changing the array length is 'EI{EI 0 ) = B(2¢+! — 1) = O(n). Therefore, the
complexity of the n inserts is ©&(n). In fact, a simple generalization of this analysis
shows that when the array length is always increased by a multiplicative factor (from
arrayLength to csarrayLength, where ¢ > 1 is a constant ), the total time spent in-
creasing the array length is O{number of inserts) even if erase and other operations
are mixed in with the insert operations. This analysis leads to Theorem 5.1.

Theorem 5.1 [f we always increase the array length by a constant factor (which is
2 in Program 5.7), the time spent on any sequence of linear list operations increases
by at most a constant factor when compared to the time taken for the same set of
operations under the assumption that the initial capacity is not an underestimate

(note that when this assumption is valid, no time is spent increasing the array
length ).

The Function output and Overloading <<

Program 5.8 gives the code for output. The complexity of this code is ({1istSize)
under the assumption that the time to needed to insert a single element into the
output stream is (J(1). Program 5.8 also gives the code to overload the stream
insertion operator <<.

template<class T>
void arrayList<T>::output(ostreamk out) const
{// Put the list intc the stream out.
copy(element, element + listSize, ostream_iterator<T>(cout, " "});

}

/7 overleoad <<

template <class T>

ostreamk operator<<{ostreamk out, const arrayList<T>k x)
{x.output{out); return out;}

Program 5.8 Inserting a linear list into an output stream
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Decreasing the Length of element

Although our implementation of a linear list increases the length of element as
needed, it never reduces its length. Therefore, an array linear list whose element
array has grown to a length of 1,000,000 (say) will hold on to this much array space
until the linear list is destroyed. This status continues even though the list may
never again have more than 10 elements in it.

To enable the linear list to free some of the array space when the list size be-
comes small, we can modify the method erase so that it reduces the array length to
max{initialCapacity, length/2} whenever size < length/4 (say). This strat-
egy is considered in Exercise 20.

Using the Class arraylList

A sample main method and the generated output can be found on the Web site for
this book.

5.3.4 Iterators in C++

An iterator is a pointer to an element of an object (for example, a pointer to
an element of an array). As the name suggests, an iterator permits you to go (or
iterate) through the elements of the object one by one. Program 5.9 shows how to
use a pointer y to an array element to iterate through the array’s elements. The
datatype of the pointer y is int#+, which indicates that y points to elements of type
int. In the for loop header, y is initialized to point to the first element in the
array x[] (technically, the variable x is a pointer to the first element of the array).
The expression y++ increments the pointer so that it advances to the next element
of the array. Similarly, x + 3 is a pointer 3 positions from x; that is, it points one
position past the last element x[2] of the array. So in the for loop of Program 5.9
the pointer (or iterator) y iterates through elements in the range [x,x 4 3). The
expression *y dereferences the pointer y so as to get the element pointed to by y.
The program outputs x[0:2].
The following code is equivalent to the for loop of Program 5.9,

for (int i = 0; 1 I= 3; i++)
cout << x[i] << » *;

Although you may find this code more transparent than that of Program 5.9, the
code of Program 5.9 is generalized easily to output the elements of any object for
which an iterator is defined. The code

for (iterator i = start; i != end; i++)
cout << #i << " "

outputs all elements in the range |start, end). In this code iterator is the datatype
of the iterator, start is the iterator value for the first element in the range and
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int main()

{
int x[3] = {0, 1, 2};

// use a pointer y to iterate through the array x
for (ints y = x; y != x + 3; y++)
cout << wy << " M,
cout << endl;
return O;

}

Program 5.9 Using an array iterator

end is the value the 1terator has when incremented one past the last element to be
output.

The concept of an iterator is fundamental to writing generic code in C++. Pro-
gram 5.10 gives a possible code for the STL copy function, for example. This code
may be used to copy elements of any object that has an iterator for which the opera-
tors !=, %, and ++ (postincrement) as well as the dereferenced assignment (»to =
) are defined. Different generic codes we write require our iterator to have different
capabilities. For example, the copy_backward function requires us to decrement the
value of the iterator.

template <class iterator>
void copy(iterator start, iterator end, iterator to)
{// copy from [start, end) to [to, to + end - start)
while (start != end)
{*to = sstart; start++; to++;}

}

Program 5.10 Possible code for STL copy function

To simplify iterator development and categorization of generic iterator-based
codes, the C++ STL defines five categories of iterators: input, output, forward,
bidirectional and random access. All iterators support the equality operators ==
and !'= as well as the dereference operator ». Input iterators additionally provide
read access to the elemeuts pointed at and supoort the pre- and post-increment
operator ++. Output iterators provide write acee 8 to the elements and also permit

iterator advancement via the ++ operator. Forward iterators may be advanced
using the increment operator ++ while bidirectional iterators inay be incremented
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as well as decremented (--). Random access iterators are the most general. They
permit pointer jumps by arbitrary amounts as well as pointer arithmetic. C++
array iterators such as y in Program 5.9 are random access iterators.

5.3.9 An Iterator for arrayList

We shall define a C++ class iterator that will serve as a bijdirectional iterator
for arrayList. This class will, itself, be a public member of the class arrayList.
Additionally, we shall add two public methods begin() and end() to arrayList.
These methods, respectively, return iterators whose value is a pointer to the hrst
element of the list (i.e., element[0] ) and a pointer to one position past the last
element (i.e., element [1istSize] ). The code for these two methods of arraylList
18

class iterator;
iterator begin() {return iterator{element);}
iterator end() {return iterator(element + listSize);}

Program 5.11 gives the code for the class iterator. The five typedef statements
are required by C++ to recognize our iterator elass as a bidirectional iterator and to
generate proper code for STL algorithms that employ bidirectional iterators. The
complexity of each method of our iterator class is ©(1).

An instance of our list iterator may be created and initialized using a statement
such as

arrayList<int>::iterator x = y.begin();

where y is of type arrayList. With the addition of the iterator to our linear list
class, we can use STL algorithms to perform tasks that require only the capabilities
of a bidirectional iterator. For example, we can reverse the elements in a list y using
the STL function reverse and we can sum the list elements using the STL function
accumulate. The code for these two tasks is

reverse(y.begin(), y.end());
int sum = accumulate(y.begin(), y.end(), 0);

However, we cannot use the STL algorithm sert as this algorithm requires a random
access iterator.

EXERCISES

2. Let L = {a,b,c,d,e) be a linear list that is represented in an array element
using Equation 5.1. Assume that arrayLength = 10. Draw figures similar
to Figure 5.2 showing the contents of the array element and the value of
listSize following each operation in the operation sequence: initial state,
insert{l, f), insert(3, g), insert(7,h), erase(0), erase(4).
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class iterator

{
public:
// typedefs required by C++ for a bidirectiomal iterator
typedef bidirectional_iterator_tag iterator_category;
typedef T value_type;
typedef ptrdiff_t difference typq,
typedef T#* pointer;
typedef Tk reference;
// constructor
iterator(T+ thePosition = 0) {position = thePosition;}
// dereferencing operators
Tk operator={) const {return *position;}
T+ operator->() const {return k«position;}
// increment
iteratork operator++() // preincrement
{++position; return #*this;}
iterator cperator++(int) // postincrement
{iterator old = =*this;
++position;
return old;
}
// decrement
iteratork operator--{() // predecrement
{--position; return *this;}
iterator operator--(int) // postdecrement
{iterator old = =this;
-=position;
return old;
}
// equality testing
bool operator!={const iterator right) const
{return position != right.position;}
bool operator==(const iterator right) const
{return position == right.position;}
protected:
T+ position; // pointer to a list element
1}

Program 5.11 An iterator for the class arrayList
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Write a function changeLength2D to change the length of a two-dimensional
array. You must allow for a change in both dimensions of the array. Test your
code.

To the class arrayList add a constructor that allows you to specify the
amount by which the list capacity (or array length) is to be increased when-
ever array resizing is needed. When no capacity increment is specified, array
doubling is done. Modify insert to work in this way. Test your code.

Write the method arrayList<T>: :trimToSize, which makes the array length
equal to max{listSize,1}. What is the complexity of your method? Test

your code.

Write the method arrayList<T>::setSize, which makes the list size equal
to the specified size. If the original list size was less than the new one, NULL
elements are added, and if the original size was more than the new one, the
extra elements are removed. What is the complexity of vour method? Test
vour code.

Overload the operator [] so that the expression x[i] returns a reference
to the ith element of the list. If the list doesn’t have an ith element, an
illegallIndex exception is to be thrown. The statements x[i] = yand y =
x[i] should work as expected. Test your code.

Overload the operator == so that the expression x == y returns true iff the
two array lists x are y are equal (i.e., the ith elements of both hsts are equal
for all i). Test your code.

Overload the operator '= so that the expression x '= y returns true iff the
two array lists x are y are not equal {see Exercise 8). Test vour code.

Overload the operator < so that the expression x < y returns true iff the array
list x is lexically smaller than the array list y (see Exercise 8). Test your code.

Write the method arrayList<T>: :push back, which inserts theElement at
the right end of the list. Do not use the insert method. What is the time
complexity of your method? Test your code.

Write the method arrayList<T>::pop.back, which erases the element at the
right end of the list. Do not use the erase method. What is the time com-
plexity of your method? Test your code.

Write the method arrayList<T>::swap(theList), which swaps the elements
of the lists *this and theList. What is the time complexity of your method?
Test your code.
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Write the method arrayList<T>::reserve(theCapacity), which changes
the capacity of the list to the larger of its current capacity and theCapacity.
Test your code.

Write the method arrayList<T>::set(theIndex, theElement), which re-
places the element whose index is theIndex with theElement. Throw an
exception in case theIndex is out of range. You should return the old ele-
ment with the specified index. Test your code.

Write the method arrayList<T>::clear, which makes the list empty. What
is the complexity of vour method? Test vour code.

Write the method arrayList<T>: :removeRange, which removes all elements
in the specified index range. What is the complexity of vour method? Test
vour code.

Write the method arrayList<T>::lastIndex0f, which returns the index of
the right-most occurrence of the specified object. A —1 is returned in case
the specified object is not in the list. What is the complexity of your method?
Test your code.

Prove Theorem 5.1.

A shortcoming of the class arrayList (Program 5.1) is that it never decreases
the length of the array element.

(a) Write a new version of this class so that if, following a deletion, the list
size drops below arrayLength/4, a smaller array of length max{array-
Length/2, initialCapacity} is allocated and the elements are copied
from the old array into the new one.

(b) {Optional) Consider any sequence of n linear list operations beginning
with an empty list. Suppose that the total step count is f(n) when the
initial capacity equals or exceeds the maximum list size. Show that if we
start with an initial capacity of 1 and use array resizing during inserts
and removes as described above and in Section 5.3, the new step count
is at most cf(n) for some constant c.

Prove a theorem analogous to Theorem 5.1 for the case when array length is
increased by a constant factor ¢ > 1 whenever the array gets full and is reduced
by the factor ¢ whenever array occupancy falls below 1/(2¢) (subject, of course,
to the constraint that array length never falls below its initial length).

(a) Write the method arrayList<T>: :reverse, which reverses the order of
the elements in the list. The reversal is to be done in place (i.e., within the
array element and without the creation of a new array). Note that before
the reversal, the kth element (if it exists) of the list is in element [k];
following the reversal the kth element is in element [1istSize-k-1]. Do
not use the STL function reverse.
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(b) The complexity of vour method should be linear in 1ist8ize. Show that
this is the case.

{e) Test the correctness of your code, using vour own test data.

(d) Now write another in-place method to reverse an object of type array-
List. This method is not a member of arrayList and should not access
the data members of arrayList. Rather, vour method should use the
member methods of arrayList to produce the reversed list.

(e) What is the time complexity of your new method?

(f) Compare the run-time performance of the two reversal methods using
linear lists of size 1000; 5000; and 10.000.

23. (a) Write the method arrayList<T>::leftShift (i) that shifts the list el-
ements left by 1 positions. If x = [0, 1, 2, 3, 4], then x.leftShift(2)
results in x = [2, 3, 4]

(b) What is the time complexity of vour method?
{¢) Test your code.

24. In a circular shift operation, the elements of a linear list are mtateﬂ clockwise
by a given amount. For example, when the elements of x = [0, 1, 2, 3, 4] are
shifted circularly by 2, the result is x = [2, 3, 4, 0, 1].

{a) Describe how vou can perform a circular shift using three reversal op-
erations. Each reversal may reverse a portion of the list or reverse the
entire list.

(b} Write the method arrayList<T>::circularShift(i), which performs
a circnlar shift by i positions. The complexity of your method should
be linear in the list length.

(] Test vour code,

25. The invocation x.half () eliminates everv other element of x. So if x.size()
is initially 7 and x.element[] = [2, 13, 4, 5. 17, 8, 29|, then following the
execution of x.half(), x.size() is 4 and x.element[] = (2, 4, 17, 20]. If
x.size() is initially 4 and x.element[] = [2. 13, 4, 5], then following the
execution of x.half(), x.size() is 2 and x.element[] = [2, 4]. If x is
initially empty, then it is empty following the execution of x.half ().

(a) Write code for the method arrayList<T>::half(). You should not use
any of the other methods of arrayList. The complexity of your code
should be O(size).

(b) Show that the complexity of your code is, in fact, ({1listSize).

(€] Test vour code.
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26. Write a function equivalent to the method half of Exercise 25. Your function
should not be a member of arrayList and should not access any of the data
members of this class either. Rather, accomplish your task by using public
methods of arrayList. What is the complexity of your method? Test your
code.

27. Extend the iterator class arrayList::iterator (Program 5.11) so that it is
a random access iterator. Test your iterator by using the STL sort function
to sort the elements of a linear list.

28. Let a and b be two objects of type arrayList.

(a) Write the method arrayList<T>::meld(a,b), which creates a linear
list that contains elements alternately from a and b, beginning with the
zeroth element of a. If vou run out of elements in one list, then append
the remaining elements of the other list to the list being created. The
invocation ¢.meld(a,b) should make ¢ the melded list. The complexity
of your code should be linear in the sizes of the two input lists.

(b) Show that the complexity of your code is linear in the sum of the sizes
of a and b.

(e) Test your code.

29, Let a and b be objects of type arrayList. Assume that the elements of a and
b are in sorted order (i.e., nondecreasing from left to right).

(a) Write the method arraylList<T>::merge(a,b), which creates a new
sorted linear list that contains all the elements in a and b. The merged
list is assigned to the invoking object *this. Do not use the STL function
merge.

(b) What is the complexity of your method?

() Test your code.

30. (a) Write the method arrayList<T>::split(a,b), which creates two linear
lists a and b. a contains the elements of *this that have an even index,
and b contains the remaining elements.

(b) What is the complexity of your method?

(c) Test your code.

31. Suppose that we are to represent a linear list using Equation 5.3. Rather than
store the list size explicitly, we keep variables first and last that give the
locations of the first and last elements of the list. '

(a) Develop a class similar to arrayList for this representation. Name your
class circularArrayList. Write code for all methods. You can make
the erase and insert codes more efficient by properly choosing to move
either elements to the left or right of the removed/inserted element.
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(b) What is the time complexity of each of vour methods?
{e) Test your code.

32. Write a bidirectional iterator for circularArrayList class of Exercise 31.
. Do Exercise 22 using Equation 5.3 instead of 5.1.
. Do Exercise 28 using Equation 5.3 instead of 5.1.

. Do Exercise 20 using Equation 5.3 instead of 5.1.

g 8 E B8

. Do Exercise 30 using Equation 5.3 instead of 5.1.

5.4 VECTOR REPRESENTATION

The STL provides a class vector that uses an array and provides all of the func-
tionality of the class arrayList (plus many additional methods). The length of the
array used to implement a vector is dynamically increased as needed. Typically
an insertion into a full vector will result in increasing the vector capacity by the
larger of 1 and 50% of current capacity. The class vector doesn't have a construe-
tor equivalent to that of arrayList; nor does it have methods with names get,
index0f, and output. However, vector has the methods empty and size that are
equivalent to the corresponding methods of arrayList. Although vector has the
methods erase and insert that respectively delete and add an element, the vector
methods need to know the memory address (rather than element index) where the
operation is to be performed. Another difference between vector and arrayList is
that the two classes throw different types of exceptions when something goes wrong,
To account for these differences, we define a class vectorList that uses a vector
to represent a linear list and whose methods have the same signatures and behavior
as those of linearList. Consequently, the classes arrayList and vectorList may
be used interchangeably.

Programs 5.12 through 5.14 give the codes for some of the methods of the class
vectorList.

EXERCISES

37. Write code for the method vectorList<T>::half (see Exercise 25). The
complexity of your code should be linear in the size of the list. Test vour
code.

38. Write code for the method vectorList<T>::meld(a,b) (see Exercise 28).
The complexity of your code should be linear in the sizes of the two input
lists. Test vour code.
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template<class T>

class vectorlist : public linearList<T>

{

public:

// constructor, copy constructor and destructor
vectorList(int imnitialCapacity = 10);
vectorList (const vectorList<T>k);
“vactorlList() {delete element;}

/i ADT methods

bool empty() const {return element->empty(};}
int size() const {return (int) element->size();}
Tk get({int thelndex) const;

int index0f(const Tk theElement) const;

void erase(int thelIndex);

void insert(int theIndex, const T& theElement);
void output(ostreamk out) const;

// additional method
int capacity() const {return (int) element->capacity();}

/f iterators to start and end of list

typedef typename vector<T>::iterator itarator;
iterator begin() {return element->begin();}
iterator end() {return element->end();}

protected: // additional members of vectorList
void checkIndex(int thelndex) const;
vector<T>* alement: f/ vector to hold list elements

};

Program 5.12 An array linear list implemented using a vector

39. Write code for the method vectorList<T>: :merge(a,b) (see Exercise 20).
Test vour code.

40. Write code for the method vectorList<T>::split(a,b) (see Exercise 30).
Test your code.
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template<class T>
vectorList<T>::vectorList{int initialCapacity)
{// Comstructor.
if (initialCapacity < 1)
{ostringstream s;
8 << "Initial capacity = " << initialCapacity << " Must be > 0";
throw illegalParameterValue(s.str());
}

alement = new vector<l>;

// create an empty vector with capacity 0
element->reserve(initialCapacity);

// increase vector capacity from 0 to initialCapacity

}

template<class T>
vectorList<T>::vectorList({const vectorList<T>& thelist)
{// Copy constructor.

element = new vector<T>(sthelist.element);

}

Program 5.13 Constructors for vectorList

5.5 MULTIPLE LISTS IN A SINGLE ARRAY

Before accepting the array representation of a linear list, let us reflect on its merits.
Certainly, the operations to be performed on a linear list can be implemented as
very simple C++ methods. The methods index0f, remove, and add have a worst
complexity that is linear in the size of the individual list. We might regard this
complexity as quite satisfactory. (In Chapter 15 we will see representations that
allow us to perform these operations even faster, )

A negative aspect of the array representation is its inefficient use of space. Con-
sider the following situation. We are to maintain three lists. We know that the
three lists together will never have more than 4007 elements in them at any time.
However, it is quite possible for a particular list to have 4097 elements at one time
and for another list to have 4097 elements at another time. If we create three in-
stances of arrayList, each with an initial array length of 4097, we will need space
for a total of 12,291 elements even though we will never have more than 4097 ele-
ments at any time. However, using an initial length of 4097 for each array ensures
that array resizing will not be required and our program will run as fast as possible.
Omn the other hand, if we create three arrays with initial length 1, then when the
length of one of these arrays is to increase from 4096 to 4097, we will need to first
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template<class T>
void vectorList<T>::erase(int thelndex)
{// Delete the element whose index is theIndex.
// Throw illegallndex exception if no such element.
checkIndex{thelndex);
element->erase(begin(} + thelndex);
}

template<class T>
void vectorList<T>::insert({int thelndex, const Tk theElement)
{// Insert theElement so that its index is thelndex.
if (thelndex < 0 || thelndex > size())
{// invalid index
ostringstream s;
8 << "index = " << thelndex << " size = " << size();
throw illegallndex(s.str());
}

element->insert (element->begin() + thelndex, theElement);
// may throw an uncaught exception if insufficient
// memory to resize vector

}

Program 5.14 Delete and insert for vectorList

create an array of 1em;;th 8192 and copy 4096 elements into the new array. During
the copy, both the 4096 and 8192 length arrays are needed. Therefore, space for at
least 12,288 elements is needed.

In many applications of linear lists, the amount of memory used is not an issue
because our computer has enough memory for the application to run to completion
using the single-list-in-a-single-array representation. However, in applications that
use very large lists, the list representations of this chapter may cause the application
to fail (for insufficient memory) even though the total number of elements we have is
small enough that all elements can be accommodated in the available memory. The
application fails because excess memory has been allocated to a particular array or
because array doubling fails.

One way to overcome this space requirement problem is to buy more memory.
Another possibility is to map all of our lists into a single array element whose length
is the maximum possible. In addition, we use two other arrays, front and last.
to index into the array list. Figure 5.3 shows three lists represented in the singls
array element. We adopt the convention that the lists are numbered 1 through m
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there are m lists and that front[i] is actually one less than the actual position of
the zeroth element in list i. This convention on front[i] makes it easier to use the
representation. last[i] is the actual position of the last element in list i. Notice
that with this convention, last [i] > front[i] whenever the ith list is not empty.
We shall have front[i] = last([i] whenever list i is empty. So in the example of
Figure 5.3, list 2 is empty. The lists are represcuted in the array in the order 1, 2,
3, .-+, m from left to right.

1234 l
| T |
front[1] last [1] front[2] front[3] last[3]
last[2]

Figure 5.3 Three lists in a single array

To avoid having to handle the first and last lists differently from others, we define
two boundary lists 0 and m+1 with front[0] = last[0] = -1 and front[m+1] =
last[m+1] = list.length-1. To insert an element as the indexth element of list
i, we need to first create space for the new element. If last([i] = frent[i+1],
then there is no space between lists i and i+1 and we cannot move elements index
through the last one up one position. At this time we can check whether it is
possible to move elements 0 through index-1 of the ith list one position down by
checking the relation last[i-1] < front[i]. If this relation does not hold, then
we need to either shift some of the lists 1 through i-1 down or some of the lists i+1
through m up and create space for list 1 to grow. This shifting is possible when the
total number of elements in all the lists is fewer than list.length.

Figure 5.4 is a pseudo-C++ version of the method to insert an element into list
i. This pseudocode may be refined into compilable C++ code.

Although representing several lists in a single array uses space more efficiently
than using a separate array for each list, insertions take more time in the worst
case. In fact, a single insertion could require us to move as many as arrayLength-1
elements, where arrayLength is the length of the array 1ist. The multiple-list-
in-a-single-array representation is also quite cumbersome to implement. A much
simpler solution whose space requirement equals that for the elements in all the
lists plus that for one pointer per element is the subject of the next chapter.

EXERCISES

41. Refine Figure 5.4 into a C++ method and test its correctness.
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void insert(int i, int index, Object element)
{// Insert y as the index’'th element in list i.
gize = last[i] - fromt[il; // number of elements in list i
if (index < 0 || index > size)
throw an exception;
// Is there space on the right?
Find the least j, j = i such that last[j] < fromnt[j+1];
If such a j exists, then move lists i+1 through j and elements index through
the last one of list 1 up one position and insert element into list 1;
This move should update appropriate last and first values;

/f Is there space on the left?

If no j was found above, then find the largest j, j < 1 such that

last[{] < front([j+1];

If such a j is found, then move lists j through i-1

and elements 1 through index-1 of list 1 one position left and insert element;
This move should update appropriate last and first values;

// Success?
if (no j was found above) throw an exception;

!

Figure 5.4 Pseudocode to insert an element in the many lists per array represen-
tation

42. Write a C++ method to insert an element as the inderth element in list
i. Assume that a single array represents m lists. If you have to move lists
to accommodate the new element, your should first determine the amount
of available space and then move the lists so that each has about the same
amount of space available for future growth. Test vour code.

43. Write a C++ method to remove the inderth element from list i. Assume
that a single array represents m lists. Test the correctness of your code by
compiling and executing it.

5.6 PERFORMANCE MEASUREMENT

In this chapter we have developed two array classes that implement the data struc-
ture hinear list—arrayList and vectorList. Both classes are equally good as far
as their space complexity is concerned. Even though both classes offer the same
asymptotic tine complexity, their actual run times are likely to be different.
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To obtain the actual run tumes, we must design an experiment. We wish to
measure the time taken by the operations get, index0f, erase, and insert. For the
get and index0f operations, we measure the total time required for the sequences
get(i), 0 < i < listSize and indexOf(e;), 0 < i < listSize, where e; is the
ith element of the list. Figure 5.5 gives the meassured times for 1istSize = 50,000,
and Figure 5.6 shows these times as bar graphs.

operation | arrayList | vectorList
get ! 1.1 s 1.4 ms
| indexOf B EEET 235
best-case mserts || 4.0/2.1 ms | 7.5/5.3 ms
average inserts || 1.5/1.5s 1.5/1.58 |
worst-case inserts || 2.5/25s 2.7/25s
best-case erases || 2.0 ms | 2.9 ms
AVETHEE erases 1.5s | 1.9 s
WOrst-Case erases E 2.0 8 2.4 5

Times for 50,000 operations

Figure 5.5 Time taken by different array linear list implementations

For the insert operation, we do a sequence of n = 50,000 inserts beginning
with an empty list and report the total time for the 50,000 inserts. The best case
for the insert sequence is when each new element is inserted at the right end of
the list; the worst case 15 when each new element is inserted at the left end. To
estimate average behavior, we do the inserts at randomly generated positions of
the list. Figure 5.5 gives the insert times in the format TA/TB, where T A is the
time when the list is constructed with the default initial capacity of 10 and T'B is
the time when the initial capacity is 50, 000. For best-case inserts, array doubling
increases run time by about 90 percent for arrayList when compared with the
case when no array resizing is done. Increasing array size by a factor of 50 percent
whenever array resizing is needed increases the run time of a best-case insert in
vectorList by about 42 percent when compared to the case when no array resizing
is done. The total time spent resizing the element array was 1.9 ms in the case of
arrayList and 2.2 ms in the case of vectorList. For the average and worst-case
tests, the array resizing time is a negligible part of the total cost. This result is to
be expected because both array doubling and increasing array size by 50 percent
add ©(n) to the cost of n inserts; the cost of n best-case inserts is ©(n), and the
cost of n average- and worst-case inserts is ©(n?).

Notice the culossal increase in run time from the best-case inserts to the worst-
case inserts—the run time for arraylist jumped from 4.0 ms to 2.5 seconds, a
625-fold increase. This 625-fold increase isn't altogether surprising given that n
best-case inserts take ©(n) tiow, whereas n worst-case inserts take 8(n?) time. If
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i 3.
iy
6
2L
4L
1L
| '
A B C D A B C
A =get A = average inserts
B = inserts with array resizing B = worst-case inserts
C = inserts with no array resizing C = average erases
D = erases D = worst-case erases
B arraylist B vectorlist
(a) Best times in milliseconds (b) Average and worst times in seconds

Figure 5.6 Plot of run times

the constant factors in the best-case and worst-case time expressions are the same
{and they are not), we would expect to see the time go up by a factor of almost
n = 50, 000.

The average insert time is approximately half the worst-case insert time. This
result is to be expected because, on average, half the elements have to be moved
during an insert; in the worst-case, all elements are moved.

For the erase operation, we start with a list that has n = 50, 000 elements and
do a sequence of n removes, The best case for the remove sequence is when each
remove operation removes the element at the right end of the list; the worst case
is when each remove operation removes the element at the left end. To estimate
average behavior, we do the removes from randomly generated positions of the list.

For the get operation as well as for best-case inserts and erases, arrayList
is considerably faster than vectorList. However, for the index0f as well as for
average- and worst-case inserts and erases the two classes perform about the same.
This result is to be expected, because of the significantly larger overheads associated
with the vector class relative to those associated with an array. For O(1) time
operations such as get and best-case inserts and erases, this overhead dominates
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the run time and causes vectorList to perform poorly. But for the O(n) operations
such as indexOf and average- and worst-case inserts and deletes, the overhead is
dwarfed by the time spent searching for or moving elements.

So which class should you use? If your primary operation is get or if you are
doing inserts and erases primarily from the right end of the list (as is the case
for the stack data structure of Chapter 8), use arrayList. For other applications
of a linear list, either arrayList or vectorList may be used. But wait; we have
yet to see other linear list implementations. These might be even faster!

EXERCISE

44. Develop the class arrayListNoSTL, which implements a linear list using an
array. However, unlike the class arrayList, the class arrayListNoSTL doesn’t
use any STL function. So, for example, STL functions such as copy, copy_back-
ward, and f£ind should not be used. Repeat the experiment described in this
section obtaining run times for arrayList, vectorList, and arrayListNoSTL.
Present your results in both tabular and bar chart forms.

5.7 REFERENCES AND SELECTED READINGS

Additional material on data structures in C++ may be found in the texts C++
Plus Data Structures, Third Edition, by N. Dale, Jones and Bartlett, Sudbury,
MA, 2003; Data Structures and Algorithm Analysis in C++, Second Edition, by M.
Weiss, Addison-Wesley, Menlo Park, CA, 1998; Data Structures and Algorithms in
C++ by M. Goodrich, R. Tamassia, and D. Mount, John Wiley & Sons, New York,
NY, 2002; and Fundamentals of Data Structures in C++ by E. Horowitz, 5. Sahni
and D. Mehta, Computer Science Press, New York, NY, 1995.



CHAPTER 6

LINEAR LISTS—LINKED
REPRESENTATION

BIRD’'S-EYE VIEW

The array representation of a linear list is so natural that you may think there is
no other reasonable way to represent a linear list. This chapter will dispel any such
thought vou may have,

In a linked representation, the elements of a list may be stored in any arbitrary
set of memory locations. Each element has an explicit pointer or link (the terms
pointer and link are synonyms) that tells us the location (i.e., the address) of the
next element in the list.

In an array representation, the element addresses are determined by using a
mathematical formula; and in a linked representation, the element addresses are
distributed across the list elements.

The data structure concepts introduced in this chapter are

s Linked representation.
# Chains, circular lists, and doubly linked lists.
+ Header nodes.

The STL container class liet uses a doubly linked circular list with a header
node to represent its instances. The methods of 1ist have the same signatures

170
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and behavior as do those of the class vector. Hence the list methods erase
and insert don't have the same signatures as required by our ADT linearList.
However, as was the case for vector, 1list may be used in the development of a
concrete linear list class that derives from the abstract class linearList.

The applications developed in this chapter are bin sort (also known as bucket
sort), radix sort, convex hulls, and the union-find problem. Bin sort, radix sort
and the union-find problem use chains; the convex hull application uses a doubly
linked list. Using either a bin sort or a radix sort, you can sort n elements in O(n)
time provided the keys are in an “appropriate range.” Although the sort methods
developed in Chapter 2 take O(n®) time, they do not require the keys to lie in
a particular range. Bin sort and radix sort are considerably faster than the sort
methods of Chapter 2 when the keys lie in an appropriate range. The union-find
problem illustrates how linked lists may be built using integers as pointers.
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6.1 SINGLY LINKED LISTS AND CHAINS

6.1.1 The Representation

In a linked representation each element of an instance of a data object is represented
in a cell or node. The nodes, however, need not be components of an array, and
no formula is used to locate individual elements. Instead, each node keeps explicit
information about the location of other relevant nodes. This explicit information
about the location of another node is called a link or pointer.

