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ABSTRACT

Geoscientists often have little information about earth’s subsur-
face heterogeneities prior to mapping them using seismic or other
geophysical data. Marchenko methods are a set of novel, data-
driven techniques that help us to project surface seismic data to
points in the subsurface, to form seismograms as though they
had been created at each point. In so doing, Marchenko methods
account for many of the complex, multiply reflected seismic wave
interactions that take place in the real earth’s subsurface. The re-
sulting seismograms are the information required to create subsur-
face images that are more accurate than standard methods. Our aim
is to introduce these concepts with the minimum amount of math-
ematics required to understand how the Marchenko method can

iterate to a solution and to provide a well-commented, easily edit-
able MATLAB code package for demonstration and training pur-
poses. Green’s function estimation using theMarchenko method is
first illustrated for a constant velocity, variable density, 1D
medium, with results that indicate a near-perfect match when com-
pared with true, synthetically modeled solutions. Similar quality
results are shown for variable velocity, 2D Green’s function esti-
mation. Finally, we determine how these estimates could be used
to create images of the subsurface, which, when compared with
standard methods, contain reduced contamination due to multi-
ple-related artifacts. Our code package includes the 2D data set
required to reconstruct the relevant figures that we present, and
it allows for experimentation with the implementation of the Mar-
chenko method and the application of Marchenko imaging.

INTRODUCTION

The aim of seismic imaging is to map unknown heterogeneities in
the earth’s subsurface, given a wavefield measured on or close to the
earth’s surface. An approximate seismic wave speed model, usually
called a velocity model, is required to map the subsurface accurately.
This model provides a basic level of understanding about how seismic
waves propagate through the subsurface and allows seismic informa-
tion measured at the surface to be mapped to approximately correct
subsurface locations. Much effort goes into estimating the velocity
model using migration velocity analysis (Yilmaz, 2001; Sava and Bi-
ondi, 2004), traveltime tomography (Stork, 1992; Jones, 2010), and
full-waveform inversion (Tarantola, 1984; Pratt et al., 1998; Virieux
and Operto, 2009), but it is always imperfect. In particular, it is usu-
ally far smoother than the true earth and therefore is not kinematically
accurate; in other words, it does not map waves that reflect from
abrupt interfaces to their true subsurface positions. Even when these

errors are sufficiently small that the image produced is correctly posi-
tioned, the inaccuracies usually cause other additional artifacts to be
superimposed on the final image. Artifacts that are often most trouble-
some are those created by recorded seismic waves that reflect more
than once in the subsurface, called multiples. This tutorial explains a
set of methods that account for such waves so that these artifacts do
not occur.
Marchenko methods (Rose, 2001; Broggini et al., 2012) are data-

driven methods that use measured surface seismic data and an
approximate velocity model to calculate the signal that would have
been recorded at the surface if an impulsive, frequency band-limited
source had fired at each chosen subsurface image point — includ-
ing multiples. The estimated signals are called (frequency band-
limited) Green’s functions, and they are exactly the information
needed for accurate subsurface imaging (Behura et al., 2014;
Wapenaar et al., 2014), seismic redatuming (Wapenaar et al., 2014),
or identifying and removing multiples (Meles et al., 2015, 2016).
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The name Marchenko comes from the author of the original work
on inverse scattering (Marchenko, 1955), who devised methods to
estimate Green’s functions in the field of quantum mechanics in one
dimension (Snieder [2015] provides more information about this
application). More recently, a solution to the so-called Marchenko
equations was formulated for geophysical applications that allow
2D and 3D media to be imaged under certain approximations
(Wapenaar et al., 2013; Lomas and Curtis, 2017).
This paper presents an intuitive introduction to the Marchenko

method and its applications. The aim is not to introduce fundamen-
tally new concepts, but to provide an easily accessible guide to some
of the key concepts and methods that already exist. Additionally, a
Marchenko MATLAB code and a relevant data set accompany this
paper: The code is well-commented, easily editable, and adaptable
for 2D seismic problems. It is constructed so as to give readers further
insight into the workflow used to calculate Green’s functions using
Marchenko methods and to allow them to experiment and gain com-
fort with the methods — rather than being geared toward computa-
tionally efficient construction of large seismic images. Nevertheless,
all 2D examples presented herein were constructed using this code;
hence, it is perfectly sufficient to be used to teach and learn about
Marchenko methods and to process small data sets. Other codes exist
in the public domain (e.g., Thorbecke et al., 2017), but our code is
designed specifically for user experimentation, and so it is written in a
more intuitively accessible (higher level) programming language. It is
therefore also ideal as an aid for teaching about Marchenko methods
in masters or professional development courses.
Marchenko methods are simplest, most intuitive, and most accu-

rate for 1D problems, so the first section of this paper introduces
Green’s functions estimation for a simple 1D medium in which full
wavefields can be displayed and understood. We then introduce the
reader to 2D examples, the accompanying MATLAB code, and the
application of Marchenko imaging. Throughout this paper, multiple
data sets are used: All are constructed in acoustic media and exclude
free surface multiples because such data allow the simplest and
most studied form of Marchenko methods to be applied. However,
theory exists for Marchenko methods using elastic data (da Costa
Filho et al., 2014, 2015; Wapenaar, 2014; Wapenaar and Slob, 2014)
and data containing surface-related multiples (Singh et al., 2015,

2017). There are also limited examples of applications to real data
(Ravasi et al., 2016; Jia et al., 2018; Wapenaar et al., 2018). For
an entirely nonmathematical introduction to Marchenko methods, we
refer readers to van der Neut et al. (2015c), or for an introduction to
1D Marchenko methods, see Cui et al. (2018); for a thorough intro-
duction to the more sophisticated mathematical aspects of the Mar-
chenko methods, see Slob et al. (2014b), Wapenaar et al. (2014), or
van der Neut et al. (2015b). Our tutorial fills the niche between these
studies by introducing the concepts, mathematics, and computational
machinery in an accessible way, with a code designed to facilitate
experimentation and education.

