
SUMMARY

This report deals with anaerobic digestion (AD) of sewage sludge, an energy- and nutrient-rich by-product 
of wastewater treatment plants (WWTP). The objective is to promote sustainable practices and technology, 
focussing on energy efficiency of biogas production and utilisation. An overview of the AD process in WWTP 
is given, along with standard energy performances, nutrient recycling and different process options and their 
impacts. It is not intended as a detailed technical guideline for project managment. 
The report is aimed at energy policy and decision makers as well as WWTP operators and was produced 
by IEA Bioenergy Task 37, an expert working group that addresses challenges related to the economic and 
environmental sustainability of biogas production and utilisation. 
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Introduction

Anaerobic digestion (AD) is a 

proven technology for sewage sludge 

treatment and which allows genera-

tion of renewable energy from the 

same process. During AD, microor-

ganisms break down the organic 

matter contained in the sludge and 

convert it into biogas, a mixture of 

mainly methane and carbon dioxide, 

which can be used for electricity, 

heat and biofuel production. At the 

same time, the sludge is stabilised 

and its dry matter content is redu-

ced. The benefits of AD of sewage 

sludge are widely recognised and the 

technology is well established in 

many countries. Today, a high pro-

portion of biogas produced in AD 

plants is from those on municipal 

wastewater treatment sites (see Table 

1) and there is still an enormous 

potential to exploit worldwide. 

Sewage sludge is produced in wastewater treatment 

plants (WWTPs) as part of the water cleaning process 

(Figure 1). The sludge contains the particles removed 

from the wastewater, which are rich in nutrients and 

organic matter, leaving the water clean for its release 

into nature. Growing population centres and expanding 

industry, which are increasingly well served by wastewa-

ter treatment facilities, result in rapid growth of sewage 

sludge production.

As important consumers and generators of energy, 

WWTPs are one of the numerous players influencing 

developments towards energy sustainability. The pre-

sent brochure aims to encourage sustainable and effici-

ent production, conversion and utilisation of biogas in 

municipal WWTPs, including the closing of nutrient 

cycles, whenever this is legally and technically possible. 

It is addressed to energy policy- and decision makers as 

well as WWTP operators. It allows understanding con-

text and interactions involved in the treatment proces-

ses, but it is not meant as a technical guideline for pro-

ject management. Specialists must also be involved for 

detailed studies and implementation of new treatment 

concepts and technologies. The three main objectives of 

the brochure are:

•	 To acknowledgement the importance of AD in 

WWTPs  

•	 To provide information about benefits and 

challenges

•	 To encourage optimisation of biogas produc-

tion and utilisation 

Table 1: Biogas production in WWTPs in Task 37 member countries (IEA Bioenergy Task 37, 2014 b)

Country Reference Total biogas  
production 

From agricultural resi-
dues, industrial waste-
water, biowaste, land-

fills and sewage sludge

Biogas production in 
WWTPs 

only from sewage sludge

Year GWh/y GWh/y % of total 
production

Australia n.a. n.a. n.a.

Austria 2013 570 3) n.a. n.a.

Brazil 2014 613 3) 42 3) 7 %

Denmark 2012 1.218 1) 250 1) 21 %

Finland 2013 567 2) 126 2) 22 %

France 2012 1273 3) 97 3) 8 %

Germany 2014 41.550 2) 3.050 2) 7 %

Ireland n.a. n.a.

Norway 2010 500 1) 164 1) 33 %

south Korea 2013 2.578 1) 969 1) 38 %

sweden 2013 1.686 1) 672 1) 40 %

switzerland 2012 1.129 1) 550 1) 49 %

The Netherlands 2013 3.631 1) 711 1) 20 %

United Kingdom 2013 6.637 3) 761 3) 11 %

1. Introduction

Figure 1: schematic illustration of a typical wastewater treatment plant with AD 

1) Energy generated as gross gas production
2) Energy generated as electricity, heat, vehicle fuel or flared (excluding efficiency losses)
3) Electricity generation only (excluding efficiency losses)
n.a: data not available  
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2.1 Feedstock
The principal feedstock for AD in WWTPs is sewage 

sludge. In general, it is composed of primary and 

secondary sludge, also called mixed sludge. Greases 

from the grease trap (usually found at the entrance of 

the plant) are often also digested. Screenings are not 

suitable for AD as they contain coarse materials that 

may be harmful to pumps and stirring systems. In addi-

tion, other organic materials such as organic waste from 

households or from industries may be digested in the 

anaerobic reactor of the WWTP (depending on natio-

nal legislation); this is then called co-digestion. 

Primary sludge, also called raw sludge, is produced by 

gravitational sedimentation in the primary settler. It has 

a high content of organic matter and is easily degradab-

le. Under optimum digestion conditions, a methane 

yield of 315 – 400 Nm3/t organic dry matter (ODM) can 

be expected (based on VSA, 2010 and Zhang, 2010). 

Secondary sludge, also called excess sludge or activated 

sludge, results from the biological treatment of waste-

water. It has a smaller degradable fraction than primary 

sludge and thus a lower biogas yield. Under optimum 

digestion conditions, a methane yield of 190 – 240 Nm3/t 

organic dry matter (ODM) can be expected (based on 

VSA, 2010 and Zhang, 2010).

Co-substrates are organic substrates which are co-

digested with the main feedstock, with the objective to 

increase the biogas production and/or as a treatment 

path for the concerned co-substrates. More information 

about co-digestion is given in chapter 4.2.2. 

2.2 Process steps 
The biogas part of a WWTP comprises a series of 

steps, in short, starting with sewage sludge pretreat-

ment, followed by the AD process and biogas produc-

tion, and ending with post-treatment of the digested 

sludge and the gas, as schematised in Figure 2. 