Let L = (en,€1,*+,€n—1) be a linear list. In one possible linked representation
for this list, each element e; is represented in a separate node. Each node has
exactly one link field that is used to locate the next element in the linear list. So
the node for e; links to that for e;41, 0 < i < n— 1. The node for e,—; has no
node to link to and so its link field is NULL. The variable firstNode locates the
first node in the representation. Figure 6.1 shows the linked representation of the
list L = (ep,ey,...,en_1). Links are shown as arrows. To locate the element e,
for example, we must start at firstNode; follow the pointer in firstNode to the
next node; follow one more pointer to get to the node with ez. In general, to locate
the element with index thelndex, we must follow a sequence of thelnder pointers
beginning at firstNede.

firstNode

Figure 6.1 Linked representation of a linear list

Since each node in the linked representation of Figure 6.1 has exactly one link,
the structure of this figure is called a singly linked list. Since the nodes are
ordered from left to right with each node (other than the last one) linking to the
next, and the last node has a NULL link, the structure is also called a chain.

To remove the element e; whose index is 2 from the chain of Figure 6.2, we do
the following (note that e; is in the third node of the chain):

» Locate the second node (i.e., the node with e;) in the chain.

e Link the second node to the fourth node.
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Figure 6.2 Removing e; from a 5-node chain

Notice that the removal of the third node from Figure 6.2 automatically decre-
ments the index of the succeeding nodes by 1 (i.e., what were previously the fourth
and fifth nodes of the chain become the third and fourth nodes). Because the nodes
on a chain are always defined to be those nodes that can be reached following a se-
quence of pointers beginning at firstlode, we do not bother to change the pointer
in the removed node (i.e., the former third node of the chain). Since the removed
node is no longer reachable from firstNode, it is no longer part of the chain.

To insert a new element as the indexth element in a chain, we need to first locate
the index-1th element and then insert a new node just after it. Figure 6.3 shows
the link changes needed for the two cases index = 0 and 0 < index < listSize..
Solid pointers exist prior to the insert, and those shown as broken (or dashed) lines
exist following the insert.

firstNode —f == - -— ——a -

i

: P

-

i1 I S—

i | index - 1th

element
index = 0 0 « index £ listSize

Figure 6.3 Insertion into a chain
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6.1.2 The Struct chainNode

To represent a linear list as a chain, we define a struct chainNode and a class chain.
Program 6.1 gives the struct chainNode, which defines the data type of the nodes
used in Figure 6.1. The data member element holds a list element and is the data
field of the node; the data member next holds a pointer to the next node in the
chain and is the node's link feld.

template <class T>
struct chainNode

{
// data members
T element;
chainNode<T> *next;
// methods
chainNode() {}
chainNode(const Tk element)
{this->»element = element;}
chainNode(const T& element, chainNode<T>#* next)
{this->element = element;
this->next = next;}
};

Program 6.1 Struct definition for a chain node

Notice that two of the constructors of chainNode use the syntax this->element
and this->next to access the data members of the constructed instance. This
syntax is necessary to distinguish between the data members of the constructed
instance and the formal parameters of the constructors because the data members
and formal parameters have the same names.

6.1.3 The Class chain
Header, empty, and size

The class chain implements a linear list as a singly linked list of nodes in which
the last node has the pointer NULL; that is, it implements a linear list as a chain of
nodes. Program 6.2 gives the class header, data members and code for the empty,
and size methods.

The data members are firstNode and listS8ize. firstNode is a pointer to
the first node (i.e., the node for the zeroth element of the list) in the chain. When
the chain has no first node, that is, when the chain is empty, firstNode is NULL.
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template<class T>
class chain ; public linearList<T>

{

public:
/{ constructor, copy comstructor and destructor
chain(int initialCapacity = 10);
chain(const chain<T>k);
~“chain();

// ADT methods

bool empty() const {return listSize == 0;}

int size() const {return listSize;}

Tk get(int thelndex) comnst;

int index0f(const Tk theElement) const;

void erase(int thelndex);

void insert(int thelndex, const Tk theElement);
void output(ostreamk out) const;

protected:
void checkIndex(int theIndex) const;
// throw illegallndex if thelndex invalid
chainNode<T>* firstNode; // pointer to first node in chain
int listSize; // number of elements in list

};

Program 6.2 Header for the class chain

1listSize gives the number of elements in the list, which equals the number of nodes
in the chain.

Constructor and copy constructor

Program 6.3 gives the constructor and copy constructor for chain.

To create an empty chain, we need merely set the first node pointer firstNode
to NULL. Unlike the case when a linear list is represented by an array, we do not
allocate space for the expected maximum number of elements at the time the chain is
created. Therefore, the user does not need to specify an estimate of this maximum
size or provide an initial capacity for the list. Nevertheless, we have provided
a constructor which has initialCapacity as a formal parameter in order to be
compatible with the class arrayList. In particular, an application can create an
array of type linearList and initialize the array components using either form of
constructor as is shown below.
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template<class T>»
chain<T>: :chain(int initialCapacity)
{// Comstructor.
if (initialCapacity < 1)
{ostringstream s;
8 << "Initial capacity = " << initialCapacity << " Must be > 0F;
throw illegalParameterValue(s.str());
}
firstNode = NULL;
listSize = Q;
I

template<class T>
chain<T>::chain(const chain<T>k theList)
{// Copy constructor.

listSize = thelist.listSize;

if (listSize == Q)

{// theList is empty
firstNode = NULL;
return;

}

// non-empty list
chainNode<T>* sourceNode = thelList.firstNode:
// node in thelist to copy from
firstNode = new chainNode<T>(spurceNode->alement):
// copy first element of thelist
sourceNode = sourceNode->next; .
chainNode<T>#* targetlode = firstNode;
// current last node in +*this
while (socurceNode != NULL)
{// copy remaining elements
targetNode->next = nev chainNode<T>(sourceNode->element);
targetNode = targetNode->next;
sourcelode = sourceNode->next;
}
targetNode->next = NULL; // end the chain
}

Program 6.3 Constructor and copy constructor for chain
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linearList<int>» 1list[10];
list[0] = new arrayList<int>(20);
list[1] = new arrayList<int>();
1ist[2] = new chain<int>(5);
1list[3] = nev chain<int>;

The complexity of the constructor is 8(1). The copy constructor makes a clnne
of the chain theChain by copying the nodes of theChain one node at a time. The
complexity of the copy constructor is O(theList.1listSize).

The destructor

Program 6.4 gives the destructor for chain. The destructor deletes the nodes of the
chain one by one. The strategy used in our destructor code is to repeatedly delete
the first node in the chain until the remaining chain has no first node. Note that
we must save the pointer to the second node in a variable such as nextNode before
we delete the first node. The complexity of the destructor is O(1istSize).

template<class T>
chain<T>::"chain()
{// Chain destructor. Delete all nodes in chain.
while (firstNode != NULL)
{// delete firstNode
chainNode<T>* nextNode = firstNode->next;
delete firstNode; '
firstNode = nextNoda;
}
}

Program 6.4 Destructor for chain

The method get

When an array representation is used, we locate a list element by evaluating a
(usually simple) formula. To find the theIndexth element of a chain, however, we
must start at the first node and follow the next links until we reach the desired node:
that is, we must follow theIndex number of links. We cannot access the desired
node by performing arithmetic on the value of firstNode. Program 6.5 gives the
code. The method checkIndex is the same as that defined for arrayList. The
complexity of chain<T>::get is (J{theIndex), while that of arrayList<T>::get
is ©(1).
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——
— - - -

template<class T>
Tk chain<T>::get(int thelndex) const
{// Return element whose index is thelndex.
// Throw illegallndex exception if no such element.
checkIndex (thelndex);

// move to desired node

chainNode<T>* currentNode = firstNode;

for (int 1 = 0; i < thelndex; i++)
currentNode = currentNode->next;

return currentNode->element ;

}

Program 6.5 Method to return the theIndexth element

The me_thud index0f

Program 6.6 gives the code for the method chain<T>::index0f. This code differs
from the code for arrayList<T>::index0f primarily in the mechanism used to go
from one list element to the next. In the case of an array list, we go from one
element to the next by performing some arithmetic on the location of the current,
element (when Equation 5.1 is used, we add 1 to the current location to get to
the next location). When a chain is used, the only way to go from one node ta
the next is to follow the link or pointer in the current node. The complexity aof
chain<T>::index0f is O(listSize).

The method erase
Program 6.7 gives the code for the erase operation. There are three cases to consider:

 thelndex < 0 or thelndex > listSize. In this case the erase operation falls
because there is no thelndexth element to erase. This case implicitly covers
the case when the chain is empty.

¢ The zeroth element is to be erased from a nonempty chain.
e An element other that the zeroth element is to be erased.

To get a feel for Program 6.7, manually try it on an initially empty list as well
as on lists that contain at least one node. In addition, try out values of theIndex
such as theIndex < 0, thelndex = 0 (erase the zeroth element), thelndex =
listSize-1 (erase the last element), theIndex > listSize, and 00 < thelndex <
listSsize-1 (erase an interior element).
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template<class T>

int chain<T>::index0f (const Tk theElement) const
{// Return index of first occurrence of theElement.
// Return -1 if theElement not in list.

// search the chain for theElement -

chainNode<T>* currentNode = firstNode;

int index = 0; // index of currentNode

while (currentNode != NULL k&
currentNode->element != theElement)

{
f/ move to next node
currentNode = currentNode->next;
index++;

1

// make sure we found matching element
if (currentNode == NULL)

return -1;
else

return index;

}

Program 6.6 Method to return the index of the first occurrence of theElement

The complexity of chain<T>: :erase is O(theIndex), whereas the complexity of .
arrayList<T>::erase is ((listSize-theIndex). Therefore, the linked implemen-
tation of a linear list is expected to perform better than the array implementation
for erases that are done from near the front of the list.

The method insert

Insertion and erasing work in a similar way. To insert a new element as the
theEndexth one in a chain, we need to first locate the theIndex-1th element and
then insert a new node just after it. Program 6.8 gives the code. Its complexity is
O(thelndex).

Outputting a chain

Program 5.9 gives the code for the output method as well as for the overloading
of the stream insertion operator <<. The code for chain<T>: :output differs from
that for arrayList<T>: :output primarily in its use of the next pointer to go from
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template<class T>
void chain<T>::erase(int thelndex)
{// Delete the element whose index is thelndex,
// Throw illegallndex exception if no such element.
checkIndex(thelndex);

// walid index, locate node with element to delete
chainNode<T>* deleteNode;
if (thelndex == Q)
{// remove first node from chain
deleteNode = firstNode;
firstode = firstNode->next;
}
alse
{ // use p to get to predecessor of desired node
chainNode<T>* p = firstNode;
for (int i = 0; 1 < theIndex - 1; i++)
P = p->next;

deleteNode = p->next;
p-*next = p->next->next; // remove deleteNode from chain
}
listSize--;
delete deleteNode;
}

— = — A —

Program 6.7 Erase the theIndexth element

one node to the next. The complexity of chain<T>: :output is the same as that of
arrayList<T>::output, O(listSize).

The member class iterator

By using next pointers, we can efficiently move from a node to its successor node in
the chain. However, in a chain, there is no efficient way to move from a node to its
predecessor. Therefore, for a chain, we define only a forward iterator, Recall that
for an arrayList we defined a bidirectional iterator that enabled us to move from
any list element to both its successor element and its predecessor element in O(1)
time. Program 6.10 gives the code for some of the methods of he forward iterator
for a chain. The complete code may be found at the Web site for this book.
The methods chain<T>: :begin and chain<T>: :end are defined as
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template<class T>»
vold chain<T>::insert(int thelndex, const Tk theElement)
{// Insert theElsment so that ite index is thelndex.
if (thelndex < 0 || thelndex > listSiza)
{// invalid index
ostringstream s; .
8 <€ "index = " << thelndex << " size = " << listSize;
throw illegallndex(s.str());
}

if (thelndex == Q)

// insert at fromt

firstNode = new chainNode<T>(theElement, firstNode);
else
{ // find predecessor of nev element

chainNode<T>* p = firstNode;

for (int i = 0; i < thelndex - 1; i++)

P ™ p->next;

// insert after p
p->next = new chainNode<T>(theElement, p->next);
}
listSize++;
}

Program 6.8 Insert theElement as the theIndexth element of the chain’

iterator begin() {return iterator(firstNode);}
iterator end() {return iterator(NULL):;}

The difference in run times between using the get method and the iterator
method to access the linear list elements in left-to-right order is quite dramatic
when the list is represented as a chain. The time needed to access the ith element
using get is ©(1i). Therefore, the get method to examine the list elements ohe at a
time takes ©(1istSize?) time, whereas the iterator method takes only ©(1istSize)
time.

6.1.4 Extensions to the ADT linearList

In some applications of linear lists, we wish to perform operations in addition to
those that are part of the abstract data type linearList (ADT 5.1). So it is useful to
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———

template<class T>
void chain<T>::output(ostreamk out) const
{// Put the list into the stream out.
for (chainNode<T>#* currentNode = firstNode;
currentNode != NULL;
currentNode = currentNode->next)
out << currentNode->element << ™

}

// ovarload <<

template <class T>

ostreamk operator<<{ostreamk out, const chain<T>k x)
{x.output(out); return out;}

Program 6.9 The method output

extend the ADT to include additional functions such as clear (remove all elements
from the list) and push_back|theElement) (insert theElement at the end of the
list). Program 6.11 gives the abstract class that corresponds to the extended ADT.

6.1.5 The Class extendedChain

We will develop a class extendedChain that provides a linked implementation of
the abstract class extendedLinearList. The easiest way to arrive at the class
extendedChain is to derive it from chain.

To efficiently insert an element at the énd of a chain, we add a new data mem-
ber lastNode that points to the last node in the chain. Using this pointer, we can
append an element to a chain in ©(1) time. However, the addition of this new data
member requires us to make changes in the implementation of the methods erase
and insert because these methods may change the last node in the chain. When
these methods change the last node, they must also update the new data mem-
ber lastNode. Therefore, the class extendedChain will declare the data member
lastNode; provide modified implementations of the methods erase and insert;
define the remaining pure virtual functions of linearList as invocations of the
corresponding methods in the class chain; and provide implementations for the
new methods clear and push._back.

Program 6.12 gives the code for the methods clear and push back. The full
code for extendedChain may be found at the Web site for this book.
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class iterator
{
public:
// typedefs required by C++ for a forward iterator omitted

J/ constructor
iterator(chainNode<T>* theNode = NULL)
{node = theNode;}

// dereferencing operators
Tk operator#() const {return node->element;}
T+ operator->() const {return knode->element;}

/{ increment
iteratork operator++() // preincrement
{node = node->next; return *this;}
iterator operator++(int) // postincrement
{iterater cld = #*this;
node = node->next;
return old;

}

// equality testing

bool operator!=(const iterator right) comst
{return node != right.node;}

bool operator==(const iterator right) const
{return node == right.node;}

protected:
chainNode<T>=* node;
};

Program 6.10 The class chain<T>: :iterator

6.1.6 Performance Measurement
Memory Comparison

In an array implementation of a linear list, we typically use array doubling when
the atray gets full and array balving when the array occupancy falls below 25
percent (note, however, that the STL container class vector increases array length
by a factor of 1.5 and never decreases array length; our array list classes use array
doubling and do not decrease array length when usage falls below 25 percent of
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template<class T>
class axtandedlinearlist : linearList<T>

{
public:
virtual “extendedLinearList() {}
virtual void clear() = 0;
// empty the list
virtual void push_back(const Tk theElement) = 0;
// insert theElement at end of list
b

Program 6.11 Abstract class for extended linear list

template<class T>
void extendedChain<T>::clear()
{// Delete all nodes in chain.
while (firstNode != NULL)
{// delete firstNode
chainNode<T>* nextNode = firstNode->next;
delete firstNode;
firstNode = nextNode;
}
listSize = 0;
}

tamplate<class T>
void extendedChain<T>::push_back(const Tk theElement)
{// Insert theElement at the end of the chain.
chainNode<T>* newNode = new chainNode<T>(theElement, NULL);
if (firstNode == NULL)
// chain is empty
firstlNode = lastNode = newNode;
else
{ // attach next to lastNode
lastNode->next = newlode;
lastNode = newNode;
}
listSize++;

}

Program 6.12 The methods clear and push_back of extendedChain<T>
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array capacity). Therefore, a linear list with n elements may reside in an array
whose length is between n and 4n. So space for between n and 4n elements is
needed. When a chain is used, exagtly n nodes, each with two fields, are alloted
to the list. Therefore, the chain répresentation uses space for n elements and n
pointers. Let s be the number of bytes required by an element and assume that a
pointer requires 4 bytes. Ignoring the space required by class data members such
as size and firstNode, the array representation of a linear list requires between
ns and 4ns bytes while a singly-li representation requires n{s + 4) bytes, For
most applications this difference in“the space requirements wili not be a deciding
factor in selecting the representatiop to use. '

Run-Time Comparison

For the time requirements we expect chain<T>: : get to be much slower than array-
List<T>::get, because the complexity of chain<T>: :get is J{listSize), whereas
the complexity of the arrayList<T>::get is ©(1). This expectation is borne out
by experiment. We constructed a 50,000-node chain by making successive inserts at
the left end of an initially empty chain. Then we measured the total time required
to perform the 50,000 get operations get(i), 0 < 1 < 50000. chain<T>::get took
13.2 seconds to perform this sequence of operations, while arrayList<T>::get took
1.0 ms—not a commendable showing for the chain class. Things do not get any
better when we compare the times for the index0Df, insert and erase methods.

Figures 6.4 and 6.5 show the times taken by arrayList and chain for operation
sequences as described in Section 5.6. The time for 50,000 index0f operations using
chain<T>::index0f is approximately 6 times that when arrayList<T>::indexOf
is used. The average-case insert and erase times for the class chain are about 33
and 46 times that for for the corresponding methods of arrayList.

operation | arraylList | chain
| get | 1.0ms = 13.2 8
indexDf I 23s | 13.0s
best-case inserts 1 2.1 ms | 45.1 ms
average inserts I 1.5s 49.3 s
worst-case inserts |, 2.5 s 12.9 5
best-case erases || 20ms | 2.1 ms
AVETAZE ETASES 1.5s 658.8 s
Worst-case erases 2.5s 12.9 5

Times for 50,000 operations
Figure 6.4 Time taken by different linear list implementations

¢

Even though the insert and erase sequences (insert and erase from the right
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Figure 6.5 Average- and worst-case times, in seconds, for 50,000 operations

end of a chain) used in our worst-case test for chains cause our methods to do the
maximum work, these sequences do not ensure maximum run time because of the
cache effect (Section 4.5). In fact, vou will notice that the measured worst-case
times are smaller than the measured average times!

The average-case insert times were obtained by inserting into random positions
of the linear list. Consequently, nodes that are adjacent in the chain are randomly
located in memory. Hence when vou move down the chain from left to right, vou
need to access random memory locations. This results in many cache misses. The
same is true for the average-case erase experiment, which uses a randomly con-
structed chain. For the worst-case experiment, successive inserts are made at the
right end of the chain. Since, for our experimental setup, successive calls to new
return nodes that are adjacent in memory, nodes that are adjacent in the chain
also are adjacent in memory. So when you move down the chain from left to right,
vou access adjacent memory; a memory access pattern that is favored by the cache
management scheme. So the number of cache misses is reduced. This reduction in
cache misses results in the anomalous run time measurements for worst-case inserts
and erases relative to the average times.

The reported times for chain<T>: :get and chain<T>::index0f were obtained
from a chain constructed by making inserts at the front of the chain (best-case
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inserts). Since, in our experimental setup, successive calls to new return nodes that
are adjacent in memory, adjacent nodes in the chain used to measure the times for
the get and index0f sequences occupy adjacent memory. So expect that performing
the same sequence of get and index0f operations in a chain created by making
random inserts would take much more time. In fact, in a separate experiment, we
determined this time to be 167 seconds and 165 seconds, respectively. So the time
needed for our sequence of 50,000 gets in a randomly constructed chain is about
13 times that in the chain constructed for best-case inserts. This ratio is about the
same for the index0f operation. The linked representation gets a thumbs down as
far as standard linear list operations are concerned!

Note that cache effects did not play a role in our comparison of best-case, aver-
age, and worst-case times for array representation (Section 5.6) because in all tests,
the array elements are accessed from left to right and an array occupies a contiguous
block of memory.

Are Pointers Any Good?

You are probably wondering whether you have just wasted a lot of time studying
pointers. In Chapter 15 we develop balanced binary tree structures sueh as AVL
and red-black trees. Indexed versions of these structures (e.g., the indexed AVL
tree) may be used to represent a linear list (see Exercise 15.20). These structures
use pointers and knock the socks off of arrayList as far as worst-case inserts and
erases are concerned. '

Despite the poor showing of chains in the linear list timing experiments we con-
ducted, chains are more efficient than array linear list representations in several
linear list applications. Section 6.5 gives a few of these applications. These applica-
tions require us to combine multiple lists into one or to remove and insert elements
when the node just before the node to be removed or inserted is known because of
other work done on the chain.

Two chains may be combined into one by linking the last node of one chain to
the first node of the second. If we know both the first and last nodes of a chain,
this combining is done in O(1) time. To combine two array linear lists into one, we
must copy the second into the array used by the first. This copying takes ©(size
of second list) time. When we know the “just before node,” the remove and
insert operations of a chain run in O(1) time; the complexity of these operations
remains (J(1ist size) when an array representation is used.

EXERCISES

l. Let L = (a,b,e,d,e) be a linear list that is represented as a chain. Draw
figures similar to Figure 6.1 showing the chain following each operation in
the operation sequence: initial state, insert(0, f), insert(3, g), insert(7,h),
erase(0), erase(4).
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10.

11.

12.
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Write code for the method chain<T>::setSize(int theSize) that makes
the list size equal to theSize. If the original list size was less than the new
one, NULL elements are added at the right end, and if the original size was
more than the new one, the extra elements are removed from the right end.
What is the complexity of your method? Test your code.

Write code for the method chain<T>::set(thelIndex, .theElement) that
sets the element whose index is theIndex to theElement. Throw an ex-
ception in case theIndex is out of range. What is the complexity of your
method? Test vour code.

Write code for the method chain<T>::removeRange(fromIndex, tolndex)
that removes all elements in the specified index range. What is the complexity
of vour method? Test vour code.

Write code for the method chain<T>::lastIndex0f (theElement) that re-
turns the index of the rightmost occurrence of theElement. A -1 is returned
in case theElement is not in the list. What is the complexity of your method?
Test vour code.

Overload the operator [] so that the expression x[i] returns a reference to
the ith element of the chain x. If the chain doesn’t have an ith element, an
illegalIndex exception is to be thrown. The statements x[i] = yand y =
x[i] should work as expected. Test your code.

Overload the operator == so that the expression x == y returns true iff the
two chains x are y are equal (i.e., the ith elements of both chains are equal
for all 1). Test your code.

Overload the operator !'= so that the expression x != y returns true iff the
two chains x are y are not equal (see Exercise 7). Test your code.

Owerload the operator < so that the expression x < y returns true iff the chain
x is lexically smaller than the chain y (see Exercise 7). Test your code.

Write code for the method chain<T>::swap(theChain), which swaps the
elements of the chains *this and theChain. What is the time complexity of
your method? Test vour code,

Write a method to convert an array linear list into a chain. Your method is
a member of neither arrayList nor chain. Use the get method of array-
List and the insert method of chain. What is the time complexity of your
method? Test the correctness of your code.

Write a method to convert a linear list that is an instance of chain into an
equivalent list that is an instance of arrayList. Your method is a member of
neither arrayList nor chain,
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{a) First use only the get and listSize methods of chain and the insert
method of arrayList. What is the time complexity of your method?
Test the correctness of your code.

(b) Now use a chain iterator. What is the time complexity of the new code?
Test your code using your own test data.

Add methods to chain to convert an arrayList to a chain and vice versa.
Specifically, write a method fromList(thelist) to convert the array linear
list theList into a chain and another method toList(thelList) to convert
the chain #this into an array linear list theList. What is the time complexity
of each method? Test the correctness of your code.

(a) Write code for the method chain<T>::leftShift (i) that shifts the list
elements left by i positions. If 1 = [0, 1, 2, 3, 4], then 1.leftShift(2)
results in 1 = [2, 3, 4].

(b) What is the time complexity of your method? e

(c) Test your code.

(a) Write code for the method chain<T>: :reverse, which reverses the order
of the elements in *this. Do the reversal in-place and do not allocate
any new nodes.

(b) What is the complexity of your method?

(¢) Test the correctness of vour method by compiling and then executing the
code. Use your own test data.

Write a nonmember method to reverse a chain. Use the member methods of
chain to accomplish the reversal. What is the complexity of your method?
Test the correctness of your method.

Let a and b be of type extendedChain.

(a) Write a method meld to create a new extended chain ¢ that contains
elements alternately from a and b, beginning with the first element of a.
If vou run out of elements in one of a and b, then append the remaining
elements of the other extended chain to ¢. The complexity of your code
zhould be linear in the lengths of the a and b. Note that meld is not a
member method of the class extendedChain.

(b) Show that yvour code has linear complexity.

{c) Test the correctness of your method by compiling and then executing the
code. Use your own test data.

Write code for the method chain<T>::meld. This method is similar to the
method meld of Exercise 17. However, a and b as well as the result are of
type chain<T>. You should use the same physical nodes used by the chains
a and b to create the resulting melded chain. Following a call to neld, the
input chains a and b are empty.
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19.

20.

21.

23.
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(a) Write the code for meld. The complexity of your code should be linear
in the lengths of initial chains.

(b) Show that your code has linear complexity.

(c) Test the correctness of your code by compiling and then executing the
code, Use your owh test data.

Let a and b be of type extendedChain. Assume that the elements of a and
b are of a type for which the relational operators <, >, <=, »=, == and I=
are defined. Further, assume that both a and b and are in sorted order (i.e.,
nondecreasing from left to right).

(a) Write a nonmember method merge to create a new sorted linear list ¢
that contains all the elements in a and b.

{(b) What is the complexity of your method?

(c) Test the correctness of vour method by compiling and then executing the
code. Use your own test data.

Redo Exercise 19 but this time write code for the method chain<T>: :merge.
You should use the same nodes as the two input chains use. Following the
merge, the input chains are empty. '

Let ¢ be of type extendedChain.

(a) Write a nonmember method split to create two extended chains a and
b. a contains all elements in odd positions of ¢, and b contains the
remaining elements. Your method should not change the extended chain
c.

(b) What is the complexity of your code?
(e) Test the correctness of your method by compiling and then executing the
code. Use your own test data.

Write code for the method chain<T>::split that is similar to the method
split of Exercise 21. However, the new method split destroys the input
chain #this and uses its nodes to construct the chains a and b.

In a circular shift operation, the elements of a linear list are rotated clockwise
by a given amount. For example, when the elements of L = [l]1 1, 2, 3, 4] are
shifted circularly by 2, the result is L = (2, 3, 4, 0, 1].

(a) Write code for the method extendedChain<T>: :circularShift (i), which
performs a circular shift by 1 positions.

(b) Test your code.
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Let theChain be a chain. Suppose that as we move to the right, we reverse the
direction of the chain pointers; therefore, when we are at node p, the chain is
split into two chains. One is a chain that begins at p and goes to the last node
of theChain. The other begins at the node 1 that precedes p in theChain and
goes back to the first node of theChain. Initially, p = theChain.firstNode
and 1 = NULL.

(a) Draw a chain with six nodes and show the configuration when p is at the
third node and 1 is at the second. .

(b) Develop the class moveLeftAndRightOnAChain. The class constructor
initializes the data members 1 and p. The public methods of move-
LeftAndRightOnAChain are moveRight—move 1 and p one node right,
moeveLeft—move 1 and p one node left, currentElement—return the
element at node p, and previousElement—return the element at node
1.

(e) Test your codes using suitable data.

Use the ideas of Exercise 24 to obtain & new version of the class chain of
Program 6.2. The new version should permit you to move back and forth on
a chain efficiently and to perform the methods of linearList even though
the chain may be split into two chains as described in Exercise 24. For this
version, add the data members 1 and p as in Exercise 24 and add the following
public methods:

(a) reset—>Set p to firstNode and 1 to NULL.

(b) current()—Return the element pointed to by p; throw an exception if
the operation fails.

(c) atEnd—Return true if p is at the last element of the list; return false
otherwise.

(d) atFront—Return true if p is at the first element of the list; return false
otherwise.

(e) moveToNext—Move p and 1 one position right: throw an exception if the
operation fails.

(f) moveToPrevious—Move p and 1 one position back; throw an exception

if the operation fails.

To implement the insert, erase, and index0f methods efficiently, it will be
useful to have another data member currentElement that gives vou the index
of the element to which p points (i.e., is it element 0, 1, 2, etc., of the list?).
Test the correctness of your code using suitable test data.

. Write code for the method chain<T>::insertionSort. which uses insertion

sort (see Program 2.15) to reorder the chain elements into nondecreasing order.
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Do not create new nodes or delete old ones. You may assume that the elemenis
being sorted are of type for which the relational operators (<, >, ete.) are
defined.

(a) What is the worst-case time complexity of your method? How much time
does vour method need if the elements are already in sorted order?

(b) Test the correctness of vour method by compiling and then executing the
code. Use vour own test data.

27. Do Exercise 26 for the following sort methods (see Chapter 2 for descriptions):

(a) Bubhble sort.
(b) Selection sort.
() Count or rank sort.

6.2 CIRCULAR LISTS AND HEADER NODES

Application codes that result from the use of chains can often be simplified and
made to run faster by doing one or both of the following: (1) represent the linear
list as a singly linked circular list (or simply circular list), rather than as a
chain, and (2) add an additional node, called the header node, at the front. A
circular list is obtained from a chain by linking the last node back to the first as
in Figure 6.6(a). Figure 6.6(b) shows a nonempty circular list with a header node,
and Figure 6.6(c) shows an empty circular list with a header node.

The use of header nodes is a very common practice when linked lists are used,
as their presence generally leads to simpler and faster programs. Program 6.13
gives the constructor and index0f methods for the class circularListWithHead-
er, which represents a linear list as a circular list with a header node. The con-
structor creates the configuration for an empty list (Figure 6.6{c)). The complex-
ity of the constructor is ©(1) and that of indexDf is (){1listSize). Although
chain<T>::index0f and circularListWithHeader<T<::index0f have the same
complexity, the code for the latter method is slightly simpler. Since circularList-
WithHeader<T>: :indexDf avoids the check currentNode '= NULL that is made by
chain<T>::index0f on each iteration of its while loop, circularListWithHead-
ar<T>::index0f will run slightly faster than chain<T>::index0f except possibly
when we are looking for an element near the left end of the chain,

EXERCISES

28. Compare the run-time performance of the index0f methods of Programs 6.6
and 6.13. Do this for both worst-case and average run times using linear lists

of size 100; 1000; 10,000; and 100,000. Present your times in tabular form
and in graph form.
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Figure 6.6 Circular linked lists

29. Develop the class circularList. Objects of this type are circular linked
lists, as in Figure 6.6, except the lists do not have a header node. You must
implement all the methods defined for the classes chain (Section 6.1.3) and
extendedChain (Section 6.1.5). What is the time complexity of each method?
Test the correctness of your code.

