BigBench: Towards an Industry Standard Benchmark for
Big Data Analytics

Ahmad Ghazal*®, Tilmann Rabl*¢, Minging Hu'?,
Francois Raab**, Meikel Poess?*7, Alain Crolotte!*, Hans-Arno Jacobsen??

Teradata Corp., 2University of Toronto, *Oracle Corp., *InfoSizing, Inc.
*{ahmad.ghazal,minqging.hu,alain.crolotte}@teradata.com, stiimann@msrg.utoronto.ca
meikel.poess@oracle.com, *francois@sizing.com, °jacobsen@eecg.toronto.edu

ABSTRACT

There is a tremendous interest in big data by academia,
industry and a large user base. Several commercial and open
source providers unleashed a variety of products to support
big data storage and processing. As these products mature,
there is a need to evaluate and compare the performance of
these systems.

In this paper, we present BigBench, an end-to-end big
data benchmark proposal. The underlying business model
of BigBench is a product retailer. The proposal covers a
data model and synthetic data generator that addresses the
variety, velocity and volume aspects of big data systems con-
taining structured, semi-structured and unstructured data.
The structured part of the BigBench data model is adopted
from the TPC-DS benchmark, which is enriched with semi-
structured and unstructured data components. The semi-
structured part captures registered and guest user clicks
on the retailer’s website. The unstructured data captures
product reviews submitted online. The data generator de-
signed for BigBench provides scalable volumes of raw data
based on a scale factor. The BigBench workload is designed
around a set of queries against the data model. From a busi-
ness prospective, the queries cover the different categories of
big data analytics proposed by McKinsey. From a technical
prospective, the queries are designed to span three different
dimensions based on data sources, query processing types
and analytic techniques.

We illustrate the feasibility of BigBench by implement-
ing it on the Teradata Aster Database. The test includes
generating and loading a 200 Gigabyte BigBench data set
and testing the workload by executing the BigBench queries
(written using Teradata Aster SQL-MR) and reporting their
response times.

Categories and Subject Descriptors

D.2.8 [Software Engineering]: Metrics—performance mea-
sures

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for prof't or commercial advantage and that copies
bear this notice and the full citation on the frst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specif ¢
permission and/or a fee.

SIGMOD’13, June 22-27, 2013, New York, New York, USA.

Copyright 2013 ACM 978-1-4503-2037-5/13/06 ...$15.00.

Keywords

Benchmarking; big data; map reduce

1. INTRODUCTION

Today’s data explosion, fueled by emerging applications,
such as social networking, micro blogs, and the “crowd intel-
ligence” capabilities of many sites, has led to the “big data”
phenomenon. It is characterized by increasing volumes of
data of disparate types (i.e., structured, semi-structured and
unstructured) from sources that generate new data at a high
rate (e.g., click streams captured in web server logs). This
wealth of data provides numerous new analytic and business
intelligence opportunities like fraud detection, customer pro-
filing, and churn and customer loyalty analysis.

Consequently, there is tremendous interest in academia
and industry to address the challenges in storing, access-
ing and analyzing this data. Several commercial and open
source providers already unleashed a variety of products to
support big data storage and processing. These tools are
mostly parallel database management systems (e.g., Green-
plum[4], Netezza’s TwinFin[9], Teradata[8], Oracle[6]) or
MapReduce (MR) based systems (e.g., Hadoop [1], Cloud-
era’s CDH [3], Hive[2] and many other systems like those in
[15, 17, 24, 27]).

As big data systems mature, the pressure to evaluate and
compare performance and price performance of these sys-
tems rises. However, to date there are no standard bench-
marks available. This takes us back to the middle of the
1980’s, when the lack of standard database benchmarks led
many database management system vendors to practice what
is now referred to as “benchmarketing” — a practice in which
organizations make performance claims based on self-defined,
highly biased benchmarks. The goal of publishing results
from such tailored benchmarks was to state marketing claims,
regardless of the absence of relevant and verifiable technical
merit. In essence, these benchmarks were designed as for-
gone conclusions to fit a pre-established marketing message.
Similarly, vendors would create configurations, referred to
as “benchmark specials”, that were specifically designed to
maximize performance against a specific benchmark with
limited benefit to real-world applications.

Towards the end of the 1980’s, as a response to this grow-
ing practice, benchmark consortia such as the Transaction
Processing Performance Council (TPC) and the Standard
Performance Corporation (SPEC) were founded. Influenced
by academic database experts and well-known industry lead-

i Unstructured |

Structured Data
Marketprice Item \ Data
Sales Reviews
Web Page Customer /
™[] Adapted
Web Log TPC-DS
BigBench
Semi-Structured Data £ sie gr?c
Specific

Figure 1: Big Data Benchmark Data Model

ers, industry standard benchmarks such as TPC-A, TPC-C
and TPC-D were engineered and rules around publishing
results were agreed upon.

Recently a few efforts in the area of big data benchmarks
emerged, such as YCSBJ[16], PigMix[7], GridMix [5] and
GraySort [20]. These efforts are island solutions and not
policed by any industry consortia. While some are focused
on one or a subset of components and tasks typical for big
data systems, others are based on specific map-reduce-style
systems.

We believe an industry standard big data benchmark must
be an end-to-end benchmark covering all major characteris-
tics in the lifecycle of a big data system including the three
Vs described by Douglas Laney[21]: (i) volume (larger data
set sizes), (ii) welocity (higher data arrival rates, such as
click streams) and (iii) variety (increased data type dispar-
ity, such as structured data from relational tables, semi-
structured data from key-value web clicks and un-structured
data from social media content).

In this paper, we present our proposal for an end-to-end
big data benchmark. After a presentation of initial ideas for
the benchmark at the first Workshop on Big Data Bench-
marking' a group formed that collaborated on building the
specification. We call it “BigBench”. It is based on a ficti-
tious retailer who sells products to customers via physical
and online stores. The proposal covers a data model, syn-
thetic data generator and workload description. The work-
load queries are specified in English, since no clear standard
for big data systems has yet emerged. We also suggest di-
rections for big data metrics specific to data loading and
workload execution. Furthermore, the feasibility of the pro-
posal is validated by implementing it on the Teradata Aster
DBMS (TAD). This experiment involves generating 200 Gi-
gabyte of raw data and loading it into TAD. The English
like workload queries are implemented using TAD’s SQL-
MR syntax and executed as a single stream of queries.

The first major component of BigBench is the specification
of a data model that focuses on volume, variety and velocity.
The variety property of our model is illustrated in Figure
1. The structured part of BigBench is adapted from the
TPC-DS data model, which also depicts a product retailer
[23]. We borrowed the store and online sales portion from
that model and added a table for prices from the retailer’s
competitors.

The structured part is enriched with semi-structured and

WBDB, May 2012, San Jose — http://clds.ucsd.edu/
wbdb2012

un-structured data shown in the lower and right hand side
of Figure 1. The semi-structured part is composed by clicks
made by customers and guest users visiting the retailer’s
web site. Our design assumes the semi-structured data to
be in a key-value format similar to Apache’s web server log
format. The un-structured data in our model is covered by
product reviews that can be submitted by guest users or
actual customers.