THE MARCHENKO METHOD

There are multiple applications of Marchenko methods (imaging,
redatuming, constructing primaries, and multiple removal), but they
all have the same foundation, namely, Green’s function estimation.
Green’s functions are the waves that arrive at a receiver location due
to the firing of a spatiotemporally impulsive source. We represent
these Green’s functions as Gðx0; xi; tÞ, where x0 is the location of a
receiver on the recording surface, xi is a source point in the subsur-
face, and t represents the time domain. In this syntax, each term is a
signal with two locations (x): The second always denotes the source
location, and the first is the receiver location. The Marchenko
method estimates Green’s functions between an arbitrarily chosen
image point (or an artificial or virtual source) within the subsurface,
and any point within the surface acquisition array (Figure 1).
The most basic form of Green’s function estimation is to assume

or estimate an initial approximate velocity model and estimate
Green’s functions Gðx0; xi; tÞ using either ray propagation or wave-
field calculation through that model. This is standard practice in
reverse time migration (RTM) (e.g., Baysal et al., 1983). Marche-
nko methods provide a workflow to estimate Green’s functions
but decomposed into two constituent parts: The first part consists
of all waves that are upgoing (−) at the image point in the earth’s
subsurface, whereas the second part consists of the downgoing (þ)
waves. This includes components of the wavefield that have under-
gone multiple reflections, so-called multiples. In other words, two
Green’s functions can be constructed from each subsurface image
point, which are recorded at the surface: The first G− contains sig-
nals that start at the image point as a source wavefield propagating
upward and the second Gþ contains signals that initially propagate
downward from the image point and are reflected back up to the
surface.
For simplicity, let us begin with the 1D Marchenko method. Two

pieces of information are needed to calculate the decomposed
Green’s functions Gþ and G−. The first is the reflectivity from a
point source at the surface measured by a point receiver at the sur-
face, denoted by Rðx0; x0; tÞ; in the real world, this is an idealized
version of a 1D surface seismic reflection data after surface-related
multiple removal. The second is an estimate of the direct (nonre-
flected) wave arrival Tdðxi; x0; tÞ between the surface source and
an image point. The decomposed Green’s functions Gþ∕− between
x0 and xi are related to the reflectivity R through additional terms
fþ and f−, which are called focusing functions and are the subject
of the next section:

Gþðx0; xi; tÞ ¼ fþðx0; xi; tÞ ⊗ Rðx0; x0; tÞ − f−ðx0; xi; tÞ;
(1)

Acquisition surface

Figure 1. Illustration of the types of singly or multiply reflected
signals estimated by the Marchenko method.
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G−ðx0;xi;tÞ¼fþðx0;xi;−tÞ−Rðx0;x0;tÞ⊗f−ðx0;xi;−tÞ:
(2)

Equations 1 and 2 are defined in the time domain. Symbol −t
(and also later in this paper, superscript *) denotes the time reversal
of the signal that precedes it. This is accomplished if we flip the
positive and negative time axis of the initial signal, an operation
that corresponds to complex conjugation in the frequency domain.
The symbol ⊗ represents a time-domain convolution, which is
equivalent to multiplication in the frequency domain.
It is worth noting that equations 1 and 2 differ from those given in

most of the existing literature on Marchenko methods. To aid intu-
ition, we have created a virtual source at the image point inside the
subsurface rather than a virtual receiver (the latter is more common).
Comparing these cases, the direction of wave propagation is re-
versed: Gþðx0; xi; tÞ ¼ G−ðxi; x0; tÞ. However, the property of
source-receiver reciprocity states that these are equivalent (identical
signals). We will continue to use the virtual source syntax for the
remainder of this paper.

Focusing functions

Focusing functions are keys for understanding Marchenko meth-
ods. Imagine throwing a stone into a still pond on a windless day:
Ripples diverge from the location of impact, propagating as waves
across the water surface. Let us imagine that
these ripples are recorded on some closed boun-
dary of receivers that surrounds the impact point.
If we waited until all of the energy had settled,
we could then use the receivers as sources to in-
ject the recorded wavefield back into the pond. If
we do this in time-reversed order (inject the last
wave recorded at each receiver first), the original
ripples will be recreated, but this time, they would
converge inward rather than propagating outward
(Cassereau and Fink, 1992). They will all eventu-
ally refocus at the impact point, then diverge out-
ward again, creating another wavefield that can be
recorded at the receiver boundary. In this thought
experiment, the (time-reversed) wavefield injected
on the boundary is called a focusing function: It
defines exactly which waves we should inject to
focus the ingoing energy at the impact point.
Focusing functions used in Marchenko meth-

ods are intuitively similar to those above. The only
conceptual differences are that the source point
in this case is the subsurface source in Figure 1,
and that the receiver boundary is at the earth’s
surface and so is only on one side of the source
point. Downgoing focusing functions are related
towavefields that, if injected at the earth’s surface,
would focus (collapse all of their energy to a
point) at a specific location in the subsurface
(here, the location of any chosen virtual source
or image point). However, in the case of focusing
in the subsurface, this only occurs in an idealized
(truncated) model of the earth’s subsurface struc-
ture, which is homogeneous below the depth of
that point, but which has the true earth’s structure
above that depth.