Sewage sludge preparation
The sewage sludge resulting from primary and 

secondary water treatment is gathered for AD. Before 

entering the digesters, the sludge is sometimes sieved 

and is then thickened to a dry solids content of up to 7% 

in order to avoid too high energy consumption for hea-

ting due to excessive water content. Optionally, the 

sludge can be pretreated by disintegration technologies 

with the aim to improve the gas yield (see chapter 

4.2.1.). 

Anaerobic digestion process
The sludge is pumped into the 

anaerobic continuously stirred tank 

reactors (CSTR) where digestion 

takes place, usually at mesophilic 

temperature (35 – 39 °C). During a 

retention time of around 20 days, 

microorganisms break down part 

of the organic matter that is contai-

ned in the sludge and produce bio-

gas, which is composed of methane, 

carbon dioxide and trace gases.

 

Gas treatment and conversion
The raw biogas needs to be 

dried and hydrogen sulphide and 

other trace substances removed in 

order to obtain a good combustible 

1) Energy generated as gross gas production
2) Energy generated as electricity, heat, vehicle fuel or flared (excluding efficiency losses)
3) Electricity generation only (excluding efficiency losses)
n.a: data not available  

2. Biogas production in wastewater treatment plants

Figure 2: main steps of AD in WWTP 



gas and avoiding corrosion or unwanted deposition in 

the combustion equipment. For biogas produced from 

sewage sludge (as well as from landfills), particular 

attention must be paid to the concentration of siloxa-

nes, which can lead to deposits in combustion equip-

ment and deterioration of performance. Generally, 

removal of siloxanes by adsorption on activated carbon 

is sufficient.

After cleaning, the biogas can be upgraded to bio-

methane or it can be combusted in a combined heat and 

power (CHP) plant to generate electricity and heat 

simultaneously.

Treatment of digested sludge
As about one third of the solid matter in the sludge 

is transformed into biogas during the process (equiva-

lent to about 50% of the organic matter), the digested 

sludge becomes very liquid again and must be thickened 

another time after leaving the digester. Depending on 

the further utilisation of the sludge, the latter is pressed, 

centrifuged or even heat dried in order to remove as 

much water as possible. When the digested sludge is 

further used in agriculture, composting of the sludge 

may be carried out gaining further fertilizing value with 

this process (practiced for example in Spain, Italy, Fran-

ce, Belgium). Otherwise, the sludge may be transported 

to an incineration plant or landfill. The final disposal or 

recycling of the sludge mainly depends on legal boun-

daries and costs (see chapter 2.4).

Treatment of digester liquids
A highly loaded liquid fraction results from the 

dewatering of the digested sludge, and this is reintrodu-

ced to the start of the WWTP. In particular, an ammo-

nium concentration of 500-1500 mg NH4-N/L is very 

high (Fux et al., 2004), compared to 50-100 mg/L in raw 

wastewater. Hence a nitrogen removal process can be 

applied before mixing with the raw wastewater arriving 

at the start of the treatment process (see chapter 4.2.5).

 2.3 Impact of anaerobic digestion on sewage 
sludge

The properties of sewage sludge are modified during 

anaerobic digestion, with mainly positive consequences 

for the sludge management that follows the process. The 

major impacts are described below.

Stabilisation, sanitation and odour reduction
AD enhances stabilisation of the sewage sludge: at 

the end of the process the biological activity is very low 

because all easily accessible biomass has been degraded 

by microorganisms. Further, the amount of pathogens 

and weed seeds in the sludge are reduced (for details see 

Utilisation of digestate from biogas plants as biofertili-

ser, Lukehurst et al., 2010). Once the sludge is stabilised, 

the odour emissions also decrease significantly, which is 

a particular advantage in case of agricultural utilisation.

Improvement of dewatering  
Sewage sludge is easier to dewater after digestion. 

The efficiency of a mechanical dewatering process is 

improved by 15 to 25% compared with that for sewage 

sludge before digestion (Jeitz, 2012), making it possible 

to reach 35% dry matter content in the digested and 

dewatered sewage sludge. The improvement results 

from alterations to flocs and particles in the sludge 

during the AD process. Dewatering is also discussed in 

an IEA Bioenergy Task 37 publication on digestate pro-

cessing (Drosg et al., 2015).

Reduction of dry matter
The transformation of the organic matter into bio-

gas during AD leads to a reduction in the total dry 

matter content in the digested sludge. The volume of 

organic matter is reduced by about 50%, which is equi-

valent to a reduction in total dry matter of about 25 - 

33%. If the digested sludge is dewatered or dried, a 

significant reduction of the final sludge volume can be 

achieved. In consequence, transport and eventual dis-

posal fees may be reduced.
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Improvement of fertilisation value 
Sewage sludge serves as fertiliser in many countries 

and is thus a substitute for mineral fertilisers. During 

the AD process, biochemical changes take place that 

alter the organic compounds in the sludge and improve 

its fertilisation value. For example, a part of the organic 

nitrogen is converted to ammonium, which is more 

easily accessible for plants. The impact of AD on nutri-

ent value and availability is described in Lukehurst et al., 

2010.

Lower heating value 
If sewage sludge is incinerated, this is usually accom-

panied by recovery of the waste heat. The heating value 

of sewage sludge depends in the first place on its water 

content, but also on the ratio of mineral matter to orga-

nic matter in the sludge. As the quantity of organic 

matter decreases during AD (but the quantity of mine-

ral matter stays the same), there is a reduction of the 

heating value of the sludge with the result that the 

amount of recoverable heat decreases by about 32-47% 

(based on Fytili et al., 2008). 

