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Abstract

There is growing interest in automating neural
network architecture design. Existing architecture
search methods can be computationally expen-
sive, requiring thousands of different architectures
to be trained from scratch. Recent work has ex-
plored weight sharing across models to amortize
the cost of training. Although previous methods
reduced the cost of architecture search by orders
of magnitude, they remain complex, requiring hy-
pernetworks or reinforcement learning controllers.
We aim to understand weight sharing for one-shot
architecture search. With careful experimental
analysis, we show that it is possible to efficiently
identify promising architectures from a complex
search space without either hypernetworks or RL.

1. Introduction

Designing neural networks is a labor-intensive process that
requires a large amount of trial and error by experts. There
is growing interest in automating the search for good neural
network architectures (Zoph & Le, 2016; Baker et al., 2016;
Real et al., 2017). For instance, Zoph et al. (2017) show that
one can find an architecture that simultaneously achieves
state-of-the-art performance on the CIFAR-10, ImageNet,
and COCO datasets. However these search methods are
incredibly resource-hungry. Zoph et al. (2017) used 450
GPU s for four days in order to run a single experiment. They
proposed an RL-based approach in which a neural network
(the controller) enumerates a set of architectures to evaluate.
Each architecture is trained from scratch on CIFAR-10 for a
fixed number of epochs and then evaluated on a validation
set. The weights of the controller are subsequently updated
based on the validation accuracies of the trained models.

Training thousands of models is difficult or impossible for
a typical machine learning practitioner. To address this
weakness of architecture search, new methods have been

!Google Brain, Mountain View, CA. Correspondence to:
Gabriel Bender <gbender@google.com>.

Proceedings of the 35" International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

VVVVVVV \ A Legend
iMax Pool: || + Edge on
’
Sum - Edge off

Figure 1. Example building block used in a one-shot model. The
search space contains three different operations; the one-shot
model adds their outputs together. Some of the operations are
removed or zeroed out at evaluation time.

proposed (Brock et al., 2017; Pham et al., 2018; Elsken
et al., 2017; Liu et al., 2017a; Cai et al., 2017; Liu et al.,
2017b). One promising direction is sharing weights between
models (Brock et al., 2017; Pham et al., 2018): rather than
training thousands of separate models from scratch, one
can train a single large network capable of emulating any
architecture in the search space.

A simple example is shown in Figure 1, where we have
the option of applying either a 3x3 convolution, a 5x5 con-
volution, or a max-pooling layer at a particular position
in the network. Instead of training three separate models,
we can train a single model containing all three operations
(the one-shot model). We selectively zero out two of the
three operations’ outputs at evaluation time in order to deter-
mine which operation leads to the best prediction accuracy.
In more complex examples, a search space may include
choices at many different positions within a network. The
size of the search space grows exponentially with the num-
ber of choices, while the size of the one-shot model grows
only linearly. The same weights are used to evaluate many
different architectures, reducing the resources required to
run an architecture search by orders of magnitude.

Despite the improvements in efficiency, it is natural to won-
der whether there are inherent limits to weight sharing across
models. Why should a heterogeneous set of architectures
be able to share a single set of weights? One-shot models
are typically only used to rank architectures in the search
space; the best-performing architectures are retrained from
scratch after the search is completed. But even with that re-
striction, the idea that a single fixed set of weights can work
well across a wide range of architectures is counterintuitive.
SMASH (Brock et al., 2017) tries to address this concern
by using a hypernetwork to generate a large fraction of the
weights in each candidate architecture. Efficient Neural
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Architecture Search (ENAS) (Pham et al., 2018) addresses
the same concern by alternating between training the shared
model weights and training a controller that identifies a
subset of architectures from the search space to focus on.