30. Do Exercise 15 using circular lists instead of chains.

31. Do Exercise 16 using circular lists instead of chains.

32. Do Exercise 17 using circular lists instead of chains.

33. Do Exercise 19 using circular lists instead of chains.

34. Do Exercise 20 using circular lists instead of chains.

35. Do Exercise 21 using circular lists instead of chains.

36. Do Exercise 22 using circular lists instead of chains.

37. Let x point to an arbitrary node in a circular list.

(a) Write a method to remove the element in node x. Hiné: Since we do not
know which node precedes x, it is difficult to remove the node x from the
list; however, to remove the element in x, it is sufficient to replace the
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template<class T>
circularListWithHeader<T>::circularlistWithHeader()
{// Comstructor.
headerNode = new chainNode<T>();
headerNode->next = headerNode;
list8ize = 0;
}

template<class T>

int circularlistWithHeader<T>::index0f(const Tk theElement) const
{// Return index of first occurrence of theElement.

/{ Return -1 if theElement not in list.

f/f Put theElement in header node
headerNode->alement = theElement;

{// search the chain for theElement
chainNode<T>* currentNode = headerNode->next;
int index = 0; // index of currentNode
while (currentNode->element != theElement)

{
J/ move to next node
currentNode = currentNode->next;
index++;

}

// make sure we found matching element
if (currentNode == headerNode)

return -1;
alse

return index;

}

Program 6.13 Searching a circular linked list that has a header node

data field (i.e., element) of x by the data field of the node y that follows
it and then remove the node y. When the element in the last node is
removed, the element in the first node becomes the last element.

(b) What is the complexity of your method?

(¢} Test the correctness of vour method by compiling and then executing the
code. Use your own test data.
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38. Complete the class circularListWithHeader by writing code for the remain-
ing methods of extendedLinearList. What is the time complexity of each
method? Test the correctness of your code.

39. Do Exercises 15 and 16 using circular lists with header nodes instead of chains.
40. Do Exercises 17 and 18 using circular lists with header nodes instead of chains.
41. Do Exercises 19 and 20 using circular lists with header nodes instead of chains.
42. Do Exercises 21 and 22 using circular lists with header nodes instead of chains.

6.3 DOUBLY LINKED LISTS

For most applications of linear lists, the chain and,/or circular list representations
are adequate. However, in some applications it is useful to have a pointer from
each element to both the next and previous elements. A doubly linked list is an
ordered sequence of nodes in which each node has two pointers: next and previous.
The previous pointer points to the node (if any) on the left, and the next pointer
points to the node (if any) on the right. Figure 6.7 shows the doubly linked list
representation of the linear list (1, 2, 3, 4).

B . T T2 kol
NULL: - 2 - 3 . I*!leruu._

firstNode las tﬁnde

Figure 6.7 A doubly linked list

When defining the class doublyLinkedList, we use two data members firstNode
and lastNode that, respectively, point to the left-most and right-most nodes of the
doubly linked list (see Figure 6.7). A doubly linked list with just one element or
node p has firstNode = lastNode = p, whereas firstNode = lastNode = NULL
for an empty doubly linked list. These conventions are similar to those used for
an extended chain (Program 6.12). When a doubly linked list is used, we find
the indexth element by moving from left to right when index < listSize/2 and
from right to left otherwise. Exercise 43 asks you to develop the code for the class
doublyLinkedList.

We can enhance doubly linked lists by adding a header node at the left and for
right end= and by making them circular lists. In a nonempty circular doubly linked
list, firstNode.previous is a pointer to the right-most node (i.e., firstNode.-
previous = lastNode), and lastNode.next is a pointer to the left-most node. So
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we can dispense with one of the variables firstNode and lastNode and simply keep
track of the list using the remaining variable.

EXERCISES

43.

44,

45.
46.
47.
48.
49,

50.
al.
52.
53.
54.
a3.

Develop the class doublyLinkedList. Objects of this type are doubly linked
lists with no header node. You must implement all the methods defined for
the class extendedChain (Section 6.1.5). What is the time complexity of each
method? Test the correctness of your code.

Write a method to join two doubly linked lists into a single doubly linked list.
In a join the elements of the second list are appended to the end of those of
the first list; the join is destructive in the sense that following the join, the
second list becomes empty. Test yvour code.

Do Exercises 15 and 16 using doubly linked lists instead of chains.
Do Exercises 17 and 18 using doubly linked lists instead of chains.
Do Exercises 19 and 20 using doubly linked lists instead of chains.
Do Exercises 21 and 22 using doubly linked lists instead of chains.

Develop the class doublaCireularList. Objects of this type are doubly
linked circular lists with no header node. You must implement all the meth-
ods defined for the class extendedChain (Section 6.1.5). What is the time
complexity of each method? Test the correctness of vour code.

Do Exercises 15 and 16 using doubly linked circular lists.
Do Exercise 44 using doubly linked circular lists.

Do Exercises 17 and 18 using doubly linked circular lists.
Do Exercises 19 and 20 using doubly linked circular lists.
Do Exercises 21 and 22 using doubly linked circular lists.

Do Exercise 49 using a header node for the doubly linked circular list. Com-
pare the run time of vour class with that of an equivalent class that uses
the STL container class 1ist much in the same way that vectorList (Pro-
gram 5.12) uses a vector to implement an array linear list. Perform an exper-
iment similar to that done in Section 6.1.6.

. Do Exercises 15 and 16 using doubly linked circular lists with header nodes.
. Do Exercise 44 using doubly linked circular lists with header nodes.

Do Exercises 17 and 18 using doubly linked circular lists with header nodes.
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Do Exercises 19 and 20 using doubly linked circular lists with header nodes.
Do Exercises 21 and 22 using doubly linked circular lists with header nodes.

For the doubly linked circular list with header node class of Exercise 55, de-
velop a bidirectional iterator. Test the correctness of your code using suitable
test data.

GLOSSARY OF LINKED LIST TERMS

This chapter introduced the following important concepts:

L ]

6.5

chain. A chain is a singly linked list of nodes. Let x be a chain. x is empty
iff x.firstNode = NULL. If x is not empty, then x.firstNode points to the
first node in the chain. The first node links to the second; the second to the
third; and so on. The link (i.e., next) field of the last node is NULL.

Singly linked circular list. This type of list differs from a chain only in that
now the last node links back to the first. When the circular list x is empty,
x.firstNode = NULL. e

Header node. A header node is an additional node introduced into a linked
list. The use of this additional node generally results in simpler programs, as
we can often avoid treating the empty list as a special case. When a header
node is used, every list (including the empty list) contains at least one node.
(i.e., the header node).

Doubly linked list. A doubly linked list consists of nodes ordered from left to
right. Nodes are linked from left to right using a pointer field (say) next. The
right-most node has this field set to NULL. Nodes are also linked from right to
left using a pointer field (say) previous. The left-most node has this field set
to NULL. -

Circular doubly linked list. This type of list differs from a doubly linked list
only in that now the left-most node uses its previeous field to point to the
right-most node and the right-most node uses its next field to point to the
left-most node.

APPLICATIONS

6.5.1 Bin Sort

Suppose that a chain is used to maintain a list of students in a class. Each node has
fields for the student’s name, Social Security number, score on each assignment and
test, and weighted aggregate score of all assignments and tests. Assume that all
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scores are integers in the range 0 through 100. We are to sort the nodes in order of
the aggregate score. This sort takes O(n?) time (n is the number of students in the
class) if we use one of the sort methods of Chapter 2. A faster way to accomplish
the sort is to use bin sort. In a bin sort the nodes are placed into bins, each bin
containing nodes with the same score. Then we combine the bins to create a sorted
chain.

Figure 6.8(a) shows a sample chain with 10 nodes. This figure shows only the
name and score fields of each node. The first field is the name, and the second is
the score. For simplicity, we assume that each name is a single character and that
the scores are in the range 0 through 5.

A]2}->B[4|>C[5|->D 4| ={E[3} =F 0} =G[4}-={H 3} ={T[4} =] ]3]

(a) Input chain

(=] [~
(=] [S] [a] [

| ® E
bin0 binl bin2 bin3 bind bin5
(b) Nodes in bins

— — e, e

F0}-A|2}-=E 3|-={H[3 =] [3|-=B[4-=D[4}=G 4 .= [[4|=C]5
(c) Sorted chain

Fiaur;_ 6.8 Bin sort example

We will need six bins, one for each of the possible score values 0 through 5.
Figure 6.8(b) shows the 10 nodes distributed into bins by score. We can obtain
this distribution by moving down the chain and examining the nodes one at a time.
When a node is examined, it is placed into the bin that corresponds to its score.
So the first node is placed into bin 2, the second into bin 4, and so forth. Now if
we collect the nodes from the bins, beginning with those in bin 0, we will have a
sorted list as shown in Figure 6.8(c).

To implement the bins, we note that each bin is a linear list of nodes. The
number of nodes in a bin may vary from 0 to as many as n. Before we begin the
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node distribution step, all bins are empty.

For bin sort we need to be able to (1) move down the input chain deleting nodes
from this chain and adding them to the list for the appropriate bin and (2) collect
and concatenate lists from the bins into a single sorted chain. If the input chain is of
type chain (Program 6.2), we can do (1) by successively deleting the first element
from the chain and inserting it as the first element in the appropriate bin list; we
can do (2) by deleting the elements from the bins (beginning with the last bin) and
inserting them at the front of an initially empty chain.

Program 6.14 gives a possible struct definition for student records. Our in-
tent is to use chains of type chain<studentRecord>. In a realistic situation,
studentRecord would contain several additional data members. The operators
= and << have been overloaded, as these operators are used by the class chain.

struct studentRecord

{
int score;
Btring#* name;
int operatoer !=(studentRecord x) const
{return (score != x.score):}
};

ostreamk operator<<(ostreamk out, const studentHecordk x)
{out << x.score << ' ' << *x.name << endl; return out;}

Program 6.14 Possible struct for bin sort chain elements

An alternative to overloading != is to provide a conversion from the type stu-
dentRecord to a numeric type that can be used for comparison and other purposes.
For example, we can overload the type conversion operator int() as shown in
Program 6.15. Operators such as the arithmetic and relational operators +, /, <=
and != that are not explicitly defined on the type studentRecord now can compleie
successfully by first performing a conversion to the type int. This solution is
somewhat more general than our earlier one in which we explicitly overloaded the
operator !=, as now the code works even when the class chain includes methods
that perform other operations on thig=-»element.

We can combine both overloading approaches so that type conversion to int
occurs only when the operator will fail without the type conversion. So we may, for
example, use the definition of Program 6.16. Type conversion to int now will take
place only for operators other than '= and <<,

Program 6.17 gives the code for the bin sort method. This code uses a chain for
each bin. Although we could have represented each bin as an array list, we have
used a chain because we plan to develop another bin sort method that is a member
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gtruct studentRecord

{
int score;
string* name,
operator int() comst {return score;}
// type conversion from studentRecord to int
};

ostreamé operator<<(ostreamk out, const studentRecordk x)
{out << x.score << ' ' €< sx.name << endl; return out;}

Program 6.15 An alternative definition of studentRecord

gtruct studentRecord

{
int score;
string* name,
int operator !=(studentRecord x) const
{return (score != x.score || name != x.name):}
operator int() comst {returm score;}
¥

ostreamk operator<<(ostreamk ocut, const studentRecordk x)
{out << x.score << ' ! << =x.name << endl; return out;}

Program 6.16 Yet another definition of studentRecord

of chain. In this new method, it is more efficient to use chains rather than array
lists because the input and output for the sort is a chain.

For the complexity analvsis, we first note that binSort (Program 6.17) could
terminate prematurely because of an exception. For example, the statement

bin = new chain<studentRecord> [range + 1];

could fail for lack of sufficient memory. If this statement fails, the method terminates
in B(1) time. Assume that no exception occurs while the method executes. Now
the first for loop takes ©(range) time. Each get, insert and erase performed in the
remaining two for loops takes 9(1) time. Therefore, the complexity of the second
for loop is ©(n) where n is the size of the input chain, the complexity of the third
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void binSort(chain<studentRecord>& theChain, int range)
{// Sort by score.

// initialize the bins
chain<studentRecord> #*bin;
bin = new chain<studentRecord- [range + 1];

// distribute student records from theChain to bins
int number(OfElements = theChain.size();
for (int 1 = 1; i <= number0fElements; 1i++)
{
studentHecord x = theChain.get(0);
theChain.erase(0);
bin[x.score] .insert(0,x);
3 :

// collect elements from bins
for (int j = range; j >= 0; j--)
while (!bin[j].empty())
{
studentRecord x = bin[j].get(0};
bin[j] .erase(0);
theChain.insert(0,x);
}

delete [] binm;
}

Program 6.17 Bin sort using the methods of chain

for loop is ©(n+range), and the overall complexity of binSort {when no exception
is thrown) is ©(n+range). Accounting for the possibility of an exception or error,
the overall complexity is O(n+range).

Bin Sort as a Method of a chain

Efficiency-conscious readers have probably noticed that we can avoid much of the
work done by the method binSert (Program 6.17) by developing binSort as a
method of chain., This approach enables us to avoid the cails to new made by the
invocations of insert in Program 6.17; the calls to delete made by the invocations
of erase also may be aviided. Further, by keeping track of the front and end of each
bin chain, we can concatenate the bin chains in the “collection phase,” as shown in
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Program 6.18.

The chain for each bin he,g;ms with the node at the bottom of t.he hln and goes
to the node at the top of the bin. Each chain has two pointers, bottom and top,
to it. bottom[theBin] points to the node at the bottom of bin theBin, while
top(theBin] points to the node at the top of this bin. The initial configuration
of empty bins is represented by bottom[theBin] = NULL for all bins. As chain
nodes are examined, they are added to the top of the required bin (first for loop of
Program 6.18). The second for loop examines the bins beginning with bin 0 and
concatenates the chains in the nonempty bins to form the sorted chain.

For the time complexity of binSort, assume that no exception is thrown. The
creation and initialization of the arrays bottom and top as well as the second
for loop take ©(range) time, and the first for loop takes ©(n) time. Allowing
for the possibility that an exception or error is thrown, the overall complexity is
O{n+range).

Notice that binSert (Program 6.18) dn-m not change the relative order of ele-
ments that have the same score. For example, suppose that E, G, and H all have
the score 3 and that E comes before G, which comes before H in the input chain.
In the sorted chain, too, E comes before GG, which comes before H. A sort method
that preserves the relative order of elements with the same value is called a stable
sort. -

6.5.2 Radix Sort

The bin sort method of Section 6.5.1 may be extended to sort, in ©(n) time, n
integers in the range 0 through n® — 1 where ¢ > 0 is an integer constant. Notice
that if we use binSort with range = n®, the sort complexity will be 8(n + range)
= B(n®). Instead of using binSort directly on the numbers to be sorted, we will
decompose these numbers using some radix r. For example, the number 928 decom-
poses into the digits 9, 2, and 8 using the radix 10 (i.e., 928 = 9+10% +2«10* +8+10°),
The most significant digit is 9, and the least significant digit is 8; the ones digit is
8, the tens digit is 2, and the hundreds digit is 9. The number 3725 has the radix
10 decomposition 3, 7, 2, and 5; using the radix 60 instead, the decomposition is
1,2, and 5 (i.e., (3725)1p = (125)gp). In a radix sort we decompose the numbers
into digits using some radix r and then sort by digits.

Example 6.1 Suppose that we are sorting 10 integers in the range 0 through 999,
If we use binSort with range = 1000, then the bin initialization takes 1000 steps,
the node distribution takes 10 steps, and collecting from the bins takes 1000 steps.
The total step count is 2010. Another approach is

1. Use binSort to sort the 10 numbers by their least significant digit (i.e., the
ones digit). Since each digit ranges from 0 through 9, we have range = 10.
Figure 6.9(a) shows a sample 10-number chain, and F1g'ure 6.9(b) shows the
chain sorted by least significant digit.
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template<class T>

void chain<T>::binSort(int range)

{// Sort the nodes in the chain.
f/ create and initialize the bins
chainNode<T> #=*bottom, **top;
bottom = new chainNode<T>s [range + 1];
top = new chainNode<T>* [range + 1];
for (int b = 0; b <= range; b++)

bottom[b] = NULL;

// distribute to bins
for (; firstNode != NULL; firstNode = firstNode->next)
{// add firstNode to proper bin
int theBin = firstNode->element; // type conversion to int
if (bottom[theBin] == NULL) // bin is empty
bottom[theBin] = top[theBin] = firstNode;
else
{// bin not empty
top[theBin] ->next = firstNode;
top[theBin] = firstiNode;
}
}

// collect from bins into sorted chain
chainNode<T> #y = NULL;
for (int theBin = 0; theBin <= range; theBin++)
if (bottom[theBin] != NULL)
{// bin not empty
if (y == NULL) // first nonempty bin
firstNode = bottom[theBin];
else // not first nonempty bin
y->next = bottom[theBin];
y = top[theBin];
1
if (y != NULL)
y->next = NULL;

delete [] bottom;
delete [] top;
}

Program 6.18 Bin sort as a method of chain
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2. Use binSort to sort the chain from (1) by the next digit (i.e., the tens digit).
Again, range = 10. Since bin sort is a stable sort, elements that have the
same second digit remain sorted by the least significant digit. As a result, the
chain is now sorted by the two least significant digits. Figure 6.9(c) shows our
chain following this sort.

3. Use binSert to sort the chain from (2) by the next digit (1.e., the hundreds
digit). (For numbers smaller than 100, the hundreds digit is 0.] Since the
sort on the hundreds digit is stable, elements with the same hundreds digit
remain sorted on the remaining two digits. As a result, the chain is sorted on
the three least significant digits. Figure 6.9(d) shows the chain following this
=OTL.

(216}-={521}-={425-—={116}={ 91 | ={515} ={124} = 34 | = 9% |=
(a) Input chain

S21 |2 91 |- 124}/ 34 |-=] 24 |-={425}-={515|-={216 =116} 96

(b) Chain after sorting on least significant digit

S15}-={Z16]-={T16}-={321 |-+ 124 - 24 |-={425 }-={ 33 |-={ 91 }-={ 96
(c) Chain after sorting on second-least significant digit

24 |={ 34 | ={ 91 |-={ 96 |- ={116]|-={124] =216 =425 = 515|-={ 521

(d) Chain after sorting on most significant digit

Figure 6.9 Radix sort withr = 10 and d = 3

The preceding sorting scheme describes a radix 10 sort. The numbers to be
sorted are decomposed into their decimal {or base 10) digits, and the numbers are
sorted on these digits. Since each number has at most three digits, three sort passes
are made. Each sort pass uses a bin sort with range = 10. In each of these three
bin sorts, we spend 10 steps in initializing the bins, 10 in distributing the records,
and 10 i bin collection. The total number of steps is 90, which is less than when
the 10 nurubers are sorted using a single bin sort with range = 1000. The single
bin sort scheme is really a radix sort with r = 1000, ]
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Example 6.2 Suppose that 1000 integers in the range 0 through 10° — 1 are to
be sorted. Using a radix of r = 10° corresponds to using binSert directly on
the numbers and takes 10® steps to initialize the bins, 1000 steps to distribute the
numbers into bins, and another 10® to collect from the bins. The total number of
steps is therefore 2,001,000. With r = 1000, the sort proceeds as follows:

1. Sort using the three least significant decimal digits of each number and use
range = 1000. '

2. Sort the result of (1) using the next three decimal digits of each number.

Each of the preceding sorts takes 3000 steps, so the sort is accomplished in a
total of 6000 steps. When r = 100 is used. three bin sorts on pairs of decimal digits
are performed. Each of these sorts takes 1200 steps, and the total number of steps
needed for the sort becomes 3600. If we use r = 10, six bin sorts will be done, one
on each decimal digit. The total number of steps will be 6(10 4 1000 + 10} = 6120,
For our example we expect radix sort with r = 100 to be most efficient. u

We can decompose a number into digits by using the division and mod operators.
If we are performing a radix 10 decomposition, then the radix 10 digits may be
computed (from least significant to most significant) using the following expressions:

r9%10; (x%100),/10; (x%1000)/104;

When r = 100, these expressions become

£%100; (2%10000)/100; (z%1000000)/10000;

For a general radix r, the expressions are

I%r: {I%TE};";‘; {Iﬁr:‘ﬁ.frz: .

When we use the radix r = n to decompose n integers in the range 0 through
n® — 1, the number of digits is c. So the n numbers can be sorted using ¢ bin sort
passes with range = n. The time needed for the sort is ©(cn) = B(n), as cis a
constant.

6.5.3 Convex Hull

A polygon is a closed planar figure with three or more straight edges. The polygon
of Figure 6.10(a) has six edges, and that of Figure 6.10(b) has eight. A polygon
contains all points that are either on its edges or inside the region it encloses. A
polvgon is convex iff all line segments that join two points on or in the polygon
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include no point that is outside the polygon. The polygon of Figure 6.10(a) is
convex, while that of Figure 6.10(b) is not. Figure 6.10(b) shows two line segments
(broken lines) whose endpoints are on or in the polygon. Both of these segments
contain points that are outside the polygon.

(a) Convex polygon (b) Nonconvex polygon

Figure 6.10 Convex and nonconvex polygons

The convex hull of a set S of points in the plane is the smallest convex polygon
that contains all these points. The vertices (i.e., corners) of this polygon are the
extreme points of 5. Figure 6.11 shows 13 points in the plane. The convex hull is
the polygon defined by the solid lines. The extreme points have been identified by
circles. When all points of S lie on a straight line (i.e., they are collinear), we have
a degenerate case for which the convex hull is defined to be the smallest straight
line that includes all the points.

The problem of finding the conver hull of a set of points in the plane is a funda-
mental problem in compuiational geometry. The solutions to several other problems
in computational geometry (e.g., find the smallest rectangle that encloses a set of
points in the plane) require the computation of the conver hull. In addition, the
convex hull finds application in image processing and statistics.

Suppose we pick a point X in the interior of the convex hull of § and draw a
vertical line downwards from X (Figure 6.12(a)). Exercise 67 describes how we can
select the point X. Let a; be the (polar) angle made by this line and the line from
X to the ith point of S. a; iz measured by going counterclockwise from a point on
the vertical line to the line from X to the ith point. Figure 6.12(a) shows a;. Now
let us arrange the points of S into nondecreasing order of a;. Points with the same
polar angle are ordered by distance from X. In Figure 6.12(a) the points have been
numbered 1 through 13 in the stated order.

A counterclockwise sweep of the vertical line downwards from X encounters
the extreme points of S in order of the polar angle a;. If u, v, and w are three
consecutive extreme points in counterclockwise order, then the counterclockwise
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e ... Planar point
O ... Extreme point

Figure 6.11 Convex hull of planar points
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Figure 6.12 Identifving extreme points

angle made by the line segments from u to v and w to v is more than 180 degrees.
(Figure 6.12(b) shows the counterclockwise angle made by points 8, 11, and 12.)
When the counterclockwise angle made by three consecutive points in the polar
order is less than or equal to 180 degrees, then the second of these points is not
an extreme point. Notice that when the angle made by u, v, and w is less than
180 degrees, if we walk from u to v to w, we make a right turn at v. When we
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walk counterclockwise around a convex polvgon, all our turns are left turns. The
observations made so far result in the algorithm of Figure 6.13, which finds the
extreme points and convex hull of 5.

Step 1: [Handle degenerate cases)
If § has fewer than three points, return 5.
If all points lie on a straight line, compute the endpoints of the smallest
line that includes all points of § and return these two points.

Step 2: [Sort by polar angle]
Find a point X that is inside the convex hull of S,
Sort S by polar angle and within polar angle by distance from X.
Create a doubly linked circular list of points using the above order.
Let right link to the next point in the order and left link to the previous

point.
Step 3: [Eliminate nonextreme points|
Let p be the point that has the smallest y-coordinate (break a tie, if any,

by selecting the one with largest r-coordinate).
for (x = p, rx = point to the right of x; x != rx; )

{
rrx = point to the right of rx;
if (angle formed by x, rx, and rrx is < 180 degrees)
{
delete rx from the list;
rx = x; x = point on left of rx;
}
else {x = rx; rx = rrx;}
}

Figure 6.13 Pseudocode to find the convex hull of §

Step 1 of the algorithm handles the degenerate cases when the number of points
in §is 0 or 1, as well as when all points of § are collinear. This step can be done
in O(n) time where n is the number of points in 5. For the collinearity test, we
select any two points and compute the equation of the line through them. Next we
examine the remaining n — 2 points and determine whether they lie on this line.
During this process we can also determine the endpoints of the shortest line that
includes all points in case they are collinear.

In step 2 the points are ordered by polar angle and collected into a doubly linked
list because in step 3 we will be eliminating points that are not extreme points and
also moving backwards on the list. Both operations are straightforward in a douhly
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linked list. Exercise 67 asks you to explore the use of a singly linked list. Because
of the sort, this step takes O(n®) time if we use any of the sorts from Chapter 2.
In Chapters 9 and 14, we will see that we can sort in O(nlogn) time. As a result,
the complexity of step 2 is counted as O(nlogn).

In step 3 we repeatedly examine sets of three consecutive points in counter-
clockwise order and check whether the angle they make is less than or equal to 180
degrees. If it is, then the middle point rx is not an extreme point and is eliminated.
If the angle exceeds 180 degrees, rx may or may not be an extreme point and we
advance x to the next vertex rx. When the for loop is exited, every point x on the
doubly linked circular list satisfies the property that the angle made by x, rx, and
rrx exceeds 180 degrees. Hence all of these points are extreme points. By going
around the list using the right fields, we traverse the boundary of the convex hull
in counterclockwise order. We begin at the point with lowest y, as this point must
be in the convex hull.

For the complexity of step 3, we note that following each angle check in the for
loop either (1) a vertex rx is eliminated and x is moved back one node on the list or
(2) x is moved forward on the list. Since the number of eliminated vertices is O(n),
x can be moved back at most a total of O(n) nodes. Hence we can be in case (2)
only ((n) times. So the for loop is iterated (n) times. Since an angle check takes
(1) time, the complexity of step 3 is O(n). As a result, we can find the convex
hull of n points in O(nlogn) time.

6.5.4 Union-Find Problem
Equivalence Classes

Suppose we have a set I/ = 1, 2, .-, n of n elements and a set R = (i, 7).
(i2.32), -+ (ip.dr) of r relations. The relation R is an equivalence relation iff
the following conditions are true:

e (a,a) € K for all a € U (the relation is reflexive).
e (a,b) € Riff (b,a) € R (the relation is symmetric).
¢ (a,b) € R and (b,e) € R imply that (a.c) € R (the relation is transitive).

Often when we specify an equivalence relation R, we omit some of the pairs in
R. The omitted pairs may be obtained by applving the reflexive, symmetric, and
transitive properties of an equivalence relation.

Example 6.3 Suppose n = 14 and R = {(1,11), (7,11}, (2,12), (12,8), (11.12),
(3,13), (4.13), (13.14), (14.9), (5,14), (6,10)}. We have omitted all pairs of the form
(@, a) because these pairs are implied by the reflexive property. Similarly, we have
omit*cd all symmetric pairs. Since (1,11) € R, the symmetric property requires
(11.1) € R. Other omitted pairs are obtained by applyving the transitive property.
For example, (7,11) and (11,12) imply (7.12). =
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Two elements a and b are equivalent if (a,b) € K. An equivalence class is
defined to be a maximal set of equivalent elements. Marimal means that no element
outside the class is equivalent to an element in the class. Since it is not possible
for an element to be in more than one equivalence class, an equivalence relation
partitions the universe [ into disjoint classes.

Example 6.4 Consider the equivalence relation of Example 6.3. Since elements 1
and 11, and 11 and 12 are equivalent, elements 1, 11, and 12 are equivalent. They
are therefore in the same class. These three elements do not, however, form an
equivalence class, as they are equivalent to other elements (e.g., 7). So {1, 11, 12}
is not a maximal set of equivalent elements. The set {1, 2, 7, 8, 11, 12} is an
equivalence class. The relation R defines two other equivalence classes: {3, 4, 5, 9,
13, 14} and {6, 10}. Notice that the three equivalence classes are disjoint. |

In the offline equivalence class problem, we are given n and R and we need
to determine the equivalence classes. From the definition of an equivalence class, it
follows that each element is in exactly one equivalence class. In the online equiv-
alence class problem, we begin with n elements, each in a separate equivalence
class. We are to process a sequence of the operations: (1) combine(a,b) --- com-
bines the equivalence classes that contain elements a and b into a single class and (2)
find (theElement) --- determines the class that currently contains element the-
Element. The purpose of the find operation is to determine whether two elements
are in the same class. Hence the find operation is to be implemented to return the
same answer for elements in the same class and different answers for elements in -
different classes. '

We can write the combine operation in terms of two finds and a unite (or

union) that actually takes two different classes and makes one. So combine(a,b)
is equivalent to

classh = find(a):

classB = find(b);

if (classA != classB)
unite{classA, classB);

Notice that with the find and union operations, we can add new relations to . For
instance, to add the relation (a, b), we determine whether a and b are already in the
same class. If they are, then the new relation is redundant. If they aren't, then we
perform a unite on the two classes that contain a and b.

In this section we are concerned primarily with the online equivalence problem,
which is more commonly known as the union-find problem. Although the solutions
developed in this section are rather simple, they are not the most efficient. Faster
solutions are developed in Section 11.9.2. A fast solution for the offline equivalence
problem is developed in Section 8.5.5.
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Applications

The following examples show how a machine-scheduling problem and a circuit-
wiring problem may be modeled as online equivalence class problems. A version of
the circuit wiring problem may be modeled as an offline equivalence class problem.

Example 6.5 A certain factory has a single machine that is to perform n tasks.
Task ¢ has an integer release time r; and an integer deadline d;. The completion
of each task requires one unit of time on this machine. A feasible schedule is an
assignment of tasks to time slots on the machine such that task i is assigned to a
time slot between its release time and deadline and no slot has more than one task
assigned to it.

Consider the following four tasks:

Task A B C D
Helease time 0 0O 1 2
Deadline 4 4 2 3

Tasks A and B are released at time 0, task ' is released at time 1, and task D
is released at time 2. The following task-to-slot assignment is a feasible schedule:
do task A from 0 to 1; task C from 1 to 2; task D from 2 to 3; and task B from 3
to 4 (see Figure 6.14).

Figure 6.14 A schedule for four tasks

An intuitively appealing method to construct a schedule is
1. Sort the tasks into noninereasing order of release time.

2. Consider the tasks in this nonincreasing order. For each task determine the
free slot nearest to, but not after, its deadline. If this free slot is before the

task’s release time, fail. Otherwise, assign the task to this slot.

Exercise 74 asks you to prove that the strategy just described fails to find a
feasible schedule only when such a schedule does not exist.

The online equivalence class problem can be used to implement step (2). For
this stcp, let d denote the latest deadline of any task. The usable time slots are of
the form “from i — 1 to i" where 1 < i < d. We will refer to these usable slots as
slots 1 through d. For any slot a, define near{a) as the largest ¢ such that i < a
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and slot i is free. If no such i exists, define near(a) = near(0) = 0. Two slots a
and b are in the same equivalence class iff near(a) = near(b).

