
Inductive Learning Algorithms and Representations for
Text Categorization

Susan Dumais
Microsoft Research
One Microsoft Way

Redmond, WA 98052

sdumais@microsoft.com

John Platt
Microsoft Research
One Microsoft Way

Redmond, WA 98052

jplatt@microsoft.com

Mehran Sahami
Computer Science Department

Stanford University
Stanford, CA 94305-9010

sahami@cs.stanford.edu

David Heckerman
Microsoft Research
One Microsoft Way

Redmond, WA 98052

heckerma@microsoft.com

1. ABSTRACT
Text categorization – the assignment of natural
language texts to one or more predefined
categories based on their content – is an
important component in many information
organization and management tasks. We
compare the effectiveness of five different
automatic learning algorithms for text
categorization in terms of learning speed, real-
time classification speed, and classification
accuracy. We also examine training set size,
and alternative document representations.
Very accurate text classifiers can be learned
automatically from training examples. Linear
Support Vector Machines (SVMs) are
particularly promising because they are very
accurate, quick to train, and quick to evaluate.
1.1 Keywords
Text categorization, classification, support vector machines,
machine learning, information management.

2. INTRODUCTION
As the volume of information available on the Internet and
corporate intranets continues to increase, there is growing
interest in helping people better find, filter, and manage
these resources. Text categorization – the assignment of
natural language texts to one or more predefined categories
based on their content – is an important component in many
information organization and management tasks. Its most
widespread application to date has been for assigning
subject categories to documents to support text retrieval,
routing and filtering.

Automatic text categorization can play an important role in
a wide variety of more flexible, dynamic and personalized
information management tasks as well: real-time sorting of
email or files into folder hierarchies; topic identification to
support topic-specific processing operations; structured
search and/or browsing; or finding documents that match
long-term standing interests or more dynamic task-based
interests. Classification technologies should be able to
support category structures that are very general, consistent
across individuals, and relatively static (e.g., Dewey
Decimal or Library of Congress classification systems,
Medical Subject Headings (MeSH), or Yahoo!’s topic
hierarchy), as well as those that are more dynamic and
customized to individual interests or tasks (e.g., email about
the CIKM conference).

In many contexts (Dewey, MeSH, Yahoo!, CyberPatrol),
trained professionals are employed to categorize new items.
This process is very time-consuming and costly, thus
limiting its applicability. Consequently there is increased
interest in developing technologies for automatic text
categorization. Rule-based approaches similar to those
used in expert systems are common (e.g., Hayes and

Weinstein’s CONSTRUE system for classifying Reuters
news stories, 1990), but they generally require manual
construction of the rules, make rigid binary decisions about
category membership, and are typically difficult to modify.
Another strategy is to use inductive learning techniques to
automatically construct classifiers using labeled training
data. Text classification poses many challenges for
inductive learning methods since there can be millions of
word features. The resulting classifiers, however, have
many advantages: they are easy to construct and update,
they depend only on information that is easy for people to
provide (i.e., examples of items that are in or out of
categories), they can be customized to specific categories of
interest to individuals, and they allow users to smoothly
tradeoff precision and recall depending on their task.

A growing number of statistical classification and machine
learning techniques have been applied to text
categorization, including multivariate regression models
(Fuhr et al., 1991; Yang and Chute, 1994; Schütze et al.,
1995), nearest neighbor classifiers (Yang, 1994),
probabilistic Bayesian models (Lewis and Ringuette, 1994),
decision trees (Lewis and Ringuette, 1994), neural networks
(Wiener et al., 1995; Schütze et al., 1995), and symbolic
rule learning (Apte et al., 1994; Cohen and Singer, 1996).
More recently, Joachims (1998) has explored the use of
Support Vector Machines (SVMs) for text classification
with promising results.

In this paper we describe results from experiments using a
collection of hand-tagged financial newswire stories from
Reuters. We use supervised learning methods to build our
classifiers, and evaluate the resulting models on new test
cases. The focus of our work has been on comparing the
effectiveness of different inductive learning algorithms
(Find Similar, Naïve Bayes, Bayesian Networks, Decision
Trees, and Support Vector Machines) in terms of learning
speed, real-time classification speed, and classification
accuracy. We also explored alternative document
representations (words vs. syntactic phrases, and binary vs.
non-binary features), and training set size.