Our goal in this paper is to understand the role that weight
sharing plays in efficient architecture search methods. Per-
haps surprisingly, we show that neither a hypernetwork nor
an RL controller is necessary to achieve good results. To do
this, we train a large one-shot model containing every possi-
ble operation in the search space. We then zero out some of
the operations and measure the impact on the model’s pre-
diction accuracies. When trained carefully, we show that the
network automatically focuses its capacity on the operations
that are most useful for generating good predictions. Zero-
ing out the less important operations has only a small impact
on the model’s predictions. In contrast, zeroing out the more
important operations has an exaggerated effect on both the
model’s predictions and its validation set accuracy. In fact,
it is possible to predict an architecture’s validation set accu-
racy by looking at its behavior on unlabeled examples from
the training set. This behavior is an implicit consequence
of weight sharing, and requires neither a hypernetwork nor
an explicit controller.

2. Related Work

The use of meta-learning to improve machine learning has
a long history (Schmidhuber, 1987; Hochreiter et al., 2001;
Thrun & Pratt, 2012). Beyond architecture search, meta-
learning has been used to optimize other components of
learning algorithms such as update rules (Andrychowicz
et al., 2016; Wichrowska et al., 2017; Bello et al., 2017) and
activation functions (Ramachandran et al., 2017).

Our work is most closely related to SMASH (Brock et al.,
2017), which in turn is motivated by NAS (Zoph & Le,
2016). In NAS, a neural network controller is used to search
for good architectures. The training of the NAS controller
requires a loop: The controller proposes child model archi-
tectures, which are trained and evaluated. The controller is
then updated by policy gradient (Williams, 1992) to sam-
ple better architectures over time. Once the controller is
done training, the best architectures are selected and trained
longer to improve their accuracies. The main bottleneck
of NAS is the training of the child model architectures;
SMASH aims to amortize this cost. In SMASH, a hypernet-
work is trained a priori to generate suitable weights for every
child model architecture in the search space. The same fixed
hypernetwork is then used to evaluate many different child
model architectures.

NAS and SMASH both treat architecture search as a black-
box optimization problem, which can be optimized using
off-the-shelf techniques. (Bergstra et al., 2011; Bergstra &

Bengio, 2012; Bergstra et al., 2013; Snoek et al., 2012; 2015)
In hyperparameter optimization, the idea of sharing parame-
ters between models has been also explored in the context
of Population Based Training (Jaderberg et al., 2017).

Genetic and neuro-evolution algorithms have also been used
for designing good neural network architectures, e.g., Stan-
ley & Miikkulainen (2002); Bayer et al. (2009); Jozefow-
icz et al. (2015); Miikkulainen et al. (2017); Xie & Yuille
(2017). For these methods, parameter sharing between mod-
els, also known as weight inheritance, has been explored
with positive effects (Real et al., 2017).

Black-box methods measure the accuracies of trained ar-
chitectures on a held-out validation set. In contrast, Mor-
phNets (Gordon et al., 2017) make architectural decisions
directly on the training set, applying L1 regularization to
induce sparsity. Like MorphNets, we start with an overcom-
plete network architecture and then prune the least useful
parts. But while Gordon et al. (2017) focus on filter sizes,
we focus on pruning ops and skip-connections. Experi-
ments from SMASH and ENAS suggest our method might
be extended to search over filter sizes. We could also apply
MorphNets to the models found by our architecture search.

3. One-Shot Architecture Search

The proposed approach for one-shot architecture search con-
sists of four steps: (1) Design a search space that allows us
to represent a wide variety of architectures using a single
one-shot model. (2) Train the one-shot model to make it
predictive of the validation accuracies of the architectures.
(3) Evaluate candidate architectures on the validation set
using the pre-trained one shot model. (4) Re-train the most
promising architectures from scratch and evaluate their per-
formance on the test set. We describe these steps in the
remainder of this section.

3.1. Search Space Design

Designing a good search space for one-shot architecture
search is a challenging problem, as it requires us to balance
a number of competing requirements. First: the search space
should be large and expressive enough to capture a diverse
set of interesting candidate architectures. Second: the valida-
tion set accuracies produced by the one-shot model must be
predictive of the accuracies produced by stand-alone model
training. Third: the one-shot model must be small enough
to train using limited compute resources (i.e., memory and
time). The best architectures in the search space must also
have competitive accuracies. However, since our main goal
is to understand the role of weight sharing, our search space
is not yet fully optimized for quality, and we believe that
further improvements are possible.

