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ASSUMED KNOWLEDGE

The material in this module is a continuation of the module, Parallelograms and 

Rectangles, which is assumed knowledge for the present module. Thus the present 

module assumes:

• Confidence in writing logical argument in geometry written as a sequence of steps, 

each justified by a reason.

• Ruler‑and‑compasses constructions.

• The four standard congruence tests and their application to: 

 - proving properties of and tests for isosceles and equilateral triangles, 

 - proving properties of and tests for parallelograms and rectangles.

• Informal experience with rhombuses, kites, squares and trapezia.

MOTIVATION

Logical argument, precise definitions and clear proofs are essential if one is to understand 

mathematics.  These analytic skills can be transferred to many areas in commerce, 

engineering, science and medicine but most of us first meet them in high school 

mathematics.

Apart from some number theory results such as the existence of an infinite number of 

primes and the Fundamental Theorem of Arithmetic, most of the theorems students meet 

are in geometry starting with Pythagoras’ theorem.

Many of the key methods of proof such as proof by contradiction and the difference 

between a theorem and its converse arise in elementary geometry.

As in the module, Parallelograms and Rectangles, this module first stresses precise 

definitions of each special quadrilateral, then develops some of its properties, and then 

reverses the process, examining whether these properties can be used as tests for that 

particular special quadrilateral. We have seen that a test for a special quadrilateral is usually 

the converse of a property. For example, a typical property–test pair from the previous 

module is the pair of converse statements:
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• If a quadrilateral is a parallelogram, then its diagonals bisect each other.

• If the diagonals of a quadrilateral bisect each other, then it is a parallelogram.

Congruence is again the basis of most arguments concerning rhombuses, squares, kites 

and trapezia, because the diagonals dissect each figure into triangles. 

A number of the theorems proved in this module rely on one or more of the previous 

theorems in the module. This means that the reader must understand a whole ‘sequence 

of theorems’ to achieve some results. This is typical of more advanced mathematics.

In addition, two other matters are covered in these notes.

• The reflection and rotation symmetries of triangles and special quadrilaterals  

are identified and related to congruence.

• The tests for the kite also allow several important standard constructions to be 

explained very simply as constructions of a kite.
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CONTENT

SYMMETRIES OF TRIANGLES, PARALLELOGRAMS AND RECTANGLES

We begin by relating the reflection and rotation symmetries of isosceles triangles, 

parallelograms and rectangles to the results that we proved in the previous module, 

Rectangles and Parallelograms.

The axis of symmetry of an isosceles triangle

In the module, Congruence, congruence was used to prove 

that the base angles of an isosceles triangle are equal. To 

prove that B = C in the diagram opposite, we 

constructed the angle‑bisector AM of the apex A, then used 

the SAS congruence test to prove that

	 ABM  ACM 

This congruence result, however, establishes much more than the equality of the base 

angles. It also establishes that the angle bisector AM is the perpendicular bisector of 

the base BC. Moreover, this fact means that AM is an axis of symmetry of the isosceles 

triangle.

These basic facts of about isosceles triangles will be used later in this module and in the 

module, Circle Geometry:

Theorem  

In an isosceles triangle, the following four lines coincide:  

• The angle bisector of the apex angle.  

• The line joining the apex and the midpoint of the base.  

• The line through the apex perpendicular to the base.

• The perpendicular bisector of the base. 

This line is an axis of symmetry of the isosceles triangle. It has, as a consequence, the 

interesting property that the centroid, the incentre, the circumcentre and the orthocentre 

of ABC all tie on the line AM. In general, they are four different points. See the module, 

Construction for details of this.

Extension – Some further tests for a triangle to be isosceles

The theorem above suggests three possible tests for a triangle to be isosceles. The first 

two are easy to prove, but the third is rather difficult because simple congruence cannot 

be used in this ‘non‑included angle’ situation.

A

B CM

a a

A

B CM

a a
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EXERCISE 1

Use congruence to prove that ABC is isosceles with AB = AC if:

a the perpendicular bisector of BC passes through A, or    

b the line through A perpendicular to BC bisects A, or 

c the angle bisector of A passes through the midpoint M of BC. 

[Hint: For part c, let BAM = CAM = , and let C = . 

Suppose by way of contradiction that AC < AB. 

Choose P on the interval AB so that AP = AC, and join PM.    