3. INDUCTIVE LEARNING METHODS
3.1 Classifiers
A classifier is a function that maps an input attribute vector,

)(n321 ,...x,x,xxx =r
, to a confidence that the input belongs

to a class – that is, =)(xf
r

confidence(class),. In the case

of text classification, the attributes are words in the
document and the classes correspond to text categories
(e.g., typical Reuters categories include acquisitions,
earnings, interest).

Examples of classifiers for the Reuters category interest
include:

• if (interest AND rate) OR (quarterly), then
confidence(interest category) = 0.9

• confidence(interest category) = 0.3*interest +
0.4*rate + 0.7*quarterly

Some of the classifiers that we consider (decision trees,
naïve-Bayes classifier, and Bayes nets) are probabilistic in
the sense that confidence(class) is a probability distribution.

3.2 Inductive Learning of Classifiers
Our goal is to learn classifiers like these using inductive
learning methods. In this paper we compared five learning
methods:

• Find Similar (a variant of Rocchio’s method for
relevance feedback)

• Decision Trees

• Naïve Bayes

• Bayes Nets

• Support Vector Machines (SVM)

We describe these different models in detail in section 2.4.
All methods require only on a small amount of labeled
training data (i.e., examples of items in each category) as
input. This training data is used to “learn” parameters of
the classification model. In the testing or evaluation phase,
the effectiveness of the model is tested on previously
unseen instances.

Learned classifiers are easy to construct and update. They
require only subject knowledge (“I know it when I see it”)
and not programming or rule-writing skills. Inductively
learned classifiers make it easy for users to customize
category definitions, which is important for some
applications. In addition, all the learning methods we
looked at provide graded estimates of category membership
allowing for tradeoffs between precision and recall,
depending on the task.

3.3 Text Representation and Feature
Selection
Each document is represented as a vector of words, as is
typically done in the popular vector representation for
information retrieval (Salton & McGill, 1983). For the
Find Similar algorithm, tf*idf term weights are computed
and all features are used. For the other learning algorithms,
the feature space is reduced substantially (as described
below) and only binary feature values are used – a word
either occurs or does not occur in a document.

For reasons of both efficiency and efficacy, feature
selection is widely used when applying machine learning
methods to text categorization. To reduce the number of
features, we first remove features based on overall
frequency counts, and then select a small number of
features based on their fit to categories. Yang and Pedersen
(1997) compare a number of methods for feature selection.
We used the mutual information measure. The mutual
information MI(xi, c) between a feature, xi, and a category,
c is defined as:

{ }{ }
∑ ∑
∈ ∈

=
1,0 1,0)()(

),(
log),(),(

ix i

i
i

c
i cPxP

cxP
cxPcxMI

We select the k features for which mutual information is
largest for each category. These features are used as input
to the various inductive learning algorithms. For the SVM
and decision-tree methods we used k=300, and for the
remaining methods we used k=50. We did not rigorously
explore the optimum number of features for this problem,
but these numbers provided good results on a training
validation set so they were used for testing.

3.4 Inductive Learning of Classifiers
3.4.1 Find Similar
Our Find Similar method is a variant of Rocchio’s method
for relevance feedback (Rocchio,. 1971) which is a popular
method for expanding user queries on the basis of relevance
judgements. In Rocchio’s formulation, the weight assigned
to a term is a combination of its weight in an original query,
and judged relevant and irrelevant documents.

r

relnoni
ji

r

reli
ji

jqj nN

x

n

x
xx

−
⋅+⋅+⋅=

∑∑
−∈∈

,,

, γβα

The parameters α, β, and γ control the relative importance
of the original query vector, the positive examples and the
negative examples. In the context of text classification,
there is no initial query, so α=0. We also set γ=0 so we
could easily use available code. Thus, for our Find Similar
method the weight of each term is simply the average (or
centroid) of its weights in positive instances of the category.

