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Learning outcomes

In this first lecture we will set the scene for GPU computing. 

You will learn about:

• GPU hardware and how it fits in to HPC.

• Different generations of GPUs and current state of the art.

• The design of a GPU.

• How to work with GPUs and the CUDA programming language.
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Motivation for GPU computing
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Moore’s law (roughly) states that 
the number of transistors in an 
integrated circuit will double every 
two years. Moore made this 
prediction in 1965!

Over the last decade, we have 
begun to see an end to this (see 
plot, more in Tim Lanfear’s lecture).

This motivates the need for other 
ways to increase computational 
performance.

This is where Heterogeneous 
computing (specifically for us, GPU 
computing) comes in.



High level hardware overview
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Heterogeneous computing makes 
use of more than one type of 
computer processor (for example a 
CPU and a GPU).

Heterogeneous computing is 
sometimes called hybrid computing 
or accelerated computing. 

Some of the motivations for 
employing heterogeneous 
technologies are:

• Significant reductions in floor 
space needed.

• Energy efficiency.

• Higher throughput.

BiomedNMR [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)]

Bank of GPUs

2x CPUs

Server (often called a 
node when a collection of 

servers form a cluster)



High level hardware overview
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A typical server configuration is to 
have one or more CPUs (typically 
two) communicating with one or 
more GPUs through the PCIe bus.

The CPU has 10’s of cores, the 
GPU has 1000’s.

The server in which the GPU sits 
is often referred to as the “host”

The GPU itself is often called the 
“device”



Generations of GPUs
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Several generations of GPUs have 
been released now.

Starting in 2007 with the first 
General-Purpose Graphics 
Processing Unit (GPGPU) called 
Tesla.

The “Tesla” name has been 
subsequently used as the identifier 
for all NVIDIA HPC cards.

Currently, 5 generations of 
hardware cards are in use, although 
the Kepler and Maxwell generations 
are becoming more scarce. 

Kepler (compute capability 3.x): 
• first released in 2012, including HPC cards.
• excellent double precision arithmetic (DP or fp64).
• our practicals will use K40s and K80s.

Maxwell (compute capability 5.x): 
• first released in 2014.
• an architecture for gaming, so poor DP.

Pascal (compute capability 6.x): 
• first released in 2016. 
• many gaming cards and several HPC cards. 

Volta (compute capability 7.x): 
• first released end 2017 / start 2018.
• only HPC cards, excellent DP.

Turing (compute capability 7.5): 
• first released Q3 2018.
• this is the gaming version of Volta.
• some HPC cards (specifically for AI inference). Poor DP.



Current start of the art
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Due to the tailoring of GPUs for AI we 
now have two generations of GPU 
meeting the needs of:

Gamers: RTX cards based on the Turing 
architecture.

AI/AR/VR researchers: Titan cards and 
T4 based on both Volta and Turing 
architectures.

Scientific Computing researchers: Titan 
V and V100 cards with good DP.

Currently the biggest differentiation 
factor between the generations is the 
double precision performance

(Volta = good DP, Turing = bad DP) 

The Volta generation has only HPC (Tesla) and “prosumer” 
(Titan) cards:

Titan V: 5120 cores, 12GB (£2900) 
Tesla V100: 5120 cores, 16/32GB, PCIe or NVLink (£380)

The Turing generation has cards for gaming (GeForce) and AI 
cards (Titan and T4):

GeForce RTX 2060: 1920 cores, 6GB (£300)
GeForce RTX 2080Ti: 4352 cores, 11GB (£1100)

Titan RTX: 4608 cores, 24GB (£2400)
T4: 2560 cores, 16GB, HHHW, Low power (£2300) 



The GPU
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GPU chip (sometimes called the die) A block diagram of the V100 GPU



Basic building blocks
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The basic building block of a GPU is the “Streaming Multiprocessor” or SM. This contains:

Pascal Volta Turing

Cores 64 64 64

L1 / Shared 
Memory

64KB 96KB 64KB

L2 Cache 4096KB 6144KB 6144KB

Max # threads 2048 2048 1024



Looking into the SM
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A V100 has 80 SMs (see right).