We also provide the design and implementation of a data
generator for the proposed BigBench data model. Our data
generator is based on an extension of PDGF [29]. PDGF is
a parallel data generator that is capable of producing large
amounts data for an arbitrary schema. The existing PDGF
can be used to generate the structured part of the BigBench
model. However, it is not capable of producing neither the
semi-structured web clicks nor the unstructured product re-
views text. Part of our contribution in this paper is to extend
PDGF to cover the semi-structured and un-structured parts.
We enhanced PDGF to produce a key-value data set for a
fixed set of required and optional keys. This is sufficient to
generate the web logs part of BigBench.

The main challenge in generating product reviews is to
produce un-structured text. We developed and implemented
an algorithm that produces synthetic text based on some
sample input text. The algorithm uses a Markov Chain tech-
nique that extracts key words and builds a dictionary based
on these key words. The new algorithm, called TextGen, is
applied or our retailer model by using some real product re-
views from amazon.com for the initial sample data. PDGF
interacts with TextGen through an API sending product
category as input and getting a product review text for that
category.

The volume dimension of our model is far simpler than the
variety discussion and previous data generators had a good
handle on that. PDGF handles the volume well since it can
scale the size of the data based on a scale factor. It also
runs efficiently for large scale factors since it runs in parallel
and can leverage large systems dedicated for the benchmark.
We also address big data velocity by establishing a periodic
refresh scheme that constantly adds data to the different
areas of the data model.

The second major component of BigBench is the speci-
fication of workload queries applied on the BigBench data
model. In terms of business questions, we found that the
big data retail analytics by McKinsey [22] serves our pur-
pose given that BigBench is about retail. In [22] five major
areas, or business levers, of big data analytics are identified:
marketing, merchandising, operations, supply chain and new
business models.

In addition to the big data retail business levers above,
we looked at three different technical dimensions the Big-
Bench queries should span. The first technical dimension is
about the type of data used in queries. This implies mak-
ing sure that structured types, semi-structured types, un-
structured types and their combinations are each covered
in the queries. The second technical dimension covers the
two common paradigms of declarative processing (SQL and
similar constructs like HQL) and procedural MR, processing.
To that end, some queries are best suited to be declarative,
others to be procedural and others to be a mix of both. The
third technical dimension is about the different algorithms of
analytic processing as described by the Apache MAHOUT
system. Examples of these algorithms are classifications,

pattern matching, clustering, regression, dimensional reduc-
tion, etc.
In summary, our key contributions are as follows:

1. We present the first end-to-end benchmark for big data
analytics while previous work focused on few selected
types of data or processing. BigBench implements the
complete use-case of a realistic retail business.

2. We specify 30 queries that cover all important aspects
of big data analytics. The queries are specified in En-
glish as well as TAD’s SQL-MR syntax.

3. We develop and implement a novel technique for pro-
ducing un-structured text data and integrate it with a
traditional structured data generator.

4. We conduct a proof of concept implementation and
evaluation of BigBench by executing the benchmark
on the Teradata Aster DBMS.

The remainder of this paper is organized as follows. Sec-
tion 2 covers previous work related to big data benchmark-
ing. Section 3 gives a detailed description of the BigBench
benchmark. The data model and data generation are de-
scribed in detail in Sections 3.1 and 3.2. We describe the
workload queries in Section 3.3 and the benchmark metrics
in Section 3.4. We present our proof of concept implemen-
tation of BigBench using TAD in Section 4 including results
involving 200 Gigabyte database. Finally, Section 5 summa-
rizes the paper and suggests future directions.

2. RELATED WORK

The requirement for well defined benchmarks that mea-

sure the performance of DBMS dealing with very large amounts

of data emerged when the first generation of commercial
systems appeared in the 1980’s by Teradata Corporation
and other more traditional DBMS vendors, who followed.
Driven by vendor’s needs to compare commercial systems,
the Transaction Processing Performance Council developed
a series of data warehouse end-to-end benchmarks starting
with TPC-D in the beginning of the 90’s and TPC-H and
TPC-R in the dawn of 2000 (all specifications available from
the TPC website?). These benchmarks, restricted to ter-
abyte data sizes, emphasized single and multi-user perfor-
mance of complex SQL query processing capabilities with
some updates on an enterprise data warehouse. Even ear-
lier, academia started developing micro benchmarks such as
the Wisconsin benchmark, the OO7 [12] and BUCKY [13]
benchmarks for object-oriented DBMSs, XMark [31] and
EXRT [14] benchmarks for XML-related DBMS technolo-
gies.

As data volumes grew from megabytes of data and simple
data models (small number of tables with few relationships)
over time to petabytes and complex data models (large num-
ber of tables with many complex relationships) the TPC
responded with the development of its next generation deci-
sion support benchmark, TPC-DS [23], in the early 2000’s.
Still based on the SQL programming language it contains
many big data elements, such as very large data and system
sizes. Although the current limit is 100 terabyte, the data
generator and schema can be extended to petabytes. It also

2TPC - http://www.tpc.org

contains very complex analytical queries using sophisticated
SQL structures and a concurrent update model.

In parallel, academia as well as emerging big data com-
panies have started defining the next generation big data
benchmarks, which are mostly component and micro bench-
marks. Yahoo! developed its cloud serving benchmark,
YCSB, to evaluate NoSQL data stores [16]. It is a flexi-
ble multiuser benchmark with two tiers, a performance tier
(testing latency) and a scalability tier. In the original paper,
three workloads were runagainst four different data stores:
HBase, Cassandra, PNUTs, and MySQL. Other evaluations
followed that extended the scope of YCSB [30, 25]. The
CALDA effort [26] defined a micro-benchmark for big data
analytics based on Google’s MapReduce paper and com-
pared Hadoop with two RDBMS systems, one that is row
and one that is column organized. Another widely used
benchmark is the TeraSort or GraySort benchmark [20],
which can be considered a micro benchmark that sorts a
large number of 100-byte records doing considerable amount
of computation, networking, and storage 1/O. Other bench-
marks are the GridMix [5] and PigMix [7].

TPC-DS [23, 28] is TPC’s latest decision support bench-
mark. It covers the major three disciplines in the life-cycle
of a relational decision support benchmark, namely (i) load-
ing the initial database (ii) executing queries in both single-
and multi-user modes (iii) refreshing the database. TPC-DS
handles some aspects of big data like volume and some as-
pects of velocity. Still, it lacks key components of big data
like semi-structured and unstructured data and their asso-
ciated analytics.

In summary, previous benchmarks described in this sec-
tion are mostly micro and component benchmarks. Others
like TPC-DS lack key big data characteristics. This brings
a need for an end-to-end benchmark for big data processing.

3. BIG DATA BENCHMARK

This section covers the major parts of the BigBench speci-
fication. Due to space restrictions, not all details can be pre-
sented here. Additional details can be found in an extended
version of this paper, to be made available at publication
time.

3.1 Data Model

The three cornerstone aspects of big data systems are vol-
ume, variety, velocity. Big data systems need to be able
to deal with large volumes of data, sometimes in the mul-
tiple petabyte range. We deal with the volume aspect in
the following section about data scaling. Variety refers to
the ability to deal with differently organized data, from un-
structured to semi-structured and structured data. The fol-
lowing section about variety lays out a structure that cov-
ers all the types of data integrated in one model. Velocity
refers to the ability of a big data system to stay current
through periodic refreshes, commonly referred to as extrac-
tion, transformation and load (ETL). A big data system is
not a one-time snapshot of a business operations database
nor is it a database where OLTP applications are running
concurrently. Hence, staying current with the operational
side is a very important aspect of analytical systems, and
even more so in the context of a big data system.