2.4 Situation in Task 37 member countries
All Task 37 member countries have experience with 

AD of sewage sludge. Some interesting examples are 

described in Case Studies that can be found on the Task 

37 website www.iea-biogas.net, for example:

•	  REVAQ Certified digestate from waste water 

treatment plants in Sweden (IEA Bioenergy 

Task 37, 2015)

•	  Biowaste and sewage sludge recovery: separate 

digestion, common gas upgrading and heat 

supply (IEA Bioenergy Task 37, 2014 a)

Legal boundaries concerning the final disposal and 

recycling of sewage sludge (digested or not) differ con-

siderably in the member countries, which influences the 

upstream management of sewage sludge, particularly 

the amount of sludge dewatering. In this context, a 

short description of the legislative framework in the 

European Union (EU) and Task 37 member countries 

outside the EU is described below. 

In the European Union, the Sewage Sludge Directive 

(86/278/EEC) (European Union, 1986) encourages the 

use of sewage sludge in agriculture whenever harmful 

effects on soil, vegetation, animals and humans can be 

Wastewater treatment Biogas production in wastewater treatment plants
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Table 2: Main final recycling and disposal paths of sewage sludge in Task 37 member countries 

Country Use in agricul-
ture

Landfilling Incineration Others

Australia ✓ ✓ ✓ stockpile, composting

Austria, Denmark, 
Finland, France,  
Germany, Ireland, 
Norway, sweden, UK

✓ (✓)1 ✓ Forestry, silviculture, 
land reclamation, composting

The Netherlands, 
switzerland,  
south Korea

✓

Brazil ✓ ✓ ✓ Lagoons, disposal in surface 
waters2 

1) Austria, Denmark, Finland, France, Germany, Ireland and sweden have reduced landfilling of sewage sludge drastically,  and is close to zero 
today (Eurostat, 2014). 

2) (stout, 2001)



excluded. About 37% of sewage sludge produced is 

actually applied to agricultural land; other main 

pathways are land reclamation and restoration (12%) 

and incineration (11%) (Fytili et al., 2008). Landfilling 

is also still practised, but according to the Landfill 

Directive (99/31/EC) (European Union, 1999), all 

Member States must reduce by 2016 the amount of 

biodegradable waste going to landfills to 35% of 1995 

levels. In consequence, the amounts of sewage sludge 

going to landfills are being reduced significantly.

In Australia, there is no specific sewage sludge recy-

cling and disposal regulation. Guidelines are set out on 

a state by state basis for land application of biosolids. 

The use as an agricultural fertiliser is allowed on condi-

tion that biosolids have been treated for sufficient 

pathogen removal, that potential contaminants are 

below threshold levels and that the agricultural land/

crop accepting biosolids is deemed appropriate. 

In the Netherlands, Switzerland and South Korea, 

the use of sewage sludge in agriculture is completely 

prohibited. Concerns about the potential long term 

impact of heavy metals, pathogens and organic pol-

lutants have led to the strict legislation. Instead, the 

sludge is delivered to waste incineration plants, cement 

factories, industrial furnaces or sludge incinerators. The 

consequence is that sludge has to be efficiently dewate-

red or dried in advance. For example, the use in a 

cement kiln requires minimum 90% of dry solids. 

However, the dried sludge becomes a valuable and rene-

wable energy source with a calorific value similar to 

lignite (Bachmann, 2009).

In Brazil, where 39% of the wastewater produced is 

actually treated (SNIS, 2014), federal legislation defines 

the criteria and procedures for wastewater sludge uses 

in agricultural areas, with the purpose of bringing bene-

fits to the plantation areas and avoiding the risks for 

human health and the environment (resolution 375 

from August 29th, 2006).

An overview of different practices is given in Table 2. 

3.1 Context and objectives 
Sustainable energy production takes on increasing 

importance in the light of dwindling resources and the 

world’s increasing energy consumption. Biogas techno-

logy is one of the options for deployment in conversion 

of organic residues to renewable energy and valuable 

fertiliser. It is playing an important role in achieving the 

ambitious targets set by the European renewable energy 

directive, 2009/28/EC (European Union, 2009), which 

states that 20% of the final energy consumption has to 

be provided by renewable sources by 2020. 

As important consumers and producers of energy, 

WWTPs are one of the numerous players influencing 

the development towards energy sustainability. The 

present brochure aims to encourage sustainable and 

efficient production and utilisation of biogas in WWT-

Ps, including the closing of nutrient cycles, whenever 

this is legally and technically possible. 

It is recommended that operators of a plant should 

regularly evaluate its processes and include the results in 

an annual report. Improvements and deterioration in 

performance in comparison to past years should be 

highlighted. While this brochure focusses on sewage 

sludge treatment and AD, but it is recommended to 

integrate the results into an analysis of the entire WWTP. 

3.2 Operational and environmental parameters 
A number of operational and environmental para-

meters have been selected in this brochure (non-exhau-

stive list) in order to assess a plant’s sustainability. The 

situation in any particular plant can be compared to the 

indicated ranges, which allows one to get an overall idea 

of the plant’s performance and to establish any potenti-

als for improvements. A relatively simple LCA-based 

tool for evaluation of sustainability performance can be 

found at: http://va-tekniksodra.se/wp-content/

uploads/2015/02/Calculation-Tool-Carbon-Footprint-

Wastewater-Treatment-Plants-to-EurEau-members.xls 

(up-dated link also provided on the IEA Bioenergy Task 

37 website). The tool was developed in Sweden in order 

to allow treatment plants to calculate their Carbon 
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Footprint and effects of potential process changes and 

modifications. 