We begin with an example of a search space (shown in
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Figure 2. Example of a cell during one-shot model evaluation. Al-
though the one-shot model contains four separate operations, we
can emulate a cell containing a max-pooling op by removing the
other operations from the network without retraining the weights.

Figure 3.1) that incorporates non-trivial decisions about both
the network structure and the operations that are applied at
different positions within the network.

At training time, the one-shot model contains three different
inputs which are concatenated together. At evaluation time,
however, we can simulate a network containing only Input 2
by zeroing out or removing the incoming connections from
Input 1 and Input 3 from the trained network.

More generally, we have the option of enabling or disabling
any combination of the incoming connections. In this way,
the the size of the search space grows exponentially with the
number of incoming skip-connections, while the size of the
one-shot model grows only linearly. The concatenation is
always followed by a 1x1 convolution; the number of output
filters in the convolution remains constant no matter how
many incoming skip-connections there are.

The one-shot model then applies several different operations
to the output of the 1x1 convolution and adds the results
together. At evaluation time, we zero out or remove some of
these operations from the network. In our running example,
we have four possible operations: a pair of 3x3 convolu-
tions, a pair of 5x5 convolutions, a max pooling layer, or
an identity operation. However, only the 5x5 convolutions’
outputs are used when the architecture is evaluated.

This approach is applied to a much larger model as shown
in Figure 3. Following Zoph et al. (2017), our network is
composed of several identical cells which are stacked on top
of each other. Each cell is divided into a fixed number of
choice blocks. The inputs to a given choice block come from
(1) outputs of previous cells, and (2) outputs of previous
choice blocks within the same cell.

The number of choice blocks within each cell, Ngpoice, 1S @
hyper-parameter of the search space. In our experiments,
we set Nenoice = 4. Each choice block can consume the
outputs of the two most recent cells in the network. This
means that each choice block can select from up to five
possible inputs: two from previous cells and up to three
from previous choice blocks within the same cell.

Each choice block can select up to two operations from a

menu of seven possible options: (1) identity, (2) a pair of
depthwise separable 3x3 convolutions, (3) a pair of depth-
wise separable 5x5 convolutions, (4) a pair of depthwise
separable 7x7 convolutions, (5) a 1x7 convolution followed
by a 7x1 convolution, (6) a max pooling layer, and (7) an
average pooling layer.

Search Space Size. Each architecture in our search space
consists of a stack of identical cells; we now estimate the
number of possible cells in our search space. Each cell has
four choice blocks. For i = 0, 1, 2, 3, the ith choice block
takes at least 1 and at most 2 + ¢ inputs. This means that
there are 2277 — 1 possible combinations of inputs to the ith
choice block. Furthermore, each choice block applies either
one or two different operations out of 7 possible options.
There are therefore () + (7) = 7 + 21 = 28 possible
combinations of operations that we can apply in each block.
Across the entire search space, there are therefore (22 — 1) -
(23 —1)-(2* —1)- (25 —1)-28* ~ 6 - 10° possible cells.

3.2. Training the One-Shot Model

Many architecture search methods use a proxy metric to find
promising models efficiently. If the proxy metric provides a
strong relative ranking of models, this enables the discovery
of high performing models when trained to convergence.
For example, one common proxy metric is the accuracy on
the validation set after a short amount of training. This proxy
metric was successfully used in the original NAS paper. In
this work, as well as in SMASH and ENAS, the proxy metric
is the validation accuracy obtained by activating individual
architectures in the one shot model.

The one-shot model is a standard large neural network
trained using SGD with Momentum. To make sure that
the one-shot model accuracies for specific architectures cor-
relate well with stand-alone model accuracies we have to
consider the aspects discussed below.

Robustness to Co-adaptation. At evaluation time, we zero
out large portions of the one-shot model to evaluate specific
architectures. If we train the one-shot architecture naively,
the components can co-adapt. Removing operations — even
unimportant ones — from the network can cause the quality
of the model’s predictions to degrade severely. The correla-
tions between one-shot and stand-alone model accuracies
also degrade.