The GV100 SM incorporates 64 FP32 
cores and 32 FP64 cores per SM. 

The SM is partitioned into four 
processing blocks, each with:

• 16 FP32 Cores;
• 8 FP64 Cores;
• 16 INT32 Cores;
• 128KB L1 / Shared memory;
• 64 KB Register File. 



Looking into the SM
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Lets look at this in more detail

A FP32 core is the execution unit that performs single precision 
floating point arithmetic (floats).

A FP64 core performs double precision arithmetic (doubles). 

A INT32 Core performs integer arithmetic. 

The warp scheduler selects which warp (group of 32 threads) to 
send to which execution units (more to come).

64 KB Register File – lots of transistors used for vary fast memory. 

128KB of configurable L1 (data) cache or shared memory
Shared memory is a used manged cache (more to come). 

LD/ST units load and store data to/from cores.

SFU – special function units compute things like transcendentals. 



Different numbers of SMs
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Different products have different numbers of SMs, but although the number of SMs across 
the product range might vary, the SM is exactly the same for each generation.

Product Generation SMs Bandwidth Memory Power

RTX 2060 Turing 30 336 GB/s 6 GB 160 W

RTX 2070 Turing 36 448 GB/s 8 GB 175 W

RTX 2080 Turing 46 448 GB/s 8 GB 215 W

Titan RTX Turing 72 672 GB/s 24 GB 250 W



Different numbers of SMs
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Typically each GPU generation brings improvements in the number of SMs, the bandwidth 
to device (GPU) memory and the amount of memory on each GPU.
Sometimes NVIDIA use rather confusing naming schemes….

Product Generation SMs Bandwidth Memory Power

GTX Titan Kepler 14 288 GB/s 6 GB 230 W

GTX Titan X Maxwell 24 336 GB/s 12 GB 250 W

Titan Xp Pascal 30 548 GB/s 12 GB 250 W

Titan V Volta 80 653 GB/s 12 GB 250 W

Titan RTX Turing 72 672 GB/s 24 GB 250 W



Multiple GPU Chips
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Some “GPUs” (the actual device that plugs into a PCIe slot) has multiple GPU chips on them…

Product Generation SMs Bandwidth Memory Power

GTX 595 Fermi 2x 16 2x 164 GB/s 2x 1.5 GB 365 W

GTX 690 Kepler 2x 8 2x 192 GB/s 2x 2 GB 300 W

Tesla K80 Kepler 2x 13 2x 240 GB/s 2x 12 GB 300 W

Tesla M60 Maxwell 2x 16 2x 160 GB/s 2x 8 GB 300 W



Multithreading
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Key hardware feature is that the cores in a SM are SIMT (Single Instruction Multiple 
Threads) cores:

• Groups of 32 cores execute the same instructions simultaneously, but with different data.

• Similar to vector computing on CRAY supercomputers. 

• 32 threads all doing the same thing at the same time (threads are in lock-step).

• Natural for graphics processing and much of scientific computing.

• SIMT is also a natural choice for many-core chips to simplify each core.



Multithreading
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Having lots of active threads is the key to high performance:

• GPUs do not exploit “context switching”; each thread has its own 
registers, which limits the number of active threads. 

• Threads on each SM execute in groups of 32 called “warps”

• Execution alternates between “active” warps, with warps 
becoming temporarily “inactive” when waiting for data.

1     2    3    4   …..  30 31

Warp



Multithreading
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Originally, each thread completed one operation before the next 
started to avoid complexity of pipeline overlaps, some examples are:

• Structural – two instructions need to use the same physical 
hardware component.

• Data – one instruction needs the result of a previous instruction 
and has to wait (stall - inefficient).

• Branch – waiting for a conditional branch to complete before we 
know whether to execute following instructions. 

.

.

.

Pipe 0

Pipe 1

Pipe 3

Pipe 2

Pipe 31



Multithreading
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NVIDIA relaxed this restriction, so each 
thread can have multiple independent 
instructions overlapping, but for our 
purposes we will assume each 
instruction within a warp is lock-step.

Memory access from device memory has 
a delay of 200-400 cycles; with 40 active 
warps this is equivalent to 5-10 
operations, so enough to hide the 
latency?