3.2.1 Operational parameters: typical values 
The values indicated in this chapter refer to a meso-

philic digester of a municipal WWTP with primary 

settler and biological treatment. They suppose the dige-

stion of mixed sludge and without co-substrates. Good 

quality and complete data are necessary to determine 

these parameters. 

Hydraulic retention time (HRT)
HRT is an operation parameter that describes the 

theoretical period that the sludge stays in the AD reactor 

and in which the microorganisms can transform the 

organic matter into biogas. Too short retention times 

lead to incomplete degradation and lower biogas yields, 

and in extreme cases, washout of the microorganisms 

may occur, leading to a complete biological breakdown 

of the process. Sediments inside the digester may reduce 

the net digester volume and thus the HRT; a good rea-

son why they should be removed.

Temperature
Most AD reactors in WWTPs operate at mesophilic 

temperatures. As sewage sludge has high water content, 

a better ratio between energy supply for heating and 

energy gain is thus achieved. For the same reason, the 

optimal temperature is lower than in other mesophilic 

AD plants (typically between 37 and 43°C). 

Gross gas production and degradation of ODM
As biogas results from the microbial degradation of 

the ODM (organic dry matter), gross gas production 

and degradation of ODM are in direct relationship. The 

proportion of ODM in the sludge and its degradation 

rate depend on various factors, such as sludge types, 

sludge age, process characteristics of the water cleaning 

process and HRT. In consequence, a rather wide range 

for those parameters is indicated. 

Methane content in biogas
Biogas from sewage sludge has a high methane con-

tent compared to biogas from other feedstock. Lower 

values may indicate microbiological problems with the 

process (e.g. due to temperature variations, overload, 

etc.).

Utilisation of the biogas produced
Efficient biogas production only makes sense if the 

biogas is actually used. The parameter “utilisation of the 

produced biogas” indicates how much of the produced 

biogas is used for power, heat or biofuel production. 

The residual part is flared.

Efficiency of biogas conversion by CHP
CHP technology has been improving in the past 

years and efficiency has been increased significantly. 

The priority is focussed on the electric efficiency, becau-

se heat is usually available in sufficient quantities in 

plants with CHP. Replacement of old, low efficiency 

equipment is strongly recommended and also beneficial 

from a long term economic point of view. Regular 

maintenance of CHP units is important; deposits (e.g. 

from siloxanes) deteriorate their efficiency, which can 

lead to large energy losses.

Wastewater treatment Sustainable biogas production in WWTPs
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Determination:

Typical range: 16 – 25 days (based on Kind et al., 
2012, VsA, 2010)

Net digester volume [m3]

Feedstock input [m3/day]
HRT [days] =

Typical range: 35 – 39 °c (Lindtner, 2008, VsA, 2010)

Gross gas  
production:

450 – 500 L/kg oDm 
or 
18 – 26 L/PE/day

(based on Bachmann, 2009, 
VsA, 2010) (based on haber-
kern et al., 2008, Lindtner, 
2008, VsA, 2010)

Degradation 
of oDm:

45 – 55% (based on Bachmann, 2009, 
Tietze, 2006, VsA, 2010)

Typical range: 63 – 67% ch4 (based on Bachmann, 2009, 
Kind et al., 2012, Kolisch, 2010)

optimal range: 95 – 99% (VsA, 2010)

Electrical 
efficiency :

    < 100 kW: 25 – 35 %  
100 – 500 kW: 5 – 40 %
          > 500 : 38 – 45 %

(based on AsUE, 2011,  
schnatmann, 2011)

(PE = population equivalent – see Glossary for definition)
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Energy autonomy of the WWTP (in case of CHP use)
Electricity and heat autonomy indicate the ratio of 

energy generated to energy used in the WWTP. Larger 

plants achieve higher levels of autonomy due to more 

efficient processes (higher production, lower losses). 

Complete heat autonomy is already being achieved by 

many plants, while complete energy autonomy today is 

achieved only by very advanced and sophisticated plants.

Further parameters
There is a wide range of further parameters to evalu-

ate a plant. Lindtner, 2008 describes them in a detailed 

way in the Austrian guideline for setting up an Energy 

Concept for municipal WWTPs. Some parameters and 

typical values are given below.

3.2.2 Qualitative parameters
Qualitative parameters concern the AD concept, 

namely the handling of the energy generated and dige-

sted sludge. Important optimisation potentials may exist 

in many plants, but they depend on the very specific 

situation of each plant, as described hereafter. 

Biogas conversion technology
Different options for biogas conversion exist, namely 

conversion to heat, power and biofuel. In function of 

plant size and energy utilisation, one option may be 

more beneficial than another. 

Exploitation of symbiosis (plant internal and external)
We talk about symbiosis when the by-product of one 

process is used in another process as a resource. The 

exploitation and even specific development of symbiosis 

should be a main objective within the energy concept of 

a WWTP. 

Recycling or disposal of sewage sludge
The scope for recycling and disposal of sewage sludge 

is principally limited by legal boundaries. Nevertheless, 

sustainability criteria should be respected in all pathways.

General criteria: •	 If sewage sludge is dried, renewable energy or 
waste heat should be used 

•	 Transport distances should be kept as short as pos-
sible. Local solutions must be preferred.