There is no explicit error minimization involved in
computing the Find Similar weights. Thus, there is no
learning time so to speak, except for taking the sum of
weights from positive examples of each category. Test
instances are classified by comparing them to the category
centroids using the Jaccard similarity measure. If the score
exceeds a threshold, the item is classified as belonging to
the category.

3.4.2 Decision Trees
A decision tree was constructed for each category using the
approach described by Chickering et al. (1997). The
decision trees were grown by recursive greedy splitting, and
splits were chosen using the Bayesian posterior probability
of model structure. We used a structure prior that
penalized each additional parameter with probability 0.1,
and derived parameter priors from a prior network as
described in Chickering et al. (1997) with an equivalent
sample size of 10. A class probability rather than a binary
decision is retained at each node.

3.4.3 Naïve Bayes
A naïve-Bayes classifier is constructed by using the training
data to estimate the probability of each category given the

document feature values of a new instance. We use Bayes
theorem to estimate the probabilities:

)(

)()|(
)|(

xP

cCPcCxP
xcCP kk

k r

r
r ==

==

The quantity)|(kcCxP =r
is often impractical to

compute without simplifying assumptions. For the Naïve
Bayes classifier (Good, 1965), we assume that the features
X1,…Xn are conditionally independent , given the category
variable C. This simplifies the computations yielding:

∏ ===
i

kik cCxPcCxP)|()|(
r

Despite the fact the assumption of conditional
independence is generally not true for word appearance in
documents, the Naïve Bayes classifier is surprisingly
effective.

3.4.4 Bayes Nets
More recently, there has been interest in learning more
expressive Bayesian networks (Heckerman et al., 1995) as
well as methods for learning networks specifically for
classification (Sahami, 1996). Sahami, for example, allows
for a limited form of dependence between feature variables,
thus relaxing the very restrictive assumptions of the Naïve
Bayes classifier. We used a 2-dependence Bayesian
classifier that allows the probability of each feature xi to be
directly influenced by the appearance/non-appearance of at
most two other features.

3.4.5 Support Vector Machines (SVMs)
Vapnik proposed Support Vector Machines (SVMs) in
1979 (Vapnik, 1995), but they have only recently been
gaining popularity in the learning community. In its
simplest linear form, an SVM is a hyperplane that separates
a set of positive examples from a set of negative examples
with maximum margin – see Figure 1.

Figure 1 – Linear Support Vector Machine

The formula for the output of a linear SVM is
,bxwu −⋅= rr

where w
r

is the normal vector to the

hyperplane, and x
r

is the input vector.

In the linear case, the margin is defined by the distance of
the hyperplane to the nearest of the positive and negative

VXSSRUW�YHFWRUV

w
r

examples. Maximizing the margin can be expressed as an

optimization problem: minimize
2

2

1
w
r

 subject to

ibxwy ii ∀≥−⋅ ,1)(
rr

 where xi is the ith training example

and yi is the correct output of the SVM for the ith training
example. Of course, not all problems are linearly
separable. Cortes and Vapnik (1995) proposed a
modification to the optimization formulation that allows,
but penalizes, examples that fall on the wrong side of the
decision boundary. Additional extensions to non-linear
classifiers were described by Boser et al. in 1992. SVMs
have been shown to yield good generalization performance
on a wide variety of classification problems, including:
handwritten character recognition (LeCun et al., 1995), face
detection (Osuna et al., 1997) and most recently text
categorization (Joachims, 1998). We used the simplest
linear version of the SVM because it provided good
classification accuracy, is fast to learn and fast for
classifying new instances.

Training an SVM requires the solution of a QP problem
Any quadratic programming (QP) optimization method can
be used to learn the weights, w

r
, on the basis of training

examples. However, many QP methods can be very slow
for large problems such as text categorization. We used a
new and very fast method developed by Platt (1998) which
breaks the large QP problem down into a series of small QP
problems that can be solved analytically. Additional
improvements can be realized because the training sets used
for text classification are sparse and binary. Once the
weights are learned, new items are classified by computing

xw
rr ⋅ where w

r
is the vector of learned weights, and x

r
 is

the binary vector representing the new document to classify.