Focusing means that there is a time at which the waves at a certain
depth only exist at one specific image point — everywhere else at
that depth the wavefield is zero. The function fþ is the wavefield
that we would have to inject at the surface (at point x0) in order for
the wavefield to focus at the image point; hence, this wavefield
is downgoing at the surface. Function f− is the wavefield that we
would record at the surface as we inject fþ in the truncated model;
hence, f− is upgoing at the surface. Both wavefields are shifted
along the time axis such that the focus occurs at time zero.
Figure 2 includes a standard representation of a focusing function

(Slob et al., 2014b) for a simple 1D subsurface model that consists
of layers with varying density and a constant velocity. First, Fig-
ure 2a shows the wavefield that develops in space and time when
a simple impulsive source (convolved with a Ricker wavelet) is in-
jected at the surface at time t ¼ 0 (note that time is on the horizontal
axis). This consists of a direct wave (the first continuous, linear
wave on the left) and a set of (singly and multiply) reflecting waves.
At a particular image point in depth (e.g., 1400 m — indicated by
an arrow in Figure 2), multiple waves arrive; hence, there is not a
focus of energy. To create such a focus, additional energy must be
injected to cancel all but the direct wave at that point.
The focusing function is the signal at the surface (depth ¼ 0 m) in

Figure 2b, shown in Figure 2c. The downgoing component fþ is the
signal injected at the surface to create the focus at depth ¼ 1400 m,
shown by the circle in Figure 2b. The upgoing component f− is the

a)

c)

b)

Figure 2. Reflectivity and focusing functions of a 1D medium. The medium has a con-
stant velocity (2500 m∕s) but variable density: The dashed lines represent subsurface
interfaces between layers of different densities that reflect energy. The reflectivity of the
medium in (a) shows the location of the wavefield in space (depth) at every time for a
single impulsive source (denoted δ) fired at time zero. This can be related to the focusing
function in (b), where additional components α, β, and γ are injected at the surface after
the initial source δ: These cancel various reflections in the subsurface to ensure that
focusing occurs in the subsurface. In this example, the focusing location was chosen
to be at 1400 m depth (indicated by an arrow and circled in b). (c) The decomposed
focusing functions are the downgoing fþ and upgoing f− (dashed arrows) components
at the surface (depth ¼ 0 m) in (b). These diagrams are of a similar form to those pre-
sented by Slob et al. (2014b).
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reflected response observed at the surface from this injected signal. It
can be seen that three pulses of energy (α, β, and γ) are injected at x0
in addition to the initial pulse δ to cancel out the reflected components
of the wavefield observed in Figure 2a. These three signals together
with δmake up the complete downgoing focusing function fþ and all
of the up-coming waves at depth ¼ 0 m comprise f−.

Iterative solution

The Marchenko method works by first calculating the focusing
functions and then using equations 1 and 2 to estimate the Green’s
functions. Although the relationships between focusing functions
and Green’s functions in those equations are relatively simple, they
do not explain how one can calculate focusing functions. Several
methods have been proposed to do this (Broggini et al., 2014;
van der Neut et al., 2015a, 2015b); here, we present the method
of Wapenaar et al. (2014) because it can be understood most
intuitively.
In a 1D system, we assume that we know the reflectivity at the

surface Rðx0; x0; tÞ as well as the direct arrival between the surface
and the image point Tdðxi; x0; tÞ — which identifies the chosen
image point xi. The first step in estimating the focusing functions is
to set

fþ0 ðx0; xi; tÞ ¼ Tdðxi; x0; tÞ−1: (3)

Equation 3 inverts the direct arrival, commonly approximated as
performing a time reversal (switching the time axis of Td and setting
the signal at positive times to zero: Tdðxi; x0; tÞ−1 ≈ Tdðxi; x0;−tÞ).
The result is used as a first approximation for fþ denoted fþ0 (Wa-
penaar et al., 2014) and forms the component δ from Figure 2b. This
makes intuitive sense: If we time reverse the direct wave between
the image point and the surface, it will propagate back to its source
point (the image point) and create a pulse of energy there at zero
time, just as in the example of ripples on the pond. Unfortunately,
though, as it propagates back into the subsurface, some of its energy
will scatter or reflect from heterogeneities in the earth, creating a
more complex part of the wavefield that will disrupt the focus. Mar-
chenko methods design energy to inject to destructively interfere
with these scattered waves, reducing them to zero amplitude.
The estimate for fþ0 can then be used to estimate f−0 :

f−0 ðx0; xiÞ ¼ θðx0; xi; tÞ½Rðx0; x0; tÞ ⊗ fþ0 ðx0; xi; tÞ�: (4)