Prior to the scheduling of any task, near(a) = a for all slots, and each slot is
in a separate equivalence class. When slot a is assigned a task in step (2),near
changes for all slots b with near(b) = a. For these slots the new value of near is
near(a — 1). Hence when slot a is assigned a task, we need to perform a unite
on the equivalence classes that currently contain slots a and a — 1. If with each
equivalence class e we retain, in nearest|e], the value of near of its members, then
near(a) is given by nearest[find(a)]. (Assume that the equivalence class name is
taken to be whatever the find operation returns. ) |

Example 6.6 [From Wires to Nets| An electronic circuit consists of components,
pins, and wires. Figure 6.15 shows a circuit with the three components A, B, and C.
Each wire connects a pair of pins. Two pins a and b are electrically equivalent
iff they are either connected by a wire or there is a sequence i, i3, ... i} of pins
such that a. 1y; 11, f2; 92, 137 -} ik—1, tk; and ig, b are all connected by wires. A
net is a maximal set of electrically equivalent pins. Marimal means that no pin
outside the net is electrically equivalent to a pin in the net.

\;J U IHJ | |;J T

pins

wires

Figure 6.15 A three-chip circuit on a printed circuit board

Consider the circuit shown in Figure 6.16. In this figure only the pins and wires
have been shown. The 14 pins are numbered 1 through 14. Each wire may be
described by the two pins that it connects. For instance, the wire connecting pins
1 and 11 is described by the pair (1,11), which is equivalent to the pair (11,1). The
set of wires is {(1,11), (7,11), (2,12), (12,8), (11,12}, (3,13), (4,13), (13,14), (14,9),
(5,14), (6,10)}. The nets are {1, 2, 7, 8, 11, 12}, {3,-4, 5, 9, 13, 14} and {6, 10}.

In the offline net finding problem. we are given the pins and wires and are
to determine the nets. This problem is modeled by the offline equivalence problem
with each pin being a member of [/ and each wire a member of R.
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Figure 6.16 Circuit with pins and wires shown

In the online version we begin with a coliection of pins and no wires and are to
perform a sequence of operations of the form (1) add a wire to connect pins a and
b and (2) find the net that contains pin a. The purpose of the find operation is to
determine whether two pins are in the same net or in different nets. This version of
the net problem may be modeled by the online equivalence class problem. Initially,
there are no wires, and we have H = ¢. The net find operation corresponds to
the equivalence class find operation and adding a new wire (a, b) corresponds to
combine(a,b), which is equivalent to unite(find(a), find{b)). |

First Union-Find Solution

A simple solution to the online equivalence class problem is to use an array equiv-
Class and let equivClass[i] be the class that currently contains element i. The
methods to initialize, union, and find take the form given in Program 6.19. n is
the number of elements. n and equivClass are global variables. To unite two
different classes, we arbitrarily pick one of these classes and change the equivClass
values of all elements in this class to correspond to the equivClass values of the
elements of the other class. Note that the inputs to unite are equivClass values
(i.e., the resuits of a find operation) and not eiement indexes. Even though unite
works correctly when a redundant union {i.e., one in which classh = classB), we
make the assumption that redundant unions are not performed. The initialize
and unite methods have complexity ©(n) (we assume that nev does not throw
an exception when invokea by initizlize), and the complexity of find is ©(1).
From Examples 6.5 and 6.6, we >oe that in any application of these methods, we
will perform one initialization. u unites, and f finds. The time needed for all of
these operarions is O(nrusn+ ) = S{usn+f).
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int *equivClass, // equivalence class array
n; // number of elements

void initialize(int numberOfElements)
{// Initialize numberOfElements classes with one element each.
n = number(fElements;
equivClass = new int [n + 1];
for (int e = 1; e <= n; e++)
equivClass[e] = e;

}

void unite(int classA, int classB)
{// Unite the classes classA and classB.
/{ Assume classA !'= classB
for (int k = 1; k <= n; k++)
if (equivClass(k] == classB)
equivClass (k] = classA;
¥

int find{int theElement)
{// Find the class that contains theElement.
return equivClass[theElement] ;

}

Program 6.19 Union-find solution using arrays

Second Union-Find Solution

The time complexity of the union operation can be reduced by keeping a chain
for each equivalence class because now we can find all elements in a given equiv-
alence class by going down the chain for that class, rather than by examining all
equivClass values. In fact, if each equivalence class knows its size, we can choose
to change the equivClass values of the smaller equivalence class and perform the
union operation even faster. By using integer pointers (also known as simulated
pointers), we get quick access to the node that represents element e. We adopt the
following conventions:

o equivNode is a struct with data members equivClass, size, and next. Pro-
gram 6.20 gives the code for this struct.

e An array node[1:n] of type equivNode is used to represent the n elements
together with the equivalence class chains.
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struct equivNode

{
int equivClass, // element class identifier
size, // number of elements in class
next; // pointer to next element in class
} -

Program 6.20 The struct equivNoede

¢ node([e] .equivClass is both the value to be returned by find(e) and an inte-

ger pointer to the first node in the chain for the equivalence class node [e] . equiv-

Class.

* node[e] .size is defined only if e is the first node on a chain. In this case
node [e] .size is the number of nodes on the chain that begins at node [e].

¢ node[e] .next gives the next node on the chain that contains node e. Since
the nodes in use are numbered 1 through n, a NULL pointer can be simulated
by the integer 0.

Program 6.21 gives the new code for initialize, unite, and find.

Since an equivalence class is of size O(n), the complexity of the union operation is
O(n) when chains are used. The complexity of the initialization and find operations
remain O(n) and ©(1), respectively. To determine the complexity of performing
one initialization and a sequence of u unions and f finds, we will use the following
lemma. :

Lemma 6.1 If we start with n cluwes . i wuce one element each and perform u
nonredundant unions, then

1. No class has more than u + 1 elements.
2. At least n — 2u singleton classes remair..

J u<n.

Proof See Exercise T2. - |

The complexity of the initialize and f finds is O(n+f). For the u nonredundant
unions, we note that the cost of each union is ©(size of smaller class). During the
union elements are moved from the smaller class to the bigger one. The complexity
of a single union is O{number of elements moved), and the complexity of all u unions
is O(total number of element moves). Following a union operation, each element
that is moved to a new class ends up in a class whose size is at least twice that of the
class the element was in before the union operation (because elements move from an
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equivNode *node; // array of nodes
int n; // number of elements

void initialize(int number0fElements)

{// Initialize numberOfElements classes with one element each.
n = number(f{Elements;
node = new equivNede [n + 1];

for (int & = 1; & <= n; e++)

{
node[e] .equivClass = e;
node[e] .next = Q0; // no next node on chain
node[e] .gize = 1:

}

1

vold unite(int classA, int classB)

{// Unite the classes classA and classB.

// Assume classA '= classB

/f classh and classB are first elements in their chains

// make classA smpaller class
if (nodelclassA].size > node[classB).size)
swap(classA, classB);

// change equivClass values of smaller class

int k;

for (k = classA; node[k] .next '= 0; k = node(k] .next)
node [k] .equivClass = classB;

node (k] .equivClass = classB; // last node in chain

// insert chain classA after first node in chain classB
// and update new chain size

node [classB] .size += node[classA) .size;

node [k] .next = node[classB].next;

node [classB] .next = classd;

¥

int find(int theElement)
{// Find the class that contains theElement.

return node [theElement] .equivClass;
}

Program 6.21 Union-Hud solution w chains aned integer polnters
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initially smaller class into an initially bigger class). Therefore, since at the end no
class has more than u + 1 elements { Lemma 6.1(1}), no element can be moved more
than log,(u + 1) times during the u unions. Furthermore, from Lemma 6.1(2), at
most 2u elements can move (because the elements left in singleton classes have never
moved). So the total number of element moves cannot exceed 2ulog,(u+1). As a
result, the time needed to perform the u unions is O{ulog u). The complexity of the
initialization and the sequence of u unions and f finds is therefore O{n+u log utf).

EXERCISES

62. Is Program 6.17 a stable sort program?

id. Compare the run times of the bin sort methods given in Programs 6.17 and
6.18. Use n = 10,000; 50,000; and 100,000. What can you say about the
overhead introduced by using the class chain?

fi4. In this exercise we shall develop a method to sort a chain using the radix sort
technique.

fa) Write code for the method chain<T>::radixSort(r, d), which sorts a
chain into ascending order using the radix sort technique. The radix r
and number of digits d in the radix r decomposition are inputs to your
method. You my assume that a type conversion from the data type T to
int is defined. The complexity of vour method should be O{d(r + n)).
Show that this is the case. .

(b) Test the correctness of your method by compiling and executing it with
your own test data.

(c) Compare the performance of your method with one that performs a
linked insertion sort. Do so for n = 100; 1000; and 10,000; r = 10:
and d = 3.

65. (a) Write a method to sort n integers in the range 0 through n® — 1 using the

radix sort method and r = n. The complexity of your method should be
O(en). Show that this is the case. Assume the integers are in a chain;
the element type is int.

(b) Test the correctness of vour method.

(¢} Measure the run time of your method for n = 10; 100; 1000; and 10,000
and ¢ = 2. Present your results in tabular form and in graph form.

66. You are given a pile of n card decks. Each card has three fields: deck number,
suit, and face value, Since each deck has at most 52 cards (some cards may
be missing from a deck), the pile has at most 52n cards. You may assume
there is at least one card from each deck. So the number of cards in the pile

is at least n.
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(a) Explain how to sort this pile by deck number, within deck number by
suit, and within suit by face value. You should make three bin sort passes
over the pile to accomplish the sort.

(b) Write a program to input n and a card pile and to output the sorted pile.
You should represent the card pile as a chain. Each card has the fields:
deck, suit, face, and link. The complexity of your program should be
((n). Show that this is the case. '

(c) Test the correctness of your program.
67. [Convex Hull]

(a) Let u, v, and w be three points in the plane. Assume that they are not
collinear. Write a method to find a point inside the triangle formed by
these three points.

(b) Let § be a set of points in the plane. Write a method to determine
whether all the points are collinear. In case they are, your method should
compute the endpoints of the shortest line that includes all the points, In
case the points are not collinear, then vou should find three noncollinear
points from the given point set. You can use these three points together
with your method for part (a) to determine a point inside the convex
hull of 5. The complexity of your method should be O(n). Show that
this is the case.

(¢) Use the codes of (a) and (b) to refine Figure 6.13 into a Java program that
inputs S5 and outputs the convex hull of §. During input the points may
be collected into a doubly linked list that is later sorted by polar angle.
For the sort step vou may use one of the sort methods of Chapter 2, or
if vou have access to an O{nlogn) sort, you may use it.

(d) Write additional convex hull programs that replace the use of a doubly
linked list with (i) a chain and (ii) an array linear list.

(e) Test the correctness of your convex hull programs.

68. Do Exercise 67 using a singly linked list. Use the ideas of Exercise 24 to ensure
that the for loop of step 3 of Figure 6.13 has complexity O(n).

i, Develop a representation for integers that is suitable for performing arithmetic
on arbitrarily large integers. The arithmetic is to be performed with no loss
of accuracy. Write Java methods to input and output large integers and to
perform the arithmetic operations add. subtract. multiply. and divide. The
method for division will return two integers: the quotient and the remainder.

70. [Polynomials] A univariate polynomial of degree d has the form

l:‘..-:.I‘d - {'d,.|.!'d_! - l:'..1|_-;>.rd_."r + a0y
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where ¢g # (. The ¢;s are the coefficients, and d. d - 1, -+ - are the exponents.
By definition d is a nonnegative integer. For this exercise you may assume
that the coefficients are also integers. Each c;z' is a term of the polynomial.
We wish to develop a Java class to support arithmetic involving polynomials.
For this exercize we will represent each polynomial as a linear list (cg, ¢, c3,
<oy og) of coefficients.

Develop a C++ class polynomial that should have an instance data member
degree. which is the degree of the polynomial. It may have other instance data
members also. Your polynomial class should support the following operations:

(a) polynomial ()—Create the zero polynomial. The degree of this polyno-
mial is 0 and it has no terms. polynomial() is the class constructor.

(b) degree()—Return the degree of the polynomial.

(¢) input(inStream)—Head in a polynomial from the input stream inStream.
You may assume the input consists of the polynomial degree and a list
of coefficients in ascending order of exponents.

(d) sutput(outStream) —Output the polynomial to the output stream out-
Stream. The output format should be the same as the input format.

(e) add(b)—Add to polynomial b and return the result polynomial.
(f) subtract(b)—Subtract the polvnomial b and return the result.
(g) multiply(b)—Multiply with polynomial b and return the result.
(h) divide(b)—Divide by polynomial b and return the quotient.

(i) valueDf (x)—Heturn the value of the polynomial at point x.

Test vour code.

[Polynomials] Design and code a linked class to represent and manipulate uni-
variate polynomials (see Exercise 7T0). Assume that the coefficients are inte-
gers. Use circular linked lists with header nodes. Each node should have the
fields exp (exponent), coeff (coefficient), and next (pointer to next node).
In addition to the header node. the circular list representation of a polynomial
has one node for each term that has a nonzero coefficient. Terms whose coeffi-
cient is 0 are not represented. The terms are in decreasing order of exponent,
and the header node has its exponent field set to —1. Figure 6.17 gives some
examples.

The external (i.e., for input or output) representation of a univariate polyno-
mial will be assumed to be a sequence of numbers of the form n, €;, ¢, €3,
¢z, €3, C3.' . €4, C. Where the e; represent the exponents and the ¢; the
coefficients; n gives the number of terms in the polynomial. The exponents
are in decreasing order; that is, e) > €3 > - > g,.

Your class should support all the methods of Exercise 7. Test the correctness
of vour code using suitable polyvnomials.
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7.

Prove Lemma 6.1,

Write a C++ program for the online net finding problem of Example 6.6.
Model the problem as the online equivalence class problem and use the chain
method. Test the correctness of your program.

Prove that the strategy outlined in Example 6.5 fails to find a feasible schedule
only when such a schedule does not exist.

Compare the run-time performance of Programs 6.19 and 6.21.

Develop a version of Program 6.21 in which the chains are replaced by array
linear lists.

(a) Test your code.
(b) What is the time complexity of your new implementation?
{¢) Compare the performance of Program 6.21 and your new implementa-

tiomn.

Develop a version of Program 6.21 in which the chains use C++ pointers
rather than integer pointers. To access the node for element 1 in O(1) time,
keep an array theNode such that theNodeli] is a pointer to the node that
represents element i,
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(a) Test your code.

(b) What is the time complexity of your new implementation?

(¢) Compare the performance of Program 6.21 and vour new implementa-
tion.

78. Write a C+++ program for the scheduling problem of Example 6.5. Model the
problem as the online equivalence class problem and use the chain method.
Test the correctness of vour program.



CHAPTER 7

ARRAYS AND MATRICES

BIRD’S-EYE VIEW

In practice, data are often available in tabular form. Although arrays are the most
natural way to represent tabular data, we can often reduce both the space and time
requirements of our programs by using a customized representation. This reduction
is possible, for example, when a large portion of the table entries are 0.

This chapter begins by examining the row-major and column-major representa-
tions of a multidimensional array. These representations map a multidimensional
array into a one-dimensional array,

The data object matrix is often represented as a two-dimensional array. How-
ever, matrices are normally indexed beginning at 1 rather than 0. Matrices also
support operations such as add, multiply, and transpose, which are not supported
by C++'s two-dimensional arrays. Therefore, we develop the class matrix that
conforms more closely to the data object matrix.

We consider also the representation of matrices with special structures—diagonal,
tridiagonal, triangular, and symmetric matrices. Using customized array represen-
tations, we can reduce the space requirements of these matrices considerably when
compared to the space used by the natural two-dimensional array representation.
The customized representations also result in reduced run times for most operations.

The final section of this chapter develops array and linked representations for
sparse matrices (i.e., matrices with a large number of 0s) in which the positions of
the Os dn not necessarily define a regular pattern.

222
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7.1 ARRAYS
7.1.1 The Abstract Data Type

Each instance of an array is a set of pairs of the form (index, value). No two pairs
in this set have the same index. The operations performed on the array follow.

e (fet an element—Gets the value of the pair that has a given index.

o Set an element-—Adds a pair of the form (index, value) to the set, and if a
pair with the same index already exists, deletes the old pair.

These two operations define the abstract data type array (ADT 7.1).

.?bstractﬂataT}rpa array

instances
set of (index, value) pairs, no two pairs have the same index

operations
get{index) : return the value of the pair with this index

set(inder, value) : add this pair to set of pairs, overwrite existing pair (if any) with
the same index
}

ADT 7.1 Abstract data type specification of an array

Example 7.1 The high temperature (in degrees Fahrenheit) for each day of last
week may be represented by the following array:

high = {(Sunday, 82), (Monday, 79), (Tuesday, 85), (Wednesday, 92},
(Thursday, 88), (Friday, 89), (Saturday, 91)}

Each pair of the array is composed of an index (day of week) and a value (the high
temperature for that day). The name of the array is high. We can change the high
temperature recorded for Monday to 83 by performing the following operation:

set{ Monday, 83)

We can determine the high temperature for Friday by performing this operation:
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get(Friday)

An alternative array to represent the daily high temperature is

high = {(0,82),(1,79), (2,85), (3,92), (4, 88), (5,89), (6,91)}

In this array the index is a number rather than the name of the day. The numbers
10,1, 2, ) replace the names of the days of the week (Sunday, Mu_m:lagr, Tuesday,
e, (]

7.1.2 Indexing a C++ Array

An array is a standard data structure in C++. The index (also called subscript)
of an array in C+-+ must be of the form

[#1][E2][ia] - - - [i]

where each i, is a nonnegative integer. If k is one, the array is a one-dimensional
array, and if k is two, it is a two-dimensional array. i, is the first coordinate of the
index, iy the second, and i; the kth. A 3-dimensional array score, whose values
are of type integer, may be created in C++ using the statement

int score|u|[ug)[us;)

where the u;s are positive constants or positive expressions derived from constants.
With such a declaration, indexes with i; in the range 0 < i; < u;, 1 < j < 3
are permitted. So the array can hold a maximum of n = ujugu; values. Since
each value in the array score is of type int, 4 bytes are needed for each. The
memory, size0f (score), needed for the entire array is therefore 4n bytes. The
C4+ compiler reserves this much memory for the array. This memory begins at
byte start (say) and extends up to and including byte start + size0f (score) —1.

7.1.3 Row- and Column-Major Mappings

Some applications of arrays require us to arrange the array elements into a serial
or one-dimensional order. For example, the elements of an array can be output or
input only one element at a time. Therefore, we must decide on the order in which
the array elements are output or input. In Sections 7.3 and 7.4, we will see several
tvpes of two-dimensional tables [matrices) that we will map into a one-dimensional
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array. To accomplish this mapping, we convert the two-dimensional arrangement
of the table elements into a one-dimensional arrangement.

Let n be the number of elements in a k-dimensional array. The serializa-
tion of the array is done using a mapping function, which maps the array index
[i1]liz][is] - - - [ix] into a number map(i;,iz,---,4ix) in the range [0, n — 1] such that
array element with index [i;][ia][is] - - - [ix] is mapped to position map(iy, iz, -, i)
in the serial order.

When the number of dimensions is 1 (i.e.. k = 1), the function

map(i) = i (7.1)

is used. When the number of dimensions is 2, the indexes may be arranged into a
table with indexes that have the same first coordinate forming a row of the table
and those with the same second coordinate forming a column (see Figure 7.1).

[0fo] [o[1] [0]2] ([oj[3] [o]f4] ([O][5]
[Jfo] [y} {a)i2] 3] [1]i4] - (1)(s]
2]o] (2101 [20(2] (2)(3] [2]i4] {2][5]

Figure 7.1 Tabular arrangement of indexes for int score[3] [6]

The mapping is obtained by numbering the indexes by row beginning with those
in the first (i.e., top) row. Within each row, numbers are assigned from left to right.
The result is shown in Figure 7.2(a). This way of mapping the positions in a two-
dimensional array into a number in the range 0 through n — 1 is called row major.
The numbers are assigned in row-major order. Figure 7.2(b) shows an alternative
scheme, called column major. In column-major order the numbers are assigned by
column beginning with the left column. Within a column the numbers are assigned
from top to bottom.

0 1 2 3 4 5 0 3 6 9 12 15
6 7 8 9 10 11 1 4 7 10 13 16
12 13 14 15 16 17 2 5 8 11 14 17
() Row-major mapping (b) Column-major mapping

Figure 7.2 Mapping a two-dimensional array
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When row-major order is used, the mapping function is
ﬂlﬂp[i],i;} = !'1!12 + t2 I[T?]

where ws is the number of columns in the array. To verify the correctness of Equa-
tion 7.2, note that by the time the index [i;|[iz] is numbered in the row-major
scheme. i;us elements from the rows 0, ---, i; — 1 as well as i3 elements from row
i1 have been numbered.

Let us try out the row-major mapping function on the sample 3 x 6 array of
Figure 7.2(a). Since the number of columns, ug, is 6, the formula becomes

map(iy,ig) = 6i) + i

So map|1.3) =6 + 3 =9 and map(2.5) = 6+ 2+ 5 = 17. Both agree with the
numbers ziven in Figure 7.2(a).

The row-major scheme may be extended to obtain mapping functions for arrays
with more than two dimensions. Notice that in row-major order, we list first all
indexes with the first coordinate equal to 0, then those with this coordinate equal
to 1, and so on. Indexes with the same first coordinate are listed in increasing order
of the second coordinate; that is, the indexes are listed in lexicographic order. For
a three-dimensional array, we list first all indexes with the first coordinate equal to
0, then those with this coordinate equal to 1, and so on. Indexes with the same first
coordinate are listed in order of the second coordinate, and indexes that agree on
the first two coordinates are listed in order of the third. For example, the indexes
of score[3] [2] [4] in row-major order are

[joj[a]  [olfo](1] [o]jo}f2] [ojfo)(3] [o]{x)[o] [ojr][] [o]f][2] [O}[2](3]
[Ajfo]o] - [ioji)  []fof2] [a{o]3] - (x)(a)f] - [a@)A] - [a)2] ()]
2lfofo]  [2)[o]()  [2)fo]f2] [2A[o][3] (2] [2AANIA] 21702]  [2]00[8]

The mapping function for a three-dimensional array is

mapl(iy, ia, i3] = iiugug + iaug + i3

To see that this mapping function is correct, observe that the elements with the
first coordinate iy are preceded by all elements whose first coordinate is less than ;.
There are usuq elements that have the same first coordinate. So there are #)usug
elements with the first coordinate less than #,. The number of elements with the
first coordinate equal to iy and the second coordinate less than iy is isuy, and the
number with the first coordinate equal to #;, the second equal to iz, and the third
less than iy is i.
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7.1.4 Array of Arrays Representation

C++ uses the so-called array-of-arrays representation to represent a multidimen-
sional array. In this representation, a two-dimensional array is represented as a
one-dimensional array in which each element is, itself, a one-dimensional array. To
represent the two-dimensional array

int x[3] [5];

we actually create a one-dimensional array x whose length is 3; each element of x is
a one-dimensional array whose length is 5. Figure 7.3 shows the memory structure.
Four separate memory blocks are used. One block (the lightly shaded block) is large
enough for three pointers and each of the remaining blocks is large enough for 5

ints. At 4 bytes per pointer and int, a total of 72 bytes is used.

[0] [1] (21 [3] [4]

x[0]

x[1]
o [

Figure 7.3 Memory structure for a two-dimensional array

C++ finds the element x[i] [j] by using the mapping function for one-dimensional
arrays (Equation 7.1) to get to the pointer in x[i]. This pointer gives us the
address, in memory, of the zeroth element of row 1. The mapping function for
one-dimensional arrays is used once again to find the [jlth element of row i.

A three-dimensional array is represented as a one-dimensional array, each of
whose elements is a two-dimensional array. Each of these two-dimensional arrays is
represented as shown in Figure 7.3.

7.1.5 Row-Major and Column-Major Representation

An alternative representation, not used by C++, is to actually create a one-dimensional
array and then map our multidimensional array into this one-dimensional array us-
ing either a row- or column-major mapping. The two-dimensional array x[3] [5]

of ints that was considered above could be mapped into a 15-element array

int y[15];

using . icher a row-major or column-major mapping. In this case a single contiguous
block of memory large enough to hold 15 ints is used. The total memory required
drops from 72 bytes to 60 bytes.
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To access x[i] [j]1, we must use the two-dimensional mapping function {Equa-
tion 7.2 in case a row-major mapping is used) to compute an index u and then
access y[u] using the one-dimensional mapping function. Depending on whether
it takes more or less time to use the one-dimensional mapping function to fetch a
pointer and then follow this pointer or to compute the two-dimensional mapping
funetion, C4-+4's array representation scheme could be slower or faster than using
a row- or column-major mapping. )

7.1.6 Irregular Two-Dimensional Arrays

A two-dimensional array is regular in the sense that every row has the same number
of elements. For example, every row of the 3 x 6 array score of Figure 7.1 has six
elements. When two or more rows of an array have a different number of elements,
we call the array irregular. Irregular arrays may be created and used as illustrated
in Program 7.1. Notice that the only difference between regular and irregular arrays
in that an irregular array may have rows whose length is different, whereas in a

regular array all rows have the same length. The elements in regular and irregular
arrays are accessed in the same way.

EXERCISES

1. (a) List the indexes of score[2] [3] [2] [2] in row-major order.
(b} Develop the row-major mapping function for a four-dimensional array.

b

. Develop the row-major mapping function for a five-dimensional array.

[

. Develop the row-major mapping function for a k-dimensional array.

4. (a) List the indexes of score[2] [3] [4] in column-major order. Note that
now all indexes with the third coordinate equal to 0 are listed first, then
those with this coordinate equal to 1, and so on. Indexes with the same
third coordinate are listed in order of the second, and those with the
same last two coordinates in order of the first.

(b) Develop the column-major mapping function for a three-dimensional ar-
ray.
3. (a) List the indexes of score (2] [3] [2] [2] in column-major order.

(b) Develop the column-ma jor mapping function for a four-dimensional array
(see Exercise 4).

=23

. Develop the column-major mapping function for a k-dimensional array.

-]

. We wish to map the elements of a two-dimensional array beginning with the
bottom row and within a row from left to right.

{a) List the indexes of score[3] [E] in this order.



Section 7.1 Arrays

229

int main(void)

{

}

int number0OfRows = §5;

// define the length of each of the five rows
int lemgth([5] = {6, 3, 4, 2, T};

// declare a two-dimemsional array variable
// and allocate the desired number of rows
int **irregularArray = new int* [numberOfRows];

// now allocate space for the elements in each row
for (int i = 0; i < numberOfRows; i++)
irregularArray[i] = new int [length[il];

/{ use the array like any regular array
irregularArray[2] [2] = 5;

irregularArray[4] [6] = irregularArray[2] [3] + 2;
irregularArray[1] [1] = 3;

// output selected elements

cout << irregularArray[2] [3] << endl;
cout << irregularArray[4] [6] << endl;
cout << irregularArray([i][1] << endl;

return 0;

Program 7.1 Creating and using an irregular two-dimensional array

{b) Develop the mapping function for score[u;||us].

8. We wish to map the elements of a two-dimensional array beginning with the

right column and within a column from top to bottom.

(a) List the indexes of score[3] [5] in this order.
(b) Develop the mapping function for score(u;|[us).

9. A two-dimensional m x n array has mn elements.

{a) Determine the amount ol memory used when these mn elements are
stored using a two-dimensional C++ array and when they are stored
in a one-dimensional array using row-major mapping. Assume that the
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elements are of type int. First do this exercise for the case m = 10 and
n = 2 and then for general m and n.

(b) How large can the ratio of the two memory requirements get?
10. A three-dimensional m x n x p array has mnp elements.

(a) Determine the amount of memory used when these mnp elements are
stored using a three-dimensional C++ array and when they are stored
in a one-dimensional array using row-major mapping. Assume that the
elements are of type int. First do this exercise for the case m = 10,
n =4, and p = 2 and then for general m, n, and p.

(b) How large can the ratio of the two memory requirements get?

{c) When is one scheme expected to provide faster element. access than the

other?
11. A four-dimensional m x n ¥ p x ¢ array has mnpq elements,

(a) Determine the amount of memory used when these mnpg elements are
stored using a four-dimensional C+4 array and when they are stored
in a one-dimensional array using row-major mapping. Assume that the
elements are of type int.

(b) How large can the ratio of the two memory requirements get?
12. A k-dimensional %, % ug x --- % ug array has ujus - - - ux elements.

(a) Determine the amount of memory used when these uyug -« - u; elements
are stored using a k-dimensional C++ array and when they are stored
in a one-dimensional array using row-major mapping. Assume that the
elements are of type int.

(b) How large can the ratio of the two memory requirements get?
() When is one scheme expected to provide faster element access than the

other?

7.2 MATRICES
7.2.1 Definitions and Operations

An m x n matrix is a table with m rows and n columns (Figure 7.4). m and n are
the dimensions of the matrix.

Example 7.2 Matrices are often used to organize data. For inustance, in an effort
to document the assets of the world, we might first produce a list of asset types of
interest. This list could include mineral deposits (silver, goid, etc.); animals (lions,
elephants, etc.); people {physicians, engineers, ete.); and so on. We can determine
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col 1 col 2 col 3 col 4

row 1 7
row2 | 0
row3d | 6
row 4 8
row 3 1

A T

0

[ S T

L =B |

9

5
0
3
6

-

Figure 7.4 A 5 x 4 matrix

the amount of each asset type present in the country. The data can be presented as
a table with one column for each country and one row for each asset type. The result
is an asset matrix with a number of columns n equal to the number of countries
and a number of rows m equal to the number of asset types. We use the notation
M{(i,7) to refer to the element in row ¢ and column j of matrix M, 1 < i < m,
1 < j < n. If row i represents cats and column j represents the United States, then
asset(i, j) would be the number of cats in the United States.

Figure 7.5(a) shows an asset matrix for four countries: the assets listed in this
matrix are platinum, gold, and silver. Country B has asset(1,2) = 5 units of
platinum, asset(2,2) = 2 units of gold, and asset(3,2) = 10 units of silver.

6 2 3 B8
0 10 50 30

(a) asset

Figure 7.5 Asset and value matrices

Figure 7.5(b) shows a matrix that gives the value of one unit of each asset type
for three different economic scenarios. Under scenario 3 a unit of platinum is worth

Copyrighted material
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value(1l,3) = $50; a unit of gold is worth value(2,3) = $40; and a unit of silver is
worth value(3,3) = §2. [

The operations most commonly performed on matrices are transpose, addition
or sum, and multiplication or product. The transpose of an m x n matrix M is an
n ¥ m matrix M7 with the property

MT(i,5) = M(j,i), 1€i<n, 1<j<m

The sum of two matrices is defined only when the two matrices have the same
dimensions (i.e., the same number of rows and the same number of columns). The
sum of two m x n matrices A and B is a third m x n matrix C such that

Cli,j) = Ali, 7))+ B(i,j), 1<i<n, 1<j<m (7.3)

The product A » B of an m x n matrix 4 and a ¢ x p matrix B is defined only
when the number of columns in A equals the number of rows in B, that is, n = g.
When n = ¢, the product is an m x p matrix C' with the property

ki
Cli,j) =3 A(i,k)* B(k,j), 1<i<m, 1<j<p
k=1

Example 7.3 Consider the asset matrix described in Example 7.2, Suppose that
the data are being accumulated by two agencies and neither duplicates the work of
the other. The result is two m x n matrices: asset]l and asset2. To get the desired
asset matrix, we add the two matrices assetl and asset2.