The symmetries of an equilateral triangle

An equilateral triangle is an isosceles triangle in three different ways, so the three vertex 

angle bisectors form three axes of symmetry meeting each other at 60°. In an equilateral 

triangle, each vertex angle bisector is the perpendicular bisector of the opposite side – we 

proved in the previous module that in any triangle, these three perpendicular bisectors 

are concurrent. They meet at a point which is the centre of a circle through all three 

vertices. The point is called the circumcentre and the circle is called the circumcircle of 

the triangle.

An equilateral triangle is also congruent to itself in two other orientations: 

 ABC  BCA  CAB (SSS), 

corresponding to the fact that it has rotation symmetry of order 3. 

The centre of this rotation symmetry is the circumcentre O described 

above, because the vertices are equidistant from it. 

Other triangles do not have reflection or rotation symmetry

In a non‑trivial rotation symmetry, one side of a triangle is mapped to a second side,  

and the second side mapped to the third side, so the triangle must be equilateral. 

In a reflection symmetry, two sides are swapped, so the triangle must be isosceles. 

Thus a triangle that is not isosceles has neither reflection nor rotation symmetry. Such a 

triangle is called scalene.

A

B C

O
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Rotation symmetry of a parallelogram 

Since the diagonals of a parallelogram bisect each other, a 

parallelogram has rotation symmetry of order 2 about 

the intersection of its diagonals. Joining the diagonal 

AC of a parallelogram ABCD produces two congruent 

triangles,

	 ABC  CDA (AAS); 

Reflection symmetry of a rectangle

A rectangle is a parallelogram, so it has rotationsymmetry of 

order 2 about the intersection of its diagonals. This is even 

clearer in a rectangle than in a general parallelogram 

because the diagonals have equal length, so their 

intersection is the circumcentre of the circumcircle passing 

through all four vertices. 

The line through the midpoints of two opposite sides of a 

rectangle dissects the rectangle into two rectangles that are 

congruent to each other, and are in fact reflections of each 

other in the constructed line.

There are two such lines in a rectangle, so a rectangle has 

two axes of symmetry meeting right angles. 

It may seem obvious to the eye that the intersection of these 

two axes of symmetry is the circumcentre of the rectangle, 

which is intersection of the two diagonals. This is illustrated 

in the diagram to the right, but it needs to be proven.

EXERCISE 2

Use the diagram to the right to prove that the line 

through the midpoints of opposite sides of a 

rectangle bisects each diagonal.

A

B

M

C

D

A

P Q

B C

M

D
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Axes of symmetry of triangles, parallelograms and rectangles

• An isosceles triangle has an axis of symmetry – this line is the bisector of the apex 

angle, it is the altitude from the vertex to the base, and it is the line joining the apex to 

the midpoint of the base.

• An equilateral triangle has three axes of symmetry, which are concurrent in the 

circumcentre of the circumcircle through its three vertices. It also has rotation 

symmetry of order three about its circumcentre.

• A triangle that is not isosceles has no axes of symmetry and no rotation symmetry.

• A parallelogram has rotation symmetry of order two about the intersection 

of its diagonals.

• A rectangle has rotation symmetry of order two about the intersection of its diagonals, 

and two axes of symmetry through the midpoints of opposite sides.

RHOMBUSES

The Greeks took the word rhombos from the shape of a piece of wood that was whirled 

about the head like a bullroarer in religious ceremonies. This derivation does not imply a 

definition, unlike the words ‘parallelogram’ and ‘rectangle’, but we shall take their classical 

definition of the rhombus as our definition because it is the one most usually adopted by 

modern authors.

Definition of a rhombus 

A rhombus is a quadrilateral with all sides equal.

First property of a rhombus – A rhombus is a parallelogram

Since its opposite sides are equal, a rhombus is a parallelogram – this was our second 

test for a parallelogram in the previous module. A rhombus thus has all the properties of a 

parallelogram:

• Its opposite sides are parallel.  

• Its opposite angles are equal.  

• Its diagonals bisect each other.  

• It has rotation symmetry of order two about the intersection of its diagonals.

When drawing a rhombus, there are two helpful orientations that we can use, 

as illustrated below.
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The rhombus on the left looks like a ‘pushed‑over square’, and has the orientation we 

usually use for a parallelogram. The rhombus on the right has been rotated so that it looks 

like the diamond in a pack of cards. It is often useful to think of this as the standard shape 

of a rhombus.