Within the square brackets, equation 4 convolves the initial es-
timate of fþ0 with the reflectivity, which is equivalent to injecting fþ0
into the earth and recording the result at the surface. Again, this is
equivalent to injecting the time-reversed wavefield in the pond and
recording the reflecting waves on the source boundary. The addi-
tional term in this equation θ is a focusing-location-dependent win-
dow, which removes all energy that arrives at times greater than or
equal to the direct arrival and is symmetric in time. It may appear
counterintuitive to apply a window that removes all energy at these
times because this is the data that we are ultimately trying to estimate
in the Green’s functions. However, this stage of the Marchenko
method estimates the focusing functions, and these functions only
exist at times before the direct arrival and after the time-reversed di-
rect arrival. Outside this window is where the Green’s function exists,
but its accuracy is dependent on the accuracy of the focusing func-

tions (by equations 1 and 2). Furthermore, this in itself is an approxi-
mation because we are assuming that the Green’s function and
focusing functions can be separated by a windowing operator in
the space-time domain, which is not always the case (e.g., when the
focusing location is on or near a subsurface interface). Nevertheless,
we work with these approximations and now iterate to a solution as
follows.
In Figure 2b, three wave packets are labeled (α, β, and γ): These

are injected at the surface in addition to the initial impulsive source
δ that is used to obtain the reflectivity in Figure 2a. These additional
wave packets make up Mþ

k , which is the coda (later part) of fþk ,
where k is the number of iterations:

fþk ðx0; xi; tÞ ¼ fþ0 ðx0; xi; tÞ þMþ
k ðx0; xi; tÞ: (5)

As a demonstration of how the focusing functions are estimated
using equations 3 and 4 (and equations 6 and 7 below), Figures 3
and 4 show a series of raypath diagrams that explain their various
traveltime relationships. These figures use a similar display format
to that presented by van der Neut et al. (2015b). In Figure 3, the
three primary reflections from the reflectivity are depicted individu-
ally (middle column) and convolved with the inverted direct arrival
fþ0 (left column) from equation 3. The main point of Figure 3 is to
show that the results of this convolution are a series of nonphysical
signals, each of which is contained within the pass window of θ and
make up f−0 . They are not physical because each signal on the right
is made up of combinations of energy that has positive (solid) and
negative (dashed) traveltimes, which survive the windowing oper-
ation in equation 3. Despite being nonphysical at this stage, they can
be used to construct the focusing functions by progressing them to
the next iteration:

Mþ
k ðx0; xi;−tÞ ¼ θðx0; xi; tÞ½Rðx0; x0; tÞ ⊗ f−k−1ðx0; xi;−tÞ�:

(6)

To estimateMþ
k using equation 6, we start with the estimate f−k−1

produced by the previous iteration (or the initial iteration f−0 ), time
reverse it, and then convolve it with the reflectivity. The same win-
dowing operator θ as above is then applied to isolate the focusing
functions of interest.
A schematic of the first iteration (k ¼ 1) to calculate Mþ

1 is
shown in Figure 4. The columns on the left of Figure 4 show a sub-
set of the (time reversed) columns on the right of Figure 3, a subset
was selected (rows 2 and 3 from Figure 3 only) because these are the
only components that contribute to Mþ

1 . This column is convolved
across rows with primary reflections from R; again, we have only
included a subset of these reflections because these are the compo-
nents that contribute to Mþ

1 . The solutions to this convolution step
are shown in the third column, and the time reversal of this result is
given in the final column.
The final column representsMþ

1 and is composed of three signals
each of which is made up of the time-reversed direct arrival (the left
column in Figure 3) plus an additional time lag. This additional time
lag is equal to the two-way traveltime through one or more subsur-
face layers. This traveltime information is what the Marchenko
method requires to accurately account for internal multiples. To
demonstrate this we have included the traveltimes α ¼ −0.24 s,
β ¼ −0.16 s, and γ ¼ 0.16 s from Figure 2b and 2c in the column
depictingMþ

1 in Figure 4. This shows that at depth ¼ 0 m, we have

F38 Lomas and Curtis

D
ow

nl
oa

de
d 

05
/0

1/
19

 to
 1

92
.4

1.
13

1.
25

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



calculated the traveltimes of the signals that we need to inject into
the subsurface to destructively interfere with the multiply scattered
components of the reflectivity so as to cancel them out above the
focus point. We have therefore demonstrated that the additional
components of the focusing functions that are used in Figure 2b
to remove multiples from the seismic reflection data can be formed
by convolving the data with itself (and with the direct wave esti-
mate). Although the traveltimes of α, β, and γ are correct, the am-
plitudes of the energy constructed in iteration 1 do not cause perfect
cancellation of the internal multiples; the amplitudes are corrected
in subsequent iterations.
The waves in Mþ

k can then be injected into the subsurface and
what would return to the surface can be calculated (the convolution
with R); the results are windowed with θ, and whatever remains is
added to the estimate of f−0 :

f−k ðx0; xi; tÞ ¼ f−0 ðx0; xi; tÞ þ θðx0; xi; tÞ
× ½Rðx0; x0; tÞ ⊗ Mþ

k ðx0; xi; tÞ�: (7)

Equations 6 and 7 are iterated until the solutions
forMþ

k and f−k in consecutive iterations have con-
verged to stable values. When the solutions have
converged, the total downgoing focusing function
fþk can be constructed by summing the inverted
direct arrival fþ0 and Mþ

k using equation 5.
It is worth noting that within equations 4–7,

the quantity from the previous iteration is con-
volved with the reflectivity R, which in practice
always contains a source term (no matter whether
real or modeled data are used). To avoid itera-
tively convolving multiple source terms together,
the source wavelet was initially deconvolved
from the reflectivity. If the reflectivity was not
deconvolved, the effective source wavelet would
change with each iteration, so consecutive itera-
tions would be inconsistent. An alternative ap-
proach that avoids deconvolution is illustrated in
the 2D example below.