After training the SVM, we fit a sigmoid to the output of
the SVM using regularized maximum likelihood fitting, so
that the SVM can produce posterior probabilities that are
directly comparable between categories.

4. REUTERS DATA SET
4.1 Reuters-21578 (ModApte split)
We used the new version of Reuters, the so-called Reuters-
21578 collection. (This collection is publicly available at:
http://www.research.att.com/~lewis/reuters21578.html.)
We used the 12,902 stories that had been classified into 118
categories (e.g., corporate acquisitions, earnings, money
market, grain, and interest). The stories average about 200
words in length.

We followed the ModApte split in which 75% of the stories
(9603 stories) are used to build classifiers and the
remaining 25% (3299 stories) to test the accuracy of the
resulting models in reproducing the manual category
assignments. The stories are split temporally, so the
training items all occur before the test items. The mean
number of categories assigned to a story is 1.2, but many
stories are not assigned to any of the 118 categories, and

some stories are assigned to 12 categories. The number of
stories in each category varied widely as well, ranging from
“earnings” which contains 3964 documents to “castor-oil”
which contains only one test document. Table 1 shows the
ten most frequent categories along with the number of
training and test examples in each. These 10 categories
account for 75% of the training instances, with the
remainder distributed among the other 108 categories.

&DWHJRU\�1DPH 1XP�7UDLQ 1XP�7HVW

(DUQ ���� ����

$FTXLVLWLRQV ���� ���

0RQH\�I[��� ���

*UDLQ ��� ���

&UXGH ��� ���

7UDGH ��� ���

,QWHUHVW ��� ���

6KLS ��� ��

:KHDW ��� ��

&RUQ ��� ��

Table 1 – Number of Training/Test Items

4.2 Summary of Inductive Learning Process
for Reuters
Figure 2 summarizes the process we use for testing the
various learning algorithms. Text files are processed using
Microsoft’s Index Server. All features are saved along with
their tf*idf weights. We distinguished between words
occurring in the Title and Body of the stories. For the Find
Similar method, similarity is computed between test
examples and category centroids using all these features.
For all other methods, we reduce the feature space by
eliminating words that appear in only a single document
(hapax legomena), then selecting the k words with highest
mutual information with each category. These k-element
binary feature vectors are used as input to four different
learning algorithms. For SVMs and decision trees k=300,
and for the other methods, k=50.

Figure 2 – Schematic of Learning Process

text files

word counts per file

data set

Decision tree

Index Server

Feature selection

Naïve Bayes

Find similar

Bayes nets Support vector
machine

Learning Methods

test classifier

A separate classifier is learned for each category. New
instances are classified by computing a score and
comparing the score with a learned threshold. New
instances exceeding the threshold are said to belong to the
category. As already mentioned, all classifiers output a
graded measure of category membership, so different
thresholds can be set to favor precision or recall depending
on the application – for Reuters we optimized the average
of precision and recall (details below).

All model parameters and thresholds are set to optimize
performance on a validation set and are not modified during
testing. For Reuters, the training set contains 9603 stories
and the test set 3299 stories. In order to decide which
models to use we performed initial experiments on a subset
of the training data, which we subdivided into 7147 training
stories and 2456 validation stories for this purpose. We
used this to set the number of features (k), decision
thresholds and document representations to use for the final
runs. We estimated parameters for these chosen models
using the full 9603 training stories and evaluated
performance on the 3299 test items. We did not further
optimize performance by tuning parameters to achieve
optimal performance in the test set.

5. RESULTS
5.1 Training Time
Training times for the 9603 training examples vary
substantially across methods. We tested these algorithms
on a 266MHz Pentium II running Windows NT. Unless
otherwise noted times are for the 10 largest categories,
because they take longest to learn. Find Similar is the
fastest “learning” method (<1 CPU sec/category) because
there is no explicit error minimization. The linear SVM is
the next fastest (<2 CPU secs/category). These are both
substantially faster than Naïve Bayes (8 CPU
secs/category), Bayes Nets (~145 CPU secs/category) or
Decision Trees (~70 CPU secs/category). In general,
performing the mutual-information feature-extraction step
takes much more time than any of the inductive learning
algorithms. The linear SVM with SMO, for example, takes
an average of 0.26 CPU seconds to train a category when
averaged over all 118 Reuters categories.