In case of agricultural 
utilisation:

•	 Quality management rules must be 
•	 respected (c.f. Quality management of  

digestate from biogas plants used as  
fertiliser, Al seadi et al., 2012)

In case of co-digestion: •	 No nutrient-rich feedstock should be co-digested if 
the sludge is incinerated afterwards (because 
nutrients should be recycled as fertiliser whenever 
possible) 

In case of sludge 
incineration:

•	 heat should be recovered, e.g. in a district heating 
system

Electricity 
autonomy:

<  10,000 PE: 37% 
>100,000 PE: 68 – 100%

(Kappeler et al., 2012, 
Kolisch, 2010, Lindtner, 
2008)

heat 
autonomy:

90 – 100%

Electric energy generated: 10 – 20 kWh /PE/year

Electric energy for AD 1 – 2.5 kWh/PE/year

Electric energy for sludge 
dewatering

0.5 – 3.5 kWh/PE/year

Thermal energy for sludge and 
reactor heating

8 – 16 kWh/PE/year

Examples of symbiosis: •	 heat from chP is used for sludge drying
•	 Residual heat from chP or from wastewater is 

recovered and injected into a district heating 
system 

•	 heat from surrounding industries (for example 
municipal waste incineration) is used for sludge 
drying or for heat requirements of the upgrading 
unit 

•	 separated co2 from the upgrading process is 
used in the food industry or in greenhouses 

heat only production Not recommended (only adequate in specific situations). 
Even small plants should assess the option of chP.

combined heat and 
power production 

Efficient chP technology is recommended for all biogas 
plants, in particular when heat is used in the plant or 
externally.  

Upgrading to bio-
methane

Larger plants (> 100 Nm3/h) should assess the option of 
biogas upgrading. systems for smaller plants are in a 
development stages. The biomethane can either be injec-
ted into the grid or can be directly sold as biofuel. Biogas 
upgrading changes considerably the plant’s energy 
management, but today is an often chosen possibility 
due to economic and environmental advantages. 
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4.1 Approach
A possible approach for the implementation of an 

optimisation process is described hereafter, divided in 

three main steps.

Situation analysis
The first step is to understand where and why there 

are deficient performances. The parameters described in 

Chapter 3.2 are an important tool in this process; ideal-

ly, data are collected regularly in order to track their 

evolution. 

For process steps with deficient performances, the 

following questions must be asked:

•	  Is the technical equipment efficient? 

•	  Has it been designed appropriately? 

•	  Is it operated correctly?

•	  Has there been regular maintenance?

Further, it is important to consider the general con-

cept of the plant. Are synergies within the plant being 

exploited? Are there synergies with surrounding indu-

stries that could be exploited or created?

Optimisation plan
The second step involves optimisation measures 

based on the results of the situation analysis. A number 

of key measures are described in Chapter 4.2. An evalua-

tion of costs and benefits helps to decide if a measure 

should actually be applied and to establish the final 

optimisation plan.

Implementation and further monitoring
The last step is the planning and realisation of the 

optimisation measures. It is important to continue the 

monitoring of operational and environmental parame-

ters after the implementation. A comparison before/

after is a good way to appreciate the real effectiveness of 

the applied measures.

4.2 Frequent optimisation measures
Some of the common optimisation measures for AD 

in municipal WWTPs are described hereafter. However, 

they should be integrated in a holistic project with situa-

tion analysis and an optimisation plan. Here it is impor-

tant to define why a measure is applied, what perfor-

mance is expected and what improvement it should 

bring in comparison to the previous situation.

4.2.1 Replacement of CHP units
The replacement of outdated CHP units is a fre-

quent and efficient optimisation measure (Kolisch, 

2010). Old and obsolete CHP technology is associated 

with a considerable loss in efficiency, which is illustrated 

in the example in the box.

When replacing the CHP unit, it is appropriate to 

reconsider the entire conversion concept. Does it make 

sense to continue with CHP? Or is biogas upgrading a 

better option? Can symbioses be created through a new 

energy conversion concept?

Whichever system is chosen, an adequate layout and 

design are crucial for an optimised operation. Develop-

ment of future gas production and quality has to be 

taken into account over the entire lifetime of the plan-

ned system.

WWTP 100,000 PE Annual production

Gross gas: 876,000 Nm3  (at 6.5 kWh/Nm3)

Gross energy: 5,694 mWh

Electric energy: chP with el = 30 % :  1,708 mWhel 
chP with el = 38 %  :  2,163 mWhel

Example: 
A wastewater treatment plant (100,000 PE) with an old chP unit, 
having an electric efficiency of 30%, can increase its power produc-
tion by over 25% by getting a more efficient system, as illustrated 
below:

4. Optimisation
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4.2.2 Pretreatments for sewage sludge
The aim of sewage sludge pretreatment is destruc-

tion of solid structures and the cell walls of the biomass 

to enhance the rate and volume of gas production. Its 

main aims are a faster digestion process, higher energy 

production and a reduction of the sludge volume. 

Further effects are better dewaterability and a possible 

reduction of the reactor volume resulting from higher 

throughput of sewage sludge (and shorter HRT).

A large number of mechanical, thermal, chemical 

and biochemical pretreatment technologies are available 

on the market (for sewage sludge also called disintegra-

tion technologies). Taking a closer look at different pre-

treatments, many have not shown themselves to be 

beneficial from a sustainability point of view (Warth-

mann et al., 2012), a reason why any purchase must be 

studied carefully case by case. This chapter gives a very 

brief overview of the most used technologies; more 

detailed information is available in the Task 37 technical 

brochure Pretreatment of feedstock for enhanced biogas 

production (Montgomery et al., 2014). 

Mechanical 
Mechanical pretreatment involves the use of force for 

disrupting the microorganisms or sludge cells by shear 

stress resulting in tension and deformation (Phothilang-

ka, 2008). In consequence, agglomerates and cellular 

structures are broken down, increasing the contact sur-

face and making cell content available for anaerobic 

digestion. The most used technologies are ultrasound 

and high pressure processes such as extruders.