Green’s function estimation

Once calculated, the focusing functions can be
used to estimate directionally decomposed Green’s
functions (Gþ∕−) using equations 1 and 2; sum-
ming those two signals gives the total Green’s
function Gðx0;xi;tÞ¼G−ðx0;xi;tÞþGþðx0;xi;tÞ.
This Green’s function represents the signal that
would have been measured at the surface if there
had been a source at the image point (or vice versa,
by source-receiver reciprocity).
Because this experiment is synthetic, we can

test the accuracy of the Green’s function esti-
mates by comparing them with the true Green’s
function — one that is obtained by modeling an
actual source at the image point, as shown in Fig-
ure 5. The final panels of Figure 5a and 5b show
the estimated and true Green’s functions for two
different subsurface image points. For both exam-
ples, they match in time, and amplitudes are

correct for all arrivals. In the first two panels of Figure 5a and 5b,
the Green’s functions are shown in decomposed form as obtained
directly from equations 1 and 2: We observe well-separated events in
the upgoing and downgoing components. It can be seen that there are
no measured downgoing arrivals in Figure 5a, which is to be expected
given that downgoing waves from a virtual source at the image point
would have to be reflected back upward to be recorded at the surface;
there are no interfaces below the image point in Figure 5a (as shown
by the reflector locations in Figure 2), so no such reflection can occur.
By contrast, the image point in Figure 5b lies between reflectors;
therefore, the downgoing and upgoing signals contain arrivals.
Marchenko methods are only able to construct events that follow

raypaths for which the energy was recorded in the original reflec-
tivity R. Therefore, in the examples presented in Figure 5, we have
only plotted the estimated Green’s function to a maximum time of
1.4 s. This equates to times preceding the recording time of the re-
flectivity Rminus the traveltime of the direct arrival Td. This shows

Figure 3. A schematic diagram of raypaths contributing to the initial focusing function
estimate f−0 using equations 3 and 4. The first column shows the inverted direct arrival
fþ0 , approximated by the time-reversed direct wave (note that the zero time is at the
center of each horizontal axis). As stated in equation 3, this is convolved with the re-
flectivity, which in column two is decomposed into three primary reflections. The com-
bination of these two events across each row creates the events shown in the right
column, which are all components of f−0 . The dashed rays are time-reversed compared
with their physical counterparts; the solid rays are not time-reversed. Hence, starting at
the source point at time zero, a wave in the right column would have the traveltime of the
solid ray segments minus the traveltime along the dashed segments (and is therefore
nonphysical). These diagrams are of a similar form to those presented by van der Neut
et al. (2015b).
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that it is important to have sufficiently long recording times for
Marchenko methods to be effective.
So far, we have discussed a simple, 1D example that demonstrates

the methodology clearly and in which the solutions are essentially
perfect. The next section extends the examples to higher dimensions,
where the results are more prone to errors.

MARCHENKO METHODS IN HIGHER
DIMENSIONS

The example above illustrated for 1D problems that all of the
information required to determine Green’s functions between a sub-
surface image point and the surface is contained within just two
signals Rðx0; x0; tÞ and Tdðxi; x0; tÞ. In two dimensions, this is not
the case because the reflectivity from one surface source (x 0

0) is
measured by multiple receivers (x0). It is worth noting that our no-
tation must now change to account for the extra spatial coordinate,
where x ¼ ðx1; x2Þ. Nevertheless, in two or three dimensions, con-
cepts similar to those in Figures 3 and 4 hold. Indeed, although for
1D problems, those diagrams have axes of depth and time; they
apply with similar geometries (but incorrect angles of transmission
and reflection) to 2D problems if the horizontal time axis is replaced
with the horizontal space axis. Each arrival in the desired Green’s
function at any particular angle is constructed by the interference of
other specific arrivals at other particular receiver and source combi-
nations in the reflectivity.
Rather than requiring that we selected specific arrivals to con-

volve to construct each arrival in the Green’s function, Marchenko

methods sum (integrate) over all possible sources along the acquis-
ition array (boundary) and rely on destructive interference to cancel
out unwanted energy. A similar cancellation occurs in RTM (Kaelin
and Guitton, 2006) and in seismic interferometry (van Manen et al.,
2005, 2006; Wapenaar and Fokkema, 2006). This only works ac-
curately in two dimensions if the reflectivity is of the correct form,
and in practice, this means that a vertical spatial derivative (often
called a dipole) source or receiver needs to be created or measured.
In the 2D examples presented in this paper, the reflectivity is from a
pressure (monopole) source measured by a vertical particle velocity
(dipole) receiver.
In the previous section, we introduced a set of formulas to estimate

Green’s functions using Marchenko methods. These formulas are ex-
tended to two dimensions by changing the 1D convolutions to multi-
dimensional convolutions and integrating across all sources on the
acquisition boundary (we denote this boundary as ∂D0). For example,
the 2D versions of equations 1 and 2 for source redatuming are

Gþðx0; xi; tÞ ¼
Z
∂D0

fþðx 0
0; xi; tÞ

⊗ Rðx0; x 0
0; tÞdx 0

0 − f−ðx0; xi; tÞ; (8)

G−ðx0; xi; tÞ ¼ fþðx0; xi;−tÞ −
Z
∂D0

Rðx0; x 0
0; tÞ

⊗ f−ðx 0
0; xi;−tÞdx 0

0: (9)