Constructing a rhombus using the definition

It is very straightforward to construct a rhombus using the definition of a rhombus. 

Suppose that we want to construct a rhombus with side lengths 5cm and acute vertex 

angle 50°.

• Draw a circle with radius 5cm.                                             

• Draw two radii OA and OB meeting at 50° 

at the centre O.

• Draw arcs with the same radius 5cm and centres  

A and B, and let P be their point of intersection.

The figure OAPB is a rhombus because all its sides are 5cm. 

EXERCISE 3

Use the cosine rule (or drop a perpendicular and use simple trigonometry) to find the 

lengths n of the diagonals of the rhombus OAPB constructed above.

This leads to yet another way to construct a line parallel to a given line	 through a given 

point P.

• Choose any point A on the line .

• Draw an arc with centre A and radius AP 

cutting  at B.

• Complete the rhombus PABQ as before.

Then PQ ||  because the figure PABQ is a rhombus. 

Second property of a rhombus – Each diagonal bisects two vertex angles

Theorem

Each diagonal of a rhombus bisects the vertex angles through which it passes. 

Proof

Let ABCD be a rhombus with the diagonal AC drawn.

Let BAC = 

BAC =  (base angles of isosceles ABC) 

so DAC =  (alternate angles, BC || AD):

 That is AC bisects BAD

B

A

P
O

5cm

50°

5cm

BA

P Q



A

B D

C

a
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EXERCISE 4

Prove this result using the congruence ABC  ADC. 

The axes of symmetry of a rhombus

The exercise above showed that each diagonal of a rhombus 

dissects the rhombus into two congruent triangles that are 

reflections of each other in the diagonal, 

	 ABC  ADC  and BAD  BCD. 

Thus the diagonals of a rhombus are axes of symmetry.  

The following property shows that these two axes are perpendicular.

Third property of a rhombus – The diagonals are perpendicular

The proof given here uses the theorem about the axis of symmetry of an isosceles triangle 

proven at the start of this module. Two other proofs are outlined as exercises.

Theorem  

The diagonals of a rhombus are perpendicular. 

Proof 

 Let ABCD be a rhombus, 

 with diagonals meeting at M. 

 To prove that AC  BD.  

 By the previous theorem, AM is the angle bisector of DAB. 

 Hence AM  BD, because A is the apex of the isosceles triangle ABD,

The diagonals also bisect each other because a rhombus is a parallelogram, so we usually 

state the property as 

 ‘The diagonals of a rhombus bisect each other at right angles.’

EXERCISE 5

a Use congruence to prove this property. 

b  Use angle‑chasing to prove this property.

We now turn to tests for a quadrilateral to be a rhombus. This is a matter of establishing 

that a property, or a combination of properties, gives us enough information for us to 

conclude that such a quadrilateral is a rhombus.

A

B

D

C

A

B D
M

C
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First test for a rhombus – A parallelogram with two adjacent sides equal

We have proved that the opposite sides of a parallelogram 

are equal, so if two adjacent sides are equal, then all four 

sides are equal and it is a rhombus.  

Theorem

If two adjacent sides of a parallelogram are equal, then it is a rhombus.

This test is often taken as the definition of a rhombus.

Second test for a rhombus – A quadrilateral whose diagonals bisect each other  

at right angles

Theorem

A quadrilateral whose diagonals bisect each other at right angles is a rhombus. 

Proof

Let ABCD be a quadrilateral whose diagonals bisect each other 

at right angles at M. 

We prove that DA = AB. It follows similarly that 

AB = BC  and  BC = CD

AMB   AMD (SAS)

So AB = AD and by the first test above ABCD is a rhombus. 

A quadrilateral whose diagonals bisect each other is a parallelogram, so this test is often 

stated as

 ‘If the diagonals of a parallelogram are perpendicular, then it is a rhombus.’

This test gives us another construction of a rhombus.  

• Construct two perpendicular lines intersecting at M.  

• Draw two circles with centre M and different radii.  

• Join the points where alternate circles cut the lines.

This figure is a rhombus because its diagonals bisect each 

other at right angles.

A

B D
M

C

M
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EXERCISE 6

If the circles in the constructions above have radius 4cm and 6cm, what will the side 

length and the vertex angles of the resulting rhombus be?