We incorporate path dropout at model training time in order
to ensure that the model is robust to such changes. When
training the one-shot model, we randomly zero out a subset
of the ops for each batch of examples. We achieved good
results by disabling path dropout at the beginning of training
and gradually increasing the rate of dropout over time using
a linear schedule. The dropout rate at the end of training
is set to /% where 0 < r < 1 is a hyper-parameter of
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Figure 3. Diagram of the one-shot architecture used in our experiments.

architecture, while dashed lines indicate optional components that

the model and k is number of incoming paths to a given
operation in the network. The higher the fan-in, the more
likely each possible input is to be dropped out. However,
the probability of dropping out all inputs to a node is kept
constant regardless of its fan-in. Suppose » = 0.05. If a
node has k& = 2 inputs then each one will independently
be dropped out with probability 0.05'/2 ~ 0.22 and will
be retained with probability 0.78. If a node has k = 7
incoming paths then each one will independently be dropped
out with probability 0.05'/7 &~ 0.65 and will be retained
with probability 0.35. In both cases, the probability of
dropping out all of the op’s incoming paths is 5%.

~
~

Within a single cell, different operations are dropped out
independently of each other. If a model contains multiple
cells, however, the same operations will be dropped out
in each one. We found that independently dropping out
different paths within the same cell was beneficial, but did
not investigate the behavior of dropout across cells.

Stabilizing Model Training. One-shot model training was
highly unstable in early experiments. We found that a care-
ful application of batch normalization could be used to sta-
bilize training. We experimented with the orders BN-Relu-
Conv and Relu-BN-Conv. While both showed promise, we
use the former for the experiments reported in this paper.
When the one-shot model is used to evaluate a candidate
architecture from the search space, we zero out a subset of
its operations. Doing so changes the batch statistics at each
layer. Because we do not know the batch statistics for a
candidate architecture in advance, batch normalization is
applied exactly the same way at evaluation time as during
training — computing the batch statistics on the fly.

A variant of ghost batch normalization (Hoffer et al., 2017)
further stabilized training. One-shot model training tended
to become unstable if we dropped out the same subset of
paths for every example within a single batch. We found,
however, that it could be stabilized if we dropped out differ-
ent paths on different subsets of the examples. We initially
tried dropping different paths independently for every exam-
ple in the batch. However, this approach didn’t work well

are part of the search space.
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Method Param x10°  Accuracy

ENAS General 34.9 95.8

ENAS masks 12.6 95.7

ENAS skip 14.1 95.0

ENAS skip large 38.0 96.1

ENAS Cell search 4.6 96.5

NASNet-A 3.3 96.6

SMASHv2 16.0 96.0
One-Shot Top (F = 16) 0.7+0.1 94.6 £0.2
One-Shot Top (F' = 32) 2.7+0.3 95.5 + 0.1
One-Shot Top (F = 64) 104+1.0 95.9+0.2
One-Shot Top (F' = 128) 41.3+4.0 96.14+0.2
One-Shot Small (F' = 16) 044+0.01 94.6£0.2
One-Shot Small (F' = 32) 1.3+£0.04 95.6+0.2
One-Shot Small (F' = 64) 5.0+0.2 96.0+0.1
One-Shot Small (F' = 128) 19.31+ 0.6 96.1 £0.2

AlTOn (F = 16) 13 95.0

All On (F = 32) 4.8 95.6

All On (F = 64) 185 96.0

All On (F = 128) 72.7 96.2
Random (F = 16) 0.5+0.2 94.1 £0.5
Random (F = 32) 1.7+£0.7 95.0+ 0.5
Random (F = 64) 6.7+ 2.6 95.6 £0.2
Random (F' = 128) 26.4+10.5 95.8£0.2

Table 1. Architecture search on CIFAR-10. We evaluate ten models

and report the mean « and standard deviation y as « £ y.

with batch normalization, which is better able to compute
batch statistics when the same paths are dropped out for mul-
tiple examples. As a compromise, we partition each training
batch into multiple ghost batches. A single training batch
might contain 1024 examples, which can be partitioned into
32 ghost batches of size 32. We drop out the same paths for
each example within a ghost batch, but drop out different
paths for different ghost batches.