Next suppose we have another matrix value (as in Figure 7.5(b)) that is an
m x § matrix. value(i,j) is the value of one unit of asset i under scenario j. Let
CV(i,j) be the value of the assets of country 1 under scenario j. Using the data of
Figure 7.5, we see that the value of the assets held by country B under scenario 3 is

CVi2,3) = (amount of platinum * value of platinum)

+ (amount of gold » value of gold)

+ (amount of silver * value of silver)

asset(1,2) » value(l,3) + asset(2, 2) = value(2,3)
+asset(3, 2) » value(3,3)

= 2*30+2+40+ 10=2

= 350
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We see that C'V is an n x 5 matrix and that

th-:] = iﬂ-ﬁ-ﬁﬂ{k; ﬂ * M“E{kﬁj] = iﬂ&SEfT{i,k} * Uﬂftlﬂ[k.,j}
kel k=1

So CV satisfies the equation

CV = asset’ » value

Figure 7.6(a) gives the transpose of the asset matrix of Figure 7.5(a), and Fig-
ure 7.6(b) gives the CV matrix that corresponds to the asset and value matrices of
Figure 7.5. ) n

6
2
3
8

(a) asser” (b) CV = asset T*value

Figure 7.6 Example for matrix transpose and product

C++ functions to compute the transpose of a matrix and to add and multiply
two matrices represented as two-dimensional arrays were considered in Chapter 2
(Programs 2.21, 2.19, 2.22, and 2.23, respectively).

7.2.2 The Class matrix

A rows x cols matrix M, all of whose elements are integer, may be represented as
a two-dimensional integer array

int x[rows] [cols];
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with M(i,j) being stored as x[i=1] [j=1]. This representation requires the user
to write applications using array indexes that differ from matrix indexes by 1.
Alternatively, we may define the array x as

int x[rows + 1] [cols + 1];

and not use the array positions [0][+] and [+](0]. In this section we develop a rep-
resentation in which the elements of matrix M are mapped inio a one-dimensional
array in row-major order.

The class matrix uses a one-dimensional arrav element to store, in row-major
order, the rows * cols elements of a rows x cols matrix. Program 7.2 gives the
class header. Notice that we intend to overload the () operator so that matrices
may be indexed in a program the same way they are indexed in mathematics.
Additionally we intend to overload the arithmetic operators so that they work with
objects of type matrix.

template<class T>
class matrix
{
friend ostreamk operator<<{ostreamk, const matrix<T>&);
public:
matrix(int theRows = 0, int theColumns = 0);
matrix(const matrix<T>k);
"matrix() {delete [] element:}
int rows() const {return theRows;}
int columns() const {return theColumns;}
Tk operator()(int i, int j) const;
matrix<T>& operator=(const matrix<T>&);
matrix<T> operator+() comst; // unary +
matrix<T> operator+(const matrix<T>k) comst;
matrix<T> cperator-() comnst; // unary minus
matrix<T> operator-(const matrix<T>&) const;
matrix<T> operator#*(const matrix<T>&) const;
matrix<T>k operator+=(const T&);
private:
int theRows, // number of rows in matrix
theColumns; // number of columns in matrix
T *=element; // element array

}:

Program 7.2 Header for the class matrix

Program 7.3 gives the constructor and copy constructor for the class. Notice
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that the constructor allows you to create a 0 x 0 matrix as well as matrices for which
both theRows > 0 and theColumns > (.

template<class T>
matrix<T>::matrix(int theRows, int theColumns)
{// matrix constructor. .
/{ walidate theRows and theColumns
if (theRows < 0 || theColummns < Q)
throw illegalParameterValue("Hows and columns must be >= 0");
if ((theRows == 0 || theColumns == ()
&%k (theRows '= 0 || theColumns '= 0))
throw illegalParameterValue
("Either both or neither rows and columns should be zero");

// create the matrix

this->theRows = theRows;
this->theColumns = theColumns;

element = new T [theRows * theColumns];

}

template<class T>
matrix<T>::matrix(const matrix<T>& m)
{// Copy comnstructor for matrices.
// create matrix
theRows = m.theRows;
theColumns = m.theColumns;
element = new T [theRows * theColumns];

// copy each element of m
copy(m.elemant,
m.alement + theRows * theColumns,
element};

}

Program 7.3 Constructor and copy constructor for matrix

Program 7.4 gives the code to overload the assignment operator =.

To index a matrix using left and right parenthesis (). we overload the C++
function operator (), which can take any number of parameters. In our case, we
use two parameters of type int with the overloaded (), because to index a matrix
we need two integer parameters. Program 7.5 gives the code to overload (). This
code returns a reference to the (i, j)th element of a matrix and this reference may
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template<class T>
matrix<T>k matrix<T>::operator=(const matrix<T>k m)
{// Assignment. (+*this) = m.
if (this !'= &m)
{// not copying to self
delete [] element;
theRows = m.theRows;
theColumns = m.theColumns;
element = new T [theRows * theColumns];
// copy each element
copy(m.element,
m.element + theRows * theColumns,
element) ;
}

return *this;

}

Program 7.4 Overloading the = operator for matrix

be used to either set or get the value of the (1, j)th element using statements such
as ali,j) = 2and x = a(i,j), where a is of type matrix.

template<class T>
TE matrix<T>::operator()(int i, int j) const
{// Return a reference to element (i,j).

if (41 <1 |l i > theRows

Il <11l j > theColumns)

throv matrixIndexOutOfBounds();

return element[(i - 1) * theColumns + j - 1];
}

Program 7.5 Overloading the () operator for matrix

Program 7.6 gives the code for matrix addition. Smince matrices have been
mapped into one-dimensional arrays, we can add two matrices using a single for
loop rather than two nested for loops as were used in Program 2.21. The codes
for matrix operations such as increment (increase the value of each matrix entry by
the same amount) and subtraction are similar to that for matrix addition.

The loop structure of the matrix multiplication code (Program 7.7) is similar to
that of Program 2.23. There are three nested for loops. The innermost loop uses
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template<class T>
matrix<T> matrix<T>::operator+(const matrix<T>k m) const
{// Return w = (%this) + m.
if (theRows != m.theRows
Il theColumns != m.theColumns)
throw matrixSizeMismatch();

// create result matrix w

matrix<T> w(theRows, theColumns);

for (int 1 = 0; 1 < theRows = theColumns: i++)
w.element [i] = element[i] + m.element[i];

return w;

}

Program 7.6 Matrix addition

Equation 7.3 to compute the (i, j)th element of the product matrix. When we enter
the innermost loop, element [ct] is the first element of row i and m.element [cm]
is the first of column j. To go to the next element of row i, ct is to be incremented
by 1 because in row-major order the elements of a row occupy consecutive positions.
To go to the next element of column j, cm is to be incremented by m. theColumns,
as consecutive elements of a column are m. theColumns positions apart in row-major
order. When the innermost loop completes, ct is positioned at the end of row i and
cm is at the end of column j. For the next iteration of the for j loop, ct needs to
be at the start of row i and cm at the start of the next column of m. The resetting
that occurs after the innermost loop completes positions ct. When the for j loop
completes, ct should be set to the position of the first element of the next row and
em to that of the first element of the first column.

The matrix multiplication code can be made more efficient by reducing the
number of cache misses as in the ikj order version of Program 4.4. The code for the
remaining methods of matrix may be found at the Web site for this book.

Complexity

The complexity of the matrix constructor and destructor is O(1) when T is a primi-
tive data type of C++ (e.g., int, double). When T is a user-defined data Lype, the
complexity of the constructor (destructor) is () theRows * theColumns) because
the constructor (destructor) for the data tvpe T is invoked for every position in the
array element when this array is created (deleted).

The asymptotic complexity of the copy constructor and the add method is
((theRows * theColumns) if we assume that the times to copy a matrix term



238  Chapter T Arrays and Matrices

template<class T>
matrix<T> matrix<T>::operator*(const matrix<T>& m) const
{// matrix multiply. Return w = (*this) * m.
if (theColumns '= m.theRows)
throw matrixSizeMismatch();

matrix<T> w(theRows, m.theColumns); // result matrix

/f define cursors for =this, m, and w
// and initialize to location of (1,1) element
int ct =0, em = 0, cw = 0;

// compute w(i,j) for all i and j
for (int 1 = 1; i <= theRows; i++)
{// compute row i of result
for (int j = 1; j <= m.theColumns; j++)
{ // compute first term of w(i,j)
T sum = element[ct] * m.element [cm];

// add in remaining terms
for (int k = 2; k <= theColumns; k++)

{
ct++; Jf/ next term in row i of *this
cm += m.theColumns; // next in column j of m
sum += element[ct] * m.element[cm]:

}

v.element [cw++] = sum; // save w(i,j)

[/ reset to start of row and next column
¢t -= theColumns - 1;
cm = j;

}

J// reset to start of next row and first column
ct += thelColumns; '
cm = 0;

raturn w,;

}

Program 7.7 Matrix multiplication
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and add two matrix terms are both ©(1). The matrix multiplication code has the
complexity (}(theRows * theColumns * m.theColumns).

EXERCISES

13. (a) What is the transpose of the matrix of Figure 7.47
(b) What is the product of the matrix of Figure 7.4 and the transpose?

14. Do Exercise 13 using the matrix of Figure 7.2(b).

15. Add code for the methods -= (decrease each matrix entry by a specified
amount), << (input a matrix), *= (multiply each matrix entry by a specified
value), and /= to the class matrix. Test your methods.

16. To the class matrix add the method transpose(), which returns the trans-
pose of *this. Test your code.

17. (a) Develop the class matrixAs2DArray in which a matrix is represented as a
two-dimensional array. Your class should include all methods of matrix

as well as a method to transpose a matrix.
(b) Test vour methods.

(¢} Compare the performance of the matrix addition and multiplication
methods of the classes matrix and matrixAs2DArray. Do this compari-
son by making actual run-time measurements. What can you say about
the merits of using the row-major mapping instead of a two-dimensional
array”’

7.3 SPECIAL MATRICES

7.3.1 Definitions and Applications

A square matrix has the same number of rows and columns. Some special forms
of square matrices that arise frequently are

e Diagonal. M is diagonal iff M{i,j) = 0 for i # j; see Figures 7.7(a) and
7.8(a).

e Tridiagonal. M is tridiagonal iff M (i, j) = 0 for |i—j| > 1; see Figures 7.7(b)
and 7.8(b).

o Lower triangular. M is lower triangular iff M{i,j) = 0 for ¢ < j; see
Figures 7.7(c) and 7.8(c).

e Upper triangular. M is upper triangular iff M(i,j} = 0 for i > j, see
Figures 7.7(d) and 7.8(d).



240 Chapter 7 Arrays and Matrices

x ] N X o
X X XX
| X i XX
| X X X X
X X X X
X XX X
X X X X
L x| - X X
(a) Diagonal (b) Tridiagonal
X ] X X X X XXX X
X X X XXX XXX
XXX XX KX XX
XX XX XX XXX
|IJ{III XX X Xx
XXX XXX XX X
XX XXXXX | X X
XX XK X XX XX | X
(c) Lower triangular {d) Upper triangular

x denotes an element that may be nonzero
Elements not shown are zero

Figure 7.7 Location of nonzero elements in special matrices

o Symmetric. Matrix M is symmetric iff M{i, ) = M(j,i) for all i and j; see
Figure 7.8(e).

Example 7.4 Consider the six cities Gainesville, Jacksonville, Miami, Orlando,
Tallahassee, and Tampa, which are all in Florida. We may number these cities 1
through 6 in the listed order. The distance between pairs of these cities may be
represented using a 6 x 6 matrix distance. The ith row and column of this matrix
represent the ith city, and distance(i, j) is the distance between city i and city j.
Figure 7.9 shows the distance matrix. Since distance(i, j) = distance(j, 1) for all
and j, the distance matrix is symmetric. u

Example 7.5 Suppose we have a stack of n cartons with carton 1 at the bottom
and carton n at the top. Each carton has width w and depth d. The height of the
ith earton is h;. The volume occupied by the stack is w+d =+ Ez':, fi;. In the stack
folding problem, we are permitted to create substacks of cartons by selecting a fold
point i and creating two adjacent stacks. One has cartons 1 through ¢ and the other
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Figure 7.8 4 = 4 special matrices

GN JX MI OD TL TM
GN [ 0 73 333 114 148 129 |
IX 73 0 348 140 163 194
MI 333 348 0 229 468 250
oD 114 140 229 D 251 84
TL 148 163 468 251 0 273

™ 129 194 250 84 273 0

| JX = Jacksonville | TL = Tallahassee
| MI = Miami_ TM =Tampa

| GN = Gainesville | OD = Orlando i
|

Distance in miles

Figure 7.9 A distance matrix (source: Rand McNally Road Atlas)

cartons « + 1 through n. By repeating this folding process, we may obtain several
stacks of cartons. If we create s stacks, the width of the arrangement is s » w, its
depth is d, and the height h is the height of the tallest stack. The volume of the
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space needed for the stacks is s » w=d + h. Since & is the height of a stack of boxes
i through j for some i and j, ¢ < j, the possible values for h are given by the n x n
matrix H where H(i,j) is 0 for i > j and is 3 {_, he for i < j. Since the height
of each carton is > 0, an H{(i,j) value of 0 indicates an infeasible stack height.
Figure 7.10{a) shows a five-carton stack. The numbers inside each rectangle give
the carton height. Figure 7.10(b) shows a folding of the five-carton stack into three
stacks. The height of the largest stack is 7. The matrix H is an upper-triangular
matrix, as shown in Figure 7.10(c). One application of the stack folding problem
is to the folding of a stack of electronic components so as to minimize the area
occupied by the folded stack (see Web site). =

—

5

4 | 5

bh L b b =

3 2

(a) Stack (b) Three-stack folding (c) H matrix

Figure 7.10 Stack folding

7.3.2 Diagonal Matrices

One way to represent a rows x rows diagonal matrix [ is to use a two-dimensional
array element [rows] [rows] and use element [i-1] [j-1] to represent D{i, j}. This
representation requires space for rows? objects of type T. However, since a diagonal
matrix contains at most rovs nonzero entries, we may use a one-dimensional array
element [rows] and use element[i-1] to represent [}(i,i). The elements of the
matrix [) that are not represented in the array are all known to be zero. This
representation, which requires spafe for only rows objects of type T, leads to the
C++ class diagonalMatrix (Programs 7.8 through 7.10).

The complexity of the constructor is O(1) when T iz a primitive data type and
C){rows) when T is a user-defined data type. The complexity of the methods get
and set is ©(1).
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template<class T>
class diagonalMatrix

{
public:
diagonalMatrix(int theN = 10);
“diagonalMatrix() {delete [] element;}
T get(int, int) const; '
void set(int, int, const Tk);
private:
int n; S/ matrix dimension
T #element; // 1D array for diagonal elements
¥

template<class T>
diagonalMatrix<T>::diagonalMatrix(int thelN)
{// Constructor.
[/ wvalidate theN
if (theN < 1)
throw illegalParameterValue("Matrix size must be > 0");

n = theN;
alement = new T [n];

}

Program 7.8 Header and constructor for diagonalMatrix

template <class T>
T diagonalMatrix<T>::get(int i, int j) comst
{// Return (i,j)th element of matrix.
// walidate i and j
if A<t j<1rlli>nlil j>n)
throv matrixIndexOutDfBounds();

if (1 == j)

return element[i-1]: // diagonal element
alse

return 0; // nondiagonal element

I

Program 7.9 Get method for diagonalMatrix
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template<class T>
void diagonalMatrix<T>::set(int i, int j, const Tk newValua)
{// Store newValue as (i,j)th element.
/f validate i and j
if(i<1llj<t1ili>»>nllj>n)
throw matrixIndexOutOfBounds() ;

if (1 == j{)

// save the diagonal value

alement [i-1] = newValue;
alse

// nondiagonal value, newValue must be zero

if (newValue '= 0)
throw illegalParameterValue
("nondiagonal elements must be zero");
}

Program 7.10 Set method for diagonalMatrix

7.3.3 Tridiagonal Matrix

In a rows x rows tridiagonal matrix, the nonzero elements lie on one of the three
diagonals:

!. Main diagonal—for this, i = j.
2. Diagonal below main diagonal—for this, i = j 4+ 1.
3. Diagonal above main diagonal—for this, i = j = 1.

The number of elements on these three diagonals is 3srows—2. We can use a one-
dimensional array element with J+rows—2 positions to represent the tridiagonal
matrix. Only the elements on the three diagonals are explicitly stored. Consider the
4 x 4 tridiagonal matrix of Figure 7.8(b). There are 10 elements on the main diagonal
and the diagonals just above and below the main diagonal. If these elements are
mapped into element by rows, then element[0:9] = [2,1,3,1,3,5,2, 7,9, 0;
if the mapping is by columns, element = (2, 3, 1, 1, 5, 3, 2, 9, 7, 0}; and if the
mapping is by diagonals beginning with the lowest, then element = (3, 5, 9, 2, 1,
2,0,1,3 7. As we can see, there are several reasonable choices for the mapping
of T into element. Each requires a different code for the get and set methods.
Suppose that the class tridiagonalMatrix maps by diagonals. The data members
and constructor are quite similar to those of the class diagonal. Program 7.11 gives
the code for get; the code for set is similar and is on the Web site,
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template <class T>
T tridiagonalMatrix<T>::get(int i, int j) comst
{// Return (i,j)th element of matrix.

// validate i and j
if (di<1ll j<1lli>nll j>n)
throw matrixIndexOutDfBounds();

// determine lement to return
switch (i - j)

{
case 1: // lower diagonal
return element[i - 2];
case 0: // main diagonal
return elementn + i - 2];
case -1: // upper diagonal
return element[2 * n + i - 2];
default: return 0;
}

}

Program T.11 The method get for a tridiagonal matrix

%

An alternative space-efficient representation of a tridiagonal array is considered
in Exercise 25. This alternative representation uses an irregular array (see Sec-
tion 7.1.6).

7.3.4 Triangular Matrices

In an n-row lower-triangular matrix (Figure 7.7(c)), the nonzero region has one
element in row 1, two in row 2, ---, and n in row n; and in an n-row upper-
triangular matrix, the nonzero region has n elements in row 1, n — 1 in row 2, - -,
and one in row n. In both cases the total number of elements in the nonzero region
15

n

Y i=n(n+1)/2

=]

Both kinds of triangular ma.:.ces may be represented by using a one-dimensional
array of size n{n + 1)/2. Consider a lower-triangular matrix L mapped into a one-
dimensional array element. T'wo possible ways to do the mapping are by rows and
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by columns. If the mapping is done by rows, then the 4 x 4 lower-triangular matrix
of Figure 7.8(c) has the mapping element [0:9] = [2,5,1,0,3, 1,4, 2, 7, 0. The
column mapping results in element = [2,5,0,4,1,3,2, 1, 7, 0]

Consider element L{i, j) of a lower-triangular matrix. If i < j, the element is in
the zero region. If i > j, the element is in the nonzero region. In a row mapping,
the element L(i,j), i = j, is preceded by ¥} k nonzero region elements that are
in rows 1 through i — 1 and j — 1 such elements from row i. The total number of
nonzero region elements that precede L(i, 7) in & row mapping is ¢(i — 1)/2+j — 1.
This expression also gives the position of L{i, j) in element. Using this expression,
we arrive at the set method given in Program 7.12; the method to get a value is
similar. Both methods have time complexity 6(1).

template<class T>
void lowerTriangularMatrix<T>::set(int i, int j, const Tk newValue)
{// Store newValue as (i,j)}th element.
//{ validate i and j
if (i<1llj<t1lli>nlillj>mn)
throv matrixIndexOutOfBounds();

// (i,j) in lower triangle iff i >= j
if (i >= j)
element[i *= (i - 1) / 2 + j - 1] = newValue;
alse
if (newValue != 0)
throw illegalParameterValue
("elements not in lower triangle must be zero");

}

Program 7.12 The method lowverTriangularMatrix<T>::set

An alternative space-eflicient representation of a triangular array is considered
in Exercise 26. This alternative representation uses an irregular array (see Sec-
tion 7.1.6).

7.3.5 Symmetric Matrices

An n x n symmetric matrix can be represented using a one-dimensional array of
size n{n <+ 1)/2 by storing either the lower or upper triangle of the matrix using one
of the schemes for a triangular matrix. The elements that are not explicitly stored
may be computed from those that are explicitly stored.
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EXERCISES

18, Tubing down Sleepy River is a pleasant activity that thousands of folks par-
ticipate in during the summer. Sleepy River has seven places where you can
get into or out of the river. These places are numbered 1 through 7; 2 is
downstream from 1, 3 is downstream from 2, and so0 on. A different tube
rental vendor does business at each location. The vendor that rents tubes at
1 will retrieve you and your tube at places 1, 3, 6, and T; the vendor that
rents tubes at 2 has a pickup service at 3, 5, and 6. The pickup services for
the vendors that rent tubes at 3, 4, 5. 6, and 7 are, respectively, at 3, 5, 7; 5,
6, 7; T:6, 7; and 7.

(a) Write a 7 x 7 matrix in which the (2, 7} entry is 1 if it is possible to rent
a tube at i and be picked up at j and is 0 otherwise. Is your matrix
svmmetric, upper triangular, or lower triangular?

(b) Write a 7 > 7 matrix in which the (i, j) entry is 1 if it is possible to be
picked up at § when you rent vour tube at j and is 0 otherwise. Is your
matrix symmetric, upper triangular, or lower triangular?

(¢) Renumber the seven tube rental places in the order downstream to up-
stream. For this numbering scheme write a 7 x 7 matrix in which the
(1, 7) entry is 1 if it is possible to rent a tube at i and be picked up at j
and is 0 otherwise. Is your matrix symmetric, upper triangular, or lower
triangular? '

19. There are five equally spaced kennels in a row. Each kennel has a dog that is
chained to the kennel post, and the length of each chain equals the distance
between two adjacent kennels. Assume that dog i is chained to kennel 1.

{a) Which kennels can dog 3 visit?

(b) Write a 5 = 5 matrix in which the (i, j) entry is 1 if dog ¢ can visit kennel
j and is 0 otherwise.

(c) Is your matrix symmetric, upper triangular, lower triangular, tridiagonal,
or diagonal?

20. (a) To the class diagonalMatrix (Program 7.8) add methods to input, out-
put, add, subtract, multiply, and transpose diagonal matrices represented
as one-dimensional arrays. Note that in each case the result is a diagonal
matrix represented as a one-dimensional array.

(b) Test the correctness of your codes.
(c) What is the time complexity of each of your methods?

21. (a) To the class tridiagonalMatrix (Program 7.11) add methods to input,
output, add, subtract, and transpose tridiagonal matrices.

(b) Test the correctness of vour codes.
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{c) What is the time complexity of each method?

22. (a) Develop a C++ class tridiagonalByColumns that maps a tridiagonal
n % n matrix into a one-dimensional array of size 3n — 2 by columns.
Include methods for the input, output, get, set, add, subtract, and trans-
pose operations.

(b) Test the correctness of yvour codes.
(c} What is the time complexity of each method?

23. Do Exercise 22 for the class tridiagonalByRows in which the n xn tridiagonal
matrix is mapped into a one-dimensional array of size 3n — 2 by rows.

24. Is the product of two tridiagonal matrices neccessarily tridia,gﬂna.l?

25. Develop the class tridiagonalAsIrregularArray in which a tridiagonal ma-
trix is represented using a two-dimensional array element. When representing
an n % n matrix, rows 0 and n — 1 of element have two positions each; the
remaining rows have three positions each. See Section 7.1.6 to determine how
to create such an array. Your class must include all methods included in the
class tridiagonalMatrix. )

(a) Test your code.

(b) Comment on the relative merits of the one-dimensional array represen-
tation as uséd in the class tridiagonalMatrix and the irregular array .
representation as used in tridiagonalAsIrregularArray.

26. Develop the class loverTriangleAsIrregularArray in which a lower-trian-
gular matrix is represented using a two-dimensional array element. When
representing an nxn matrix, row i of element has i positions. See Section 7.1.6
to determine how to create such an array. Your class must include all methods
included in the class lowerTriangularMatrix.

(a) Test your code.

(b) Comment on the relative merits of the one-dimensional array represen-
tation as used in the class lowerTriangularMatrix and the irregular
array representation as used in lowerTriangleAsIrregularArray.

27. Develop the C-++ class upperTriangularMatrix analogous to Program 7.12
for the case of an upper-triangular matrix. Include constructor, get, and set
methods.

28. To the class lowerTriangularMatrix add methods to input, output, add,
and subtract lower-triangular matrices, What is the time complexity of each
method?
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29. To the class lowerTriangularMatrix add the method transpose, which re-
turns the transpose of the lower-triangular matrix *this. The transpose is an
instance of the class upperTriangularMatrix. What is the time complexity
of your code?

30. Let A and B be two n x n lower-triangular matrices. The total number of
elements in the lower triangles of the two matrices is n{n+1). Devise a scheme
to represent both triangles in an array element [n+1] [n]. [Hint: If you join
the lower triangle of A and the upper triangle of BT, you get an (n+ 1) x n
matrix.] Write the get and set functions for both A and B. The complexity
of each should be ©(1).

31. Write a method to multiply two lower-triangular matrices that are members
of the class lowerTriangularMatrix (Program 7.12). The result matrix is to
be stored in a two-dimensional array. What is the time complexity of your
method?

32. Write a method to multiply a lower-triangular and an upper-triangular matrix
mapped into one-dimensional arrays by rows. The result matrix is in a two-
dimensional array. What is the time complexity of vour method?

33. Suppose that symmetric matrices are stored by mapping the lower-triangular
region into one-dimensional arrays by rows. Develop a C++ class lowerSym-
metricMatrix that includes methods for the get and set operations. The
complexity of your methods should be 6(1).

3. In an nxn C-matrix, all terms other than those in row 1, row n, and column
1 (see Figure 7.11)) are zero. A C-matrix has at most 3n — 2 nonzero terms. A
C-matrix may be compactly stored in a one-dimensijonal array by first storing
row 1, then row n, and then the remaining column 1 elements.

XXXXXX

EEEELEE
)

XX XXXX

x denotes a possible nonzero
All other terms are zero

Figure 7.11 A C-matrix

(a) Give a sample 4 x 4 C-matrix and its compact representation,
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(b) Show that an n x n C-matrix has at most dn — 2 nonzero terms.

(¢) Develop a class cMatrix that represents an n x n C-matrix in a one-
dimensional array element as above. You should include the constructor
and get and set methods.

35. An n % n square matrix M is an antidiagonal matrix iff all entries M1, j)
with i + j # n + 1 equal zero.

(a) Give a sample of a 4 x 4 antidiagonal matrix.

(b) Show that the antidiagonal matrix M has at most n nonzero entries,

(c) Devise a way to represent an antidiagonal matrix in a one-dimensional
array of size n.

(d) Use the representation of (c) to arrive at the code for the C++ class
antidiagonalMatrix that includes methods for the get and set opera-
tions.

(e) What is the time complexity of your get and set codes?
(f) Test your code.

36. An n % n matrix T is a Toeplitz matrix iff T(i,j) = T{i— 1,5 - 1) for all ¢
and j,i{>1and j > 1.

(a) Show that a Toeplitz matrix has at most 2n — 1 distinct elements.

(b) Develop a mapping of a Toeplitz matrix into a one-dimensional array of
size 2n — 1.

(¢} Use the mapping of (b) to obtain a C++ class toeplitzMatrix in which
a Toeplitz matrix is mapped into a one-dimensional array of size 2n — 1.
Include methods for the get and store operations. The complexity of
each should be 6(1).

(d) Write a method to multiply two Toeplitz matrices stored as in (b). The
result is stored in a two-dimensional array. What is the time complexity
of your code?

7. A square band matrix D, , is an n x n matrix in which all the nonzero
terms lie in a band centered around the main diagonal. The band includes

the main diagonal and a — 1 diagonals below and above the main diagonal
(Figure 7.12).

(a) How many elements are in the band matrix D, ,7

{b) What is the relationship between ¢ and 7 for elements d; ; in the band of
Dy o7
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a diagonals
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n columns

main diagonal
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Figure 7.12 Square band matrix
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Figure 7.13 Representation for matrix Dy 5 of Figure 7.12

(c)

{d)

Assume that the band of D, , is mapped into a one-dimensional array
b by diagonals, starting with the lowest diagonal. Figure 7.13 shows the
representation for band matrix Dy 5 of Figure 7.12.

Develop a formula for the location of an element d; ; in the lower band
of D, . (location{d;g) = 2 in the example above),

Develop the C+4++ class squareBandMatrix that uses the mapping of
(c); include methods for the get and set operations. What is the time
complexity of each method? Test your code.

Develop the class squareBandAsIrregularArray that uses a two-dimen-
sional array element in which each row has as many positions as the
width of the band at that row. For example, element[0] is a one-
dimensional array with a positions; include methods for the get and set
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operations. What is the time complexity of each method? Test your
code.

(f) What are the relative merits/demerits of the two representations used in
(d) and (e)?

7.4 SPARSE MATRICES
7.4.1 Motivation

An m = n matrix is said to be sparse if “many” of its elements are zero. A matrix
that is not sparse is dense. The boundary between a dense and a sparse matrix
is not precisely defined. Diagonal and tridiagonal n x n matrices are sparse. Each
has O(n) nonzero terms and O{n?) zero terms. Is an n x n triangular matrix
sparse? It has at least n{n = 1)/2 zero terms and at most n{n -+ 1)/2 nonzero terms.
For the representation schemes in this section to be competitive over the standard
two-dimensional array representation, the number of nonzero terms will need to be
less than n?/3 and in some cases less than n?/5. In this context we will classify
triangular matrices as dense.

Sparse mairices such as diagonal and tridiagonal matrices have sufficient struc-
ture in their nonzero regions that we can devise a simple representation scheme
whose space requirements equal the size of the nonzero region. In this section we

are concerned with sparse matrices with an irregular or unstructured nonzero region.
Example 7.6 A supermarket is conducting a study of the mix of items purchased

by its customers. For this study, data are gathered for the purchases made by 1000
customers, These data are organized into a matrix, purchases, with purchases(i. j)
being the quantity of item i purchased by customer j. Suppose that the supermarket
has an inventory of 10,000 different items. The purchases matrix is therefore a
10,000 = 1000 matrix. If the average customer buys 20 different items, only about
20,000 of the 10,000,000 matrix entries are nonzero. However, the distribution of
the nonzero entries does not fall into any well-defined structure.

The supermarket has a 10,000 x 1 matrix, price. price(i) is the selling price of
one unit of item i. The matrix spent = purchases” + price is a 1000 x 1 matrix
that gives the amount spent by each customer. If a two-dimensional array is used to
represent the matrix purchases, an unnecessarily large amount of memory is used
and the time requireq to compute spent is also unnecessarily large. [ ]

7.4.2 Representation Using a Single Linear List

The nonzero entries of an irregular sparse matrix may be mapped into a linear
list in row-major order. For example, the nouzero entries of the 4 » 8 matrix of
Figure 7.14(a) in row-major order are 2, 1, 6, 7, 3. 9, 8, 4, 5.

To reconstruct the matrix structure. we need to record the originating row and
column for each nonzero entry. So each element of the array into which the sparse
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00020010 terms (0 1 2 3 4 5 6 7 8
06 007003 row |1 1 2 2 2 3 3 4 4
00090800 col (4 7T 2 5 8 46 2 3
04500000 value |2 1 6 7.3 9 8 4 5§
(a) A 4 x 8 matrix (b) Its linear list representation

Figure 7.14 A sparse matrix and its linear list representation

matrix is mapped needs to have three fields: row (the row of the matrix entry), col
(the column of the matrix entry), and value (the value of the matrix entry). For
this purpose we define the struct matrixTerm that has these three data members.
The data type of row and col is int and that of value is T.