Thermal
Thermal pretreatment uses 

heat, typically at temperatures 

from 60 to 200°C, and pressure of 

around 10 bars in order to destroy 

cell walls and to release proteins 

that are then accessible for biode-

gradation. This accelerates the 

hydrolysis rate of digestion (Phot-

hilangka, 2008) and also enhances 

the dewaterability of the sludge. 

Additionally, foam formation may 

be reduced and, depending on the temperature, patho-

gens as well (Abwassertechnische Vereinigung, 2001).

During thermal pretreatment, it is also possible that 

inhibitory substances for the digestion process are pro-

duced (Montgomery et al., 2014). A test phase is there-

fore recommended.

Biochemical
Biochemical pretreatment is also known as pre-aci-

dification or two stage digestion, wherein the acidogenic 

stage of AD is physically separated from the rest of the 

process and the conditions for the growth of acidogenic 

organisms can thus be optimised.

This pretreatment is often used for high strength 

industrial wastewaters, but is also efficient for secondary 

sludge in municipal WWTPs. The effluent from the pre-

acidification step can further be used as a carbon source 

in the denitrification step.

Pretreament of sewage sludge is mainly beneficial if 

the actual gas yield is not achieving expected levels, for 

example in case of insufficient reactor volumes, respec-

tively insufficient retention times. It is generally recom-

mended to apply pretreatments on secondary sludge, as 

the effect is greater than on primary sludge. 

Pretreatments may improve the gas production by 

up to 30% (only possible if the actual gas yield is low), 

but the pretreatment process is also a significant energy 

consumer. The implementation of pretreatment techno-

logy must be studied carefully case by case, eventually by 

means of a test phase over several months. 

Figure 3: Examples of methane potential of different substrates 
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4.2.3 Co-digestion
In addition to sewage sludge, some WWTPs include 

other organic feedstock in the anaerobic reactor. This is 

referred to as co-digestion. This can lead to a significant 

increase of the gas production because most co-substra-

tes have a considerably higher methane production per 

tonne of fresh matter than sewage sludge (Figure 3). 

This is due to lower water content and high contents of 

energy-rich substances such as proteins, carbohydrates 

and fats in co-substrates.

As co-digestion in WWTPs is subject to strict regu-

lations in most countries, the legal situation has to be 

studied carefully before planning to proceed in the 

direction of co-digestion.  

Co-digestion is an interesting option to optimise the 

biogas production, but it also involves additional work 

and infrastructures at the WWTP. Various devices are 

required for registration (balance, automatic or manual 

registration system), reception pit (Figure 4), suction 

device, pretreatment, storage, etc. The additional sub-

strates also induce an increase of the nitrogen load in 

the process water. 

Adequate feedstock is required for sustainable co-

digestion, in accordance with the national regulation 

(sometimes including a “positive list” defining accepted 

feedstocks). The following elements must be conside-

red: 

•	 Feedstock with high fertilizing values (high contents of 

phosphorus, nitrogen and organic matter) are 

only of benefit if the digested sludge is used as 

fertiliser. Examples are dairy by-products or 

food wastes.

•	 Fibre-rich solid feedstock is not appropriate for 

CSTR digesters (as used in WWTPs), as they 

cause clogging and abrasion of pipework, 

pumps, valves, etc. Examples are garden wastes 

or wastes from landscape management.

•	 Feedstock containing inhibitors, such as high ammonia 

or hydrogen sulphide concentration, certain 

heavy metals, disinfectants, antibiotics, etc., 

must be handled with care and quantities must 

be limited. More details on inhibitors can be 

found in the Technical Brochure of Task 37: 

Process monitoring in biogas plants (Drosg, 

2013).

•	 Feedstock containing impurities, such as plastics, 

stones, metals, glass, etc., must undergo a pre-

treatment. Otherwise, it will damage pumps, 

pipes, stirring systems, etc. 

•	 Grease trap wastes are very well adapted for co-

digestion in WWTPs. They present low fertili-

sing value and very significant biogas yields. 

However, specific handling is needed in order to 

prevent technical and biological problems like 

clogging or drastic pH swings.

4.2.4 Sludge dewatering 
After digestion, sewage sludge is dewatered in order 

to reduce its volume and increase the proportion of DM 

(as shown in Figure 5). Three different types of dewate-

ring processes can be used consecutively in order to 

achieve almost complete dewatering: static thickening 

(up to 8% DM), mechanical thickening (up to ~35% 

DM) and thermal drying (up to ~92% DM).

Depending on the further utilisation of the sludge 

and the available energy sources, the level of dewatering 

can be adapted. A detailed energy balance with different 

scenarios should allow the optimal dewatering process 

to be established. Some key factors are indicated below:

•	 In case of thermal sludge drying, the process 

takes the highest share within the total energy 

consumption for sludge treatment (Kind, 

Figure 4: Reception point for liquid co-substrates with different sized grids
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2009). The purchase of a drying facility only 

makes sense in particular cases, for example 

when the dried sludge is afterwards used as fuel 

in the cement industry (where only dried sludge 

is accepted).

•	 Thermal drying requires much more energy per 

% increased DM than mechanical thickening. 

In consequence, the most efficient mechanical 

thickeners are used in case of subsequent ther-

mal drying.

•	 Waste heat and renewable thermal energy 

should be used for sludge drying. Sludges from 

different WWTPs should be grouped for dry-

ing. In case of sufficient space, the option of a 

solar drying facility should be considered.