Preventing Over-regularization. A given convolutional
layer might only be used for a subset of the architectures
in the search space. During training, L2 regularization is
applied only to parts of our model that are used by the
current architecture. Without this change, layers that are
dropped out frequently are regularized more.
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3.3. Evaluating Candidate Architectures

Once the one-shot model is trained, we use it to evaluate the
performance of many different architectures on a held-out
validation set. In our experiments, architectures are sampled
independently from a fixed probability distribution, follow-
ing Brock et al. (2017). We note that random search could
be replaced by other search methods, such as evolutionary
algorithms or neural network-based reinforcement learning.

3.4. Final Model Selection and Training

The output of the search is a list of candidate architec-
tures ranked by one-shot accuracy. After completing a
search, one can retrain the best-performing architectures
from scratch. Depending on the amount of compute re-
sources available and the model accuracy requirements, one
can additionally screen and hyperparameter tune many of
the best-performing models as a post-processing step. How-
ever, other efficient architecture search methods elide this
accuracy-boosting step, and we follow suit for purposes of
comparison with these methods. To evaluate the use of a
one-shot model, we sample the best-performing architec-
tures found by our search. On CIFAR-10, each architecture
is trained from scratch for 300 epochs on the full training
set, then evaluated on the test set. On ImageNet, each ar-
chitecture is trained for 200 epochs. Experiments were
implemented using TensorFlow (Abadi et al., 2016).

It is possible to either scale up an architecture (to increase
its accuracy) or scale down (to reduce its inference cost). In
our experiments, we scale up architectures by increasing the
number of filters. It may be possible to increase the number
of cells in the model to further improve performance, but
we use a fixed depth of six cells in all of our CIFAR-10
experiments and eight cells in our ImageNet experiments.

4. One-Shot Model Experiments

In this section, we explain and analyze the steps of archi-
tecture search. The goal is twofold: (1) to show that our
approach is competitive with existing approaches for one-
shot architecture search and (2) to provide insights into what
makes one-shot architecture search possible.

On CIFAR-10 we used a 45,000 element training set, 5,000
element validation set, and 10,000 element test set. Ima-
geNet was partitioned into a 1,281,167 training set, 50,046
element validation set, and 50,000 element test set. One-shot
model accuracies and accuracies from abbreviated training
were computed on the validation sets, while the final accu-
racies of architectures were computed on the test sets.

4.1. Experiments on CIFAR-10

Training the One-Shot Model. Given the search space
detailed in the previous section, we begin by training a
one-shot model on CIFAR-10. Each one-shot model was
trained for 5,000 - 10,000 steps (113 - 225 epochs) on a
cluster of 16 P100 GPUs. Each worker used a batch size
of 64, which was divided into two ghost batches of size
32. We used a global learning rate of 0.1 and Nesterov
momentum 0.9.' Increasing the number of training steps
improved the correlations between one-shot and stand-alone
model accuracies in our experiments, but only slightly. We
therefore used a shorter training period for our initial hyper-
parameter tuning experiments and a longer period for the
model that was used in our large-scale architecture search.

Impact of Dropout Rate. Compared with vanilla SGD,
one-shot model training introduces just one new hyper-
parameter: the dropout rate. The value of this hyper-
parameter is important, however, and it must be tuned care-
fully in order to achieve good correlations between one-shot
and stand-alone model accuracies.

To demonstrate its importance, we trained one-shot models
with varying dropout rates. Following the setup described
at the beginning of the section, each one-shot model was
trained for 5,000 steps (113 epochs) using Synchronous
SGD with 16 workers. The dropout rates in these experi-
ments were kept constant throughout training.

The results of our experiment are shown in Figure 4. When
the dropout rate is very low (i.e., most of the paths in the one-
shot model are retained at each training step), the correlation
plots develop a “snout.” A few of the architectures in the
search space receive relatively high accuracies from the
one-shot model. But while these architectures are usually
good, the ones that receive the highest accuracies are not
necessarily the best ones in the search space. Most of the
architectures, however, receive very low accuracies. Due to
the low dropout rate at training time, the one-shot model is
ill-prepared for large portions of the model to be zeroed out
at evaluation time.