To implement equations 8 and 9, the focusing
functions need to be available between the focus-
ing location and the surface sources and receivers
(e.g., fþðx0; xi; tÞ and fþðx 0

0; xi; t)). In practice,
the 2D formulation of these functions requires
interchangeability between the two. We therefore
impose the condition that the source array and
receiver array are colocated x 0

0 ¼ x0.
A further consideration for implementation of

the 2D Marchenko method is the direct arrival
estimate Td and windowing function θ, which
now need to be estimated in two dimensions,
as they were above in one dimension. These
functions are now calculated between a single fo-
cusing location and multiple surface sources/
receivers. This increases the complexity of these
functions and the potential for errors in estimat-
ing them; nevertheless, if this is done following
the same workflow as 1D Marchenko methods,
the relationships discussed in the previous sec-
tions still hold.

Green’s function estimation in two
dimensions

In the following 2D example, the sourcewavelet
in the reflectivity is not the same as that in the fo-
cusing functions. We use the 20 Hz Ricker wave-
let shown in Figure 6b for the focusing function,
whereas we use a flat spectrum wavelet shown in
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Figure 4. A schematic raypath diagram for the retrieval of the first estimate (k ¼ 1) of
Mþ⋆

k using equation 6. The input into this step is ðf−0 Þ⋆ given in the first column, which
is obtained from different rows in the right column of Figure 3 after time reversal. This is
convolved again with the reflectivity in column two (equation 6) and produces the re-
sults ðf−0 Þ⋆ ⊗ R in column three. After windowing with θ, these are the time reverse of
the components that make up the latter part of the downgoing focusing function injected
in Figure 2b and 2c (components α, β, and γ). This is shown in column 4, which is the
time reversal of the results in column 3. These diagrams are of a similar form to those
presented by van der Neut et al. (2015b).
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Figure 6a as the source wavelet for our reflectivity. The flat spectrum
wavelet is defined in the frequency domain so as to have an amplitude
of one over the range of frequencies of interest (the frequencies con-
tained within the Ricker wavelet), as demonstrated in Figure 6c. Using
this formulation removes the need for deconvolution because it en-
sures that the frequency content of the updated focusing functions
does not change between iterations of the Marchenko method (in each
iteration, they are multiplied by a source wavelet that does not change
the shape of the current wavelet within the frequency band of interest
[Thorbecke et al., 2017]).
Figure 7 shows a subsurface model that is used to demonstrate

2D Marchenko methods. This subsurface model has variable
density and velocity. There are 188 symmetrically spread sources
and receivers colocated at 16 m intervals along the surface of
the model (depth = 0 m). A point is also marked in the subsurface,
xi ¼ ð1000 m; 800 m), which identifies a chosen image point for
Marchenko Green’s function calculation.
Two models have been used to create the two input data sets re-

quired for the Marchenko method. The reflectivity from surface
sources measured at the surface receivers and excluding free-sur-
face multiples has been created using the true model given in Fig-
ure 7a. This represents surface seismic reflection data after free-
surface multiples have been removed. An estimate of the direct
arrival between the surface and the image point
has been created using the smooth model in Fig-
ure 7b. In practice, we do not have access to the
true model; hence, we have used a smoothed
version of the true model for our direct arrival cal-
culations, assuming that in practice some initial or
reference velocity model will be available. The di-
rect arrival signal can be modeled with finite-dif-
ference solvers (Figure 7c), or approximated using
eikonal solvers to find the traveltime at which a
scaled source wavelet can be assumed to arrive.
In this example, for accuracy, both data sets were
created using finite-difference solutions to the
acoustic wave equation (in Figure 7b, a source
was fired at the image point and recorded along
the surface receiver array, giving Figure 7c). See
van der Neut and Wapenaar (2016) for an alterna-
tive solution to solving the Marchenko method if
an estimated velocity model is not available.
By iterating the 2D form of equations 1–7

(Wapenaar et al., 2014), the focusing functions
and Green’s functions are obtained, and the final
Green’s function estimates are shown in Fig-
ure 8b. For simplicity, we have not included
every component of the estimated Marchenko
Green’s function (e.g., focusing functions) —
for these, we refer readers to the accompanying
code package within which these figures are in-
cluded.
To test the accuracy of the Marchenko solution,

the calculated Green’s functions in Figure 8b are
plotted beside the true solutions in Figure 8a. The
latter panel shows a solution computed in the true
model in Figure 7a by firing a source at the image
point. The estimated signal shows a good match,
with negligible errors visible. The errors that are

present can be attributed to limited boundary coverage by the acquis-
ition array, errors in the finite-difference solution, and windowing
artifacts.
In Figure 8, all of the amplitudes have been scaled to values be-

tween 1 and −1. This has been done for comparison purposes be-
cause the Marchenko methods implemented in this paper cannot
estimate true absolute amplitudes of Green’s functions. The primary
reason for this is that the direct arrival was approximated at the start
of the Marchenko method as fþ0 ðx0; xi; tÞ ≈ Tdðxi; x0;−tÞ: We do
not know the amplitude of the true inverse, so it is impossible to
estimate a Marchenko solution with the true absolute amplitude be-
cause the initial focusing function estimate is implicit in the final
solution (see equation 5).