Pipe 0

Pipe 1

Pipe 2



Working with GPUs
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Recall from earlier in these slides, 
a GPU is attached to the 
computer by a PCIe bus.

It also has it’s own memory (for 
example a V100 has 16/32 GB of 
HBM2 memory. 

This means that for us to work 
with the GPU we need to allocate 
memory on the card (device) and 
then transfer data to and from 
the device. 

By RRZEicons [CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0)], from Wikimedia Commons 

Host

Device



Software view
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In a bit more detail, at the top level, we have a master process which runs 
on the CPU and performs the following steps: 

1. Initialises card.

2. Allocates memory on the host and on the device. 

3. Copies data from the host memory to device memory.

4. Launches multiple instances of the execution “kernel” on the device.

5. Copies data from the device memory to the host.

6. Repeat 3-5 as needed.

7. De-allocates all memory and terminates.



Software view
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In further detail, within the GPU: 

• Each instance of the execution kernel executes on a SM. 

• If the number of instances exceeds the number of SMs, then more 
than one will run at a time on each SM if there are enough registers 
and shared memory, and the others will wait in a queue and 
execute later.

• All threads within one instance can access local shared memory but 
can’t see what the other instances are doing (even if they are on the 
same SM).

• There are no guarantees on the order in which the instances 
execute.



Software view - CUDA
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CUDA (Compute Unified Device Architecture) provides a 
set of programming extensions based on the C/C++ 
family of languages. 

If you have a basic understanding of C and understand 
the concept of threads and SIMD execution, then CUDA 
is easy to pick up.

FORTRAN support is provided through a compiler from 
PGI (who are now owned by NVIDIA) and also the IBM XL 
compiler.

The language is now fairly mature, there is lots of 
example code available, good documentation, and a large 
user community on NVIDIA forums.



Installing CUDA
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CUDA is supported on Windows, Linux and MacOSX.
https://developer.nvidia.com/cuda-downloads

Driver 
• Low-level software that controls the graphics 

card.

Toolkit 
• nvcc CUDA compiler.
• Nsight IDE plugin for Eclipse or Visual Studio 

profiling and debugging tools. 
• Several libraries (more to come on this).

SDK 
• Lots of demonstration examples.
• Some error-checking utilities.
• Not officially supported by NVIDIA.
• Sparse documentation.

https://developer.nvidia.com/cuda-downloads


CUDA Programming
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A CUDA program comes in two parts: 

1. A host code that executes on the CPU which 
interfaces to the GPU.

2. Kernel code which runs on the GPU.

At the host level, there is a choice of 2 APIs 
(Application Programming Interfaces): 

1. Runtime 
• simpler, more convenient

2. Driver 
• much more verbose
• more flexible (e.g. allows run-time compilation)
• closer to OpenCL

We will only use the runtime API in this course.



CUDA Programming – host code
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At the host code level, there are library routines for: 

• memory allocation on graphics card 
• data transfer to/from device memory, including 

• constants 
• ordinary data 

• error-checking 
• timing 

There is also a special syntax for launching multiple 
instances of the kernel process on the GPU.

// Allocate pointers for host and device memory

float *h_input, *h_output;

float *d_input, *d_output;

// malloc() host memory (this is in your RAM)

h_input = (float*) malloc(mem_size);

h_output = (float*) malloc(mem_size); 

// allocate device memory input and output arrays

cudaMalloc((void**)&d_input,  mem_size);

cudaMalloc((void**)&d_output, mem_size);

// Do something here!

// cleanup memory

free(h_input);

free(h_output);

cudaFree(d_input);

cudaFree(d_output);



CUDA Programming – host code
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At the host code level, there are library routines for: 

• memory allocation on graphics card 
• data transfer to/from device memory, including 

• constants 
• ordinary data 

• error-checking 
• timing 

There is also a special syntax for launching multiple 
instances of the kernel process on the GPU.

