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A dvances in machine learning 
have led to transformational 

new fields of technology and intro-
duced capabilities not previously 
possible. Emerging applications 
in self-driving cars, data analytics 
on massive datasets, adaptive and 
interactive entertainment, and Web 
search and sentiment analysis are 
but a few of the technologies that 
will impact society in the decades 
to come. 

Perhaps no technology field 
has relied on or benefited from 
advances in machine learning more 
than systems and computer secu-
rity. Machine learning is the basis 
for almost all nonsignature-based 
detection, whether identifying 

malware, network intrusions, spam, 
rogue processes, fraudulent trans-
actions, or other malicious activ-
ity. Indeed, machine learning has 
become so intertwined with secu-
rity that the technical community’s 
ability to apply machine learning 
securely will likely be crucial to 
future environments.

In this article, we consider 
whether today’s use of machine 
learning in security-sensitive appli-
cations is vulnerable to nonobvious 
and potentially dangerous manipu-
lation. Here, we examine sensitivity 
not only in the context of computer 
security but also in any applica-
tion whose misuse might lead to 
harm—for instance, crashing an 

autonomous vehicle or bypassing 
a content filter. We explore the use 
of machine learning in this area par-
ticularly in light of recent advances 
in the computationally efficient 
creation of adversarial samples 
targeted at widely used classes of 
machine-learning approaches.

Machine Learning 
in Practice
Consider a generalized use of 
machine learning as a classifier 
and an example system identify-
ing spam email. (For brevity, we 
restrict ourselves to machine-
learning classifiers—identifying a 
sample as being from some output 
class, among a predefined finite set 
of [potentially] many classes—
trained on labeled data. Many 
other kinds of machine-learning 
systems and training techniques 
exist; our arguments apply almost 
universally.) A classifier is a sys-
tem that takes an input sample and 
identifies it as one of several output 
classes (or none, if the sample can’t 
be identified confidently). In this 
example, the system determines 
whether the item is in the “spam” or 
“not spam” class. 

In machine learning, each 
sample is input into the classifi-
cation process as a vector of fea-
tures that describe the sample. 
For email, typical features might 
be keywords, sender and recipi-
ent domain names, existence of 
embedded content, or number 
of emails of a particular type. The 
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system determination is based on 
how that set of input features is 
interpreted by the model for the 
classification process—in this case, 
a model of how email input fea-
tures indicate spam or not. 

Conceptually, a model encodes 
semantic information about how 
certain features or sets of features 
relate to the output class. For exam-
ple, certain keywords or 
keyword combinations 
could be strong indica-
tors of an email being 
spam. In practice, models 
will encode many differ-
ent such relationships, 
each weighted on the 
basis of the association’s 
strength. An aggregate calculation 
over the feature associations with 
respect to the input features results 
in an output classification and/or 
confidence score. 

To date, the key assessment met-
ric for these systems has been accu-
racy: How often does the model 
pick the correct class for a sample? 
Several accuracy measures exist, 
including precision, sensitivity, and 
specificity. These quality assess-
ments directly relate to assumptions 
about the expected distribution 
of the classification system input 
and don’t account for adversarial 
behavior, which often falls outside 
of this expected input distribution. 
In other words, accuracy can be 
viewed as a measure of the system’s 
average performance, whereas the 
security evaluation is interested in 
worst-case performance.

Adversarial Samples
One of the limitations of machine 
learning in practice is that it’s 
subject to adversarial samples. 
Adversarial samples are carefully 
modified inputs crafted to dictate 
a selected output. In the context of 
classification, adversarial samples 
are crafted to force a target model 
to classify them in a class different 
from their legitimate class—for 

instance, spam emails that bypass 
a spam filter. The modifications, 
called perturbations, are introduced 
to yield a specific adversary-selected 
misclassification. In general, adver-
saries want to perturb the sample as 
little as possible so that to a human 
observer, for example, it remains 
indistinguishable from the original 
unaltered sample.