MARCHENKO CODE PACKAGE

Accompanying this paper is a set of well-commented MATLAB
codes for 2D Green’s function estimation. The first of these
(CODE_1) is the code used to create Figure 8, and running it with-
out edits should produce a version of that figure. For this code, the
inputs are precomputed and the variables already set; below we dis-
cuss the operation of this. However, because that code is inflexible
(the image point is fixed), we have included a second code for user
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Figure 5. Estimated Green’s functions from two subsurface image points. (a) An image
point at 1400 m and (b) an image point at 850 m. Panels 3 and 6 (counting from the top
downward) compareMarchenko and true Green’s functions. Panels 1, 2, 4, and 5 show the
upgoing and downgoing decomposition of the corresponding total Green’s function.
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Figure 6. Wavelets used in 2D finite-difference modeling. (a and b)
Zero phase, time-domain plots of the reflectivity and direct-arrival
wavelets, respectively, and (c) compares the amplitude of the fre-
quency spectra of the two wavelets. The reflectivity and direct arrival
are shown as solid and dashed lines, respectively.

a) c)

b)

Figure 7. (a) The true and (b) smoothed subsurface
models used for the 2D synthetic example. The sub-
surface model has a variable velocity (shown) and a
proportionate variable density model (densities lie
in the range 1000–5000 kg/m3). The surface is
spanned by 188 colocated sources and receivers
represented by stars and triangles (with every 10th
source and receiver plotted). The white circle in
(b) marks a chosen subsurface image point at loca-
tion xi. (c) An estimate of the direct arrival between
the image point and the surface as calculated
through the smooth model in (b).
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Figure 8. A comparison of Green’s functions from image point xi in
Figure 7b. (a) The true solution calculated through the true model in
Figure 7a using finite-difference methods. (b) The Marchenko solu-
tion calculated using the methods discussed in the main text. (c) Com-
pares trace number 51 (offset ¼ 804 m) taken from (a) and (b).
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experimentation, which we introduce at the end of this section. By
choosing an appropriate setup, users should be able to use the
second code to reproduce similar outputs of the first — a good
exercise for learning and teaching purposes.

Data

Four data sets accompany this MATLAB code, as summarized in
Table 1. All of these data sets are stored in the time domain,
although for computational efficiency, most of the code operations
are performed in the frequency domain.
The direct arrival, windowing function, and true signals are all

common shot gathers from a source at the image point with identical
dimensions: i ¼ 2001 and j ¼ 188, where i is the number of time
samples and j is the number of surface receivers. In this example,
the sampling interval was 0.002 s and the recording time was from
−2 to 2 s. The fourth data set is the reflectivity, which has an extra
dimension k to account for multiple shot locations, with i ¼ 2001,
j ¼ 188, and k ¼ 188.

Codes

The code called ICCR_marchenko.m, follows the same work-
flow introduced earlier in this paper. Algorithm 1 shows the corre-
sponding pseudocode. The equations referred to in Algorithm 1 are
the 1D versions given herein, but the code uses the equivalent 2D
versions given in Wapenaar et al. (2014). We have not defined a
measure of convergence within this code; instead, a desired number
of iterations is input by the operator, the default being five.
One additional feature in the MATLAB code has not been dis-

cussed above: A spatial taper is applied during each summation (in-
tegration) of sources along the acquisition boundary. Its purpose is
to account for the limited acquisition coverage: It ensures cancella-
tion of edge effects from the extremities of the acquisition array be-
cause these would otherwise create spurious energy in the solutions
(if the boundary was infinite, as assumed in 2D or 3D Marchenko

theory, this would not be required). The taper takes a half cosine
shape at either end of the array, and the number of points to be tapered
at either end of the array can be varied by the user (the default is 20%
of the number of receivers).
A second code in the accompanying package (CODE_2), oper-

ates using the same fundamentals as the code introduced above, but
it has been implemented as matrix multiplications for computational
efficiency and changed to allow alternative virtual source locations
to be used. To the latter end, the direct arrival and window are no
longer precomputed; instead, we have included a function that com-
putes these using an eikonal solution (ICCR_marchenko_eik.mat).
The input seismic data remains the same, but there is no longer a
true solution available for comparison. This code is set up so that the
input data can be changed; to do this, a measured or calculated re-
flectivity data set in the correct form will be required as well as an
eikonal solution through an estimated velocity model.

MARCHENKO IMAGING

Marchenko imaging creates images of the subsurface using the es-
timated Green’s functions. This works in a similar way to conventional
imaging algorithms such as RTM in the sense that the similarity of
two signals is tested by the use of an imaging condition (Claerbout,
1971), and the result is used to identify subsurface inhomogeneities.
Marchenko imaging should in theory be able to be used to calcu-

late more accurate images than standard methods because we have
access to more accurate Green’s functions Gþ∕−, which account for
multiply reflected waves. The imaging condition applied for our im-
plementation of Marchenko imaging is a (zero-lag) crosscorrelation
between the downgoing Green’s function Gþ and the direct arrival
estimate Td, as proposed by da Costa Filho et al. (2015):

IMIðxiÞ ¼
X
x0

X
t

Tdðxi; x0; tÞGþðx0; xi; tÞ: (10)

For comparison purposes, we have also implemented an alterna-
tive imaging condition to approximate standard methods:

IRTMðxiÞ ¼
X
x0

X
t

Tdðxi; x0; tÞGþ
0 ðx0; xi; tÞ; (11)

where Gþ
0 ≈ R ⊗ T�

d, which is equivalent to a back-propagated
wavefield used in RTM methods (for further details, see da Costa
Filho and Curtis, 2016).