The training speeds for the SVM are particularly
impressive, since training speed has been a barrier to its
wide spread applicability for large problems. Platt’s SMO
algorithm is roughly 30 times faster than the popular
chunking algorithm on the Reuters data set (Vapnik, 1995).

5.2 Classification Speed for New Instances
In many applications, it is important to quickly classify new
instances. All of the classifiers we explored are very fast in
this regard – all require less than 2 msec to determine if a
new document should be assigned to a particular category.
Far more time is spent in pre-processing the text to extract
even simple words than is spent in categorization. With the
SVM model, for example, we need only compute xw

rr ⋅ ,

wherew
r

is the vector of learned weights, and x
r

 is feature
vector for the new instance. Since features are binary, this
is just the sum of up to 300 numbers.

5.3 Classification Accuracy
Many evaluation criteria for classification have been
proposed. The most popular measures are based on
precision and recall. Precision is the proportion of items
placed in the category that are really in the category, and
Recall is the proportion of items in the category that are
actually placed in the category. We report the average of
precision and recall (the so-called breakeven point) for
comparability to earlier results in text classification. In
addition, we plot precision as a function of recall in order to
understand the relationship among methods at different
points along this curve. Table 2 summarizes micro-
averaged break even performance for the 5 different
learning algorithms for the 10 most frequent categories as
well as the overall score for all 118 categories.

Support Vector Machines were the most accurate method,
averaging 92% for the 10 most frequent categories and 87%
over all 118 categories. Accuracy for Decision Trees was
3.6% lower, averaging 88.4% for the 10 most frequent
categories. Bayes Nets provided some performance
improvement over Naïve Bayes as expected, but the
advantages were rather small. As has previously been
reported, all the more advanced learning algorithms
increase performance by 15-20% compared with Rocchio-

Fin dsim N B a yes B ayesN ets Trees Lin earSVM
earn 92.9% 95.9% 95.8% 97.8% 98.0%
acq 64.7% 87.8% 88.3% 89.7% 93.6%
m oney-fx 46.7% 56.6% 58.8% 66.2% 74.5%
g rain 67.5% 78.8% 81.4% 85.0% 94.6%
crude 70.1% 79.5% 79.6% 85.0% 88.9%
trade 65.1% 63.9% 69.0% 72.5% 75.9%
in terest 63.4% 64.9% 71.3% 67.1% 77.7%
ship 49.2% 85.4% 84.4% 74.2% 85.6%
w heat 68.9% 69.7% 82.7% 92.5% 91.8%
corn 48.2% 65.3% 76.4% 91.8% 90.3%

Avg Top 10 64.6% 81.5% 85.0% 88.4% 92.0%
Avg All C at 61.7% 75.2% 80.0% N /A 87.0%

Table 2 – Breakeven Performance for 10 Largest Categories, and over all 118 Categories.

style query expansion (Find Similar).

Both SVMs and Decision Trees produce very high overall
classification accuracy, and are among the best known
results for this test collection. Most previous results have
used the older Reuters collection, so it is difficult to
compare precisely, but 85% is the best micro-averaged
breakeven point previously reported (Yang, 1997).
Joachims (1998) used the new collection, and our SVM
results are more accurate (87% for our linear SVM vs.
84.2% for Joachims’ linear SVM and 86.5% for his radial
basis function network with gamma equals 0.8) and far
more efficient for both initial model learning and for real-
time classification of new instances. It is also worth noting
that Joachims chose optimal parameters based on the test
data and used only the 90 categories that have at least one
training and test item, and our results would improve some
if we did the same. Apte, et al. (1998) have recently
reported accuracies slightly better than ours (87.8%) for a
system with 100 decision trees. Their approach involves
learning many decision trees using an adaptive resampling
approach (boosting) and is much more complex to learn
than our one simple linear classifier.