// Copy host memory to device input array

cudaMemcpy(d_input, h_input, mem_size, cudaMemcpyHostToDevice);

// Do something on the GPU

// copy result from device to host

cudaMemcpy(h_output, d_output, mem_size, cudaMemcpyDeviceToHost);



CUDA Programming – host code
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At the host code level, there are library routines for: 

• memory allocation on graphics card 
• data transfer to/from device memory, including 

• constants 
• ordinary data 

• error-checking 
• timing 

There is also a special syntax for launching multiple 
instances of the kernel process on the GPU…

Covered in practicals

__global__ void helloworld_GPU(void){

printf("Hello world!\n");

}

int main(void) {

// run CUDA kernel

helloworld_GPU<<<1,1>>>();

return (0);

}



CUDA Programming – host code
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In its simplest form the special syntax looks like: 

kernel_routine<<gridDim, blockDim>>(args); 

gridDim is the number of instances of the kernel
(the “grid” size).

blockDim is the number of threads within each instance (the 
“block” size). 

args is a limited number of arguments, usually mainly 
pointers to arrays in graphics memory, and some constants 
which get copied by value.

The more general form allows gridDim and blockDim to be 
2D or 3D to simplify application programs.

__global__ void helloworld_GPU(void){

printf("Hello world!\n");

}

int main(void) {

// run CUDA kernel

helloworld_GPU<<<1,1>>>();

return (0);

}



CUDA Programming
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At the lower level, when one instance of the kernel is started on a SM it 
is executed by a number of threads, each of which knows about: 

• some variables passed as arguments.

• pointers to arrays in device memory (also arguments).

• global constants in device memory.

• shared memory and private registers/local variables.



CUDA Programming
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Variable Example Description

gridDim gridDim.x Size (or dimensions) of grid of blocks

blockDim blockDim.y Size (or dimensions) of each block

blockIdx blockIdx.z Index (or 2D/3D indices) of block

threadIdx threadIdx.y Index (or 2D/3D indices) of thread

warpSize Currently 32 lanes (and has been so far)

kernel<<<…>>>(args); Kernel launch

The CUDA language uses some reserved or special variables. 
These are:

All can have an x, y or z 
component as in the 
examples listed. 



CUDA Programming
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Below is a conceptual example of a 1D grid, comprised of 4 blocks, each having 64 threads per block:

• gridDim = 4 

• blockDim = 64 

• blockIdx ranges from 0 to 3 

• threadIdx ranges from 0 to 63



CUDA Programming
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The kernel code looks fairly normal once you get used to two things:

Code is written from the point of view of a single thread…

• Quite different to OpenMP multithreading 
• Similar to MPI, where you use the MPI “rank” to identify the MPI process
• All local variables are private to that thread

It’s important to think about where each variable lives (more on this in the next lecture) 

• Any operation involving data in the device memory forces its transfer to/from registers in the GPU.
• It’s often better to copy the value into a local register variable



Our first host code
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int main() {

float *h_x, *d_x; // h=host, d=device.

int nblocks=2, nthreads=8, nsize=2*8; // 2 blocks, 8 threads each.

h_x = (float *)malloc(nsize*sizeof(float)); // Allocate host memory.

cudaMalloc((void **)&d_x, nsize*sizeof(float)); // Allocate device memory.

my_first_kernel<<<nblocks,nthreads>>>(d_x); // GPU kernel launch.

cudaMemcpy(h_x,d_x,nsize*sizeof(float),cudaMemcpyDeviceToHost); // Copy results back from GPU.

for (int n=0; n<nsize; n++) printf(" n, x = %d %f \n",n,h_x[n]); // Print the results.

cudaFree(d_x); free(h_x); // Free memory on host & device.

} 



Our first kernel code
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#include <helper_cuda.h>

__global__ void my_first_kernel(float *x)

{

int tid = threadIdx.x + blockDim.x*blockIdx.x;

x[tid]  = (float) threadIdx.x;

}

• The __global__ identifier says it’s a kernel function.

• Each thread sets one element of the x array.

• Within each block of threads, threadIdx.x ranges from 0 to blockDim.x-1, so each thread 
has a unique value for tid.



Quick recap
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A thread executes on a core.

Software Hardware

FP32Thread Core

Device

SM

Grid

Thread 
Block

A group of threads, a thread 
block, comprised of groups of 
32 threads (a warp), executes 
on a SM.