The nonzero entries of the matrix of Figure 7.14(a) may be stored in a linear,
list terms in row-major order as shown in Figure 7.14(b). The row labeled terms
gives the list index of a matrix term. In addition to storing the nonzero entries of
the matrix, we need to store the number of rows and columns in the matrix.

Suppose that our linear list terms is an instance of arrayList. If we assume
that the nine nonzero elements of Figure 7.14(a) are stored as ints, the linear
list representation requires 8 (for number of rows and columns) + 9 = 12 (each
nonzero element requires the storage of its row, column, and value; 4 byvtes each) +
B (for the size and capacity of the linear list terms) + 4 {for a reference to the array
terms.elements) = 128 bytes. If we had represented our matrix using a 4 x 8 array
theArray, the space used would have been 32 + 4 (for the array entries) + 4 =4 (for
the pointers in thearray[]) + 4 (for a reference to theArray) = 148 bytes. The
space saving achieved by the linear list representation isn't much in this example.
However, for the matrix purchase (see our supermarket example, Example 7.6),
the array representation takes approximately 20, 000 = 12 = 240,000 bvtes, whereas
the two-dimensional array representation needs approximately 10,000,000 = 4 =
40,000,000 bytes. The space saving is about 39.760,000 bvtes! A corresponding
amount of time is saved creating the linear list representation over initializing a
two-dimensional array.

The linear list representation of a sparse matrix does not lead to efficient imple-
mentations of the get and set operations. The get operation takes Oflog [number of
nonzero entries|) time when an array linear list and binary search are used. The set
operation takes O(number of nonzero entries) time because we may need to move
this many entries to make room for the new term. Both operations take Ofnumber
of nonzero entries) time when a linked linear list is used. Each of these operations
takes ©(1) time using the standard two-dimensional array representation. However,
matrix operations such as transpose, add, and muliiply can be performed efficiently
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using the linear list representation.

The Class sparseMatrix

Based on our experiments of Section 6.1.6, we are motivated to use an array repre-

sentation for terms. We use the class arrayList with the following methods added
to it. '

1. reSet(newSize) --- change the size of the list to newSize increasing the
capacity of the array if necessary.

2 set(thelndex, theElement) - - make theElement the list element whose
index is theIndex.

3. clear()} --- make the list size zero
Program 7.13 gives the header for the class sparseMatrix which uses the row-

major mapping of a sparse matrix into an arrayList. Notice that the only con-
structor this class has is the default constructor.

template<class T>
class sparseMatrix -
1{
public:
void transpose(sparseMatrix<T> &b);
void add(sparseMatrix<T> kb, sparseMatrix<T> &c);
private:
int rows, // number of rows in matrix
cols; // number of columns in matrix
arraylList<matrixTerm<T> > terms;
// list of nonzero terms
;i

Program 7.13 Header for sparseMatrix

Program 7.14 gives the code to overload the output operator <<. Notice that
this codes emplovs an iterator to sequence through the elements in the arrayList
in left-to-right order. This order gets the nonzero matrix elements in row-major
order. If the output is printed or displayed on a screen we will see one matrix term
per line.

Program 7.15 inputs the sparse matrix entries in row-major order and sets up
the internal representation. Exercise 42 considers refinements of this code.
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template <class T>
ostreamk operator<<(ostreamk out, sparseMatrix<T>& x)
{// Put % in output stream.

// put matrix characteristics
out €< "rows = " << y.rows << " columns = "
<< x.cols << endl;
out << "nonzero terms = " << x.terms.size() << endl;

// put terms, one per line
for (arraylList<matrixTerm<T> >::iterator i = x.terms.begin();
i = x. terms.end(); i++)
out << "a(" << (#i).row << *,* << (*i).col
€< ") = " << (#1).value << endl;

return out;
}

Program 7.14 Overloading the output operator <<

Matrix Transpose .

Program 7.16 gives the code for the transpose method. We first set the number
of rows and columns in the result matrix b and also make the size of the linear
list b.terms equal to the number of terms in the transpose. Even though the list
b.terms has none of the terms of the transpose vet, we set its size equal to the
numhber of nonzero entries it will eventually have, This step is necessary so that we
can use the method arrayList<T>::set to place entries into arbitrary positions in
b.terms. If we do not change the size of b.terms in this manner, then we must
grow the linear list one element at a time. As we will see, when we transpose a
sparse matrix, the zeroth element of the matrix being transposed may be the sixth
(say) element of the transpose. We cannot insert an element at position 6 of a linear
list unless the list size is currently 6 or more. By beginning with a list whose size
equals the final desired size (even though no element is defined or correct), we can
essentially use the list as a one-dimensional array. The element in any position of
the list can be assigned a new value using the method set.

Next we create two arrays colS8ize and rowNext. colSize[i] is the number of
nonzero entries of the input matrix *this that are in column i, and rowNext [i]
denotes the index in b for the next nonzero term that is in row 1 of the transpose.
For the sparse matrix of Figure 7.14(a), colSize[1:8] = [0, 2, 1, 2, 1, 1, 1, 1].
Prior to the generation of any entries in the transpose matrix, rowNext[1:8] = [0,
0,2 3,5 6,7, 8.
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template<class T>
istreamk operator>>(istreamk in, sparseMatrix<T>& x)
{// Input a sparse matrix.

// input matrix characteristics

int number0fTerms;

cout << "Enter number of rows, columns, and #terms"
<< andl;

in »» x.rows »> x.cols »>> number0fTerms;

// should validate input values here, left as an exercise

// set size of x.terms and ensure enough capacity
x.terms.reSet (number0fTerms) ;

// input terms
matrixTerm<T> mTerm;
for (int i = 0; i < numberOfTerms; i++)
{
cout << "Enter row, column, and value of term "
€< (i + 1) << endl;
in >> mTerm.row >> mTerm.col >> mTerm.value;
// should validate input, left as an exercise

x.terms.set(i, mTerm);

}

return in;

}

Program 7.15 Overloading the input operator >>

colBize is computed in the first two for loops by simply examining each term
of the input matrix using an iterator. rowNext is computed in the next for loop.
In this for loop, rowNext [i] is set to be the number of entries in rows 0 through
i-1 of the transpose matrix b, which is equal to the number of entries in columns 0
through i-1 of the input matrix *this. Finally, in the last for loop, the nonzero
entries are copied from the input matrix to their correct positions in b.

Although Program 7.16 is more complex than its counterpart for matrices stored
as two-dimensional arrays (see Program 2.19), for matrices with many zero entries,
Program 7.16 is faster. It is not too difficult to see that computing the transpose of
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template<class T>
void sparseMatrix<T>::transpose(sparseMatrix<T> &b)
{// Return transpose of #*this in b.

}

// set transpose characteristics
b.cols = rows;

b.rows = cols;
b.terms.reSet(terms.size());

// initialize to compute transpose
int* colSize = new int[cels + 1];
int* rowNext = new int[cols + 1];

// find number of entries in each column of #*this
for (int 1 = 1; i <= cols; i++) // initialize
colSize(i] = 0;
for (arraylList<matrixTerm<T> >::iterator i = terms.begin();
i != terms.end(); i++)
colSize[(*i).col]++:

// find the starting point of each row of b
rowlNext[1] = 0;
for (int i = 2; i <= cols; it++)

rowNext[i] = rowNext[i - 1] + celSize[i - 1];

/{ perform the transpose copying from #this to b
matrixTerm<T> mTerm;
for (arraylist<matrixTerm<T> >::iterator i = terms.begin();
i != terms.end(); i++)
{
int j = rowNext[(#i).coll++; // position in b
mTerm.row = (*i).col;
mTerm.col = (*i).row:
mTerm.value = (#*i).value;
b.terms.set(j, mTerm);

Progran 7.16 Transpose a sparse matrix
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the purchases matrix of Example 7.6 using the linear list representation and method
transpose is much faster than using a two-dimensional array representation and
the transpose function of Program 2.19. The time complexity of transpose is
() cols+terms.size()).

Adding Two Matrices

The code of Program 7.17 computes ¢ = *this + b. The result matrix ¢ is pro-
duced by scanning the non-zero terms of *this and b from left to right. This scan
is done using two iterators—it (for the matrix *this) and ib (for the matrix b).
On each iteration of the while loop, we need to determine whether the position in
b of the term *it is before, at the same place as, or after that of *ib. We can make
this determination by comparing the row-major index of these two terms. However,
it is actually simpler to compute and compare the row-major index plus the number
of columns in the matrix, as we do (tIndex and bIndex).

The while loop of add is iterated at most terms.size() + b.terms.siza()
times, as on each iteration the iterator it for *#this or the iterator ib for b or both
advance by one. The first for loop is iterated at most terms.size() times, while
the second is iterated ((b.terms.size()) times. Also, each iteration of each loop
takes constant time. So the complexity of add is O(terms.size()+b.terms.size()).
If the two matrices =this and b were represented as two-dimensional arrays, it would
take () rows*cols) time to add them. When terms.size()+b.terms.size() is
much less than rows=cols, the sparse matrix representation results in a faster im-
plementation.

7.4.3 Representation Using Many Linear Lists

An alternative sparse matrix representation results when we store the nonzero en-
tries in each row in a separate linear list. In exploring this alternative, we use linked
lists; array lists may be used instead (Exercise 52).

The Representation

We link together the nonzero entries in each row to form a chain (called a row chain )
as shown by the unshaded nodes of Figure 7.15.

Each unshaded node represents a nonzero term of the sparse matrix. Each node
in a row chain has the fields (data members) element and next. The element field
of a node in a row chain has two subfields—col (the column number for the term)
and value (the value of the term). Figure 7.16(a) shows the structure of a node on
a row chain. Subfields of element are not shaded.

Row chains are created only for rows that have at least one nonzero term. The
nodes on a row chain are linked in ascending order of their col value. The row
chains (i.e., unshaded chains) are collected together by using another chain (called
the header-node chain) as shown by the shaded nodes of Figure 7.15. Like a node
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template<class T>
void sparseMatrix<T>::add(sparseMatrix<T> &b, sparseMatrix<T> E&c)

{// Compute c = (*this) + b.

[/ verify compatibility
if (rows != b.rows || cols != b.cols)
throv matrixSizeMismatch(); // incompatible matrices

// set characteristics of result ¢
C.TOWS = FOWS;

c.cols = cols;

c.terms.clear();

int cSize = 0;

// define iterators for *this and b
arraylist<matrixTerm<T> >::iterator it = terms.begin();
arraylist<matrixTerm<T> >::iterator ib = b.terms.begin();
arrayList<matrixTerm<T> >::iterator itEnd = terms.end();
arrayList<matrixTerm<T> >::iterator ibEnd = b.terms.end();

{/{ move through *this and b adding like terms

while (it !'= itEnd &k ib != ibEnd)

{
// row-major index plus cols of each term
int tIndex = (#it).row * cols + (*it).col;
int bIndex = (*ib).row * cols + (*ib).col;

if (tIndex < blIndex)

{// b term comes later

c.terms.insert(cSize++, *it);
it++;

}

Program T.17 Adding two sparse matrices {continues)

on a row chain, a node on the header-node chain has two fields—element and next.
The element field of a node on the header-node chain has two subfields—row (row
number for corresponding row chain) and rowChain (the chain of unshaded nodes;
rowCh=+n.firstNode points to the first unshaded node). Figure 7.16(b) shows the
structure of a node on the header-node chain.

The nodes on the header-node chain are linked together in ascending order of
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alse {if (tIndex == bIndex)
{// both in same position

{// append to c only if sum not zero
if ((»it).value + (*ib).value != 0)

{
matrixTerm<T> mTerm;
mTerm.row = (%it).row;
mTerm.col = (*it).col;
mTerm.value = (#*it).value + (*ib).value;
c.terms. insert(cSize++, mTerm);
} :
1t++:
ib++;
¥
else

{// a term comes later
c.tearms.insert (cSize++, =*ib);
ib++;

}

// copy over remaining terms
for (; it != itEnd; it++)
c.terms.insert(cSize++, =*it);
for (; ib !'= ibEnd; ib++)
c.terms.insert(cSize++, #=ib);
}

Program 7.17 Adding two sparse matrices (concluded)

their row value. Each node on the header-node chain may be viewed as the header

node of a row chain. An empty header-node chain represents a matrix with no
nonzero terms.

Element Types

The struct rowElement defines a data type suitable for the elements of a row chain.
Its data members are col (column index of the term) and value {value of the
term). The struct headerElement defines a corresponding struct for elements in
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Figure 7.15 Linked representation of matrix of Figure 7.14(a)
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Figure 7.16 Node structures in linked sparse matrix representation

the header-node chain. Its data members are row (index of row) and rowChain (the
actual chain, data type is extendedChain).

The Class linkedMatrix

The class that uses the representation of Figure 7.15 is called 1inkedMatrix. The
row chaine and header-node chain of Figure 7.15 are actually represented as in-
stances of extendedChain because we will need to append (i.e., add at the right
end) elements to these chains. In an extendedChain (Program 6.12) an element
can be appended in &(1} time, whereas it takes ©(size of chain) time to append
to an instance of chain (Program 6.2). For our sparse matrix application we have
added the method zero() to extendedChain. This method makes the chain size
0 but does not delete the chain nodes (unlike clear which makes the chain size 0
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T

and also deletes all chain nodes).

The data members for linkedMatrix are almost the same as those for sparse-
Matrix; the exception is that the data member terms is replaced by headerChain,
which is of type extendedChain. The codes to overload << and >> are on the Web
site.

The Method linkedMatrix<T>::transpose

For the transpose operation, we use bins to collect the terms of the input matrix
+this that belong in the same row of the result. bin[1i] is a chain for the terms of
row i of the result matrix b. In the nested while loops of Program 7.18, we examine
the terms of *this in row-major order by going down the header-node chain of the
input matrix and making a left-to-right traversal of each row chain. We move along
the header-node and row chains by using an iterator ih for the header-node chain
and another iterator ir for the row chain. Each term encountered in this ordered
traversal of the matrix #this is appended to the bin chain for its row in the result.
The bin chains are collected together 1o the for loop to create the header-node
chain of the result.

The time spent in the while loops is O{number of nonzero terms), and the time
spent in the for loop is O(this— > cols). Therefore, the overall time is O number
of nonzero terms + this— > cols).

Exercise 51 asks you to implement the add method as well as other basic meth-
ods.

7.4.4 Performance Measurement

The space requirements of sparseMatrix and linkedMatrix are approximately the
same. However, we can modify the former representation to use 33 percent less space
(see Exercise 47); this modification does not reduce run-time efficiency. Although
Exercise 53 considers an alternative linked representation for sparse matrices, this
alternative representation takes 66 percent more space than does linkedMatrix.

Figures 7.17 and 7.18 give the measured run times for matrix addition and
transpose using two-dimensional arrays as in Programs 2.21 and 2.19 (2DArray,
2DA), sparseMatrix (SM) and linkedMatrix (LM). The add used two 500 x 500
sparse matrices; one had 1994 nonzero terms, and the other had 999 nonzero terms.
For transpose a 500 x 500 matrix with 1994 nonzero terms was used.

The linked sparse matrix implementation, while slower than the array implemen-
tation of a sparse matrix, is faster than 2DArray. The reduction in time obtained by
the array sparse matrix implementation sparseMatrix (relative to the nonsparse
implementation 2DArray) is quite striking—matrix addition and transpose times
are reduced by a factor of about 20.
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template<class T>

void linkedMatrix<T>::transpose(linkedMatrix<T> kb)

{// Return transpose of *this as matrix b.
b.headerChain.clear(); // delete all nodes from b

// create bins to collect rows of b
extendedChain<rowElenent<T> > =bin;
bin = new extendedChain<rowElement<T> > [cols + 1];

// head node iterator
extendedChain<headerElement<T> >::iterator
ih = headerChain.begin(),
ihEnd = headerChain.end();

// copy terms of =this into bins
while (ih != ihEnd)
{// examine all rows
int r = ih->row; // row number for row chain

// row chain iterator
extendedChain<rowElement<T> >»::itarator

ir = ih->rowChain.begin(),
irEnd = ih->rowChain.end();

rowElement<T> x;
“ ff terms from row r of *this go to column r of b
x.col = r;

while (ir != irEnd)
{// copy a term from the row chain into a bin
x.value = ir-»>value;
// % will eventually be in row ir->col of transpose
bin[ir->cel] .push_back(x);
ir++; // next term in row

¥

ih++; // go to next row

}

Program 7.18 Transpose a sparse matrix (continues)
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// set dimensions of transpose
b.rows = cols;
b.cols = rows;

// assemble header chain of transpose
headerElement<T> h;
f// scan bins
for (int i = 1; i <= cols; i++)
if ('bin(i].empty())
{// row i of transpose
h.row = i;
h.rowChain = bin[i];
b.headerChain.push_back(h);
bin[i] .zero(); // save from destructor

}

h.rowChain.zero(); /! save from destructor

delete [] bin;
}

Program 7.15 Transpose a sparse matrix (concluded)

Class add | transpose
2DArray 2.69 1.97
sparseMatrix || (.13 0.09
linkedMatrix || *** 1.57

*** Time not measured

Times are in milliseconds

Figure 7.17 Time taken by different matrix implementations

EXERCISES

38. (a) Draw figures similar to Figure 7.14(b) for the matrices of Figure 7.8.
(b) Manually work out a sparse matrix transpose as implemented by sparse-
Matrix<T>::transpose using the matrix of Figure 7.8(b).

(¢) Manually work out a sparse matrix add as implemented by sparse-
Matrix<T>::add using the matrices of Figures 7.8(b) and (c).
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Figure 7.18 Sparse matrix run times in milliseconds

39.

41.

42,

(a) Suppose that a 500 x 500 matrix that has 2000 nonzero terms is to be
represented. How much space is needed when a 500 x 500 two-dimensional
array of type int is used”? How much space is needed when sparseMatrix
is used?

(b) How many nonzero elements must an m x n matrix have before the
space required by sparseMatrix exceeds that required by an m x n two-
dimensional array? You may assume that T is int.

Develop the formula for the row-major index of element (i, j) of a rows x cols
matrix. Why is it easier to compute the value inder = row-major index +
cols than it is to compute the row-major index? Show that if inder; and
inder; are the indexes of two matrix elements, then index, < inder; iff the
first element precedes the second element in row-major order.

Write the methods get(theRow,theColumn) and set(theRow,theColumn,

theValue) ior the class sparseMatrix. What is the time complexity of your
methods?

Refine the input code of Program 7.15 so that it verifies that the terms are,
mn fact, input in row-major order; that the row and column indexes of each

term are valid; and that each term is nonzero.

Write a copy constructor for the class sparseMatrix.
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44. Suppose that a sparse matrix is mapped into an arrayList (with the addi-
tional methods indicated in this chapter) in column-major order of the nonzero
terms.

(a) Develop the representation of the sparse matrix of Figure 7.14(a).
{b) Write the get and set methods for sparse matrices stored in this way.
(c) What is the time complexity of vour methods”

45. Write a method to multiply two sparse matrices represented using an array
linear list. Assume that both matrices are mapped in row-major order. The
result matrix is similarly represented.

46. Do Exercise 45 using a column-major mapping.

47. We can reduce the space required by the linear list representation of a sparse
matrix by eliminating the data member row from matrixTerm and using an
array rowStart such that rowStart[i] is the index of the first term in row
i. The terms of row i have the indexes rowStart[i] --- rowStart[i+1].

(a) Draw a figure similar to Figure 7.14(b) for the sparse matrix of Fig-
ure 7.14(a). Use the representation of this exercise and show the terms
in row-major order. Also give the values of rowStart[1:5].

(b) Write the struct newMatrixTerm to represent a nonzero term. This struct
differs from the struct matrixTerm only in that nnuﬂatriﬂnm does not
have the data member row.

(¢c) Write the class newSparseMatrix to implement a sparse matrix using
the representation of this exercise. Your class must include all methods
implemented for sparseMatrix as well as the methods get and set (see
Exercise 41).

(d) Test your code.

(e) Make a qualitative comparison of the classes newSparseMatrix and sparse-
Matrix.

(f} Compare the run times of the add and transpose methods of the two
cla.ﬂse& using 500 x 500 sparse matrices with approximately 6000 nonzero
terms.

48. Write a matrix multiply method for the representation of Exercise 47. Test
your code.

49. (a) Draw figures similar to Figure 7.15 for the matrices of Figure 7.8.

(b) Manually work out a spﬁme matrix transpose as implemented by 1inked-
Matrix<T>::transpose using the matrix of Figure 7.8(b).
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50. (a) Suppose that a owo = ouvu matrix that has 2000 nonzero terms is to be

al.

52.

represented. How much space is needed when a 500 x 500 two-dimensional
array of type int is used? How much space is needed when linkedMatrix
is used?

(b) How many nonzero elements must an m x n matrix have before the
space required by linkedMatrix exceeds that required by an m x n two-
dimensional array?

Extend the class linkedMatrix by adding methods for the following opera-
tions:
(a) Set a term given the row index, column index, and value of the term.
(b} Get a term given its row and column indexes.
(e} Add two sparse matrices.
(d) Subtract two sparse matrices.

(e) Multiply two sparse matrices.
Also, refine the code for >> as described in Exercise 42, Test vour code.

Develop the class arrayMatrix in which each row of nonzero terms is repre-
sented as a separate array linear list. The representation differs from that of
Section 7.4.3 in that the linked lists of the figure are replaced by array lists.
Implement methods to input, output, add. transpose, and multiply. Test your
code.

. [Orthogonal Linked List Representation] An alternative linked representation

for sparse matrices uses nodes that have the fields down, right, row, col, and
value. Each nonzero entry of the sparse matrix is represented by a node. The
zero terms are not explicitly stored. The nodes are linked together to form
two circular lists. The first list, the row list, is made up by linking nodes by
rows and within rows by columns using the right field. The second list. the
column list, is made up by linking nodes via the down field. In this list, nodes
are linked by columns and within columns by rows, These two lists share a
common header node., In addition. a node is added to contain the dimensions
of the matrix.

(a) Write down any 5 » 8 matrix that has exactly nine nonzero terms such
that at least one nonzero term appears in each row and each column.
For this sparse matrix draw the linked representation.

(b) Suppose that an m x n matrix with { nonzero terms is represented as
above. How small must ¢ be so that the above linked scheme uses less
space than an m x n array uses?
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(c) Design a suitable external (i.e., one that can be used for input and out-
put) representation for a sparse matrix. Your representation should not
require explicit input of the zero terms.

(d) Develop a class that uses the representation of this exercise. Include all
the methods of sparseMatrix.

(e) For each public method of the class, obtain its asymptotic time complex-
ity. How do these complexities compare with the corresponding com-
plexities for the methods of sparseMatrix?



CHAPTER 8
STACKS

BIRD’S-EYE VIEW

Stacks and queues are, perhaps, the most frequently used data structures. Both are
restricted versions of the linear or ordered list data structure studied extensively in
Chapters 5 and 6. In fact, stacks and queues are so widely used that the C4++ STL
provides the classes stack and queue, which are array implementations of these
data structures. We will study stacks in this chapter and queves in the next. Even
though C++ provides an implementation of a stack and a queue, we obtain our
own stack and queue implementations just to learn how to implement these data
structures,

The stack data structure is obtained from a linear list by restricting the insertions
and removals to take place from the same end. As a result, a stack is a last-in-first-
out (LIFO) structure. Since a stack is a special kind of linear list, it is natural to
derive stack classes from corresponding linear list classes. Therefore, we may derive
an array-stack class from any of the array linear list representations of Chapter 5;
a linked-stack class may be derived from the class chain (Program 6.2). Although
these derivations simplify the programming task, they result in code that incurs a
significant run-time penalty. Since a stack is a very basic data structure that many
applications employ, we also develop array- and linked-stack classes from scratch
(i.e., not derived from any other class). These latter classes provide improved run-
time performance over their derived counterparts.

269
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Six application codes that make use of stacks are also developed. The first
is a simple program to match left and right parentheses in an expression. The
second is the classical Towers of Hanoi problem in which we move disks one at a
time from a source tower to a destination tower using one intermediary tower; each
tower operates as a stack. The third application uses stacks to represent shunting
tracks in a railroad yard. The objective is to rearrange the cars in a train into the
desired order. The fourth application is from the computer-aided design of circuits
field. In this application we use a stack to determine whether a switch box can be
feasibly routed. The fifth application revisits the offline equivalence class problem
introduced in Section 6.5.4. A stack enables us to determine the equivalence classes
in linear time. The final application considered in this chapter is the classical rat-
in-a-maze problem in which we are to find a path from the entrance of a maze to its
exit. You are urged to go through this application verv carefully, as its treatment
in this chapter illustrates many software-engineering principles. Additional stack
applications appear in later chapters.
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8.1 DEFINITION AND APPLICATIONS

Definition 8.1 A stack is a linear list in which insertions (also called additions
and pushes) and removals (also called deletions and pops) take place at the same
end. This end is called the top; the other end of the list is called the bottom. =

Figure 8.1{a) shows a stack with four elements. Suppose we wish to add element
E to the stack of Figure 8.1(a). This element will have to be placed on top of element
D, giving us the configuration of Figure 8.1(b). If we are to delete an element
from the stack of Figure 8.1(b), it will be element E. Following the deletion, the
configuration of Figure 8.1(a) results. If we perform three successive deletions on
the stack of Figure 8.1(b), the stack of Figure 8.1(c) results.

E «—top
De—top ' (b))
C C
B B B~—top
A~—bottom A~—bottom A—bottom .

(a) (b) (¢)

Figure 8.1 Stack configurations

From the precedingldiscumiﬂn, we see that a stack is a LIFO list. Lists of this.
type appear frequently in computing.
Example 8.1 [Stacks in the Real World|

# If you examine the paper tray of vour printer (or copy machine), you will see
that the next sheet that gets used is the one at the top; when you add a sheet
to the paper tray, you add it to the top. So the paper tray maintains a stack
of paper; the paper tray works in a LIFO manner. This LIFO behavior of the
paper tray is quite convenient when you want to do that occasional letter on a
preprinted letterhead sheet or you want to print the next page on a preprinted
form—you simply put the letterhead sheet or form at the top of the paper
tray and smile when the printer prints on the desired sheet.

e Walk into a cafeteria, and you'll see a stack of trays. When you get into the
food line, you pick up a tray from the top of this stack (unless, of course, you
spot a new tray not too far from the top); when the tray stack is replenished,
trays are added at the top of the stack. So barring anomalous behavior (like
picking up a new tray that is not at the stack top), the tray stack in a cafeteria
operates just like the stack data structure we have defined—the tray stack
works in a LIFO manner.
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e The next time you are in a college bookstore at the start of a term, observe
any pile of heavy text books. Each student who needs the book removes and
purchases the book at the top of the pile. When the pile gets sufficiently low,
a bookstore employee mysteriously appears and adds books to the top of the
pile. The book pile works in a LIFO manner—the pile is a stack. |

Example 8.2 [Recursion] How does your computer run a recursive method? Re-
cursive methods are correctly executed using a recursion stack. When a method
is invoked, a return address (i.e., the location of the program instruction to execute
once the invoked method completes) and the values of all local variables and for-
mal parameters of the invoked method are stored on the recursion stack. When a
return is executed, the values of local variables and formal parameters are restored
to their values prior to the method invocation (these prior values are at the top of
the recursion stack) and program execution resumes from the return address, which
is also at the top of the stack.

Suppose the recursive sum function (Program 1.31) is invoked from the function
outerFunction using the statement

y = rSum(x,2);

This statement is compiled into code to invoke rSum and is followed by code to store
the value returned by rSum into y. Let [} be the address of the first instruction in the
code to store the returned value into y. The return rSum statement of Program 1.31
is compiled into code to invoke rSum, followed by code to add the returned value
to aln - 1], followed by code to return the result of this addition. Let l3 be the
address of the first instruction in the code to add the returned value to a[n - 1].
When the invocation rSum(x,2) is made from outerFunction, the return ad-
dress (I;) and the the values of the formal parameters and local variables of rSum

are saved on the recursion stack as a tuple of the form

(return address, values of formal parameters, values of local variables)

Since a and n have unspecified values at this time, the tuple (I}, *, *) (* denotes
an unspecified value) is added to the recursion stack (note that rSum has no local
variables) and the formal parameters of rSum are assigned their new values, The
parameter a is assigned the value of x, which is a reference to element 0 of the array
x[]. and n is assigned the value 2. Execution continues with the first instruction of
rSum.

When rSum is invoked from within rSum, the tuple (I3, z. 2) is added to the
stack; the formal parameters of rSum are assigned their new values (x and 1); and
we continue with the first instruction of rSum. The function rSum is invoked again
from within rSum, and (l;, x, 1) is added to the stack; the formal parameters are
assigned their new values (z and 0); and we proceed to the first instruction of rSum.
Now since n equals 0, the value 0 is to be returned by rSum. How do we know
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whether we should return to [; or to [;7 This determination is made by removing
the top tuple from the stack. The stack contents (from bottom to top) are

[, *, %) (la, 2, 2). (1, 2. 1))

The top tuple (ls, x, 1) is removed from the stack, the values of the formal param-
eters and local variables of the function we are exiting (i.e., rSum) are reset (a is
reset to xr and n is reset to 1), and we continue with the instruction at l;. The sum

0 + x[0] is computed, and another return executed. At this time the recursion
stack looks like this:

(L, *, %), (l2, =, 2)]

The top tuple (I3, x, 2) is removed from the stack, a is reset to x, n is reset to 2, the
computed sum 0 + a[0] is to be returned, and we continue with the instruction at
l3. This time a[1] is added to 0 + a[0]. the top tuple (/;, *, *) is removed from
the stack, a is set to *, n is set to *, the value 0 + a[0] + a[1] is to be returned,
and we continue at [;. : |

EXERCISES

1. The following sequence of operations is done on an initially empty stack: push
A, push B, pop, push T, push T, push [/, pop, pop, push A, push D). Draw
figures similar to those of Figure 8.1 to show the stack configuration after each
operation.

2. Do Exercise 1 for the operation sequence: push S, push S, push T, push [J.
pop, pop, push A, push L, push &, pop, push O, push A, push B, pop, pop.

3. ldentify three additional real-world applications of a stack.

4. Show the contents of the recursion stack following each invocation of and

each return from the method rSum (Program 1.31). The initial invocation is
rSum(x,3).

3. Show the contents of the recursion stack following each invoecation of and each
return from the method factorial (Program 1.29). The initial invocation is
factorial(3).

6. Show the contents of the recursion stack following each invocation of and
encl return from the method perm (Program 1.32). The initial invocation is
permix, 0, 2).
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8.2 THE ABSTRACT DATA TYPE

The ADT stack is specified in ADT 8.1. We have chosen the stack operation names
to be the same as the method names used in the STL class stack.

ilhstractﬂamType stack

instances
linear list of elements; one end is called the bottom; the other is the top;

operations
empty() : Return true if the stack is empty, return false otherwise;

size() : Return the number of elements in the stack;
top() : Return the top element of the stack;
popl) : Remove the top element from the stack;

push(z): Add element r at the top of the stack;
}

ADT 8.1 The abstract data type stack

Program 8.1 gives the C++ abstract class that corresponds to the stack ahstm-:!t‘
data type.