The 92% breakeven point (for the top 10 categories)
corresponds roughly to 92% precision at 92% recall. Note,
however, that the decision threshold can be varied to
produce higher precision (at the cost of lower recall), or
higher recall (at the cost of lower precision), as appropriate
for different applications. A user would be quite happy
with 92% precision for information discovery tasks, but
might want additional human confirmation before deleting
important email messages with this level of accuracy.
Figure 3 shows a representative ROC curve for the category
“grain”. The advantages of SVM can be seen over the
entire recall-precision space.

Figure 3 – Precision-Recall Curve for Category “grain”

Although we have not conducted any formal tests, the
learned classifiers appear to be intuitively reasonable. For
example, the SVM representation for the category “interest”
includes the words prime (.70), rate (.67), interest (.63),

rates (.60), and discount (.46) with large positive weights,
and the words group (-.24), year (-.25), sees (-.33) world (-
.35), and dlrs (-.71) with large negative weights.

5.4 Other Experiments
5.4.1 Sample Size
For an application like Reuters, it is easy to imagine
developing a large training corpus of the sort we worked
with (e.g., a few categories had more than 1000 positive
training instances). For other applications, training data
may be much harder to come by. For this reason we
examined how many positive training examples were
necessary to provide good generalization performance. We
looked at performance for the 10 most frequent categories,
varying the number of positive instances but keeping the
negative data the same. For the linear SVM, using 100% of
the training data (7147 stories), the micro-averaged
breakeven point is 92%. For smaller training sets we took
multiple random samples and report the average score.
Using only 10% of the training sets data performance is
89.6%, with a 5% sample 86.2%, and with a 1% sample
72.6%. When we get down to a training set with only 1%
of the positive examples, most of the categories have fewer
than 5 training instances resulting in somewhat unstable
performance for some categories. In general, having 20 or
more training instances provides stable generalization
performance.

While the number of examples needed per category will
vary across application, we find these results encouraging.
In addition, it is important to note that in most
categorization scenarios, the distribution of instances varies
tremendously across categories – some categories will have
hundreds or thousands of instances, and others only a few (a
kind of Zipf’s law for category size). In such cases, the
most popular categories will quickly receive the necessary
number of training examples in the normal course of
operation.

5.4.2 Simple words vs. NLP-derived phrases
For all the results reported so far, we simply used the
default pre-processing provided by Microsoft’s Index
Server, resulting in single words as index terms. We
wanted to explore how NLP analyses might improve
classification accuracy. For example, the phrase “interest
rate” is more predictive of the Reuters category “interest”
than is either the word “interest” or “rate”. We used NLP
analyses in a very simply fashion to aid in the extraction of
richer phases for indexing accuracy (see Lewis and Sparck
Jones, 1996 for an overview of related NLP issues). We
considered:

• factoids (e.g., Salomon_Brothers_International,
April_8)

• multi-word dictionary entries (e.g., New_York,
interest_rate)

• noun phrases (e.g., first_quarter, modest_growth)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
Re call

P
re

ci
si

o
n

LSV M

Decision Tree

Naïve Bayes

Find Similar

As before, we used tf*idf weights for Find Similar and the
mutual information criterion for selecting features for Naïve
Bayes and SVM. Unfortunately, the NLP-derived phrases
did not improve classification accuracy. For the SVM, the
NLP features actually reduced performance on the 118
categories by 0.2% Because of these initial results, we did
not try the NLP-derived phrases for Decision Trees or the
more complex 2-dependence Bayesian network, or use NLP
features in any of the final evaluations.

5.4.3 Binary vs. 0/1/2 features
We also looked at whether moving to a richer
representation than binary features would improve
categorization accuracy. To this end, we considered a
representation that encoded words as appearing 0,1, or >=2
times in each document. Initial results using this
representation with Decision Tree classifiers did not yield
improved performance, so we did not pursue this further.

6. SUMMARY
Very accurate text classifiers can be learned automatically
from training examples, as others have shown. The
accuracy of our simple linear SVM is among the best
reported for the Reuters-21578 collection. In addition, the
model is very simple (300 binary features per category),
and Platt’s SMO training method for SVMs provides a very
efficient method for learning the classifier – at least 30
times faster than the chunking method for QP, and 35 times
faster than the next most accurate classifier (Decision
Trees) we examined. Classification of new items is fast as
well since we need only compute the sum of the learned
weights for features in the test items.