Third test for a rhombus – A quadrilateral in which the diagonals bisect  

the vertex angles

Theorem

If each diagonal of a quadrilateral bisects the vertex angles through which it passes, then 

the quadrilateral is a rhombus.

Proof

Let ABCD be a quadrilateral, and suppose the diagonals 

bisect the angles, then let 

DAC = BAC =  ABD = CBD = 

BCA = DCA =  CDB = ADB = 

To prove that ABCD is a rhombus.

First, 2 + 2 + 2 + 2 = 360° (angle sum of quadrilateral ABCD) 

 +  +  +  = 180°

Secondly,  + 2 +  = 180° (angle sum of ABC): 

Combining these,  = ,

Hence AB || DC and BC || AD (alternate angles are equal)

and ABCD is a parallelogram

and AD = AB (opposite angles are equal in ABD);

so ABCD is a rhombus because it is a parallelogram with a pair of adjacent sides 

equal.

A

B D

C

a

b

b

a

d
d

g g
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Rhombuses – definition, properties, tests and symmetries

Definition of a rhombus

• A rhombus is a quadrilateral with all sides equal.

Properties of a rhombus

• The opposite sides of a rhombus are parallel.  

• The opposite angles of a rhombus are equal.  

• The diagonals of a rhombus bisect each vertex angle.  

• The diagonals of a rhombus bisect each other at right angles.

Tests for a rhombus

A quadrilateral is a rhombus if:  

• it is a parallelogram, and a pair of adjacent sides are equal,  

• its diagonals bisect each other at right angles,  

• its diagonals bisect each vertex angle.

Symmetries of a rhombus

• The diagonals of a rhombus are perpendicular axes of symmetry.  

• The rhombus has rotation symmetry of order two in their intersection.

Extension – Quadrilaterals whose diagonals are perpendicular

The converse of a property is not necessarily a test. For example, a quadrilateral with 

perpendicular diagonals need not be a rhombus – just place two sticks across each 

other at right angles and join their endpoints. The following exercise gives an interesting 

characterisation of quadrilaterals with perpendicular diagonals.

Both parts of the proof are applications of Pythagoras’ theorem. One half is 

straightforward, the other requires proof by contradiction and an ingenious construction.

EXERCISE 7

Use Pythagoras’ theorem to prove that the diagonals of a convex quadrilateral are 

perpendicular if and only if the sum of the squares of each pair of opposite sides are equal.



{15}The Improving Mathematics Education in Schools (TIMES) Project

SQUARES

We usually think of a square as a quadrilateral with all sides equal and all angles right 

angles. Now that we have dealt with the rectangle and the rhombus, we can define a 

square concisely as:

Definition of a square

A square is a quadrilateral that is both a rectangle and a rhombus.

Properties of a square

A square thus has all the properties of a rectangle, and all the properties of a rhombus. 

• Opposite sides are parallel.  

• The diagonals meet each side at 45°.  

• The diagonals are equal in length, and bisect each other at right angles.

• The two diagonals, and the two lines joining the midpoints of opposite sides, are axes 

of symmetry.

Symmetries of a square

The intersection of the two diagonals is the circumcentre of the circumcircle through all 

four vertices. We have already seen, in the discussion of the symmetries of a rectangle, 

that all four axes of symmetry meet at the circumcentre.

A square ABCD is congruent to itself in three other orientations, 

 ABCD  BCDA  CDAB  DABC

corresponding to the fact that it has rotation symmetry 

of order 4. The centre of the rotation symmetry is the 

circumcentre, because the vertices are equidistant from it.

A

B

D

M

C
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Constructing a square

The most obvious way to construct a square of side length 6cm 

is to construct a right angle, cut off lengths of 6cm on both 

arms with a single arc, and then complete the parallelogram. 

Alternatively, we can combine the previous diagonal 

constructions of the rectangle of the rhombus. Construct two 

perpendicular lines intersecting at O, draw a circle with centre 

O, and join up the four points where the circle cuts the lines.

EXERCISE 8

What radius should the circle have for the second construction above to produce a 

square of side length 6cm?

Squares – definition, properties, tests and symmetries

Definition of a square

• A square is a quadrilateral that is both a rectangle and a rhombus.

Properties of a square

• The opposite sides of a square are parallel.  

• All sides of a square are equal.  

• All angles of a square are right angles.  