Over the past few years, sev-
eral algorithms used to automate 
adversarial-sample generation have 
emerged for multiclass classifiers 
built, for example, with deep neural 
networks. In late 2013, Christian 
Szegedy and his colleagues were 
the first to reveal the vulnerability 
of trained deep neural networks to 
slight perturbations of their inputs 
when they cast sample generation 
as an approximate optimization.1 
Ian Goodfellow and his colleagues 
followed with a fast gradient sign 
method, which linearly approxi-
mates the cost function in the neigh-
borhood of legitimate samples to 
allow faster crafting of adversarial 
samples.2 Finally, Nicolas Paper-
not and his colleagues proposed 
an iterative crafting algorithm that 
uses the model’s Jacobian to select 
perturbations yielding the adver-
sary’s desired classification. They 
showed that adversaries can reli-
ably achieve chosen adversarial tar-
get classes for any legitimate source 
class.3 Their iterative approach 
also allows greater control over 
the introduced perturbations, thus 
reducing their magnitude. These 
more recent works expand on 
the classical adversarial machine-
learning efforts described by Pavel 
Laskov and Richard Lippmann.4 

For example, related past work 
explored the formalization of worst-
case errors against learned binary 
classifiers,5 reverse engineering of 
binary linear classifiers to identify 
inputs they misclassify,6 and con-
tamination of training data jeopar-
dizing binary classifiers’ integrity 
and availability.7

Consider the following real-
world scenario in which 
an autonomous vehicle 
uses a camera to identify 
and recognize roadside 
signs (see Figure 1). Once 
a sign has been identified, 
its image is fed to a neural 
network for classification 
in one of the predefined 

sign classes. Here, the neural net-
work identifies the sign as a stop 
sign. Now, consider adversaries 
capable of altering the input of this 
neural network. They can force the 
model to output a wrong class upon 
processing a slightly perturbed vari-
ant of the stop sign’s image. If adver-
saries can transfer perturbations to 
the neural network’s image input, 
the autonomous system can be 
misled into misclassifying signs—
reading stop signs as yield signs, for 
instance—potentially resulting in 
vehicles crashing into one another.

Again, to humans, adversarial 
samples are often indistinguish-
able from original samples. Humans 
would classify both images in Fig-
ure 2 as stop signs. In real-world 
tests using the Papernot algorithm, 
a trained deep-learning neural net-
work classifies Figure 2a as a stop 
sign and Figure 2b as a yield sign. 
In actuality, the image on the left 
is an ordinary image of a stop sign, 
whereas the image on the right is an 
adversarial sample crafted by solving 
the earlier optimization problem.

Learning Models from 
Training Data
To understand why adversarial 
samples exist, it’s important to 
explore how learning models are 

In the context of classification, 

adversarial samples are crafted to force 

a target model to classify them in a class 

different from their legitimate class.
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built. Although there are other 
approaches, the models we discuss 
here are trained in a supervised 
fashion using labeled training data. 
This training data is a corpus of 
samples taken from the expected 
input distribution and labeled with 
their class. In the case of our spam 
system, this sample data would be 
a large number of emails that indi-
cate whether or not they are spam. 
In the sign recognition system, the 
training data would include numer-
ous signs and their type: stop, yield, 
and so on. These labels are taken as 
ground truth in constructing the 
models to be used at runtime. 

Generally, model training 
begins with a null model represent-
ing no information. The training 
method iteratively processes each 
input sample in the training data 
and updates the model. This itera-
tive refinement process strength-
ens or weakens the classification 
associations as supporting evi-
dence is identified. Generally, the 
larger and more diverse the train-
ing data is, the more accurate the 
system becomes.

The refinement process of 
the input data’s internal repre-
sentations is specific to the kind 
of machine-learning technique 
employed: shallow and deep neu-
ral networks represent the model 

as a complex feed-forward network 
of mathematical neurons (para-
meterized elementary computing 
units), support vector machines use 
high-dimensional hyperplanes to 
separate classes, and random for-
ests represent the model as a collec-
tion of learned decision trees. Some 
machine-learning techniques don’t 
store a model—for instance, near-
est neighbors—but simply use lazy 
evaluation to compare unseen sam-
ples to the training samples.

Regardless of technique, the 
model represents an approximation 
of the phenomena being modeled; 
unless the training data contains 
all possible input feature vectors, it 
can’t fully capture a complete model 
of the target domain. In nonadver-
sarial environments, this often isn’t 
a problem. Data representative of 
the expected input distribution is 
sufficient for training. With enough 
input emails or images of signs to 
train on, input normally encoun-
tered at runtime will be sufficiently 
similar to allow the model to output 
a correct classification prediction by 
extrapolating from training samples.

Exploiting Natural 
Complexity in Decision 
Boundaries
A problem arises when adversar-
ies exploit the system by providing 

input samples that aren’t within the 
expected input domain. Here, they 
use information about the system to 
find where the model is inaccurate 
owing to items missing from the 
training set. 