We found that the simplest document representation (using
individual words delimited by white spaces with no
stemming) was at least as good as representations involving
more complicated syntactic and morphological analysis.
And, representing documents as binary vectors of words,
chosen using a mutual information criterion for each
category, was as good as finer-grained coding (at least for
Decision Trees).

Joachims (1998) work is similar to ours in its use of SVMs
for the purpose of text categorization. Our results are
somewhat more accurate than his, but, more importantly,
based on a much simpler and more efficient model.
Joachims’ best results are obtained using a non-linear radial
basis function of 9962 real-valued input features (based on
the popular tf*idf term weights). In contrast, we use a
single linear function of 300 binary features per category.

SVMs work well because they create a classifier which
maximizes the margin between positive and negative
examples. Other algorithms, such as boosting (Schapire, et
al., 1998), have been shown to maximize margin and are
also very effective at text categorization.

We have also used SVMs for categorizing email messages
and Web pages with results comparable to those reported

here -- SVMs are the most accurate classifier and the fastest
to train. We hope to extend the text representation models
to include additional structural information about
documents, as well as knowledge-based features which
have been shown to provide substantial improvements in
classification accuracy (Sahami et al., 1998). Finally, we
will look at extending this work to automatically classify
items into hierarchical category structures.

We believe that inductive learning methods like the ones we
have described can be used to support flexible, dynamic,
and personalized information access and management in a
wide variety of tasks. Linear SVMs are particularly
promising since they are both very accurate and fast.

7. REFERENCES
[1] Apte, C., Damerau, F. and Weiss, S. Automated

learning of decision rules for text categorization. ACM
Transactions on Information Systems, 12(3), 233-251,
1994.

[2] Apte, C., Damerau, F. and Weiss, S.. Text Mining
with decision rules and decision trees. Proceedings of
the Conference on Automated Learning and Discovery,
CMU, June, 1998.

[3] Boser, B. E., Guyon, I. M., and Vapnik, V., A Training
Algorithm for Optimal Margin Classifiers. Fifth
Annual Workshop on Computational Learning Theory,
ACM, 1992.

[4] Chickering D., Heckerman D., and Meek, C. A
Bayesian approach for learning Bayesian networks
with local structure. In Proceedings of Thirteenth
Conference on Uncertainty in Artificial Intelligence,
1997.

[5] Cohen, W.W. and Singer, Y. Context-sensitive
learning methods for text categorization In SIGIR ’96:
Proceedings of the 19th Annual International ACM
SIGIR Conference on Research and Development in
Information Retrieval, 307-315, 1996.

[6] Cortes, C., and Vapnik, V., Support vector networks.
Machine Learning, 20, 273-297, 1995.

[7] Fuhr, N., Hartmanna, S., Lustig, G., Schwantner, M.,
and Tzeras, K. Air/X – A rule-based multi-stage
indexing system for lage subject fields. In Proceedings
of RIAO’91, 606-623, 1991.

[8] Good, I.J. The Estimation of Probabilities: An Essay
on Modern Bayesian Methods. MIT Press, 1965.

[9] Hayes, P.J. and Weinstein. S.P. CONSTRUE/TIS: A
system for content-based indexing of a database of
news stories. In Second Annual Conference on
Innovative Applications of Artificial Intelligence, 1990.

[10] Heckerman, D. Geiger, D. and Chickering, D.M.
Learning Bayesian networks: the combination of
knowledge and statistical data. Machine Learning, 20,
131-163, 1995.

[11] Joachims, T. Text categorization with support vector
machines: Learning with many relevant features. In
Proceedings 10th European Conference on Machine
Learning (ECML), Springer Verlag, 1998. http://www-
ai.cs.uni-
dortmund.de/DOKIMENTE/Joachims_97a.ps.gz

[12] LeCun, Y., Jackel, L. D., Bottou, L., Cortes, C.,
Denker, J. S., Drucker, H., Guyon, I., Muller, U. A.,
Sackinger, E., Simard, P. and Vapnik, V. Learning
algorithms for classification: A comparison on
handwritten digit recognition. Neural Networks: The
Statistical Mechanics Perspective, 261-276, 1995.