• The diagonals of a square meet each side at 45°.  

• The diagonals of a square are equal and bisect each other at right angles.

Test for a square

• The quadrilateral must be both a rectangle and a rhombus. 

Symmetries of a square

• The two diagonals of a square, and the two lines joining the midpoints of opposite 

sides, are axes of symmetry. These four axes are all concurrent in the circumcentre 

of the circumcircle passing through all four vertices.

• A square has rotation symmetry of order 4 about its circumcentre.

6cm

6cm

O
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Extension – A dissection problem

The following problem requires the construction that divides a given interval in a given 

ratio – see the module Constructions.

EXERCISE 9

a  Through the vertex A of a square ABCD, construct two lines that dissect the square 

into three regions of equal area.

b  Does this construction also work with rhombuses, rectangles and parallelograms?

KITES

Some of the distinctive properties of the diagonals of a rhombus hold also in a kite, which 

is a more general figure. Because of this, several important constructions are better 

understood in terms of kites than in terms of rhombuses.

Definition of a kite 

A kite is a quadrilateral with two pairs of adjacent equal sides.

A kite may be convex or non‑convex, as shown in the diagrams above. Only the convex 

cases are presented in the proofs below – the non‑convex cases are similar, but are left  

as exercises.

Constructing a kite using its definition

The definition allows a straightforward construction using compasses. Suppose that we 

want to construct a kite with side lengths 8cm and 5cm, with the two 8cm sides meeting 

at 60°.

• Draw a circle with centre O and radius 8cm.  

• Draw two radii OA and OB meeting at O at an angle of 60°.  

• Complete the kite OAPB by drawing circles of radius 5cm with centres at A and B.

The last two circles meet at two points P and P0, one inside the large circle and one 

outside, giving a convex kite and a non‑convex kite meeting the specifications.
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Notice that the reflex angle of a non‑convex kite is formed between the two shorter sides.

EXERCISE 10

What will the vertex angles and the lengths of the diagonals be in the kites constructed above?

First property of a kite – The axis of symmetry

Theorem

Let ABCD be a kite with AB = AD and CB = CD.

a  ABC  ADC.  

b  The diagonal AC is an axis of reflection symmetry of the kite. 

c  The axis AC bisects the vertex angles at A and C. 

d  B = D.

Proof

The congruence follows from the definition, and the other parts follows from the 

congruence.

Second property of a kite – The axis is the perpendicular bisector of the other 

diagonal

Theorem  

The axis of a kite is the perpendicular bisector of the other diagonal. 

Proof

Let ABCD be a kite with AB = AD and CB = CD.

and let the diagonals of the kite meet at M. 

B

A

P
O

8cm

8cm

60°

5cm

5cm

B

A

P
O

8cm

8cm

5cm

5cm

A

B D

C
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Using the theorem about the axis of symmetry of an 

isosceles triangle, the bisector AM of the apex angle of 

the isosceles triangle ABD is also the perpendicular 

bisector of its base BD.

Hence BM = MD and AM 	BD

So AC 	BD

EXERCISE 11

a Prove this result using congruence. 

b Prove this result using angle‑chasing.

Tests for a kite

The converses of some these properties of a kite are tests for a quadrilateral to be a kite.

Theorem

If one diagonal of a quadrilateral bisects the two vertex angles 

through which it passes, then the quadrilateral is a kite.

EXERCISE 12

Prove this result using the given diagram.

Theorem

If one diagonal of a quadrilateral is the perpendicular bisector of 

the other diagonal, then the quadrilateral is a kite.

EXERCISE 13

Prove this result using the given diagram.

M

A

B D

C

A

B D

C

a a

g g

A

B D
M

C
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EXERCISE 14

Is it true that if a quadrilateral has a pair of opposite angles equal and a pair of adjacent 

sides equal, then it is a kite?

Kites and geometric constructions

Three of the most common ruler‑and‑compasses constructions can be explained in 

terms of kites.

1 The first diagram to the right shows the construction 

of the angle bisector of XOY. This construction 

works because the axis OP of the kite OAPB bisects 

the vertex angle at O.

Notice that the radii of the arcs meeting at P need not be 

the same as the radius of the first arc with centre O.

2 The second diagram to the right shows the 

construction of the perpendicular to a line l from 

a point P. This construction works because the 

diagonals of the kite PAQB are perpendicular. 