When the dropout rate is very high (i.e., most of the paths in
the one-shot model are dropped out at each training step), we
encounter a different problem: the extent to which the one-
shot model focuses its capacity on the most useful paths in
the network is greatly diminished. Instead of ranging from
0.3 t0 0.9, the one-shot model accuracies now range between
0.66 to 0.78. In early experiments, we found that high
dropout rates yielded respectable results when the one-shot
models were relatively shallow (e.g., networks containing

'In early experiments where the dropout rate was kept constant,
using at least 16 ghost batches helped stabilize training. Gradually
increasing the dropout rate over time may make it possible to use
fewer workers, but we did not explore this in depth.
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Figure 4. One-shot models trained with constant dropout rates. Left: model training with a constant dropout rate of r = 10~°; paths in
the network are retained more than 85% of the time. Middle: model trained with a constant dropout rate of 7 = 0.01, a moderate value.
Right: model trained with a constant dropout rate of » = 0.3, a high value where some paths are retained only 15% of the time.

up to 12 layers in total). However, using a high dropout rate
became increasingly problematic as the search space grew
more complex and the one-shot model grew deeper.

One-Shot Model Training and Evaluation. For the one-
shot model used in our large-scale architecture search ex-
periments, we made two changes from the smaller-scale
experiments described above. First: we increased the num-
ber of training steps from 5,000 to 10,000. Second: we
allowed the dropout rate to increase over time. At the start
of training, dropout was effectively disabled, while at the
end of training, we had a dropout rate determined by the
coefficient » = 0.1. Between these two points, the rate of
dropout for each operation in the network was increased
linearly over the course of training.

Armed with a calibrated one-shot model, we randomly sam-
pled around 20,000 architectures from the search space, and
computed the accuracy of each one on the one-shot model.
We then divided the architectures into buckets based on their
accuracies, and sampled four architectures from each bucket.
Finally, we retrained each of the sampled architectures from
scratch for around 28 epochs with a batch size of 64 and a
ghost batch size of 32. These stand-alone model accuracies
were averaged across five runs. Using the one-shot model,
each architecture took around 15 seconds to evaluate on a
P100 GPU. It took around 80 GPU-hours to evaluate all
20,000 architectures. However, we spent little time opti-
mizing the code, and the search was trivially parallelizable.
We believe that with more engineering effort, the cost of a
search could be decreased dramatically.

We then compared these stand-alone model accuracies to the
one-shot model accuracies. Figure 5 shows that there is a
near-monotonic correlation between the two. This confirms
that in our experimental setup, both proxy metrics are likely
to favor similar network architectures.

On the bottom of Figure 5 we take a look at the histogram

Stand-Alone Model Accuracy

Sample
Frequency

= N
o o
o o
o O o

03 04 05 06 0.7 038

One-Shot Model Accuracy

0.9

Figure 5. Top: Comparison of one-shot and stand-alone model
accuracies from a stratified sample of architectures. Stand-alone
models were trained for an abbreviated period of around 28 epochs,
and stand-alone model accuracies were averaged across 5 runs.
Bottom: Distribution of sampled one-shot model accuracies.

of one-shot model accuracies. About 34% of architectures
receive one-shot model accuracies of 0.8 or above, while
only 9% have accuracies of 0.85 or above and only 1% have
accuracies of 0.88 or above. The quality improvements of
better-performing models are modest but still noticeable:
after 25 epochs of training, models in our sample with one-
shot accuracies from 0.8 - 0.85 have average validation set
accuracies of around 0.941 after 28 epochs of stand-alone
training. Meanwhile, architectures with one-shot accuracies
of 0.90 or above have average validation set accuracies of
around 0.944. This suggests that the truly high performing
architectures only make up a limited part of the search space.
This will be confirmed by a random sample that is trained
until convergence in the next experiment.
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Final Model Selection and Training. After screening
20,000 random architectures with the one-shot model, we
performed another selection. From the top 100 architectures,
we took a stratified sample of 10 for further evaluation. We
then increased the number of filters in the models and trained
them for 300 epochs without additional hyper-parameter tun-
ing. The results are shown in the “One-Shot Top” section
of Table 1. When comparing based on the number of pa-
rameters in the model, our approach is competitive with
SMASHYV2 and almost all ENAS variations. We parameter-
ize our models based on F’, the number of filters in the first
convolutional layer. When F' = 64, we obtain an average
accuracy of 95.9% with about 10M parameters. SMASH
has 96.0% accuracy with 16M parameters. If we make the
model even bigger (F' = 128), we get 96.1% accuracy. The
best models get up to 96.5% accuracy with around 41M
parameters.