8.3 ARRAY REPRESENTATION

Since a stack is a linear list with the restriction that additions and deletions take
place at the same end, we may use any of the linear list representations of Sec-
tion 5.3.3. When we identify the stack top with the right end of the array linear
list, the push and pop operations correspond to the best case for linear list inserts
and erases. Consequently, both operations take O(1) time.

8.3.1 Implementation as a Derived Class

Program 8.2 gives the class derivedArrayStack, whose base classes are arrayList
and stack.

The constructor for derivedArrayStack simply invokes the constructor for the
base arrayList, which allocates a one-dimensional array whose eapacity (length)
is initialCapacity. The default value for initialCapacity is 10. The codes for
the remaining methods of derivedArrayStack are also straightforward.
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template<class ™
class stack

{
public:
virtual ~“stack() {}
virtual bool empty() comst = O;
// return true iff stack is empty
virtual int size() const = {;
// return number of elements in stack
virtual T& top() = 0;
/[ return reference to the top element
virtual void pop() = 0;
// remove the top element
virtual void push(const Tk theElement) = 0;
/{ insert theElement a* the top of the stack
};

o

Program B.1 The C++ abstract class stack

Complexity of derivedArrayStack Methods

The complexity of the constructor is (1) when T is a primitive data type and is

O(initialCapacity) when T is a user-defined type. The complexity of push is

B(1) except when we need to increase the capacity of the stack. In this latter case

the complexity is (){stack size). The complexity of each of the remaining methods
is B(1).

Comments on derivedArrayStack

The codes for top and pop check whether the stack is empty before they, respec-
tively, invoke the base class methods get and erase. Since the invoked base-class
methods will throw an exception when invoked with an empty stack, we can elim-
inate the stack empty check from top and pop without affecting the program out-
come. However, since the get and remove methods of arrayList throw an excep-
tion of type illegalIndex, the user of our derived stack class will be bewildered
upon having an exception of this type thrown when he/she invokes top and pop.
An alternative is to replace the check for an empty stack by a try-catch construct
in which the catch block catches the exception thrown by the base-class method
and throws a new and meaningful exception in its place. Program 8.3 shows the
code for the method top when we use this alternative. The corresponding class is
called derivedArrayStackWithCatch.

The derivation from arrayList has the access modifier private. Consequently,
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template<class T> -
clase derivedArrayStack : private arraylList<T>,
public stack<T>
{
public:
derivediArrayStack(int initialCapacity = 10)
: arrayList<T> (initialCapacity) {}
bool empty() comst
{return arrayList<T>::empty();}
int size() const
{return arrayList<T>::size();}
Tk top()
{
if (arrayList<T>::empty())
throw stackEmpty();
return get(arrayList<T>::size() - 1);
}
void pop()
{
if (arrayList<T>::empty())
throw stackEmpty();
aerase(arrayList<T>::siza() - 1);
}
void push{const Tk theElement) .
{insert(arrayList<T>::size(), theElement);}
}; '

Program B.2 An array stack class derived from arrayList

T& top()
{
try {return get(arrayList<T>::size() - 1);}
catch (illegallndex)
{throw stackEmpty();}
}

Program 8.3 Implementation of top using the try-catch construct

the public and protected methods and data members of arraylist are accessible
only from within the code for derivedArrayStack. In particular, users of the de-
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fined stack class are unable to access arrayList methods such as get, insert, and
erase. Hence the LIFO stack discipline is enforced on instances of type derived-
ArrayStack.

An alternative, but very similar, implementation of an array stack would use
a data member stack of type arrayList and define the stack methods in terms
of operations on the linear list stack. The code would be quite similar to that of
Program 8.2. Alternatively, the data member stack could be an array of type T,
and the code for the stack methods would not employ any method of 1inearList.
We explore this alternative in the next subsection.

8.3.2 The Class arrayStack

When we obtain a stack class by extending a linear list class as was done in Pro-
gram 8.2, we pay a performance penalty. For example, whenever we add an element,
to a stack, the push method invokes arrayList<T>::insert, which does an index
check, a possible array doubling, and a copy_backward prior to actually inserting
the new element. The index check and copy_backward are unnecessary because
when we add an element to a stack, the element is always added to the right end
of the linear list. '

(One way to arrive at a faster implementation of an array stack is to develop a
class that employs an array stack to hold the stack elements. Program 5.4 gives the
class arrayStack that does just this. The bottom element of the stack is stored in
stack[0], and the top element in stack [top]. The codes for the methods of array-
Stack may be arrived at from those of arraylist by eliminating the redundant
code in arrayList. The asymptotic complexity of each method of arrayStack is
the same as that of the corresponding method of derivedArrayStack.

8.3.3 Performance Measurement

Even though the array stack classes arrayStack (AS), derivedArrayStack (DAS),
and the C++ STL container class stack (STL) implement all methods of the stack
ADT so as to have the same asymptotic complexity, the observed performance of
the methods is expected to be different for each class.

Define an n-sequence to be a sequence of n push operations followed by an
alternating sequence of n top and n pop operations. Figure 5.2 gives the measured
times to perform a 50,000,000-sequence, and Figure 5.3 shows these time as a bar
chart. For all stack classes except the STL stack class, we obtained the run times
for the cases: (1) start with a stack having the default capacity and (2) start with
a stack whose initial capacity is 50,000,000, We did not try (2) for the STL stack
class because this class does not have a constructor that allows us to specify an
initial capacity.

The STL class stack took 2 tiues the time taken by arrayStack to perform
a 50,000,000-sequence when the initial stack capacity is the default capacity. The
performance ratio jumps to 3.7 when we start with an arrayStack whose capacity
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template<class T>
class arrayStack : public stack<T>
{
public:
arrayStack(int initialCapacity = 10);
“arrayStack() {delete [] stack;}
bool empty() comst {return stackTop == -1;}
int size() const
{return stackTop + 1;}
Té top()
{
if (stackTop == -1)
throw stackEmpty();
return stack[stackTop];
}
void pop()
{
if (stackTop == -1)
throw stackEmpty();
stack[stackTop--]1.°T(); // destructor for T
}
void push(const Tk theElement);
private:
int stackTop; // current top of stack
int arrayLength; // stack capacity
T =stack; // element array

;i

Program 8.4 The class arrayStack (continues)

initialCapacity
Class default | 50,000,000
| arrayStack 2.7 1.5
derivedArrayStack || 7.9 6.3
stack 3.6 -

Times are in seconds

Figure 8.2 Time taken by different array stack implementations
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template<class T>
arrayStack<T>::arrayStack(int initialCapacity)
{// Constructor.

if (initialCapacity < 1)

{ostringstream s;

8 << "Initial capacity = " << initialCapacity << " Must be > 0O";

throw illegalParameterValue(s.str());

}

arrayLength = initialCapacity;

stack = new T[arrayLength];

stackTop = -1;

1

template<class T>
void arrayStack<T>::push(const Tk theElement)
{// Add theElement to stack.
if (stackTop == arraylLength - 1)
{// no space, double capacity
changeLengthiD({stack, arraylLength, 2 * arraylLength);
arrayLength == 2;
}

// add at stack top
stack [++stackTop] = theElement;
}

Program 8.4 The class arrayStack (concluded)

is 50,000,000 (this jump is due mainly to the fact that stack does not allow you
to specify an initial capacity and so array resizing cannot be avoided). It is more
appropriate to compare the performance of the STL class with that of derived-
ArrayStack because both of these classes derive from other concrete linear list
classes. The STL class stack derives from the STL class deque (Exercise 9.9) while
derivedArrayStack derives from arrayList. stack has a better performance than
derivedArrayStack primarily because deque does no index checking while array-
List does index checking.

An interesting (and expected) observation is that the time spent resizing the
array (this is just the difference in the time taken when the initial capacity is 10 and
when it is 500,000) is approximately the same for both of stack implementations
developed in this section (approximately 1.2 seconds). The time spent on array
resizing is about 44 percent of the total time taken by arrayStack when we start

k!
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B

A = default initial capacity
B = initial capacity is 50,000,000

EEER) AS L1 DR N sSTL

Figure 8.3 Stack run times in seconds

with an array having the default length 10.

EXERCISES
7. (a) Extend the stack ADT by adding functions to
i. Input a stack.

ii. Convert a stack into a string suitable for output.

iii. Split a stack in two. The first contains the bottom half elements,
and the second the remaining elements.

iv. Combine two stacks by placing all elements of the second stack on
top of those in the first. The relative order of elements from the
second stack is unchanged.

(b) Define the abstract class extendedStack that extends the abstract class
stack (Program 5.1) and includes the methods that correspond to the
functions of (a).

(e) Develop the conerete classes extendedDerivedArrayStack and extended-
ArrayStack whose base class is extendedStack and which also are, re-
spectively, derived from derivedArrayStack and arrayStack.
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(d) Test the correctness of your codes.

Consider the class arrayStack. Show that even though it is possible for an
individual push operation to take 8(stack size) time, the time taken by any
sequence of n stack operations is O(n).

Consider the class arrayStack.

(a) As implemented in Program 8.4, the capacity of a stack (i.e., the length
of the array stack) can increase but not decrease. To use space more
efficiently, modify the implementation of pop so that vou decrease the
capacity to one-half of the current capacity whenever a pc-p reduces the
stack occupancy below one-fourth of capacity.

(b) Show that even though it is possible for an individual push and pop
operation to take &(capacity) time, the time taken by any sequence of n
stack operations is O(n).

Develop the concrete class stackWithArrayList that derives from the ab-
stract class stack. This class has the single data member 1ist whose datatype
is arrayList<T>. Comment on the relative merits of the classes derived-
ArrayStack and stackWithArrayList.

Develop the C++ class twoStacks in which a single array is used to represent
two stacks. Peg the bottom of one stack at position 0 and the bottom of the
other at position arrayLength-1. The two stacks grow toward the middle of
the array (see Figure 8.4). Your class must contain methods to perform all
operations of the ADT stack on each of the two stacks. Further the complexity
of each method should be (1) excluding the time for array resizing.

n=arrayLength - 1

Figure 8.4 Two stacks in an array
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8.4 LINKED REPRESENTATION

When using a chain to represent a stack, we must decide which end of the chain
corresponds to the stack top. If we associate the right end of the chain with the
stack top, then the stack operations top, push, and pop are implemented using in-
vocations to the chain methods get(size() - 1), insert(size(), theElement),
and erase(size() - 1). Each of these chain operations takes O(size()) time.
On the other hand, if we associate the left end of the chain with the stack top, then
the chain operations to use are get(0), insert(0, theElement), and erase(0).
Each of these operations takes (1) time. This analysis shows that we should use
the left end of the chain to represent the stack top.

8.4.1 The Class derivedLinkedStack

The code for the class derivedLinkedStack, which derives from chain (Program 6.2)
and which implements the abstract class stack, may be obtained from the code
for derivedArrayStack (Program 8.2) by replacing the clause private array-
List<T> with the clause private chain<T>; replacing all occurrences of the name
derivedArrayStack with the name derivedLinkedStack; and changing the index
actual parameter to all uses of the methods get, insert, and erase to 0 so that
these operations take place at the left end of the chain. What could be easier” By
using the object-oriented programming principles of information hiding and encap-
sulation, we have greatly simplified program development. The complexity of each
method of derivedLinkedStack (including the constructor and push methods) is
e(1).

8.4.2 The Class linkedStack

As was the case with the class arrayStack (Program 8.4), we can improve the run-
time performance by customizing the code and not deriving our linked-stack class
from the class chain. Program 8.5 gives the customized code.

8.4.3 Performance Measurement

derivedLinkedStack and linkedStack took 41 and 40.5 seconds, respectively, to
perform a 50,000,000-sequence (these times were obtained by measuring the times
for a 10,000,000-sequence and multiplying by 5). Comparing with the times reported
in Figure 8.2, we see that linkedStack takes 15 times the time arrayStack takes
when started with a capacity of 10 and 27 times the time taken when the array
stack's initial capacity is 50,000,000,

EXERCISES

12. In some stack applications the elements to be put on a stack are already in
nodes of tvpe chainNode. For these applications it is desirable to have the
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template<class T>

class linkedStack : public stack<T>

{
public:
linkedStack(int initialCapacity = 10)
{stackTop = NULL; stackSize = 0;}
“linkedStack();
bool empty() comst
{return stackSize == 0;}
int size() comnst
{return stackSize;}
Tk top()
{
if (stadkSize == Q)
throw stackEmpty();
return stackTop->element;
}
void pop();
void push(const T& theElement)
{
stackTop = new chainNode<T>(theElement, stackTop);
stackSize++;
1
privatea:
chainNode<T>* stackTop; // pointer to stack top
int stack3Size; // number of elements in stack
};

Program 8.5 Customized linked stack (continues)

methods pushNode (chainNode* theNode), which adds theNode to the top of
the stack (notice that no call to new is made), and popNode, which removes
and returns the top node of the stack.

a) Write code for these methods

(
(b) Test vour code.
{

c) Compare the performance of a 10,000,000-sequence that uses pushNode
and popNode with a 10,000,000-sequence that uses push and pop.

. Develop the concrete class extendedLinkedStack that derives from both

linkedStack and the abstract class extendedStack (see Exercise 7).
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template<class T>
linkedStack<T>::~linkedStack()
{// Destructor.
while (stackTop != NULL)
{// delete top node
chainNode<T>* nextNode = stackTop->next;
delete stackTop;
stackTep = nextNode;
}

template<class T>
void linkedStack<T>::pop()
{// Delete top element.
if (stackSize == 0)
throw stackEmpty();

chainNode<T>* nextNode = stackTop->next;
delete stackTop;

stackTop = nextNode;

stackSize--;

}

Program 8.5 Customized linked stack (concluded)

14. Compare the performance of the array stack classes used in Figure 8.2 and the
linked classes derivedLinkedStack and linkedStack. Do this by performing
an alternating sequence of 10,000,000 push and pop operations. For the array
classes start with the default initial capacity. Does array doubling oceur in
vour experiment? Why?

8.5 APPLICATIONS
8.5.1 Parenthesis Matching

Problem Description

In this problem we are to mateh the left and right parentheses in a character string.
For example, the string (a*({b+c)+d) has left parentheses at positions 0 and 3 and
right parentheses at positions 7 and 10. The left parenthesis at position 0 matches
the right at position 10, while the left parenthesis at position 3 matches the right
parenthesis at position 7. In the string (a+b)) (. the right parenthesis at position
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5 has no matching left parenthesis, and the left parenthesis at position 6 has no
matching right parenthesis. Our objective is to write a C++ program that inputs a
string and outputs the pairs of matched parentheses as well as those parentheses for
which there is no match. Notice that the parenthesis matching problem is equivalent
to the problem of matching braces ({ and }) in a C++ program.

Solution Strategy

We observe that if we scan the input expression from left to right, then each right
parenthesis is matched to the most recently seen unmatched left parenthesis. This
observation motivates us to save the position of left parentheses on a stack as they
are encountered in a left-to-right scan. When a right parenthesis is encountered, it
is matched to the left parenthesis (if any) at the top of the stack. The matched left
parenthesis is deleted from the stack.

C++ Implementation
Program 8.6 gives the C++ code.

Complexity

The time complexity of Program 8.6 is O(n) where n is the length of the input
expression. To see this, note that the program performs O(n) push and O(n)
pop operations. Even though the complexity of an individual push operation is
O{capacity) (because of array doubling), the complexity of O(n) push operations is
O(n). The complexity of each pop operation is O(1). Therefore, the complexity of
O(n) pop operations is O(n).

8.5.2 Towers of Hanoi
Problem Description

The Towers of Hanoi problem is fashioned after the ancient Tower of Brahma
ritual, According to legend, when the world was created, there was a diamond
tower (tower 1) with 64 golden disks (Figure 8.53). The disks were of decreasing size
and were stacked on the tower in decreasing order of size from bottom to top. Next
to this tower are two other diamond towers (towers 2 and 3). Since the time of
creation, Brahman priests have been attempting to move the disks from tower 1 to
tower 2, using tower 3 for intermediate storage. As the disks are very heavy, they
can be moved anly one at a time. In addition, at no time can a disk be on top of a
smaller disk. According to legend, the world will come to an end when the priests
have completed their task.

In the Towers of Hanoi problem, we are given n disks and three towers. The
disks are initially stacked on tower 1 in decreasing order of size from bottom to top.
We are to move the disks to tower 2, one disk at a time, such that no disk is ever
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void printMatchedPairs(string expr)
{// Parenthesis matching.
arrayStack<int> s;
int length = (int) expr.size();

// scan expression expr for ( and )
for (int i = 0; i < length; i++)
if (expr.at(i) == *(*)

s.push(i);
else
if (expr.at(i) == *)*)

try

{// remove location of matching '(’ from stack
cout << s.top() << * ¢ << i << endl;
s.pop(); // unstack match

}

catch (stackEmpty)

{// stack was empty, no match exists
cout << "No match for right parenthesis"

<< " at " << i << endl;
}

// remaining '(" in stack are unmatched
vhile (!s.empty())
{
cout << "No match for left parenthesis at "
<< s.top() << endl;
s.pop();
}
}

Program 8.6 Program to output matched parentheses

on top of a smaller one. You may wish to attempt a sﬂ]utmn to this problem for n
= 2, 3, and 4 before reading further.

Solution Strategy

A very elegant solution results from the use of recursion. To get the largest disk
to the bottom of tower 2, we move the remaining n — 1 disks to tower 3 and then
move the largest to tower 2. Now we are left with the task of moving the n — 1 disks
from tower 3 to tower 2. To perform this task, we can use towers 1 and 2. We can



Section 8.5 Applications 287

Tower | Tower 2 Tower 3

Figure 8.5 Towers of Hanoi

safely ignore the fact that tower 2 has a disk on it because this disk is larger than
the disks being moved from tower 3. Therefore, we can place any disk on top of the
disk on tower 2.

First Implementation

Program 8.7 gives recursive C++ code for this solution. The initial invocation is
towersOfHanoi(n, 1, 2, 3). The correctness of Program 8.7 is easilv established.

void towersOfHamoi(int n, int x, int y, int =)
{// Move the top n disks from tower x to tower y.
// Use tower z for intermediate storage.
if (n > 0)
{
towersOfHanoi(n-1, x, z, y);
cout << "Move top disk from tower " << x
<< " to top of tower " << y << endl;
towersO0fHanoi(n-1, z, y, x);

}

Program 8.7 Recursive method for Towers of Hanoi
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Complexity

The time taken by Program 8.7 is proportional to the number of lines of output
generated, and the number of lines output is equal to the number of disk moves
performed. Examining Program 8.7, we obtain the following recurrence for the
number of moves, moves(n):

mmre;{n'] = { 0 n=1>0

2moves(in—-1)4+1 n>0
This recurrence may be solved by using the substitution method of Chapter 2 (see
Example 2.20). The result is moves(n) = 2" — 1. We can show that 2" — 1 is, in
fact, the least number of moves in which the disks can be moved. Since n = 64
in the Tower of Brahma, the Brahman priests will need quite a few years to finish
their task. From the solution to the above recurrence, we conclude that the time
complexity of towersOfHanoi is ©(2") provided the method runs to completion.

Second Implementation

The output from Program 8.7 gives us the disk-move sequence needed to move the
disks from tower 1 to tower 2. Suppose we wish to show the state (i.e., the disks
together with their order bottom to top) of the three towers following each move.
To show this state, we must store the state of the towers in memory and change
the state of each as disks are moved. Following each move, we can output the tower
states to an output device such as the computer screen, printer, or video recorder.

Since disks are removed from each tower in a LIFO manner, each tower may be
represented as a stack. The three towers together contain exactly n disks at any
time. Using linked stacks, we can get by with space for n elements. If array stacks
are used, towers 1 and 2 must have a capacity of n disks each, while tower 3 must
have a capacity of n — 1. Therefore, we need space for a total of 3n —1 disks. As our
earlier analysis has shown, the time complexity of the Towers of Hanol problem is
exponential in n. So using a reasonable amount of computer time, the problem can
be solved only for small values of n (say n < 30). For these small values of n, the
difference in space required by the array and linked representations is sufficiently
small that either may be used. Since the array implementations of a stack run faster
than the linked implementations, we use an array implementation.

The code of Program 8.8 uses array stacks. towers0OfHanoi(n) is just a prepro-
cessor for the recursive method moveAndShow, which is modeled after the method
of Program 8.7. The preprocessor creates the three stacks tower[1:3] that will
store the states of the three towers. The disks are numbered 1 (smallest) through
n (largest). Since the disks are modeled as integers, the data type for the stack
elements is int. The initial configuration has all n disks in tower[1]; the re-
maining two towers have no disk. After constructing this initial configuration, the
preprocessor invokes the method moveAndShow.
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Hl1 H2 H3 Hl1 H2 . H3
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Figure 8.7 Track states

track are nol in increasing order from fop fo boitom, the rearrangement cannot be
completed. The current state of the holding tracks is shown in Figure 8.7(a).

Car 2 is considered next. It can be moved into any of the holding tracks while
satisfying the requirement that car labels in any holding track be in increasing order,
but moving it to H1 is preferred. If car 2 is moved to H3, then we have no place
to move cars 7 and 8. If we move it to H2, then the next car, car 4, will have to be
moved to H3 and we will have no place for cars 5, 7, and 8. The least restrictions
on future car placement: arise when the new car u is moved to the holding track
that has at its top a car with smallest label v such that v > u. We will use this
assignment rule to select the holding track.

When car 4 is considered, the cars at the top of the three holding tracks are 2,
6, and 9. Using our assignment rule, car 4 is moved to H2. Car 7 is then moved
to H3. Figure 8.7(b) shows the current state of the holding tracks. The next car,
car 1, is moved to the output track. It is now time to move car 2 from H1 to the
output track. Next car 3 is moved from H1, and then car 4 is moved from H2. No
other cars can be moved to the output at this time.

The next input car, car 8, is moved to H1. Then car 5 is moved from the input
track to the output track. Following this move, car 6 is moved from H2. Then car
T is moved from H3, car 8 from H1, and car 9 from H3.

While three holding tracks are sufficient to rearrange the cars from the initial
ordering of Figure 8.6(a), other initial arrangements may need more tracks. For
example, the initial arrangement 1, n, n — 1, ..., 2 requires n — 1 holding tracks.

C++ Implementation

We use k array stacks, track[1:k], to represent the k holding tracks. Array stacks
are used because they are faster than linked stacks. Program 8.9 gives the global
variables we use.

The function railread (Program 8.10) determines a sequence of moves that
results in rearranging cars with initial ordering inputOrder [1:theNunber0fCars]
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arrayStack<int> strack; // array of holding tracks
int numberOfCars;

int number(fTracks;

int smallestCar; // smallest car in any holding track
int itsTrack; // holding track with car smallestCar

Program 8.9 Globel variables for railroad car problem

using at most theNumber0fTracks holding tracks. If such a sequence does not exist,
railroad returns false. Otherwise, it returns true.

Function railroad begins by creating an array track of stacks. track([i]
represents holding track 1, 1 < 1 < number0fTracks. The for loop maintains the
invariant: at the start of this Iﬂﬂp, the car with label nextCarToOutput is not in a
holding track.

In iteration i of the for loop, car inputOrder([i] is moved from the input
track. This car is to move to the output track only if inputOrder([i] equals
nextCarToOutput. If car inputOrder([i] is moved to the output track, next-
CarToOutput increases by one, and it may be possible to move one or more of the
cars in the holding tracks. These cars are moved to the output by the while loop.
If car inputOrder [i] cannot be moved to the output, then no car can be so moved.
Consequently, car inputOrder [1]) is added to a holding track using the stated track
assignment rule. :

Programs 8.11 and 8.12, respectively, give the functions nutpu‘hFrnIHnldin[—
Track and putInHeldingTrack utilized by railroad. outputFromHoldingTrack
outputs instructions to move a car from a holding track to the output track. It
also updates smallestCar and itsTrack. The method putInHoldingTrack puts
car ¢ into a holding track using the stated track assignment rule. It also outputs
instructions to move the car to the chosen holding track and updates smallestCar
and itsTrack if necessary.

Complexity

For the time complexity of railroad (Program 8.10), we first observe that both
outputFromHoldingTrack and putInHoldingTrack have complexity O(number0f-
Tracks). Since at most number0fCars~-1 cars can be output from the while loop
of railroad and at most number0fCars-1 put into holding tracks from the else
clause, the total time spent in the functions outputFromHoldingTrack and put-
InHoldingTrack is (J({number0fTracks * number0fCars). The remainder of the
for loop of railroad takes ©(number0fCars) time. So the overall complexity of
Program B.10 is O(number0fTracks * numberOfCars). This complexity can be
reduced to O(number0fCars+ log(number0fTracks)) by using a balanced binary
search tree (such as an AVL tree) to store the labels of the cars at the top of



Section 8.5 Applications 293

bool railroad(int inputOrder([],
int theNumberOfCars, int theNumberOfTracke)
{// Rearrange railroad cars beginning with the initial order.
// Return true if successful, false if impossible.

number0fCars = theNumberOfCars;
number0fTracks = theNumberQfTracks;

// create stacks for use as holding tracks
track = new arrayStack<int> [numberOfTracks + 1];

int nextCarToQutput = 1;
smallestCar = numberOfCars + 1; // no car in helding tracks

// rearrange cars
for (int i = 1; 1 <= numberOfCars; i++)
if (inputOrder[i] == nextCarToOutput)
{// send car inputOrder(i] straight out
cout << "Move car " << inputOrder([i]
<< " from input track to output track" << endl;
nextCarTolutput++;

// output from holding tracks
while (smallestCar == pextCarToQutput)
{
outputFromHoldingTrack();
nextCarTolutput++;
}
}

else
// put car inputOrder[i] in a holding track
if (!putInHoldingTrack(inputOrder[i]))
return false;

return true;

}

Program B.10 The function railroad

the holding tracks (see Chapter 15). When a balanced binary search tree is used
in this way, the functions outputFromHoldingTrack and putInHoldingTrack can
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void outputFromHoldingTrack()
{// Output the smallest car from the holding tracks.

// remove smallestCar from itsTrack
track[itsTrack] .pop();
cout << "Move car " << smallestCar << " from holding "
<< "track " << itsTrack << " to output track" << endl;

// find new smallestCar and itsTrack by checking top of all stacks
smallestCar = number0fCars + 2;
for (int 1 = 1; i <= numberDfTracks; i++)
if ('track(i].empty() &k (track[il.top() < smallestCar))
{
smallestCar = track[i].top();
itsTrack = i;

}

Program 8.11 The function cutputFromHoldingTrack

be rewritten to have complexity O(log(number0fTracks)). The use of a balanced
binary search tree for this application is recommended only when number0fTracks

is large.

8.5.4 Switch Box Routing
Problem Description

In the switch box routing problem, we are given a rectangular routing region with
pins at the periphery. Pairs of pins are to be connected together by laying a metal
path between the two pins. This path is confined to the routing region and is called
a wire. If two wires intersect, an electrical short occurs. So wire intersections are
forbidden. Each pair of pins that is to be connected is called a net. We are to de-
termine whether the given nets can be routed with no intersections. Figure 8.8(a)
shows a sample switch box instance with eight pins and four nets. The nets are (1,
4), (2, 3), (5, 6). and (7, 8). The wire routing of Figure 8.8(b) has a pair of intersect-
ing wires (those for nets (1, 4) and (2, 3)), whereas the routing of Figure B.8(¢) has
no intersections. Since the four nets can be routed with no intersections, the given
switch box 15 a routable switch box. (In practice, we also require a minimum
separation between adjacent wires. We ignore this additional requirement here. )}
Our problem is to input a switch box routing instance and determine whether it is
routable.
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bool putInHoldingTrack(int c)
{// Put car c into a holding track. Return false iff there is
// no feasible holding track for this car.

// find best holding track for car ¢

// initialize

int bestTrack = 0, // best track so far
bestTop = number0fCars + 1; // top car in bestTrack

// scan tracks
for (int i = 1; i <= pumber(0fTracks; i++)
if (!track(i] .empty())
{// track i not empty
int topCar = track[i].top();
if (c < toplar &k toplar < bestTop)
{// track i has smaller car at top
bestTop = topCar;
bestTrack = 1;
}
}

else // track i empty
if (bestTrack == Q) bastTrack = i;

if (bestTrack == () return false; // no feasible track

// add c to bestTrack

track [bestTrack] .push(c);

cout << "Move car " << ¢ << " from input track "
<< "to holding track " << bestTrack << endl;

{/{ update smallestlar and itsTrack if needed
if (c < smallestCar)
{

smallestCar = c;
itsTrack = bestTrack;
}

return trie;

}

Program B.12 The function putInHoldingTrack
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Figure 8.8 Sample switch box

While the wires in both Figures 8.8(b) and (c) are composed of straight line
segments parallel to the z- and y-axes, segments that are not parallel to these axes
as well as segments that are not straight lines are permissible.

Solution Strategy

To solve the switch box routing problem, we note that when a net is connected,
the wire partitions the routing region into two regions. The pins that fall on the
boundary of a partition-do not depend on the wire path, but only on the pins of the_
net that was routed. For instance, when net (1, 4) is routed, we get two regions.
One contains the pins 2 and 3, and the other contains the pins 5 through 8. If
there is now a net with one pin in one region and the other in a different region,
this new net cannot be routed and the routing instance is unroutable. If there is no
net with this property, then since the wires cannot cross between regions, we can
attempt to determine whether each region is independently routable. To make this
determination, we pick a net in one of the regions; this net partitions its region into
two regions, and none of the remaining nets should have a pin in one partition and
another in the other partition.

We can implement this strategy by moving around the periphery of the switch
box in either clockwise or counterclockwise order, beginning at any pin. If we
traverse the pins of Figure 8.8{a) in clockwise order, beginning at pin 1, the pins
are examined in the order, 1, 2, - -+, 8. The pins that lie between pin 1 and its net
partner, pin 4, define one region of the first partition, and those that lie between pins
4 and 1 define the other. We will place pin 1 on a stack and continue processing
pins until pin 4 is encountered. This procedure allows us to process one of the
regions before going on to the other. The next pin, pin 2, and its net partner, pin
3, partition the current region into two regions. As before, pin 2 is placed on the
stack, and we proceed to pin 3. Since pin 3's partner, pin 2, is at the top of the
stack, we have completed a region and pin 2 is deleted from the stack. Next we
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encounter pin 4 whose partner is now at the top of the stack. The processing of
a region is now complete, and pin 1 is deleted from the stack. Proceeding in this
way, we are able to complete the processing of all created regions, and the stack is
empty after pin 8 is examined.

What happens on a nonroutable instance? Suppose the nets for Figure 8.8(a)
are (1, 5}, (2, 3), (4, 7), and (6, 8). Pins 1 and 2 are put on the stack initially.
When pin 3 is examined, pin 2 is deleted from the stack. Next pin 4 is added to
the stack, as pin 4 and the pin at the stack top do not define a region boundary.
When pin 5 is examined, it is also added to the stack. Even though pins 1 and 5
have both been seen, we are unable to complete the processing of the first region
defined by this net, as pin 4's routing has to cross the boundary. As a result, when
we complete the examination of all pins, the stack will not be empty.

C++ Implementation and Complexity

Program 8.13 gives a C++ function that implements this strategy. This function
assumes that the number of pins is even and that each pin has a net number. So
for the example in Figure 8.8(c), the input array net is [1, 2, 2, 1, 3, 3, 4, 4]. The
complexity of the program is O{n) where n is the number of pins.