Notice that the radii of the arcs meeting at Q need not be the 

same as the radii of the original arc with centre P.

3 The two diagrams below show the construction of the perpendicular bisector of 

AB. This construction works because the axis PQ of the kite APBQ bisects the other 

diagonal AB at right angles.

In the diagram to the left, the radii of the arcs meeting at P are not the same as the radii of 

the arcs meeting at Q. Of course it is usual in this construction, and far more convenient, 

to use equal radii – as in the diagram to the right – in which case the figure constructed is 

a rhombus.

A

B

X

Y

PO

C

A B

Q

P

A B

Q

P

A B

Q

P
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Kites – definition, properties, tests and symmetries

Definition of a kite

• A kite is a quadrilateral with two pairs of adjacent sides equal.  

• A kite may be convex or non‑convex.

Axis of symmetry of a kite

• The line through the two vertices where equal sides meet is an axis 

of symmetry of a kite, called the axis of the kite.

Properties of a kite

• The angles opposite the axis of a kite are equal.  

• The axis of a kite bisects the vertex angles through which it passes.  

• The axis of a kite is the perpendicular bisector of the other diagonal.

Test for a kite

A quadrilateral is a kite if: 

• one diagonal bisects the vertex angles through which it passes, or 

• one diagonal is the perpendicular bisector of the other diagonal.

TRAPEZIA

Trapezia also have a characteristic property involving the diagonals, but the property 

concerns areas, not lengths or angles. 

Definition of a trapezium 

A trapezium is a quadrilateral with one pair of opposite 

sides parallel.

Although the name is Latin (the plural is ‘trapezia’), it 

originally comes from the Greek word trapeza, meaning 

‘table’. The figure is called a ‘trapezoid’ in the USA.

The angles of a trapezium

Using co‑interior angles, we can see that a trapezium has 

two pairs of  adjacent supplementary angles. 
a

180° – a 180° – b

b
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Conversely, if a quadrilateral is known to have one pair of 

adjacent supplementary angles, then it is a trapezium. 

EXERCISE 15

What sort of figure is both a kite and a trapezium?

The diagonals of a trapezium

The diagonals of a convex quadrilateral dissect the quadrilateral into four triangular 

regions, as shown in the diagrams below. In a trapezium, two of these triangles have the 

same area, and the converse of this property is a test for a quadrilateral to be a trapezium.

These results are written as exercises because they are not usually regarded as standard 

theorems for students to know.

EXERCISE 16

Let ABCD be a trapezium with AD || BC, and let the 

diagonals intersect at M.  

Prove that AMB and DMC have the same area. 

EXERCISE 17

Conversely, let ABCD be a quadrilateral in which 

AMB and DMC  have the same area, where M is 

the intersection of the diagonals. Prove that ABCD 

is a trapezium with AD || BC. 

Extension – Isosceles trapezia 

The trapezia that occur in this exercise are called isosceles trapezia. Further results about 

isosceles trapezia can be found at http://en.wikipedia.org/wiki/Isosceles_trapezoid.

EXERCISE 18

Let ABCD be a trapezium with AD || BC, and suppose 

that AD < BC, so that ABCD is not a parallelogram.

a Prove that AB = DC if and only if B = C.

b   Prove that AB = DC if and only if the line through 

the midpoints F of AD and G of BC is an axis of 

symmetry of the trapezium.

c  Prove that no other line is an axis of symmetry of the isosceles trapezium.
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LINKS FORWARD

This module completes the study of special quadrilaterals using congruence. Similarity 

is a generalisation of congruence, and when it has been developed, some further results 

about special quadrilaterals will become possible. The module, Circle Geometry will 

use some special quadrilaterals, and will also introduce cyclic quadrilaterals, which are 

quadrilaterals whose four vertices all lie on the one circle – they will be the last special 

quadrilaterals discussed in these modules.

All triangles have both a circumcircle and an incircle.  The only quadrilaterals that have a 

circumcircle are those with opposite angles supplementary, the situation with incircles is 

interesting.  For example, a rhombus always has an incircle.
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As an easy exercise show that if the lengths of the diagonals of the rhombus are p and q and 

the radius of the incircle is r then

A kite has an incircle as well but its radius is difficult to calculate.