We conclude that our approach is competitive with SMASH
and all but one ENAS variation. This shows that our sim-
plified architecture search is solid and can be used to better
understand one-shot model behaviour. This we will analyze
in more detail now and in the next section.

Comparing our sample of 10 top architectures (“One-Shot
Top”) against 10 randomly sampled architectures (‘“Ran-
dom”), we find that the top architectures have better accura-
cies by around .5% absolute. However, they also have about
1.6x as many parameters. A natural follow-up question
is whether the one-shot model always favors the architec-
tures with the most parameters. To answer this question,
we searched for the smallest architectures whose one-shot
model accuracies exceeded a certain threshold (roughly in
the 90th percentile). The resulting architectures (“One-Shot
Small”) have nearly the same accuracies as the top models
but fewer parameters than both the top and random models.

The baseline All On trains the model with all paths turned
on. This approach gets .1% higher accuracies, with the
best models obtaining 96.5%. However, the number of
parameters is nearly 2x that of One-Shot Top and 4x that of
One-Shot Small. In this respect, we could see architecture
search as a way to prune the less useful parts of the model.

4.2. Experiments on ImageNet

To evaluate our approach on larger datasets, we ran an ar-
chitecture search directly on ImageNet using Cloud TPUs.
The One-Shot model was trained for 15k steps (about 47
epochs or 6 hours) with a batch size of 4,096 on four Cloud
TPUs (16 chips). Each candidate architecture took 1-2 TPU
chip-minutes to evaluate. The final models were trained and
evaluated using 224 x 224 input images.

Results, shown in Table 2, are consistent with our CIFAR-
10 experiments. The top-performing models have better

Method Param x10°  Accuracy
One-Shot Top (F' = 16) 3.1+04 70.1 £0.6
One-Shot Top (F = 24) 6.8£0.9 73.8+0.4
One-Shot Top (F' = 32) 119+15 752+04

One-Shot Small (F' = 16) 1.4£04 67.9+0.5
One-Shot Small (F' = 24) 3.0+0.8 72.4+£0.4
One-Shot Small (F' = 32) 51+1.5 74.24+0.3
Random (F = 16) 2.0+0.5 67.9+1.0
Random (F = 24) 44+10 722£0.7
Random (F = 32) 7.7+1.9 74.1£0.6

Table 2. Architecture search results on ImageNet.

accuracies than random models, but also more parameters.
By searching for the smallest models whose one-shot ac-
curacies exceed a predetermined threshold, we are able to
improve the trade-off between quality and model size.

We also discovered that although our models have
significantly better accuracies than NASNet and Mo-
bileNet (Howard et al., 2017) for the same number of param-
eters, they have higher inference costs (measured in terms
of multiply-adds). In follow-up experiments in Appendix A,
we tweaked our top models in order to roughly match the
computation of these mobile-sized models.

5. Understanding One-Shot Models

We next discuss why the same fixed set of model weights
can be shared across many different architectures. One key
observation from Figure 5 is that while one-shot model ac-
curacies range from 30% to 90% on CIFAR-10, stand-alone
model accuracies range from 92.0% to 94.5%. Although
the accuracies of the best models decrease by only 5 - 10
percentage points when we switch from stand-alone to one-
shot training, the accuracies of less promising architectures
drop by as much as 60 percentage points. Similar behav-
ior is shown in Brock et al. (2017), where one-shot model
accuracies range from 10% to 60% on CIFAR-100 while
stand-alone model accuracies range from 70% to 75%. Why
should the spread of one-shot model accuracies be so much
larger than the spread of stand-alone model accuracies?