In the following subsection, we develop the data model
showing how the 3 Vs in big data are addressed in Big-
Bench. We show how wvolume is addressed by using scale

127.0.0.1 - - [Jun/23/2003:05:59:23 +0200]
"GET/page33.html?wcs_click_date=2452814

&wes_click_ time=21563&wcs_user_id=95789
&wcs_web_page_sk=32&wcs_item_sk=28 HTTP/1.1" 200 2256
"http://www.someurl.org" "Mozilla/5.0"

Figure 2: Example of a web log entry

factors in the data generators to scale data up to petabytes
of data, how wariety is addressed through the usage of data
from many sources and how velocity is achieved by periodic
refreshes of the data repository.

3.1.1 Variety

The general benchmark data model is summarized in Fig-
ure 1, which shows the three data components of the bench-
mark namely structured data, semi-structured data and un-
structured data together with the relationships between them.

The structured component of BigBench is adapted from
the TPC-DS benchmark recently published by the TPC [10].
A description of this benchmark can be found in [23, 28].
BigBench is however not a simple extension of TPC-DS.
Instead, BigBench focuses chiefly on the analytics associated
with semi-structured and unstructured data.

With a few exceptions most of the tables contained in
TPC-DS are used by BigBench; the main focus being store
and web sales, which only contain structured data. These
tables cover data relating to the purchases made in stores
and over the web, but also related tables such as item de-
scribing the items offered by the retailer, customer and its
ancillary tables containing all relevant client data, web_page
and web_site describing pages and web sites used by on-
line clients and all associated dimension tables. To better
support our functional design, we also added a new table
called item_marketprices to the structured data. It contains
competitor names and prices for each item so that price
comparisons performed by online users who are interested
in particular items could also be captured.

The semi-structured data focuses on click-streams, con-
tained in web log files. While some of the clicks result in
sales thereby necessitating a link to structured area tables
containing online sales, item, web pages, customer and asso-
ciated dimensions, the large majority of these clicks are as-
sociated with browsing activity not resulting in sales. These
clicks focus on items and are associated with registered users
or guests.The format retained for the clicks is that of Apache
logs. A typical entry of such a log associated with a regis-
tered user could look like the example in Figure 2.

Web logs can be processed either directly at run time (late
binding) or parsed and stored into a structured table/file.
Since all values are surrogate keys referring to the struc-
tured schema, the above record once processed could look
like Table 1.

The unstructured data resembles written text associated
with product reviews of items offered by the retailer. Such
reviews could be from several sources, namely guest users,
registered users with a purchase and registered users without
a purchase. This implies a relationship between reviews and
structred data like customer, sales and item tables. The
reviews and its relationship with the structred data can be
captured by a table/file. The table/file captures the primary
keys of the referenced tables. The review itself is contained

in a large variable character field containing free form text,
the rating score and the date and time of the review are also
contained in the table/file.

3.1.2 Volume

The size of the structured area is based on the size of the
tables involved, using a well-understood and known quan-
tity similar to the scale factor in TPC-DS. The size of the
semi-structured and unstructured areas are also based on
this scale factor. Consequently, the size of the complete
BigBench data set is based on a single scale factor and is
predictable and deterministic at any volume.

For the item_marketprice table, it is assumed that an av-
erage of 5 competitor prices are stored for each item. Thus,
the sizing of item marketprice is |item| X 5.

The size of web logs depends on the number of clicks made
by buyers (making entries in web_sales) and visitors who do
not end up buying. Each row in web_sales represents a single
line item, thus the number of clicks per sale is comprised of
the number of clicks per item and the number of clicks to
make a sale (i.e. login, go to cart, checkout). The number
of clicks for buyers ¢, can be specified with the following
equation:

b
c» =|web_sales| x (pages per item + Pages et Uy

)

Assuming both pages per item and pages per buy to be equal
to 4 on average and setting the avergae value of items per
sale to be 12 (from TPC-DS), the value of ¢, is simplified to

items per sale

¢» =|web_sales| x 4.33

We assume that 80% of surfers are visitors (20% buyers)
which makes the ratio of visitors to buyers to be 4:1. We
also assume that on average visitors browse items the same
way as buyers. Based on these assumptions, the formula for
the number of clicks for visitors ¢, is:

cv = (|web_sales| x pages per item) x visitor ratio

¢y = |web_sales| x 16

Overall, the size of the web log is ¢, + ¢, and can be ex-
pressed as a multiple of the size of web_sales. It is web_salesx
20.33. The web_sales table scales linearly with the scale fac-
tor, the size for scale factor 1 is 720K, thus the number of
entries for the web log at scale factor 1 is 14,600K. Given to
the log format, the raw file size is 3 gigabyte.

For the review sizing, a similar approach is chosen. Three
sources for reviews are considered: anonymous reviews, ran-
dom item reviews by registered users (customers), and re-
views based on sales. The number of anonymous reviews is
related to the number of items, an average of 5 anonymous

Table 1: Representation of a web log entry

| Field Name | Value |
wes_click_sk 996146
wes_click_date_sk | 2452814
wes_click_time_sk 21563
wes_item_sk 28
wes_web_page_sk 32
wes_user_sk 95789

reviews per item is assumed. The number of reviews by
registered users is dependent on the number of users in the
system. Because not all users are actually writing reviews,
an average of one review per 5 users is assumed. Finally,
a certain amount of the sales will directly lead to a review.
This amount is set to 15%. The number of reviews can be
computed by the following formula:

[reviews| = |items| x 5+ |customers| x 0.2+ |web_sales| x 0.15

3.1.3 Velocity

Velocity, i.e. a periodic data refresh process, is an inte-
gral part of the life cycle of a big data system. A production
data refresh process consists of three steps: (i) data extract
(ii) data transformation, and (iii) data load . In a production
system environment, the data extraction step may consist of
numerous separate extract operations, executed against mul-
tiple operational systems and ancillary data sources. As it
is unlikely that the full list of these operational data sources
resides on the system running the big data application, it
is doubtful the measurement of the data extraction perfor-
mance would result in a metric appropriate or meaningful
to the scope of this benchmark. In light of this, the data
extract step is assumed and represented in the benchmark
in the form of generated files.

There are two aspects to discuss in a periodic refresh
model for the tables in BigBench: (i) amount of data to
include in the refresh process and (ii) the time interval at
which the refresh occurs. Both aspects apply to the struc-
tured (web sales channel and item_marketprice tables), semi-
structured (click_stream) and un-structured data (product_
review).

We implement BigBench’s periodic refresh process based
on the well studied methodology for data maintenance of
TPC-DS. It defines the insertion of new data and the dele-
tion of old data from all fact tables as well as insert and
updated data of dimensions. Dimensions are divided into
three sets, history keeping, non-history keeping and static
dimensions. Static dimensions, such as date and time are
not updated. History keeping dimensions never overwrite
any data, but they keep a history of all former changes.
Non-History keeping dimensions resemble almost a one-to-
one copy of the table in the operational system of the busi-
ness, i.e. they update existing data. Both, history keeping
and non-history keeping dimensions, accept new data and
never delete any old data. According to the above defini-
tions, click_stream and product_review are fact tables and
item_marketprice is a history keeping table. Pseudo code
for the insertion, deletion of fact table data as well as insert
and update operations for the dimension tables can be found
in [23] and the official TPC-DS specification .