[13] Lewis, D.D.. An evaluation of phrasal and clustered
representations on a text categorization task. In
SIGIR’92: Proceedings of the 15th Annual
International ACM SIGIR Conference on Research
and Development in Information Retrieval, 37-50,
1992.

[14] Lewis, D.D. and Hayes, P.J. (Eds.) ACM Transactions
on Information Systems – Special Issue on Text
Categorization, 12(3), 1994.

[15] Lewis, D.D. and Ringuette, M.. A comparison of two
learning algorithms for text categorization. In Third
Annual Symposium on Document Analysis and
Information Retrieval, 81-93, 1994.

[16] Lewis. D.D. and Sparck Jones. K. Natural language
processing for information retrieval. Communications
of the ACM, 39(1), 92-101, January 1996.

[17] Lewis, D.D., Schapire, R., Callan, J.P., and Papka, R.
Training algorithms for linear text classifiers. In SIGIR
'96: Proceedings of the 19th Annual International
ACM SIGIR Conference on Research and
Development in Information Retrieval, 298-306, 1996.

[18] Osuna, E., Freund, R., and Girosi, F. Training support
vector machines: An application to face detection. In
Proceedings of Computer Vision and Pattern
Recognition '97, 130-136, 1997.

[19] Platt, J. Fast training of SVMs using sequential
minimal optimization. To appear in: B. Scholkopf, C.
Burges, and A. Smola (Eds.) Advances in Kernel
Methods – Support Vector Learning, MIT Press, 1998.

[20] Rocchio, J.J. Jr. Relevance feedback in information
retrieval. In G.Salton (Ed.), The SMART Retrieval
System: Experiments in Automatic Document
Processing, 313-323. Prentice Hall, 1971.

[21] Sahami, M. Learning Limited Dependence Bayesian
Classifiers. In KDD-96: Proceedings of the Second

International Conference on Knowledge Discovery
and Data Mining, 335-338, AAAI Press, 1996.
http://robotics.stanford.edu/users/sahami/papers-
dir/kdd96-learn-bn.ps

[22] Sahami, M., Dumais, S., Heckerman, D., Horvitz, E. A
Bayesian approach to filtering junk e-mail. AAAI 98
Workshop on Text Categorization, July 1998.
http://robotics.stanford.edu/users/sahami/papers-
dir/spam.ps

[23] Salton, G. and McGill, M. Introduction to Modern
Information Retrieval. McGraw Hill, 1983.

[24] Schapire, R., Freund, Y., Bartlett, P. and Lee, W. S.
Boosting the margin: A new explanation for the
effectiveness of voting methods. Annals of Statistics, to
appear, 1998.

[25] Schütze, H., Hull, D. and Pedersen, J.O. A comparison
of classifiers and document representations for the
routing problem. In SIGIR ’95: Proceedings of the
18th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval,
229-237, 1995.

[26] Vapnik, V., The Nature of Statistical Learning Theory,
Springer-Verlag, 1995.

[27] Wiener E., Pedersen, J.O. and Weigend, A.S. A neural
network approach to topic spotting. In Proceedings of
the Fourth Annual Symposium on Document Analysis
and Information Retrieval (SDAIR’95), 1995.

[28] Yang, Y. Expert network: Effective and efficient
learning from human decisions in text categorization
and retrieval. SIGIR '94: Proceedings of the 17th
Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval,
13-22, 1994.

[29] Yang. Y. and Chute, C.G. An example-based mapping
method for text categorization and retrieval. ACM
Transactions on Information Systems, 12(3), 252-277,
1994.

[30] Yang, Y. and Pedersen, J.O. A comparative study on
feature selection in text categorization. In Machine
Learning: Proceedings of the Fourteenth International
Conference (ICML’97), 412-420, 1997.

[31] Yang, Y. An evaluation of statistical approaches to
text categorization. CMU Technical Report, CMU-CS-
97-127, April 1997.

[32] The Reuters-21578 collection is available at:
http://www.research.att.com/~lewis/reuters21578.html