•	 Transport of sewage sludge requires a relatively 

low share within the total energy consumption 

for sludge treatment (Kind, 2009 and Bach-

mann, 2009). In consequence, reduction of 

transport distances or transport volumes have a 

limited optimisation potential.

4.2.5 Nitrogen removal from digester liquids
By reintroducing the liquid fraction of the digester 

effluent to the head of the WWTP, 15 – 20% of the 

nitrogen load is again fed into the water treatment 

system (Fux et al., 2004). Separate treatment of this 

highly loaded stream can reduce its nitrogen content by 

85 – 90% and thus reduce the load in the biological 

reactors of the wastewater treatment. The most applied 

technologies are the Anammox (ANaerobic AMMoni-

um OXidation) process and Sequencing Batch Reactors 

(SBR) with classical nitrification/denitrification.

Anammox was discovered about 20 years ago and 

represents a major breakthrough in the nitrogen remo-

val process. Major advantages in comparison to classical 

nitrification/denitrification are the absence of emissi-

ons of unfavourable intermediates and significantly 

lower costs (Fux et al., 2004).

4.2.6 Improved phosphorous recycling 
Significant quantities of phosphorus and nitrogen 

are present in sewage sludge. Those nutrients are of 

great importance for any life and growth process and 

are main components in fertilisers. Therefore, improved 

handling of sewage sludge with regard to nutrients, 

particularly phosphorus, is becoming increasingly 

important.

When used in agriculture, the sewage sludge partial-

ly substitutes mineral fertilisers and brings nutrients in 

combination with high levels of organic matter back 

into the soil in a natural way. A growing consciousness 

about the potential of sewage sludge is leading to a gro-

wing need to recycle nutrients, however this requires 

strictly respecting today’s quality requirements concer-

ning heavy metals, persistent organic pollutants and 

pathogenic microorganisms.

In case of sludge incineration, it is already technical-

ly possible to recover phosphorus from the ashes. 

However, such recovery systems are extremely expensive 

and are only applied in very specific cases (see also 

chapter 5). 

4.2.7 Education and experience exchange 
Education of employees is an important factor for 

the optimised operation of a plant. Trained staff that 

understands the different process steps is much more 

attentive to irregularities and can act appropriately in 

case of complications. In the same context, experience 

exchange between plant operators is often a motivating 

and an effective experience leading to process optimisa-

tion.

Figure 5: Dewatered sewage sludge  
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Expectations towards WWTP are evolving at a rapid 

pace. The treatment of micropollutants in wastewater 

and nutrient recovery from sewage sludge are major 

challenges today which involve new processes and sub-

stantial investments. In addition to improvements of 

water and sludge treatment, WWTPs are confronted 

with the demand for energy optimisation and nutrient 

recycling. To meet the series of requirements, the 

Netherlands has introduced the idea of the NEW Facto-

ry (nutrient, energy and water factory), a concept that 

suggests considering wastewater as a resource of nutri-

ents, energy and clean water, rather than a waste pro-

duct. A roadmap has been set up on how to achieve the 

goals of the NEW Factory by 2030 (Roeleveld et al., 

2010). 

Numerous countries will certainly follow the examp-

le of the Netherlands and will focus on integrated 

management in WWTPs. The coordination of different 

objectives at nutrient-, energy- and water level will be a 

key challenge in the future.

So called biorefineries have a very similar concept to 

the NEW factories. They process biomass into biofuels, 

power, heat and a range of bio-based products such as 

chemicals, feed, food, etc. WWTPs, and in particular AD 

of sewage sludge, may play a key role in biorefineries in 

the future.

Looking in particular at sewage sludge as an energy 

and nutrient resource, some interesting trends are listed 

below.

High-load digestion
High-load digestion consists of an increased con-

centration of solids and of microorganisms inside the 

AD reactor, which is achieved by filtering out water. In 

consequence, the necessary digestion volume is reduced 

and less heat is required for heating, which lowers 

investment and operation costs. According to Fraunho-

fer IGB, developer of such a high-load process, a biogas 

yield of 23 L/PE/day can be achieved, which is in the 

same range as in conventional digesters with good gas 

yields (18-26 L/PE/day). The purchase of a high-load 

digester is interesting in particular for WWTPs that do 

not yet have a digestion unit and decide for AD. Also in 

smaller plants (10,000 PE) AD can become a cost-

effective solution (Kempter-Regel, 2010).

Hydrothermal carbonization of sewage sludge 
Hydrothermal carbonization (HTC) is a thermoche-

mical process that converts liquid biomass into a so-

called biocoal, which can be used as a solid fuel or soil 

conditioner. In the context of sewage sludge treatment, 

HTC may be an alternative to anaerobic digestion or a 

complement. In the latter case, digested sludge serves as 

feedstock for HTC. The advantage of HTC is nearly 

complete conversion of the organic matter, very good 

dewaterability of the resulting sludge and improved 

energy balance (Jeitz, 2012).

HTC is a recent technology on the market, even 

though the process has been known for over a hundred 

years. The first industrial plant was built in 2010 in a 

WWTP in Germany (Karlsruhe). It is conceivable that 

HTC will become a standard technology for sludge 

treatment.