Our hypothesis is that the one-shot model learns which
operations in the network are most useful, and comes to rely
on these operations when they are available. Removing the
less important operations from the network has relatively
little influence on the model’s predictions and only a modest
effect on its final prediction accuracy. Removing the most
important operations from the network, however, can lead
to dramatic changes in the model’s predictions and a large
drop in prediction accuracy.

In order to test this hypothesis, we sampled a collection of
architectures where almost all the operations in the one-shot
model were enabled (base dropout rate 7 = 107%). We
compared the predictions made by these reference architec-
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Figure 6. Comparison of one-shot model accuracies on the vali-
dation set vs. symmetrized KL divergences on the training set.
Lower KL divergences on the training set are strongly correlated
with higher validation set accuracies.

tures against the predictions of candidate architectures with
fewer operations that were sampled from our actual search
space. The comparison was performed on batches examples
from the training set. If our hypothesis is correct then we
should expect the predictions made by the best-performing
models to be similar to the predictions made when all the
operations in the network are enabled.

We use symmetrized KL divergence to quantify the ex-
tent to which candidate architectures’ predictions differ
from those of reference architectures on a given exam-
ple. Our one-shot model is trained using a logistic loss
function, so the reference output can be interpreted as a
probability distribution (p1, pe, . . ., p,) over output classes.
Compared against a candidate architecture that produces
output distribution (g1, ¢a, - - -, ¢n ), the KL divergence is
estimated as Dxi(p || ¢) = Y i, pilog B We use
DxiL(p || 9) + DxL(q || p), the symmetrized KL divergence
between p and g, to quantify the similarity of the two dis-
tributions. If the distributions are nearly identical for the
current training example then the symmetrized KL diver-
gence will be close to 0. Conversely, the symmetrized KL
divergence can grow quite large if the distributions are very
different. We compute the KL divergence on 64 random
examples from the training set and report the average.

The results of our experiment, shown in Figure 6, are strik-
ing. KL divergences measured on the training set are
strongly correlated with prediction accuracies measured
on the validation set. Furthermore, the KL divergences are
computed without making use of any information about the
examples’ training labels. Combined with the results of
Figure 5, this means that the closer a candidate architec-
ture’s predictions are to those of our reference architectures
(where most of the operations in the one-shot model are
turned on), the higher its quality typically is during stand-
alone training. Weight sharing implicitly forces the one-shot
model to identify and focus on the operations that are most
useful for generating good predictions.
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Figure 7. Left: symmetrized KL divergences from six architec-
tures over the course of one-shot model training. Right: the
one-shot validation accuracies of all six architectures at the end
of training. The top-to-bottom order of the KL divergences in the
plot mirrors the top-to-bottom order of the entries in the legend.

The same experiment suggests an explanation for the ex-
aggerated difference in validation set accuracies that we
observe when using the one-shot model. If certain oper-
ations are especially useful to the one-shot model, it will
come to rely on those operations’ outputs when generating
predictions. Removing them from the network will result
in catastrophic damage and extremely low validation set
accuracies. On the other hand, less-useful operations can be
removed from the network with only a modest impact on
the one-shot model’s predictions.

We next explore how the KL divergences evolve over time.
We sampled six different architectures and tracked their
symmetrized KL divergences over the course of training.
Results are shown in Figure 7. Initially, all of the KL diver-
gences are low because the model’s predictions are initially
low-confidence, and each output class is assigned a roughly
equal probability. Our model gradually becomes more con-
fident in its predictions, and the predictions of different
architectures begin to separate. This accounts for the spike
in KL divergences. Later in training, the most useful opera-
tions in the network have a strong influence over the model’s
predictions, and receive low KL divergences.

6. Conclusion

We analyzed a class of efficient architecture search meth-
ods based on weight sharing in a model containing the
entire search space of architectures. We designed a train-
ing method and search space to address the fundamental
challenges in making these methods work. Through this
simplified lens, we explained how the fixed set of weights
in a one-shot model can be used to predict the performance
of stand-alone architectures, demonstrating that one shot
architecture search only needs gradient descent, not rein-
forcement learning or hypernetworks, to work well.
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