One of the fundamental aspects of the above methodol-
ogy is the concurrent execution of the refresh process with
the query workload. Queries must be interspersed with in-
sert, delete and update operations. In BigBench we run
N concurrent query streams containing queries against the
structured, semi-structured and unstructured portions of the
schema. The number of refresh processes executed is a linear
function of the number of query streams, S. In real systems,
data against the different data portions is updated with dif-
ferent frequencies. Hence we define a vector V with the
following three separate data refresh velocities for each of

STPC — http://www.tpc.org

3*S queries Qyytatypes6 Queries Qqatatypes~6 Queries

VN
‘ Queries Stream 1 / ‘

‘ Queries Stream 2 D) ‘

‘ Queries Stream S-1 D) ‘

N N
‘ Queries Stream S ‘

Refresh Process 1 Refresh Process 2 Refresh Process 3 Refresh Process S/2

Figure 3: Scheduling of refresh processes based on
executed queries per data type

the diﬁerent data pOI’tiOHS, V = (V;tructur'edv Vsemistr'uctured
and Vinstructured). We suggest the following values for V,
which are subject to change as we run more experiments.
The structured data being the least frequently updated por-
tion of the schema has a velocity of Vitructureda = 1, ie. S
refresh process. The unstructured data gets a velocity of
Vunstructured = 2% Vstructured, 1.6. 2% S refresh process, and
the semi-structured data being the most frequently updated
POl"tiOIl gEtS a VEIOCity Of Vsemistructu'red = 2 * Vunstructured7
i.e. 4% S refresh process. The total number of refresh pro-
cesses is 7% S.

During a BigBench run the following two requirements
guarantee that the queries are interspersed with the queries
(S is the total number of query streams and Qdata;ype 1S
the total number of queries against the three portions of the
schema):

1. The Nth refresh set can only start after [((3*.5)+((N —
1) * 2 * Qdatasype)] queries have completed (aggregated
over all streams), and

2. The [(3% S) + (N * (Qdatasype — 6)) + 1]th query (ag-
gregated over all streams) can only start after the Nth
refresh set has completed.

This means that at least (3%.5) queries must complete be-
fore the first refresh set can start and at least Qaata,ype — 6
additional queries must complete before the second refresh
set can start. In general at least (3%S)4+((IN—1)*Qdata;ype —
6)) queries must complete before the Nth refresh set can
start. Figure 3 shows how the refresh processes are sched-
uled depending on the number of executed queries.

All three type of data tables follow the well-understood
scale factors of TPC-DS as outlined in the previous section.
That is the amount of data to be inserted in each ETL op-
eration is a percentage of the initial load, e.g. 0.1%.

3.2 Data Generation

Our data generation design is based on an existing tech-
nology called Parallel Data Generation Framework (PDGF).
PDGF was designed to address structured data. Part of the
work presented in this paper is to extend the framework
to produce the semi-structured and unstructured data. The
semi-structured data is generated in form of weblogs and the
unstructured data in form of item reviews. In the following
section, we give an overview of PDGF and then elaborate
on its extensions for semi-structured and unstructured data.

3.2.1 PDGF

PDGF is a generic, parallel data generator which was de-
veloped at the University of Passau [18, 29]. PDGF is imple-
mented in Java and fully platform independent. Currently,
PDGF is used to implement the default data generator for
the TPC’s new ETL benchmark TPC-DI [33]. PDGF’s gen-
eration approach exploits the inherent parallelism of xorshift
random number generators by using a novel seeding strat-
egy. The seeding strategy hierarchically assigns seeds to the
tables, columns and rows of a database schema and thus
makes it possible to generate data completely in parallel as
well as re-calculate any value in the database without ac-
cessing the original data.

Originally, PDGF is designed to generate relational data.
The data is specified in two XML documents, the schema
configuration and the generation configuration. Asthe name
suggests, the schema configuration specifies the data simi-
lar to the definition of a relational schema. The generation
configuration makes it possible to specify additional post-
processing of the generation. The post-processing includes
formatting data, merging and splitting tables, as well as ad-
vanced procedures by providing a script like programming
interface using the Javassist? library.

PDGF can be used as is to generate the structured parts
of the data model. As discussed above, the current Big-
Bench schema comprises three additional entities on top
of the TPC-DS schema: the Item_marketprice table, an
apache-style web server log, and the online reviews. The
Item_marketprice table is a regular table and can easily be
generated using PDGF. In Listing 1, an excerpt of the spec-
ification of Item_marketprice can be seen. The table is de-
fined in a way similar to the SQL definition language, with
an additional specification of the generation rules. The sur-
rogate key (imp_sk) is, for example, generated with a ID
generator. PDGF supports more complex generation spec-
ifications as can be seen in the case of the imp_competitor
field, this field is generated as a random string that is null
with a probability of 0.025%.

<property name="Item_marketprice" type="double">
${item}*${avg_competitors_per_item}
</property>

<table name="Item_marketprice">
<size>${Item_marketprice}</size>

<field name="imp_sk" size="" type="NUMERIC">
<gen_IdGenerator/>
</field>

[..1

<field name="imp_competitor" size="20"
type="VARCHAR">
<gen_NullGenerator>
<probability>0.00025</probability>
<gen_RandomAString>
<size>20</size>
</gen_RandomAString>
</gen_NullGenerator>
</field>
[..1
</table>

Listing 1: Excerpt of the Schema Definition for
Item _marketprice

The web server log has a special formatting, an example

4 Javassist project homepage - http://www.csg.is.titech.
ac.jp/"chiba/javassist/

is shown in Figure 2. To generate a realistic web log, we
specified a table in PDGF that has all required columns for
a web log entry and formated it using PDGF’s scripting ca-
pabilities. Below in Listing 2 an excerpt of the definition of
the web server log table can be seen. The excerpt shows the
definition of the size of the web log, and the table defini-
tion with two attributes. The sizing is computed according
to the formula in Section 3.1.2, the specification of the pa-
rameters of the formula is omitted. For the table itself only
two attributes are shown: a surrogate key wcs_click_sk and
the reference to the web page wcs_web_page_sk. This ref-
erence is null with a probability of 0.00025. In Listing 3,
the formatting code for the web log can be seen. As shown
in the listing, some of the values in the log are static. For
example the request [P address is always “127.0.0.1” while
other values such as the time and date are extracted from
the table.

<property name="Web_clickstreams" type="double">
(${sales} * (${pages_per_item} + (${pages_to_buy}
/ ${items_per_cartl})))
+ (${sales} * ${buy_ratio} * ${pages_per_item})
</property>
<table name="Web_clickstreams">
<size>${Web_clickstreams}</size>

<field name="wcs_click_sk" size="" type="NUMERIC">
<gen_IdGenerator/>
</field>
[..1

<field name="wcs_web_page_sk" size=""
type="NUMERIC">
<gen_NullGenerator>
<probability >0.00025</probability>
<gen_LongGenerator>
<min>1</min>
<max>${web_page }</max>
</gen_LongGenerator>
</gen_NullGenerator>
</field>
[..1]
</table>

Listing 2: Excerpt of the web log specification

<output name="CompiledTemplateOutput" >
<template><!--

String nl =
pdgf.util.Constants.DEFAULT _LINESEPARATOR;
buffer.append("127.0.0.1 - - [" + fields[4] + ":" +

fields [6] + " +0200] ");
buffer.append ("\"GET /page"+fields [7]+".html?");
[..1]
buffer.append (" HTTP/1.1\" 200 0 - \""+fields[1]);
buffer.append ("\" \"Mozilla/5.0 \""+ nl);
--></template>
</output>

Listing 3: Excerpt of the formatting instructions for
the web log

The review generator was built as a standalone program,
it is configured using an XML document that specifies all pa-
rameters for each review. In order to generate reviews that
correlate with the structured data, e.g. the items that are
reviewed exist in the database and the registered reviewers
are actual customers, PDGF is used to generate the XML
configuration for the review generator. This is also done
using the scripting interface. Again, a table is specified in
PDGF that contains all required information and the rows

/
| Offline Preprocessing
i
i
i s = 5
1 = 5] =
; I ® S
|:;> | 2 = s Markov
c .
f o0 K] @ Chain Input
1 5 '9 g
i O ©
Real |
Revi * <
g L< p
]
H c
| s = L c
1 =) B 9 o
i & © A=
= g (7] © O
T e c £ <
1 A~ o
[=5 ‘%‘ < & 8 =
: S 3
Generated |
. 1
Reviews ! Online Data Generation
\ /

Figure 4: Review Generation Process

are output as XML document fragments. Details on the
review generation are given in the section below.