8.5.5 Offline Equivalence Class Problem
Problem Description

The offline equivalence problem was defined in Section 6.5.4. The inputs to this,
problem are the number of elements n, the number of relation pairs r, and the r
relation pairs. We are to partition the n elements into equivalence classes.

Solution Strategy

The solution is in two phases. In the first phase we input the data and set up n
lists to represent the relation pairs. For each relation pair (i, j), 1 is put on list[j]
and j is put on list[i].

Example 8.3 Suppose that n = 9, r = 11, and the 11 relation pairs are (1, 5, (1,
6), (3, 7), (4, 8), (5, 2), (6, 5), (4, 9), (9, 7). (T, 8), (3, 4), and (6, 2). The nine lists
are

list[l] = [5,6]
list[2] = [5,6]
listld] = [7,4]
listl4] = [8,9,3]

lists] = [1,2,6]
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ﬂ
bool checkBox(int net[], int m)
{// Determine whether the switch box is routable.
// net[0..n-1] is array of pin to net assignments.
/f i is number of pins.
arrayStack<int>* s = new arrayStack<int>(n);
// scan nets clockwise
for (int 1 = 0; i < m; i++)
// process pin i
if (Ys->empty())
// check with top met
if (net[i] == net([s->top()])
// net[i] is routable, delete from stack
s->pop();
else s->push(i);
else s->push(i);
// any unrouted nets left?
if (s->empty())
{// nt nets remain
cout << "Switch box is routable" << endl;
return true;
}
cout << "Switch box is not routable" << endl;
return false;
}
e —— s
Program 8.13 Switch box routing
list[s) = [1,2,5]
list[T] = [3,9,8]
fl'.ﬂt[E] = [41?]
list|9] = [4,7]
Element order within a list is not important. "

In the second phase, the equivalence classes are identified by first locating an
element that has not been output as part of an equivalence class. This element
becomes the seed for the next equivalence class. The seed is output as the first
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member of the next equivalence class. From the seed we identify all other members
of the class as follows. The seed is put onto a list, unprocessedList, of elements
that are in the same equivalence class as the seed and whose lists have yet to
be processed. We remove an element i from unprocessedList and process list[i].
All elements on list[i] are in the same equivalence class as the seed; elements on
list[i] that haven't already been identified as class members are output and added
to unprocessedList. This process of removing an element i from unprocessedList
and then outputting and adding elements in {ist[i] that haven't already been output
to unprocessedList continues until the unprocessedLisi becomes empty. At this
time we have completed a class, and we proceed to find a seed for the next class,

Example 8.4 Consider the data of Example 8.3. Let 1 be the first seed; 1 is output
as part of a new class and is also added to unprocessedList. Next 1 is removed
from unprocessedList, and list[1] is processed. The elements 5 and 6 that are in
list[1] are output as part of the same class as element 1; 5 and 6 are also added
to unprocessedList. Either 5 or 6 is removed from unprocessedList, and its list
is processed. Suppose that 5 is removed. The elements 1, 2, and 6 that are in
list[5] are examined. Since 1 and 6 have already been output, we ignore them.
Element 2 is output and added to unprocessedList. When the remaining elements
(6 and 2) that are in unprocessedList are removed and processed, no additional
element is output or added to unprocessedList; this list becomes empty, and we
have identified an equivalence class.

To find another equivalence class, we search for a seed-—an element not yet
output. Element 3 has not been output and is used as the seed for the next class.
Elements 3, 4, 7, 8, and 9 are output as part of this next class. Since no seeds
remain, we have found all the classes. |

C++ Implementation

To proceed with an implementation, we must select a representation for list and
unprocessedList. The operations performed on list are to insert and examine all
elements. Since it doesn’t matter where elements are inserted in list, any linear
list or stack representation may be used. We select a specific linear list or stack
representation based on which is expected to provide the best space and time per-
formance.

The total number of elements in all n of the lists {ist[l : n] is 2r. Therefore,
as far as space requirements go, all our array linear list and stack classes require
space for between 2r and 4r elements (because of array doubling, the allocated
array length may be up to two times the number of elements). Our linked classes
reguire space for 2r elements and 2r pointers, Our run-time performance studies of
linear list and stack implementations (see Sections 5.6, 6.1.6, 8.3.3, and 8.4.3) show
that the linked implementations of these data structures are slower than their array
counterparts. 5o we eliminate the linked representations from further consideration
as far the offline equivalence class problem is concerned.
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By inserting new elements at the right end of a list, our application will exhibit
the best-case time performance for arrayList (Section 5.3). However, if we use an
arrayStack, we will do slightly better. For performance reasons unprocessedList
is also implemented as an arrayStack.

Program 8.14 gives a two-part program for the offline equivalence problem. In
the first part, n, r, and the r pairs are input, and the stack (list) for each of the n
elements constructed. The stack 1ist[i] for element i contains all elements j such
that (i,j) or (j,i) is an input relation pair. Our code can be made more robust
by verifying that every pair (a, b) that is input has both a and b in the range [1,
n]. Exercise 31 asks you to modify the code so as to validate the input relations.

The second part of the program outputs the equivalence classes. For the second
part we maintain an array out such that out[i] = true iff element i has been
output as a member of some equivalence class. A stack unprocessedList assists in
locating all elements of an equivalence class. This stack holds all elements that have
been cutput as part of the current class and that may lead to additional elements
of the class. To find the seed for the next equivalence class, we scan the array out
for an element not yet output. If there is no such element, then there is no next
class. If such an element is found, it begins the next class.

Complexity

For the complexity analysis, we assume that no exceptions are thrown during execu-
tion (in particular, the input pairs (a, b) are valid). Part 1 of the program (input
and initialize the array list[] of relation pairs) takes ©(n+r) time. For part 2,
we note that since each of the n elements is output exactly once, each is added
to unprocessedList once and deleted from unprocessedList once. So the total
time spent pushing and popping elements from unprocessedList is ©(n). Finally,
when an element j is removed from unprocessedList, all elements on 1ist[j] are
examined by popping then off of 1ist[j]. Each element in each 1ist[j] is popped
exactly once. 5o the time required to pop and examine all elements on all lists
1ist[1:n] is ©(r) (note that the total number of elements on all lists 1ist[1:n]
is 2 # r following the input phase). Allowing for the possibility that an exception
may occur, we conclude that the overall complexity of Program 8.14 is O{n+r). The
complexity when no exception occurs is 8(n+r).

Since every program for the offline equivalence class problem must examine each
relation and element at least once, it is not possible to solve the offline equivalence
problem in less than O{n+r) time.

8.5.6 Rat in a Maze
Problem Description

A maze (Figure 8.9) is a rectangular area with an entrance and an exit. The
interior of the maze contains walls or obstacles that one cannot walk through. In
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int main()

{
int n, // number of elements
r; // number of relations

cout << "Enter number of elements" << endl;

cin »> n:
if (n < 2)
{

cout << "Too few elements" << endl;
return 1; S/ terminate with error

}

cout << “"Enter number of relatioms” << endl;
cin >> r;
if (r < 1)
{
cout << "Too few relations" << endl;
return 1; // terminate with error
}

/{ create an array of empty stacks, stack[0] not used
arrayStack<int>* list = new arrayStack<int> [n+1];

// input the r relations and put om lists.
int a, b; // (a, b) is a relation
for (int i = 1; i <= r; i++)

{
cout << "Enter next relation/pair" << endl;
cin »>> a >> b;
list[a] .push(b);
list([b] .pushia);
}

Program B8.14 Offline equivalence class program (continues)

our mazes these obstacles are placed along rows and columns that are parallel to
the rectangular boundary of the maze. The entrance is at the upper-left corner,
and the exit is at the lower-right corner.

Suppose that the maze is to be modeled as an n x m matrix with position
(1,1) of the matrix representing the entrance and position (n,m) representing the
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// initialize to output equivalence classes
arrayStack<int> unprocessedList;
bool* out = new bool[n + 1];
for (int i = 1; i <= n; i++)
out[i] = false;

// output equivalence classes
for (int i = 1; i <= n; i++)
if (ltout([i])
{// start of a new class
cout << "Next class is: " << 1 << " ¥
out[i] = true;
unprocessedList.push(i);
// get rest of class from unprocessedList
vhile (!unprocessedList.empty())
i
int j = unprocessedList.top();
unprocessedList.pop();

// elements on list[j] are in the same class
while (!list[j].empty())
p :
int q = list[j].top();
list[j].pop(};
if (lout[ql) // q not yet output
{
cout << q << " ";
cut[g] = true;
unprocessedList.push(q);

}
}

cout << endl;
}

cout << "End of list of equivalence classes" << endl;

return 0;

}

Program 8.14 Offline equivalence class program (concluded)
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Figure 8.10 Matrix representation of maze of Figure 8.9

exit. n and m are, respectively, the number of rows and columns in the maze. Each
maze position is described by its row and column intersection. The matrix hasa 1 in
position (i, j) iff there is an obstacle at the corresponding maze position. Otherwise,
there is a 0 at this matrix position. Figure 8.10 shows the matrix representation
of the maze of Figure 8.9. The rat-in-a-maze problem is to find a path from the
entrance to the exit of a maze. A path is a sequence of positions, none of which is
blocked, and such that each (other than the first) is the north, south, east, or west

neighbor of the preceding position (Figure 8.11).
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v
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Figure 8.11 The four options for 8 move from any position in the maze

You are to write a program to solve the rat-in-a-maze problem. You may assume
that the mazes for which your program is to work are square (i.e., m = n) and
are sufficiently small so that the entire maze can be represented in the memory of
the target computer. Your program will be a stand-alone product that will be used
directly by persons wishing to find a path in a maze of their choice.

Design

We will use the top-down modular methodology to design the program. It is not
too difficult to see the three aspects to the problem: input the maze, find a path,
and output the path. We will use one program module for each task. A fourth
module that displays a welcome message and identifies the program and its author
is also desirable. While this module is not directly related to the problem at hand,
the use of such a module enhances the user-friendliness of the program.

The module that finds the path does not interact directly with the user and will
therefore contain no help facility and will not be menu driven. The remaining three
modules interact with the user, and we need to expend some effort designing their
user interface. The user interface should make the user want to use your program
rather than competing programs.

Let us begin with the welcome module. We wish to display a message such as

Welcome To
RAT IN A MAZE
©:Joe Bloe, 2000

While displaying this message might seem like a trivial task, we can use various
design elements to obtain a pleasing effect. For example, the message can be multi-
colored to take advantage of the user's color display. The three lines of the welcome
display need to be positioned on the screen, and we can change the character size
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from one line to the next (or even from character to character). The welcome mes-
sage can be introduced on the display with a reasonable. time lapse between the
introduction of one character and the next. Alternatively, the time lapse can be
very small. In addition, we might consider the use of sound effects. We also need
to determine the duration for which the message is to be displayed. It should be
displayed long enough so that the user can read it, but not long enough to leave the
user yawning. As you can see, the design of the welcome message (and the whole
user interface in general) requires strong artistic skills.

For the input module we must decide whether we want the input as a matrix
of 0s and 1s or whether we will display a maze of the desired size and then ask the
user to click a mouse at the squares that contain an obstacle. We must also decide
on the colors to use, whether we will have audio during input, and so on.

The input module can also verify that the entrance and exit of the maze are
not blocked. If they are, then no path exists. In all likelihood the user made an
error in input. The following discussion assumes that the input module performs
this verification and that the entrance and exit are not blocked. '

Once again, we see that what initially appeared to be a simple task (read in a
matrix) is actually quite complex if we want to do it in a user-friendly way.

The output module design involves essentially the same consideratidns as the
design of the input module.

Program Plan

The design phase has already pointed out the need for four program modules. We
also need a root (or main) module that invokes these four modules in the following
sequence: welcome module, input module, find path module, and output module.

Our program will have the modular structure of Figure 8.12. Each program
module can be coded independently. The root module will be coded as the method
main; the welcome, input, find path, and output path modules will each be a single
private method.

" Root
' Welcome Input ' Find Path Output
—

Figure 8.12 Modular structure of rat-in-a-maze pProgram



306 Chapter 8 Stacks

At this point we see that our program is going to have the form given in Fig-
ure 8.13.

// function welcome comes here
// function inputMaze comes here
// function findPath comes here
// function outputPath comes here

void main()
{
welcome();
inputMaze();
if (findPath())
outputPath();
elsea
cout << NHo path" << endl;
}

Figure B.13 Form of rat-in-a-maze program

Program Development

Substantial data structure and algorithm issues arise in the development of the
path-finding module only. Consequently, we will develop just this module here.
Exercise 33 asks you to develop the remaining modules. Without thinking too much
about the coding of the path-finding module, we can arrive at the C++ pseudocode
given in Figure 8.14. This code is readily seen to be correct. Unfortunately, we
cannot present it to a computer in this form, and we need to refine the pseudocode
into pure C4++ code.

bool findPath()

{ Search the maze for a path to the exit;

if (a path is found) return true;
else return false;

}

Figure B8.14 First version of findPath

Before attempting a refinement of Figure 8.14 that will get us closer to C4++
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code, let us figure out how we are to search the maze for a path. We begin with the
entrance as our present position. If the present position is the exit, then we have
found a path and we are done. If we are not at the exit, then we block the present
position (i.e., place an obstacle there) so as to prevent the search from returning
here. Next we see whether there is an adjacent maze position that is not blocked.
If s0, we move to this new adjacent position and attempt to find a path from there
to the exit. If we are unsuccessful, we attempt to move to some other unblocked
adjacent maze position and try to find a path from there. To facilitate this move,
we save the current position on a stack before advancing to a new adjacent position.
If all adjacent unblocked positions have been tried and no path is found, there is
no path from entrance to exit in the maze.

Let us use the above strategy on the maze of Figure 8.9. We begin with the
position (1,1) on the stack and move to its only unblocked neighbor (2,1). The pe-
sition (1,1) is blocked to prevent the search path from moving through this position
later. From (2,1) we can move to (3,1) or (2,2). Suppose we decide to move to
(3,1). Prior to the move, we block (2,1) and add it to the stack. From (3,1) we may
move to either (4,1) or (3,2). If we move to (4,1), (4,1) gets blocked and added to
the stack. From (4,1) we move to (5,1), (6,1), (7,1), and (8,1). The path cannot be
extended from (8,1). Our stack now contains the path from (1,1) to (8,1). To try
another path, we back up to (7,1) by deleting this position from the stack. As there
are no unblocked positions adjacent to (7,1), we back up to (6,1) by deleting this
position from the stack. In this way we back up to position (3,1) from which we
are again able to move forward (i.e., move to (3,2)). Notice that the stack always
contains the path from the entrance to the current position. If we reach the exit,
the entrance-to-exit path will be on the stack. .

To refine Figure 8.14, we need representations for the maze, which is a matrix of
zeros and ones, each maze position, and the stack. Let us consider the maze first.
The maze is naturally represented as a two-dimensional array maze of type int.
(Since each array position can take on only one of the values 0 and 1, we could use
the data type bool and represent the value 1 by true and the value 0 by false.
This approach would reduce the space required for the array maze.) Position (1,j)
of the maze matrix corresponds to position [i] [j] of the array maze.

From interior (i.e., nonboundary) positions of the maze, four moves are possible:
right, down, left, and up. From positions on the boundary of the maze, either two
or three moves are possible. To avoid having to handle positions on the boundaries
of the maze differently from interior positions, we will surround the maze with a
wall of obstacles. For an m x m maze, this wall will occupy rows 0 and m + 1 and
columns 0 and m + 1 of the array maze (see Figure 8,15).

All positions in the maze are now within the boundary of the surrounding wall,
and we can move to four possible positions from each position (some of these four
positio~s may have obstacles). By surrounding the maze with our own boundary,
we have eliminated the need for our program to handle boundary conditions, which
significantly simplifies the code. This simplification is achieved at the cost of a
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Figure 8,15 Maze of Figure 8.9 with wall of 1s around it

slightly increased space requirement for the array maze.

Each maze position is described by its row and column index, which are, re-
spectively, called the row and column coordinates of the position. We may define a
class position with data members row and col and use objects of type position
to keep track of maze positions. The stack, path, that maintains the path from
the entrance to the current position may be represented as an array stack. An
m x m-maze with no blockages can have paths with as many as m? positions (see
Figure 8.16(a)).

(a) A long path (b) A short path

Figure 8.18 Paths in a maze with no blockages
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Since no path repeats a position and the maze has only m? positions, no path
can have more than m? positions. Further, as the last position on a path is not
stared on the stack, at most m? — 1 positions can get stacked. Notice that a maze
with no blockages always has a path with at most 2m positions between any two
points (see, for example, Figure 8.16(b)). However, we have no assurance at this
time that our path finder will find the shortest path.

We can now refine Figure 8.14 and obtain Figure 8.17, which is closer to being
a C++ program.

Now we need to tackle the problem of determining a neighbor of position here
that can be moved to. The task of trying out alternative moves is simplified if
we select from the options available at any position in some systematic way. For
example, we may first attempt to move right, then down, then left, and finally
up. Once an option has been selected, we need to know the coordinates of the
position to move to. These coordinates are easily computed by maintaining a table
of offsets as in Figure 8.18. The moves right, down, left, and up have, respectively,
been numbered 0, 1, 2, and 3. In the table of Figure B.18, offset[i] .row and
offset[i] .col, respectively, give the amounts to be added to the row and col
coordinates of the present position to move to the adjacent position in direction 1.
For example, if we are at position (3, 4), then the position on the right has row
coordinate 3+offset [0] .row = 3 and column coordinate 4+offset[0].col = 5.

To avoid moving to positions that we have been through before, we place an
obstacle (i.e., set maze [i] [§] = 1) at each position maze[i] [j] that we move to.

Incorporating these refinements into the code of Figure 8.17 results in the C4++
code of Program 8.15. In the code of Program 8.15, the variable size contains the
number m of rows and columns in the maze.

The method findPath begins by creating an empty stack path. It then initializes
the array of offsets and builds a wall of obstacles around the maze. In the while
loop we attempt to advance the path forward from the current position here by
trying the move options in the following order: right, down, left, and up. If we are
able to move forward, the present location is stored on the stack path and a forward
move is made. If a forward move isn't possible, we try to back up to a previous
position. If there is no position to back up to (i.e., the stack is empty), there is no
path to the exit. Otherwise, we can back up. Once we back up to the top position
on the stack (next), we need to move forward by trying the next move option. This
option can be computed from the positions next and here. Notice that here is a
neighbor of next. In fact, at some previous time in the program, we moved from
next to here, and this move was the last move made from next. The next move
option to try is correctly computed by the following code:

if (next.row == here.row)
option = 2 + next.col - here.col;
else option = 3 + pext.row - here.row;
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bool findPath()

{// Find a path from (1,1) to the exit (size, size).
// Return true if successful, false if impossible.

path = new arrayStack<position>;

// initialize offsets

position offset[4];

offset[0] .row = 0; offset[0).col = 1; // right
offset[1] .row = 1; offset[1].col = 0; // down
offset[2] .row = 0; offset[2].col = -1; // left
offset[3] .row = -1; offset[3].col = 0; // up

// initialize wall of obstacles arcund maze
for (int 4 = 0; 1 <= size + 1; i++)
{
maze[0] [i] = maze[size + 1][i] = 1; // bottom and top
maze[i] [0] = maze[i] [size + 1] = 1; // left and right
}

position here;

here.row = 1;

hera.col = 1;

maze[1][1] = 1; // prevent return to entrance
int option = 0; // next move

int lastOption = 3;

// search for a path
while (here.row != size || here.col != size)
{// not exit
// find a neighbor to move to
int r, c;
while (option <= lastOption)
{
r = here.row + offset[option] .row;
¢ = here.col + offset[option].col;
if (mazel[r] [c] == 0) break;
option++; // next option
}

Program 8.15 Code to find a path in a maze [continues)
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bool findPath()
{// Find a path from (1,1) to the exit (m,m).
Initialize wall of obstacles around maze;

// initialize variable to keep track of
// our current position in the maze
here.row = 1;

here.col = 1;

maze [1] [1] = 1; // prevent return to entrance

// search for a path to the exit
while (not at exit) do
{
find a neighbor to move to;
if (there is such a neighbor)
{
add position here to path stack;
// move to and block neighbor
here = neighbor;
maze [here.rov] [here.col] = 1;
}
else
{
// cannot move forward, backup
if (path empty) return false;
back up to position here, which is at top of path stack;
} :
}
return true;
3}

Figure 8.17 Refined version of Figure 5.14

For the time complexity analysis, we see that in the worst case we may move to
each unblocked position of the input maze. Each such position may get added to
the stack at most three times. (Each time we move forward from a position, it is
added to the stack; at most three forward moves are possible from any position.)
Hence each position may be removed from the stack at most three times. Further,
at each position &(1) time is spent examining its neighbors. So the time complexity
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Direction offset(move].row offset[move).col

Move
0 right 0 1
1 down 1 0
2 left 0 -1
3 up -1 0
Figure B.18 Table of offsets

// was a neighbor found?
if (option <= lastOptiom)
{// move to maze[r][c]
path->push(here) ;
here.row = r;
here.col = ¢;
maze[r] [c] = 1; // set to 1 to prevent revieit
option = 0;
}
else
{// no neighbor to move to, back up
if (path->empty())
return false; // no place to back up to
position mext = path->top(};
path->pop();
if (next.row == here.row)
option = 2 + next.col - here.col;
else option = 3 + next.row - here.row;
hare = naxt;

}

return true; // at exit

}

Program 8.15 Code to find a path in a maze (concluded)

is O{unblocked) where unblocked is the number of unblocked positions in the input
maze. This complexity is O(size®) = O(m?).

When you get to Section 16.8.4 you'll see that the strategy used by findPath
is really a depth-first search, which is just a special case of a more general strategy
called backtracking. Bo findPath is really an application of depth-first search,
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backtracking, and stacks.

EXERCISES

13,

16.

17.

18,

19.

21.

22.

23.

Write a program to determine whether or not a character string has an un-
matched parenthesis. You should not use a stack. Test your code. What is
the time complexity of your program?

Write a version of Program 8.6 that looks for matched pairs of parentheses
and matched pairs of brackets ([ and ]). In the string (a+[b*(c-d)+£]), the
matched pairs are (0,14), (3,13), and (6,10); and in the string (a+[b*(c-d]+£)),
there is a nesting problem because the left parenthesis at 6 should be matched
by a right parenthesis before a left bracket is encountered. Test your code.

Do Exercise 16 for the case when you have parentheses, brackets, and braces
({ and }).

Manually determine the sequence of disk moves for the four-disk Tower of
Hanoi problem.

Establish the correctness of Program 8.7 by induction on the numbeér of disks.

Assume that the Towers of Hanoi disks are labeled 1 through n with the
smallest disk being disk 1. Modify Program 8.7 so that it also outputs the
label of the disk that is being moved. This modification requires a simple
change to the output statement. Do not make any other changes. .

Write code for the showState method of Program 8.8 assuming that the
output device is a computer screen. If necessary, add methods to arrayStack
so that you can access the disks on a tower in a convenient manner. You will
need to introduce a time delay so that the display does not change too rapidly.
Show each disk in a different color.

The Towers of HaHa problem is like the Towers of Hanoi problem. However,
the disks are numbered 1 through n; odd-numbered disks are red, and even-
numbered ones are yellow. The disks are initially on tower 1 in the order 1
through n from top to bottom. The disks are to be moved to tower 2, and at
no time should a disk sit on top of a disk that has the same color. The initial
and final disk order are the same.

(a) Write a program to move the disks from tower 1 to tower 2 using tower
3 for intermediate storage.
(b) How many disk moves does your program make?

Investigate the Towers of Hanoi problem under the assumption that you have
k = 1 intermediate towers, The availability of more towers reduces the number
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24.

27.

28.

Chapter 8 Stacks

of moves needed. For example, when the number of intermediate towers is
n — 1, a total of 2n — 1 disk moves suffices. A good place to start is the case
when two intermediate towers are available.

(a) You have a railroad shunting yard with three shunting tracks that operate
as stacks. The initial ordering of cars is 3, 1, 6, 7, 2, 8, 5, 4. Draw figures
similar to Figures 8.6 and 8.7 to show the configuration of the shunting
tracks, the input track, and the output track following each car move
made by the solution of Section 8.5.3.

(b) Do part (a) for two shunting tracks.

In our solution to the railroad car rearrangement problem (Section 8.5.3), we

use k array stacks to represent k holding tracks. How large can each stack
get? What is the total stack space required?

(a) Does Program 8.10 succeed in rearranging the cars whenever it is possible
to do this rearrangement using k tracks?

(b) The total number of car moves required is n + (number of cars moved
to a holding track). Suppose that the initial car arrangemént can be
rearranged using k tracks and Program 8.10. Does Program 8.10 perform
the rearrangement using the minimum number of moves? Prove your
ANSWET.

Develop a program for the railroad car rearrangement problem under the
assumption that holding track ¢ can hold at most s; cars, 1 <i < k.

Walk through Program 8.13 for the case when the nets are (1, Eii. (2, 5), (3,
4), (7, 10), (8, 9), (12, 13), and (11, 14). Show the stack configuration after
the examination of each pin.

In the switch box routing application, we noted that processing can stop when
two pins of the same net get on to the stack. Write a new version of checkBox
that does this. The time complexity of your new method should be O(n)
where n is the number of pins. You may assume that the net numbers are 1
through n/2. How large a stack do you need?

Do the following for the offline equivalence class problem:

(a) Give the lists list[l : n] for the case when n = 9, r = 9, and the input
relation pairs are (1, 3), (4, 2), (3, 8), (6, 7), (5, 8), (6, 2), (1, 5), (4, 7),
and (9, 7).

(b) Walk through the second phase of the solution strategy using the lists of
part (a). Provide an explanation of your progress as is done in Exam-
ple 8.4.
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Program 8.14 does not validate the relations as they are input. Modify this
program so that it makes sure that each a and b that is input is in the range
[1, n] and throws an exception of type myInputException whenever this is
not the case.

(a) Modify Program 8.14 so that 1ist [] is an array of type arrayList rather
than arrayStack. Use a linear list iterator to examine the elements on
a linear list in phase 2 of the program.

(b) Experimentally compare the performance of Program 8.14 and your new
code.

Complete the rat-in-a-maze code. Write a pleasing C++4 program by doing
the following:
(a) Write a welcome function that incorporates graphics and audio.
(b) Write a robust inputMaze function that validates the data that is input.
Also provide user prompts for input.

(¢) Write the outputPath function to output the path from the maze to the
exit (not from the exit to the entrance). '

Test your codes using sample mazes.

. Modify the code for the rat-in-a-maze problem so that the code works for

mages in which you are allowed to move to the north, northeast, east, south-
east, south, southwest, west, and northwest neighbors of a position. Test the
correctness of the modified code using suitable mazes. .

Develop a better bound than m? — 1 for the maximum size of the stack path.

The strategy used to find a path in a maze is really a recursive one. From the
present position we find a neighbor to move to and then determine whether
there is a path from this neighbor to the exit. If so, we are done. If not, we
find another neighbor to move to. Use recursion to find a path in a maze.
Test the correctness of your code using suitable mazes.

Study the rat-in-a-maze animation that is on the Web site for this book.

(a) Identify heuristics you could program into the rat-in-a-maze program
to select the next move in a more intelligent fashion than is done in
Program 8.15. For example, should you preferentially follow along a wall
of blocked positions looking for a break in the wall?

(b) Modify Program £.15 to incorporate your heuristics.
(c) Test the correctness of the new code.

(d) Compare the run-time performance of the new code and that of Pro-
gram 8.15.
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35. You are given an array, data([], of integers. Your task is to compute another
integer array lastAsBig[]. Informally, lastAsBig[i] gives you the nearest
position to the left where the data value is at least as big. For example, when
data[] = [6, 2, 3,1, 7, 5, lastAsBig[] = [-1, 0,0, 2, -1, 4]. More formally,
lastAsBig[i] is the largest integer j such that j < i and dataj] > data[i].
In case no there is no such j, then lastAsBig[i] = —1.

One application of lastAsBig is in weather reporting. Let data[i] be the
high temperature recorded in Gainesville in day i of the current year. If
lastAsBig[i] is —1, then we have not seen a temperature this high earlier in
the yvear. When lasthsBig[i] # —1, lastAsBig[i] gives the last time this
vear that the temperature was this high; i — lastAsBig|i]| gives the number
of days since the temperature was this high (this year).

(a) Give two more applications for lastAsBig.

(b) Write a method to compute lastAsBig that uses a stack. The time
complexity of your method should be O(data.length).

(c) Test your method.

8.6 REFERENCES AND SELECTED READINGS

The switch box routing algorithm is from Hsu and Pinter. It is described in the
papers “General River Routing Algorithm™ by C. Hsu, ACM/IEEE Design Au-
tomation Conference, pages 578-583, 1983 and “River-Routing: Methodology and
Analysis” by R. Pinter, Third Caltech Conference on VLSI, March 1983.



QUEUES

BIRD’S-EYE VIEW

A queue, like a stack, is a special kind of linear list. In a queue insertions and
deletions take place from different ends of the linear list. Consequently, a queue is
a first-in-first-out (FIFO) list. Another variety of queue—a priority queue—from
which deletions are made in order of element priority is developed in Chapter 12.
The C++ STL class queue is an array implementation of the queue data structure.
This class derives from the STL class deque, which is an array implementation of
the double-ended queue data structure (Exercise 9).

Although queue classes may be derived easily from any of the linear list classes
developed in Chapters 5 and 6, we do not do so in this chapter. For run-time effi-
ciency reasons, the array and linked classes for a queue are developed from scratch.

In the applications section we develop four sample codes that use a queue. The
first is for the railroad-switching problem considered initially in Section 8.5.3. In
this chapter the problem has been modified so that the shunting tracks at the
railroad yard are FIFO rather than LIFO. The second application is the classical
Lee's algorithm to find the shortest path for a wire that is to connect two given
points. This application may also be viewed as a variant of the rat-in-a-mage
problem of Section 8.5.6. In this variant we must find the shortest path between
the maze entrance and exit. Notice that the code developed in Section 8.5.6 does
not guarantee to find a shortest path. That code simply guarantees to find a path
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(of unspecified length) whenever the maze has at least one entrance-to-exit path.
The third application, from the computer-vision field, labels the pixels of a binary
image so that two pixels have the same label iff they are part of the same image
component. The final application is a machine shop simulation. The machine shop
has several machines, each capable of performing a different task. Each job in the
shop requires one or more tasks to be performed, We provide a program to simulate
the flow of jobs through the machine shop. Our program determines the total time
each job spends waiting to be processed as well as the total wait at each machine.
We can use this information to improve the machine shop. Although the machine
shop simulator developed in this chapter uses FIFO queues, real-world machine
shops may require some or all of these FIFO queues be replaced by priority queues.
Additional queue applications appear in later chapters.
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9.1 DEFINITION AND APPLICATIONS

Definition 9.1 A queue is a linear list in which insertions (also called additions
and puts) and deletions (also called removals) take place at different ends. The end
at which new elements are added is called the back or rear , and that from which
old elements are deleted is called the front. ]

A queue with three elements is shown in Figure 9.1(a). The first element we
delete from the queue of Figure 9.1(a) is A. Following the deletion, the configuration
of Figure 9.1(b) results. To add element I to the queue of Figure 