Pyrolysis and gasification
Pyrolysis and gasification are, like HTC, thermoche-

mical processes that can be used to reduce the amount 

of solids in the residual sewage sludge and generate 

energy. These processes use dry biomass as feedstock 

and operate over different temperature and pressure 

ranges. While pyrolysis and gasification technologies 

have been used at industrial scale since the 1980s, no 

commercial breakthrough has as yet been achieved due 

to frequent technical and economic problems. (Based 

on Gleis, 2011)

Fuel cells for biogas conversion
Fuel cells (typically solid oxide fuel cells – SOFC) 

generate electricity directly from the chemical energy 

contained in the biogas, with an electric efficiency of 50 

to 55 %. This process is in theory more efficient than 

CHP, which generates first thermal-, then mechanical- 

and only then electric energy. Compared to CHP, fuel 

cells release lower emissions in terms of CO, NOx and 

hydrocarbons. The big disadvantage of fuel cells is their 

sensitivity to poor gas quality, which is a challenge when 

5. Trends
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biogas is used as fuel. Further negative points are energy 

requirements during the start-up phase and increased 

security requirements because of the presence of hydro-

gen (Kind, 2012). Today, there are individual examples 

of fuel cells for biogas conversion in WWTPs, but the 

disadvantages of the system still get in the way of a bre-

akthrough. 

Phosphorus recovery from sewage sludge
The recovery of phosphorus from sewage sludge is a 

great challenge for countries where sewage sludge is 

incinerated, respectively, where nutrients are not being 

recycled. Various recovery processes exist today, but 

they are not (yet) cost-effective and are therefore not yet 

applied on large scale plants.

A European research and demonstration project, 

P-Rex (supported by the 7th framework program, Euro-

pean Commission), is about to evaluate different reco-

very processes, and the products that result from them, 

on their sustainability and costs. It focusses particularly 

on phosphorus recovery from ash and phosphorus 

recovery from sludge processes. The objective is to bring 

recovery systems from prototype to the market and, in 

the long term, a Europe-wide implementation of phos-

phorus recovery from sewage sludge. Project reports 

can be downloaded on the P-REX website: http://p-rex.

eu/.

In Switzerland, regulatory changes foresee already 

that phosphorus recovery from sewage sludge will beco-

me mandatory. Some incineration plants already stock 

the sludge ashes in order to recover the phosphorus 

once the technology is available.

The best way to towards sustainable biogas produc-

tion at WWTPs is the establishment of a monitoring 

system. It is recommended that each plant should regu-

larly evaluate its processes and publish the results in an 

annual report, illustrating good and deficient perfor-

mances, as well as optimisation possibilities. Good awa-

reness of each stage of the process and the possibilities 

for improvement is one of the most important steps in 

the optimisation process. The annual report can also 

serve as a communication tool in order to attract atten-

tion of the local population and politicians when invest-

ments are required. 

It is further important to remain attentive to deve-

lopments and regularly investigate new possibilities. It is 

sometimes beneficial to replace an old system, even 

though still functional, by a new, more efficient one. Or, 

as the industrial neighbourhood of a plant changes, new 

possibilities for synergies should be examined. 

However, plant optimisation is a continuous pro-

cess, which requires a committed, innovative and dyna-

mic operating team. Continuous education and experi-

ence exchange is an effective way to keep up with the 

best practices and the newest technological develop-

ments.

6. Recommendations
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Anaerobic digestion (AD): Degradation of organic substances by microorga-
nisms under exclusion of oxygen. The process, also called metha-
nisation, delivers biogas that contains typically 50 to 70% metha-
ne, 20 to 45% carbon dioxide and trace gases.

Biochemical oxygen demand (BOD): A parameter that is used to indicate the 
degree of organic pollution of water. It specifies the amount of 
oxygen needed by aerobic organisms to break down the organic 
material.

Co-digestion: Simultaneous AD of multiple organic wastes used to 
increase methane production in low-yielding or difficult to digest 
materials.

Combined heat and power (CHP): Energy system that produces both electrici-
ty and heat from a single fuel source.

Composting: Biological process where solid organic matter is aerobically 
processed at thermophilic temperatures to a stabilized and hygie-
nic product rich in humic substances, the compost.

Continuously stirred tank reactor (CSTR): In the case of AD, this is an anaerobic 
digester with mixers or impellers where material is continuously 
fed in and removed so as to maintain a steady-state breakdown 
reaction inside the tank.

Denitrification: In wastewater treatment, biological nitrogen removal 
consisting of an initial oxidation of ammonium to nitrate follo-
wed by the reduction of nitrate to nitrogen gas.

Digested sludge: Sludge after being processed in anaerobic digestion.

Dry matter (DM): Residual substance after complete elimination of water 
(drying), usually given in weight percentage of fresh material. 
Also known as total solids.

Heating value: Amount of heat produced by combustion of a unit quan-
tity of fuel [J/Kg].

Hydraulic retention time (HRT): Average time during which the feedstock 
remains in the AD reactor.

Micropollutants: Organic trace contaminants caused by plant protection 
products, biocides, pharmaceuticals, body care products, cleaning 
agents, etc.

Municipal waste incineration (MWI): Thermal waste treatment that involves 
the combustion of substances contained in municipal waste 
materials. The heat generated can be used to produce electric 
power.

Organic dry matter (ODM): Organic fraction of the DM, also known as vola-
tile solids.

Population equivalent (PE): Ratio of the pollution load [BOD/day] arriving 
at the WWTP from domestic and industrial users and services to 
the individual pollution load in household sewage produced by 
one person.

Primary sludge: Concentrated suspension of solids separated by gravita-
tional sedimentation from wastewater in the primary settler in a 
WWTP.

Secondary sludge: Concentrated suspension of solids separated by gravi-
tational sedimentation after the biological treatment of wastewa-
ter in a WWTP.

Wastewater treatment plant (WWTP): Facility where wastewater is processed in 
a combination of physical, chemical and biological processes and 
operations to remove solids, organic matter and nutrients before 
its discharge to the environment.
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