3.2.2 Review Generation

Reviews build the unstructured part of our data set. They
are an integral part of the data model and have to be pro-
cessed. Thus they need to contain realistic and useful in-
formation. As discussed below in the workload section, the
benchmark contains queries that require sentiment analysis
and similar text analysis on the reviews. We have developed
a novel approach for generating the reviews that is based on
text generation using Markov chains [11].

In Figure 4 an overview of the review generation process
can be seen. The process can be separated in two phases.
An offline phase, that processes real reviews and generates
a knowledge base for the review generation and an online
phase that generates reviews based on the knowledge base.

The offline process starts with collecting real reviews from
online resources. For our proof of concept, we collected a set
of 150 reviews per category from an online retailer. In the
first processing step the reviews are categorized by prod-
uct type. For the categorization, we use an intersection of
product categories from the online retailer and the class and
category hierarchy in the item dimension in the TPC-DS
schema. The online reviews have a rating which is used
to create an orthogonal categorization for the review senti-
ment. The crawler also collects statistical information about
the number of reviews per item, the length of reviews and
the distribution of ratings. Since reviews are tailored to a
specific product, they are tokenized and the review subject
is generalized. For now this process only includes filtering
out product names and replacing them with generic iden-
tifiers. Although this approach removes the product name
from reviews, they are still highly domain specific. Since
the generalization is an offline process that has to be done
only once, the computation can be more involved. In future
versions of the generator more sophisticated approaches will
be implemented.

Using the tokenized and generalized reviews, the transi-
tion probabilities between words in the text are analyzed
and stored. These probabilities are know as Markov chains.
An order-1 chain will only store the frequency of a word
appearing after another one. So for each word all possible
successors and the frequency in which they appear is stored.
To get more realistic text, more than one predecessor can be
taken into account for generating the text. In practice, we

use order-2 to order-4 text to achieve high quality reviews.
An excerpt of an order-2 generated text can be seen below.

My review title says it all. I wanted to like
it, because it’s a good subject. Didn’t flow well,
some times confusing. This book is not a self
help book, this may be worth reading for that
alone.

The review generator was implemented as a standalone
program that is configured by an XML document. The con-
figuration contains one <review> element for each review
that should be generated. For each review the item ID,
category, user name, transaction ID, date, time, rating and
word count are specified. This information is generated by
PDGF and later fed to the review generator. This way, it
is assured that the review data is consistent with the data
generated by the other generators. In future revisions of the
benchmark, all parts of the data generation will be imple-
mented within PDGF.

3.3 Workload

In this section, we present the proposed workload for Big-
Bench. In addition to the queries described below, we con-
sider the initial database population as part of the workload .
We refer to this initial phase as transformation ingest (TT).
TT covers the ETL process, including any steps needed to
prepare the data before querying (e.g., indexing or statistics
collection).

The main part of the workload is the set of queries to be
executed against the data model. These queries are designed
along one business dimension and three technical dimen-
sions, aiming to cover different business cases and technical
perspectives. Our business cases are based on Mckinsey’s re-
port on big data [22]. From a technical perspective, we focus
on data sources, processing types and analytical techniques.

Following the approach used for most TPC benchmarks,
The BigBench queries are defined in terms of business ques-
tions and expressed in plain English. We created a total
of 30 business questions for the BigBench workload. Note
that, due to the limited space, we do not present all of the 30
queries in this paper. The complete set of BigBench queries
can be found in an extended version of this paper. In addi-
tion to the English definition of the queries, we also present
them using Teradata Aster’s SQL-MR syntax [19, 32].

The remainder of this section is organized as follows: first,
we discuss the business cases with query examples. We then
present the three technical dimensions and show the distri-
bution of queries along each of the dimensions.

3.3.1 Business Cases

The McKinsey report gives a comprehensive view of big
data’s transformative potentials for retail business. From
the report, we identified nine big data retail levers that fit in
the BigBench workload. Furthermore, we added return anal-
ysis under the category Operations which makes a total of
ten levers. (Returns are often connected with frauds, which
makes it important from a business perspective.) These ten
levers fall into the following five main categories: Marketing,
Merchandising, Operations, Supply Chain and New Business
Models. The organization of the ten levers into these five
categories is shown in Table 2.

In the following, we present the ten retail levers and we
illustrate each lever with a sample query.

Table 2: Levers Within Business Categories

| Business category

Big data lever

6.

Pricing optimization: Queries in this lever are fo-
cused on measuring the impact of price changes on
sales, as shown in Query 6.

Query 6: Compute the impact on sales of an item
price change by computing the total sales for items
in a 30-day period before and after the price change.
Group the total sales by items and location of ware-
house where they were delivered from.

Performance transparency: Our queries for this
lever are about finding stores with downward or up-
ward performance. Query 7 identifies stores with down-
ward sales and finds possible reasons through available
reviews.

Marketing -Cross-selling
-Customer micro-segmentation
-Sentiment analysis
-Enhancing multichannel
consumer experience

Merchandising -Assortment optimization
-Pricing optimization

Operations -Performance transparency
-Return analysis

Supply chain -Inventory management

New business models | -Price comparison

. Cross-selling: In this lever, we include queries in-
volving market basket analysis and collaborative fil-
tering based recommendations. For example, Query
1 computes the probability of browsing products from
a category after customers viewed items from another
category.

Query 1: Perform category affinity analysis for prod-
ucts purchased online together.

. Customer micro-segmentation: Queries in this lever
ranges from grouping users using one dimension to
clustering users using more sophisticated features. Query
2 tries to cluster users into eight groups based on their
purchase history.

Query 2: Customers are separated along the follow-
ing key shopping dimensions: recency of last visit, fre-
quency of visits and monetary amount. Use the in-
store and online purchase data over a calendar year to
compute.

. Sentiment analysis: These queries involve an enor-
mous amount of text and natural language processing,
including detecting sentiment words or phrases from
reviews, determining sentiment polarity, etc., as shown
in Query 3.

Query 3: For a given product, extract sentences from
its product reviews that contain sentiments and dis-
play their sentiment polarity.

. Enhancing multi-channel consumer experience:
Queries in this lever are targeted at understanding
users shopping behaviors through both online and in-
store channels. Query 4 checks if online browsing af-
fects customers’ in-store purchase behaviors by mea-
suring the number of days between the two activities.

Query 4: Find all customers who viewed items of a
given category on the web site in a given month and
year and subsequently made an in-store purchase in
the same category within the following three months.