Consider an unsophisticated 
sample-generation algorithm in 
which adversaries simply test differ-
ent input samples until they find a 
combination of input features that 
reliably achieves the desired clas-
sification. For example, spammers 
could simply modify email typo-
graphy, vocabulary, addresses, and 
domains; test against the system; 
and see which are marked as legiti-
mate (not spam). Indeed, this is 
common practice today; each new 
spam campaign contains carefully 
tested and selected email features 
that reliably bypass online spam fil-
tering systems.

Figure 3 illustrates model train-
ing and use. In this figure, the plane 
represents all possible input fea-
ture vectors. For each sample, the 
input feature values uniquely iden-
tify its coordinates in the plane. 
Two classes A and B (that is, spam 
and not spam) are regions in a two-
dimensional plane separated by the 
smooth curved line. All samples 
above the smooth curved line are 
in class A, and those below are in 
class B. This line is called the real 

Figure 1. An autonomous vehicle uses a camera to identify and recognize roadside signs. Once a sign has been identified, its image is fed to a 
neural network for classification in one of the predefined sign classes. Here, the neural network identifies the sign as a stop sign.
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decision boundary. The model is 
trained using the input samples 
labeled X. On the basis of these 
samples, the training algorithm 
approximates the class separa-
tion as the linear dashed line—the 
model decision boundary. The dis-
tance between the real and model 
decision boundary is called the 
model error or space of adversarial 
samples (adversarial regions). 

One might intuit that the model 
the algorithm learned by was faulty, 
but this isn’t true.

This is a legitimate and highly 
accurate model for the training 
data: every sample in the input 
sample distribution is correctly 
classified. Indeed, one can’t do 
better than this without more 
samples or information; a natural 
error is introduced by the fact that 
the training data can’t, in almost 
all circumstances, cover the entire 
feature space or provide enough 
data to illuminate the real deci-
sion boundary with anything other 
than approximate accuracy. Mak-
ing matters worse, the real deci-
sion boundary generally becomes 
more complex as the phenom-
enon becomes more nuanced and 
the feature and dimension space 
becomes larger. 

It’s this complexity that adversar-
ies exploit. They simply take a sam-
ple and use trial and error (as in our 
earlier spam example) or informa-
tion about the model error (as in the 
recently developed adversarial sam-
ple algorithms) to find a few pertur-
bations that “move” the sample into 
the region of adversarial samples.

Herein lies the crux of these sys-
tems’ vulnerability. Because adver-
saries can control the input sample 
features, they explicitly drive the 
malicious sample into the regions 
of the input space that are ambigu-
ous with respect to the model. In 
short, they search for or calculate a 
sample that’s in one class (for exam-
ple, spam or stop sign) but, owing 
to the ambiguity resulting from 

incomplete training data, is classi-
fied as being in another class (for 
example, not spam or yield sign). 

The Importance of 
Model Resilience
We argue that to address adver-
sarial action, a new metric for 
machine-learning model quality 
is needed: model resilience.8 Model 
resilience can be defined as robust-
ness to perturbations of its input. 
Simply put, the more perturbation 
needed to move a sample from its 
legitimate class to an adversarial 

class, the more robust the model 
is to adversarial manipulations of 
its inputs. 

In practice, we can achieve 
resilience in several ways. In the 
simplest approach, we can simply 
require higher confidence in out-
puts. This would move the decision 
boundaries further apart and thus 
leave fewer regions of ambiguity. 
This of course would affect model 
accuracy. Other approaches would 
be to refine the training process to 
smooth decision boundaries, or to 
measure each input’s likelihood of 

Figure 2. To humans, adversarial samples are indistinguishable from original samples. (a) An ordinary 
image of a stop sign. (b) An image crafted by an adversary.

(a) (b)

Figure 3. Model training and use. The plane represents all possible input feature vectors. For each 
sample, the input feature values uniquely identify its coordinates in the plane. Two classes A and B (that 
is, spam and not spam) are regions in a two-dimensional plane separated by the smooth curved line.
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being an adversarial sample based 
on its characteristics, for example, 
closeness to the centroid of a non­
selected class. Such approaches 
aren’t well understood, but they’re 
certain to be a necessary element 
to securing the future of machine 
learning in adversarial settings.

M achine learning is driving 
rapid innovation and pro­

viding new insights into how we 
can interpret and control complex 
data and environments. With these 
advances, adversaries will seek to 
circumvent their controls and drive 
systems for their malicious ends. 
In recognition of this reality, the 
machine­learning and security com­
munities must endeavor to inocu­
late systems against such misuse. 
Thus, we must revisit our measures 
of quality for machine­learning 
techniques and weigh not only the 
results they produce but also their 
ability to resist samples carefully 
generated by adversaries. 
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