Table 1. Description of the data sets used as inputs to the
MATLAB code ICCR_marchenko.m.

Data set Description

ICCR_marchenko_R.mat The modeled reflectivity: the
acquisition boundary is at the top
surface (depth ¼ 0 m) of the model
defined in Figure 7a.

ICCR_marchenko_TD.mat The modeled direct arrival: the signal
with a source at the image point and
the receivers on the acquisition
boundary as shown in Figure 7b.

ICCR_marchenko_theta.mat A filter designed using the direct
arrival ICCR_marchenko_TD.mat,
which mutes the signal at times
greater than or equal to the direct
arrival.

ICCR_marchenko_GT.mat The modeled true solution for
comparison: A real source is located
at the image point, and receivers are
on the acquisition boundary in
Figure 7a.

Algorithm 1. Marchenko Green’s function estimation
pseudocode.

load R, Td, and θ

calculate fþ0 and f−0 using equations 3 and 4

for n iterations (k ¼ 1; 2; ...; n) do

calculate Mþ
k using equation 6

calculate f−k using equation 7

end for

calculate fþk using equation 5

calculate Gþ and G− using equations 1 and 2 (or equations 8 and 9)

return Gþ and G−
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The two signals in equations 10 and 11 should be most similar
when the image point xi is on a reflector, so the crosscorrelation will
produce maxima at those points. We note that as with conventional
RTM, there are several alternative imaging conditions that could be
applied. Comparisons and discussion of these is beyond the scope
of this paper, but more detail is given in da Costa Filho et al. (2015)
and Singh and Snieder (2017b).
We imaged the model in Figure 7a using equations 10 and 11, with

results shown in Figure 9. Image points were selected on a 4 m grid
inside the imaged area. Directionally decomposed Green’s functions
were calculated at each of these points. The only difference between
these Green’s functions and those calculated in Figure 8 is in the
direct arrival input, which here was constructed by placing a source
wavelet at the traveltime calculated using an eikonal solver, rather
than calculating Td using finite-difference methods; this saves on
computational cost because eikonal solvers require relatively few
operations compared with finite-difference methods. This example
therefore also illustrates that this approximate method of modeling
the direct field can be sufficient for some imaging applications.
The image calculated using equation 10 at each image point is

shown in Figure 9a. All interfaces in the subsurface are identified
with few artifacts in the solution, despite the presence of internal
multiples in the surface-acquisition data that is input to the Marche-
nko method. The clarity of the image is mainly due to the accuracy
of the Green’s function estimates Gþ, which are calculated by
Marchenko methods and used by equation 10. For comparison, the
solution in Figure 9b is calculated using equation 11 with the
approximate Gþ

0 shows clear artifacts due to internal multiples.
We have included a final code (CODE_3) in the software pack-

age, which can be used to implement Marchenko imaging using the
methods discussed above. There is an increased computational cost
associated with implementing this because a Green’s function now
needs to be calculated at each and every imaging point. Inside the

code, the image can be target-oriented by defining the image point
spacing and a limited or targeted subsurface location.

DISCUSSION

The aim of this tutorial is to provide beginners to Marchenko
methods with an accessible way to understand the topic and to allow
them to begin to experiment with the methods on synthetic exam-
ples using easily understandable and editable MATLAB code. Mar-
chenko methods as introduced in this paper use surface seismic data
and an estimate of the subsurface velocities to estimate Green’s
functions between a subsurface image point and the surface. These
estimated signals have a steadily increasing number of applications,
including subsurface imaging and seismic redatuming, but also for re-
moving multiples (Meles et al., 2015), constructing primaries (Meles
et al., 2016), and calculating Green’s functions, where the source and
receiver are inside the subsurface (Wapenaar et al., 2016; Singh and
Snieder, 2017a). Marchenko methods also have applications outside of
seismology, for example, for imaging using ground-penetrating radar
(Slob et al., 2014a) or for medical imaging (van der Neut et al., 2017).
The results are promising and offer a data-driven method that

improves on current imaging methods, in particular by correctly
predicting the arrival of multiply reflected waves at image points.
Given the novelty of these methods, there are still aspects that are
poorly understood — areas of ongoing research. They include
exploring how to apply Marchenko in real, dissipative media with
seismic attenuation, the effects on Green’s function estimates of
velocity model errors and corresponding poor estimates of direct
arrivals (in time and amplitude), the effect of various types of noise
in the reflectivity field, and the cost and effort of scaling 2D Mar-
chenko methods to three dimensions.
The accompanying MATLAB codes for the estimation of acoustic

Green’s functions using 2D Marchenko methods also comes with an
accompanying data set, which can be used to reconstruct Figure 8.
The codes can easily be adapted for users to include their own data
sets. The data will need to be formatted correctly, the details for
which are discussed in the earlier sections of this tutorial and in com-
ments within the code. Data sets of a similar simplicity should
achieve similarly positive results.

CONCLUSION

In this paper, we have introduced Marchenko methods, a set of
novel, data-driven techniques that can be applied to seismic reda-
tuming and imaging problems. We have shown that these methods
can accurately estimate directionally decomposed Green’s func-
tions from virtual subsurface source locations to surface receiver
locations in one and two dimensions, and this includes the multiply
scattered components of the Green’s functions. However, all of the
methods we have presented are based on synthetic seismic data sets;
extending these methods to more realistic data sets and examples is
an area of active research, and with the accompanying MATLAB
code, readers have the tools to contribute to this.
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