. Assortment optimization: In this lever we focus on
queries that identify products, categories or stores that
can be targeted for improvements. Query 5 finds the
products with decreasing sales.

Query 5: Find the categories with flat or declining
sales for in-store purchases during a given year for a
given store.

Query 7: Identify stores with flat or declining sales in
3 consecutive months, check if there are any negative
online reviews regarding these stores.

8. Return analysis: These queries target two areas;
identifying problematic products and detecting refund
fraud. Query 8 first finds products with high return
rate and then identifies if there are any issues from
product reviews.

Query 8: Retrieve the items with the highest number
of returns where the number of returns was approxi-
mately equivalent across all stores and web channels
(within a tolerance of +/- 10%), within a week end-
ing a given date. Analyze the online reviews for these
items to see if there are any major negative reviews.

9. Inventory management: Queries for this lever focus
on statistical analysis on product inventory. Query 9
computes the mean and variation of item inventories
and identifies those with large variations.

Query 9: This query contains multiple, related itera-
tions. Iteration 1 calculates the coefficient of variation
and mean of inventory by item and warehouse for two
consecutive months. Iteration 2 finds items that had
a coefficient of variation in the first months of 1.5 or
larger.

10. Price comparison: In this lever, we have one query
that measures the correlations between competitor’s
prices and item sales, as shown in Query 10.

Query 10: For a given product, measure the effect of
competitor’s prices on products’ in-store and online
sales.

The business cases were the main driver for the definition
of the BigBench queries. The bulk of the queries are within
the Marketing and Merchandising categories since these two
are the most commonly used and can be further divided in
sub-categories, as discussed in [22]. The overall breakdown
of queries over the five business categories is shown in Table
3.

3.3.2 Technical Dimensions

In the following, we elaborate on the three technical di-
mensions with examples based on the ten queries above.

Data source dimension: It measures the type of in-
put data the query is targeting. We have three types of
input data in BigBench: structured, semi-structured and
un-structured. For example, Query 1 uses semi-structured

Table 3: Business Categories Query Breakdown
[Business category | Total | Percentage(%) |

Marketing 18 60.0
Merchandising 5 16.7
Operations 4 13.3
Supply chain 2 6.7
New business models 1 3.3

web click streams as data source, while Query 3 does sen-
timent words extraction on un-structured product reviews
data. In addition to using single data source, data source
combinations are covered in the queries as well. For exam-
ple, user click analysis (semi-structured) before store pur-
chasing (structured) will join the two largest data sources,
as is the case in Query 4.

Processing type dimension: It measures the type of
processing appropriate for the query. This dimension covers
the two common paradigms of declarative and procedural
languages. In other words, some of our queries can be an-
swered by declarative languages, others by procedural lan-
guages and others by a mix of both. In the scope of our
benchmark, examples of declarative languages are SQL and
similar constructs like Hive-QL. Map-Reduce is an example
of a procedural language and Pig Latin has a mix of declara-
tive and procedural constructs. Note that while some of the
queries can be expressed in either declarative or procedu-
ral languages, there are queries that can only be expressed
through procedural programming. In the former case, if
the query is written through complex SQL constructs (e.g.,
window functions or user defined functions) we consider it a
procedural query. However, queries that involve text analy-
sis or sentiment analysis, like Query 3 and 7 fit in the later
case as they have to be written using procedural program-
ming. In the 10 queries above, Query 5, 6 and 9 can be
written using SQL and thus are in the declarative category,
while the other seven queries need procedural programming
or a mix of procedural and declarative constructs.

Analytic technique dimension: It measures different
techniques for answering business analytics questions. In
general, we identified three major categories of analytic tech-
niques: statistical analysis, data mining and simple report-
ing. Statistical analysis involves correlation analysis, time
series, regression, etc. Statistical analysis is exemplified in
Query 5, 9 and 10. For the data mining categories we use
classification, clustering, association mining, pattern analy-
sis and text analysis in our BigBench workload. Examples
of data mining queries include Query 1, 2, 3, 4, 7 and 8. The
reporting category is included in the BigBench as we believe
that these queries represents a small but significant part of
business analytics.This category covers the ad hoc queries
and those that do not belong to statistical analysis or data
mining. Most reporting queries are simple tasks that can be
expressed in simple SQL. Note that most of our queries in
the reporting category come from TPC-DS. Query 6 is an
example of a reporting query.

While the query definition was driven by the business case
represented by BigBench, their distribution over the three
technical dimensions is believed to be reasonable and repre-
sentative of the workload portrayed by the benchmark. We
conclude this section by summarizing in Table 4 the query
distribution along the three technical dimensions.

Table 4: Technical Dimensions Breakdown
Query processing type Total | Percentage(%)
Declarative 10 33.3
Procedural 7 23.3
Mix of Declarative and Pro- 13 43.3
cedural
Data sources Total | Percentage(%)
Structured 18 60.0
Semi-structured 7 23.3
Un-structured 5 16.7
Analytic techniques Total | Percentage(%)
Statistics analysis 6 20.0
Data mining 17 56.7
Reporting 8 26.7

3.4 Metrics

Previous TPC benchmarks like TPC-H and recently TPC-
DS have metrics based mostly on individual query execution
times. The metric for BigBench could simply be the same
or similar to either TPC-H or TPC-DS since from a high
level it has similar phases, such as initial load, data refresh
and query execution.

We defer the final design for the BigBench metric to future
work. However, we believe that data loading and the type
of processing dimension described in Section 3.3 is a nec-
essary factor in BigBench’s metric. Our rationale is that,
on the one hand, DBMS and MR engines have different
strengths in terms of loading, declarative and procedural
processing. For example, Hadoop related systems are very
efficient at loading and are generally optimized for MR pro-
cessing. On the other hand, DBMS engines are optimized
to process SQL, but MR/UDF processing and data load-
ing may be less optimized. In addition, there is a recent
effort for DBMS engines to process MR more efficiently, ei-
ther natively or through an efficient co-existence with an
MR engine (e.g., Hadoop, HIVE or Pig). One option to
reflect the importance of the processing type dimension is
to use the different processing types in the metric compu-
tation instead of using individual queries. Let 7L be the
loading time, T_D the total time for queries in declarative
processing, T"_P the time for procedural processing queries
and T_B the time for the remaining queries that have both
declarative and procedural. A meaningful way of combin-
ing these four values in a composite metric is by computing
their geometric mean as vVT_L « T_D « T_P « T_B. If the
workload queries are used, the geometric mean could be cal-

30
culated as 3Y/ Hi:1Pi (where P; denotes the execution time
for Query;).

4. EVALUATION

BigBench is targeted at DBMS and MR systems that
claim to provide big data solutions. Therefore, any of those
systems can be used to establish the feasibility of this bench-
mark. Standard DBMSes most likely will capture all data
as relational tables by parsing the semi-structured data and
establishing a schema. The un-structured data can also be
captured as a table where the review text can be stored
as VARCHAR or a blob column. Such DBMSes can imple-
ment our queries using SQL and some procedural constructs
like UDF or even built in MR processing within the DBMS.

Reports, Analytics, Applications
(SQL / ODBC / JDBC)

' Queries / Answers

/ L Queen Server Group |

«l _J[_J=»
t Queries

Worker Server Group
&L I JL _JL _JL __I»

' Data

L Loader/Exporter Server Group

&| | | | | |22

| Aster nCluster Database

Figure 5: nCluster Architecture

Hadoop and its ecosystem with HIVE and Pig can also run
BigBench. The data can be captured in HDFS or similar
structures. The main strength of these systems is MR but
they also have some relational operators like those in H-QL
or Pig [2, 24]. Such relational operators can do joins, group-
ing and aggregations. BigBench can also be run on systems
that have both DBMS and MR engines like Hadoop or any
of its ecosystem products. Such systems consists most likely
of a DBMS that connects or co-exists with an MR, engine.