Thread blocks don’t migrate 
between SMs.

Several concurrent thread 
blocks can reside on a SM.

A group of thread blocks form a 
grid and a grid runs on the 
device.

In CUDA this is a kernel launch.



Scaling things up
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Suppose we have 1000 blocks, and each one has 128 threads – how would this get executed?

On the Kepler that we will use in our practicals, we would probably get 8-12 blocks running on each SM (Kepler SMs have 128 
cores), and each block has 4 warps, so 32-48 warps running on each SM.

Each clock tick, the SM warp scheduler decides which warps to execute next, choosing from those not waiting for:

• data coming from device memory (memory latency) 
• completion of earlier instructions (pipeline delay) 

As a programmer, we don’t need to worry about this level of detail, we just need to ensure there are lots of threads / 
warps.



Scaling things up
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Quick recap
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Thread blocks are formed from warps.

The warp is executed in parallel on the 
SM.

By this we mean that everything that 
happens within a warp is lock-step.

So the same operation (instruction) in 
thread 2, 3, 8 occurs in thread 7, 1, 4, 
11… (from 0 to 31) at the same time. 

So we have a Single Instruction Multiple 
Thread (SIMT) architecture.

Thread 
Block

1    2   3   4     …30 31

32  33 34 35…

64  65 66 67…

96 97 98 99… 

Warp 0

Warp 2

Warp 1

Warp 3

= =

SM



Higher dimensions
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So far, out simple example considers the case of a 1D grid of blocks, and within each block a 1D set of threads.

Many applications – Finite Element, CFD, MD,…., might need to use 2D or even 3D sets of threads. 

As mentioned previously, if we want to use a 2D set of threads, then
blockDim.x, blockDim.y give the dimensions, and
threadIdx.x, threadIdx.y give the thread indices

and to launch the kernel we would use something like: 

dim3 nblocks(2,3); // 2 blocks in x, 3 blocks in y

dim3 nthreads(16,4); // 16 threads in x, 4 threads in y

my_new_kernel<<<nblocks, nthreads>>>(d_x); 

Here, dim3 is a special CUDA datatype with 3 components .x,.y,.z each initialised to 1.



Indexing in higher dimensions
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To calculate a unique (or 1D) thread identifier (previously we called this tid) when working in 2D or 3D we 
simply use:

tid = threadIdx.x + threadIdx.y * blockDim.x + threadIdx.z * blockDim.x * blockDim.y;

and this is then broken up into warps of size 32.
How do 2D / 3D threads get divided into warps?
1D thread ID defined by



Mikes notes on Practical 1
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Practical 1
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Practical 1
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Practical 1
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Practical 1
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Practical 1
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Arcus htc
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arcus-htc

• arcus-htc.arc.ox.ac.uk is the head node.

• The GPU compute nodes have two K80 cards with a total of 4 GPUs, numbered 0 – 3.

• Read the Arcus notes before starting the practical.



Nsight
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Nsight
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Nsight
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Key reading
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CUDA Programming Guide, version 10.1:
• Chapter 1: Introduction
• Chapter 2: Programming Model
• Chapter 5: performance of different GPUs
• Appendix A: CUDA-enabled GPUs
• Appendix B, sections B.1 – B.4: C language extensions
• Appendix B, section B.20: Formatted (printf) output
• Appendix H, section H: Compute capabilities (features of 

different GPUs)

Wikipedia (clearest overview of NVIDIA products):
• https://en.wikipedia.org/wiki/Nvidia_Tesla
• https://en.wikipedia.org/wiki/GeForce_10_series
• https://en.wikipedia.org/wiki/GeForce_20_series
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https://en.wikipedia.org/wiki/GeForce_20_series
https://www.flickr.com/photos/abee5/8314929977


What have we learnt?
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In this lecture you have learnt about the usage of 
GPUs in HPC. We have looked at different hardware 
generations of GPUs and some of there 
differences.

We’ve looked at the GPU architecture and how 
they execute code. 

Finally we’ve looked at the CUDA programming
language and how to create a basic host and device
code.