We chose to initially run BigBench on the Teradata Aster
DBMS. TAD has all features needed to store and process big
data. Data can be stored as tables and queries can be exe-
cuted using the SQL-MR interface that extends declarative
SQL with MR processing.

4.1 Teradata Aster DBMS

TAD is based on the nCluster technology. nCluster is a
shared-nothing parallel database, optimized for data ware-
housing and analytic workloads [19]. nCluster manages a
cluster of commodity server nodes, and is designed to scale
out to hundreds of nodes and scale up to petabytes of active
data.

Figure 4.1 depicts the nCluster architecture. Query pro-
cessing is managed by one or more Queen nodes. These
nodes analyze client requests and distribute partial process-
ing among the Worker nodes. Each relation in nCluster
is hash-partitioned (fact tables) or duplicated (dimension
tables) across the Worker nodes to enable intra-query par-
allelism. Loading is done by special Worker nodes shown at
the bottom of Figure 4.1.

In addition to database query processing, automated man-
ageability functionality in nCluster allows adding new ma-
chines and redistributing data. The system performs auto-
matic fail-over, retry of queries, and restoration of replica-
tion levels after a node failure. These features are essential
in a large cluster of machines, where failures of various kinds
occur regularly.

The SQL-MR supports a mix of SQL and polymorphic

UDF's that process MR logic. The MR functions are paral-
lelizable, self-describing and dynamically polymorphic where
the function input schemas are determined implicitly at query
execution time. Output schemas are determined program-
matically by the function itself at query execution time as
well. They are also equivalent to subqueries, making them
subject to query optimization along with the other relations
in a query. nCluster allows MR UDF's to be written using
Java, C/C++, and scripting languages like Python.

4.2 End-to-End Execution

The test was executed on a 8 node Teradata Aster appli-
ance. Each node is a Dell server with two quad-core Xeon
5500 at 3.07Ghz and hardware RAID 1 with 8 2.5” drives.

Due to time limitation, DSDGEN is used to produce the
original TPC-DS tables in the structured part of our model.
We used PDGF to generate the new parts of the data and
the XML configuration for the review generator. The new
parts produced by PDGF include the new Item marketprice
table, an apache-style web server log, and the online reviews.
PDGF is also configured to match the references (PK-FK
relationships) in the new data with the TPC-DS data. In
the future, we plan on extending PDGF to handle the whole
data generation aspects without the need for DSDGEN.

The data was loaded into TAD as tables. The web logs
were parsed and converted to a table similar to the structure
shown in Section 3.1. Product reviews are also interpreted
as a table assuming the review text as a VARCHAR(5000).

As a proof of concept, we executed the workload as a
single stream without velocity. Since we adapt the velocity
methodology from TPC-DS adding it will not be difficult
and can be implemented with a simple driver that adds data
to the system periodically and re-submits a new stream of
queries. Concurrent streams can also be handled similar to
previous benchmarks like TPC-H.

The queries are written using TAD SQL-MR interface
based on the description in Section 3.3. The reporting queries
were written using SQL only and the rest were done through
either an MR call or a mix of both SQL and MR. Below,
we show the SQL-MR version of a sample of the 30 queries.
The full list of the 30 queries written in SQL-MR can be
found on our technical report that will be published with
this paper. Note that all TAD MR functions used in the
evaluation are part of a library TAD provides and packaged
with the nCluster DBMS.

The query in Listing 4 is the SQL-MR equivalent of Query
3 in Section 3.3 which extracts sentiments and their polarity.
The query retrieves from a reducer function called Extract-
Sentiment that takes input the source table product reviews.
The call to the functions also specifies the column that has
the text, the model for the sentiment analysis and the level
of the search (sentence or word). The WHERE clause at the
end picks positive or negative polarity.

The second example is for Query 1 as described in Sec-
tion 3.3. The query is shown in Listing 5. It is the SQL-
MR version equivalent for Query 1. It consists of 3 blocks.
The most inner block is a SQL fragment that joins the
web_sales and item tables and projects out category_id and
customer_id. The inner block is fed as input to an MR func-
tion called basket generator which finds the categories of
pairwise items purchased together by customers. The in-
put is partitioned by customer_id as specified by the PAR-
TITION clause. The call to market_basket also specifies

SELECT pr_item_sk, out_content, out_polarity,
out_sentiment_words
FROM ExtractSentiment
(
ON product_reviews
TEXT_COLUMN (’pr_review_content’)
MODEL (’dictionary’)
LEVEL (’sentence’)
ACCUMLATE (’pr_item_sk’)
)
WHERE out_polarity = ’NEG’ or out_polarity = ’P0S’;

Listing 4: Query 3

which field should the basket analysis be done on using
the BASKET_ITEM clause. The last clause for the call to
basket_generator is ITEM_SET_MAX(500) which limits the
analysis to 500 pairs of items for each customer. The output
of basket_generator is the input to the main query which ba-
sically finds the degree of affinity for each pair of categories.

SELECT
category_cdl AS categoryl_cd,
category_cd2 AS category2_cd,
COUNT (*) AS cnt
FROM
basket_generator (ON
(SELECT i.i_category_id AS category_cd,
s.ws_bill_customer_sk AS customer_id
FROM web_sales s
INNER JOIN item i
ON s.ws_item_sk = i_item_sk
WHERE i.i_category_id is not NULL)
PARTITION BY customer_id
BASKET_ITEM(’category_cd’)
ITEM_SET_MAX(500)
)
GROUP BY 1,2
order by 1,3,2;

Listing 5: Query 1

The last example of our evaluation queries is Query 6 de-
scribed in Section 3.3. The query is SQL only and adapted
from the TPC-DS benchmark, it can be seen in Listing 6.
As described before, Query 6 finds the impact of pricing
change done on March 16, 1998. The query joins the fol-
lowing tables: web_sales used to capture sales done online,
web_returns for returns of web_sales, warehouse which cap-
tures information about warehouses, item table that cap-
tures the products sold and date_dim which is a date lookup
table. The join with web_returns is done as an outer join
since not all orders have returns. The query computes the to-
tal sales before and after March 16, 1998 aliased as sales_before
and sales_after in Listing 6. The query group on state loca-
tion of the warehouse and ID of the items.

The run time of each of the 30 queries can be found at
our technical report that will be published with this paper.
Figure 7 lists the run time of the 10 queries used in the
workload section. We also show the values of T_L, T_D,
T_P and T_B as discussed in Figure 6. Note that we did
not try any hardware or software optimizations to run the
above 30 queries since our goal is to just make sure these
queries run and produce meaningful results. The run time
of the 30 queries varies from seconds to a little bit over an
hour. This illustrates that we do not have a runway query
situation and we also have a range of query complexities.

SELECT
w_state,i_item_id
,sum(case when (cast(d_date as date) <
cast (’1998-03-16’ as date))
then ws_sales_price -
coalesce (wr_refunded_cash ,0)
else 0 end)
as sales_before
,sum(case when (cast(d_date as date) >=
cast (’1998-03-16’ as date))
then ws_sales_price -
coalesce (wr_refunded_cash ,0)
else 0 end) as sales_after

FROM
web_sales left outer join web_returns on
(ws_order_number = wr_order_number
and ws_item_sk = wr_item_sk)
,warehouse, item, date_dim
WHERE
i_item_sk = ws_item_sk
and ws_warehouse_sk = w_warehouse_sk
and ws_sold_date_sk = d_date_sk

and d_date between
(cast (’1998-03-16’ as date) - interval ’30
day’)
and (cast (’1998-03-16’ as date) + interval
»30 day’)
GROUP by w_state,i_item_id
ORDER by w_state,i_item_id;

Listing 6: Query 6

12000

10000
8000
6000

2l

4000
2000
Loading Declarative Procedural Both
Components

Run Time [s]

Figure 6: Runtime of Metric Components

5. CONCLUSION

In this paper we presented BigBench, a proposal for an
end-to-end big data benchmark. The proposal covers a data
model addressing the velocity, variety and volume common
in big data. Velocity is accomplished by continuous feed into
the data store while variety is addressed by including struc-
tured, semi-structured and unstructured in the data model.
The data model also can scale to large volumes based on
as scale factor. We used PDGF as a starting point for our
data generator that covers the structured part. PDGEF is
enhanced to produce the semi-structured and unstructured
data. The unstructured component is based on a novel
technique we developed leveraging the Markov chain model.
The proposal also provides a comprehensive list of workload
queries and sets directions for a novel metric that focuses
on the different types of processing in big data. Finally, we

700

600
» 500
E 400
300
200
100 -

RunTi

o N M S O N O O
o o oo o g o g g

Queries

Qlo

Figure 7: Runtime of Sample Queries

verified the feasibility and applicability of our proposal by
implementing and running it on Teradata Aster DBMS.

For future work, we are planning to extend this work in
three main areas. First, we would like to enhance the pro-
posal to be a concrete specification that can lead to an in-
dustry standard benchmark. This work include finalizing
and detailing the data, workload and metric specifications.
We also think system availability during failure should be
addressed in the final specification. Second, we think it will
be useful to provide a downloadable kit that can be used
to setup and run the benchmark. This work include final-
izing the implementation of our data and query generators.
Finally, we are planning to extend the benchmark proof of
concept to include velocity and multi-user test. We also
would like to run the benchmark on one the Hadoop eco-
system like HIVE.

6 REFERENCES

[1] Apache Hadoop Project. http://hadoop.apache.org.

[2] Apache Hive Project. http://hadoop.apache.org/hive.

[3] Cloudera Distribution Including Apache Hadoop (CDH).
http://www.cloudera.com.

[4] Greenplum Database. http://www.greenplum.com.

[5] GridMix Benchmark. http://hadoop.apache.org/docs/
mapreduce/current/gridmix.html.

[6] Oracle Database - Oracle. http://www.oracle.com.

[7] PigMix Benchmark. https:
//cwiki.apache.org/confluence/display/PIG/PigMix.

[8] Teradata Database - Teradata Inc.
http://www.teradata.com.

[9] TwinFin - Netezza, Inc. http://www.netezza.com/.

[10] TPC Benchmark DS, 2012.

[11] J. Bentley. Programming Pearls. Addison-Wesley, 2000.
[12] M. J. Carey, D. J. DeWitt, and J. F. Naughton. The oo7
Benchmark. In P. Buneman and S. Jajodia, editors,

SIGMOD’93, pages 12-21. ACM Press, 1993.

[13] M. J. Carey, D. J. DeWitt, J. F. Naughton, M. Asgarian,
P. Brown, J. Gehrke, and D. Shah. The BUCKY
Object-Relational Benchmark (Experience Paper). In
SIGMOD, pages 135146, 1997.

[14] M. J. Carey, L. Ling, M. Nicola, and L. Shao. EXRT:
Towards a Simple Benchmark for XML Readiness Testing.
In TPCTC, pages 93-109, 2010.

[15] C. Chambers, A. Raniwala, F. Perry, S. Adams, R. R.
Henry, R. Bradshaw, and N. Weizenbaum. FlumeJava:
Easy, Efficient Data-Parallel Pipelines. In PLDI, pages
363-375, 2010.

[16] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan,
and R. Sears. Benchmarking Cloud Serving Systems with
YCSB. In SoCC, pages 143-154, 2010.

[17] J. Dean and S. Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters. Communications of the
ACM, 51(1):107-113, 2008.

[18] M. Frank, M. Poess, and T. Rabl. Efficient Update Data
Generation for DBMS Benchmark. In ICPE, 2012.

[19] E. Friedman, P. Pawlowski, and J. Cieslewicz.
SQL/MapReduce: A Practical Approach to Self-Describing,
Polymorphic, and Parallelizable User-Defined Functions.
PVLDB, 2(2):1402-1413, 20009.

[20] J. Gray. GraySort Benchmark. Sort Benchmark Home Page
— http://sortbenchmark.org.

[21] D. Laney. 3D Data Management: Controlling Data Volume,
Velocity and Variety. Technical report, Meta Group, 2001.

[22] J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs,

C. Roxburgh, and A. H. Byers. Big data: The Next
Frontier for Innovation, Competition, and Productivity.
Technical report, McKinsey Global Institute, 2011.
http://www.mckinsey.com/insights/mgi/research/
technology_and_innovation/big_data_the_next_
frontier_for_innovation.

[23] R. O. Nambiar and M. Poess. The Making of TPC-DS. In
VLDB, pages 1049-1058, 2006.

[24] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig Latin: A Not-So-Foreign Language for
Data Processing. In SIGMOD, 2008.

[25] S. Patil, M. Polte, K. Ren, W. Tantisiriroj, L. Xiao,

J. Lopez, G. Gibson, A. Fuchs, and B. Rinaldi. YCSB++:
benchmarking and performance debugging advanced
features in scalable table stores. In SoCC, pages 9:1-9:14,
2011.

[26] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt,
S. Madden, and M. Stonebraker. A Comparison of
Approaches to Large-Scale Data Analysis. In SIGMOD,
pages 165-178, 2009.

[27] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan.
Interpreting the Data: Parallel Analysis with Sawzall.
Scientific Programming, 13(4):277-298, 2005.

[28] M. Péss, R. O. Nambiar, and D. Walrath. Why You Should
Run TPC-DS: A Workload Analysis. In VLDB, pages
1138-1149, 2007.

[29] T. Rabl, M. Frank, H. M. Sergich, and H. Kosch. A Data
Generator for Cloud-Scale Benchmarking. In TPCTC,
pages 41-56, 2010.

[30] T. Rabl, M. Sadoghi, H.-A. Jacobsen, S. Gémez-Villamor,
V. Muntés-Mulero, and S. Mankowskii. Solving Big Data
Challenges for Enterprise Application Performance
Management. PVLDB, 5(12):1724-1735, 2012.

[31] A. Schmidt, F. Waas, M. L. Kersten, M. J. Carey,

I. Manolescu, and R. Busse. XMark: A Benchmark for
XML Data Management. In VLDB, pages 974-985, 2002.

[32] Teradata Aster. Teradata Aster Big Analytics Appliance
SH - Analytics Foundation User Guide, release 5.0.1
edition, 2012. http://www.info.teradata.com/edownload.
cfm?itemid=123060004.

[33] L. Wyatt, B. Caufield, and D. Pol. Principles for an ETL
Benchmark. In TPCTC, pages 183-198, 2009.