A kite is determined by the triangle with side lengths a, b and included angle .  If the lengths 

of the diagonals are p and q show that :

2pq = ab sin 
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When complex numbers are graphed on Argand diagrams, many arithmetic and algebraic 

results are proved or illustrated using special quadrilaterals.  In particular if z1 and z2  are 

two complex numbers of equal modulus then the four numbers, z1, z1+ z2 and z2 form a 

rhombus so, as a consequence, z1 + z2 and z1,– z2 are perpendicular vectors.

r = 
pq

2 p2+q2
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HISTORY AND APPLICATIONS

This illustrates very well the constant attitude in mathematics that an investigation is not 

complete until a theorem with a true converse has been identified. It reminds us too that 

logic, accompanied by the intuition of diagrams, should always be a strong motivation in 

geometry.

Whenever a surface is divided up, triangles and special quadrilaterals are involved, 

particularly when parallel lines are used in the dissection. Thus surveyors analysing 

suburban blocks or farming lots will try to use the simplest geometric shapes in their 

analysis, and architects, who often have great freedom to invent striking patterns for their 

building, often use special quadrilaterals other than simple squares and rectangles in their 

designs. Infinite tilings of the plane, for example, are possible with any other quadrilateral. 

Trigonometry is also an essential part of these processes, and trigonometry and geometry 

should be seen as a unit rather than as two disconnected topics. Several exercises in these 

modules have required such connections to be made.

A standard problem for computer programmers is to encrypt pictures with as little storage 

as possible, and they typically divide up the picture into simple geometrical shapes as part 

of that process – a recent study uses interlocking trapezia for this purpose.

All the special quadrilaterals of this and the previous module, apart from the kite, were 

studied by the ancient Greeks as part of their systematic investigation of geometry. The 

kite was named and brought to attention in modern times, partly because that it clarifies 

several important geometric constructions, but also because it demonstrates that some of 

the properties of a rhombus hold in more general quadrilaterals.

ANSWERS TO EXERCISES

EXERCISE 1

a This is a simple application of the SAS congruence test.                

b This is a simple application of the AAS congruence test.                
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c Suppose AC < AB. Choose P on the internal AB so that AP = AC and join PM

PAM  CAM (SAS) 

so APM = C =  (matching angles of congruent triangles)

so BPM = 180° –  (straight angle)

Also PM = CM (matching sides of congruent triangles)

So MPB = MBP = 180° –  (base angles of isosceles MPB)

Hence  +  +  + (180° –  ) = 180° (angle sum of ABC)

  = 0°. So AC = AB                                                         

EXERCISE 2

In the triangles APM and CQM in the given diagram: 

1 AP = QC (each is half the opposite side of a rectangle)

2 MAP = MCQ (alternate angles, AB || DC)

3 AMP = CMQ (vertically opposite angles)

so APM  CQM (AAS).

Hence AM = CM (matching sides of congruent triangles).

That is PQ bisects AC

EXERCISE 3

AB2 = 52 + 52 – 2 × 5 × 5 × cos 50° PO2 = 52 + 52 + 2 × 5 × 5 × cos 50°

= 50 (1 – cos 50°) = 50 (1 + cos 50°)

AB ≈ 4.23cm, PO ≈ 9.06cm,

EXERCISE 4

The congruence ABC  ADC follows by the SSS test.
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EXERCISE 5

a ABM  ADM (SAS or SSS). 

b Let  = BAM and  = ABM. 

 Then CBM =   (previous property)

 and BCM =   (base angles of isosceles ABC);

 so 2 + 2 = 180°  (angle sum of ABC)

   +  = 90°

 Hence AMB = 90° (angle sum of ABM).

 or  A rhombus is a parallelogram. So BM = MD. Hence AMB  ADM (SSS) 

Thus AMB = AMD and the diagonals are perpendicular.

EXERCISE 6

Using Pythagoras’ theorem, the side length is 2 13cm. Using trigonometry, the vertex 

angles are about 67.38° and 112.62°.

EXERCISE 7

First, let ABCD be a convex quadrilateral whose diagonals meet at right angles at M. 

Let the sides and the intervals on the diagonals have lengths as on the diagram to the 

right. Then using Pythagoras’ theorem,

a2 + c2 = (p2 + q2) + (r2 + s2)

 = (q2 + r2) + (p2 + s2)

 = b2 + d2, as required.

Conversely, let ABCD be a convex quadrilateral in which the diagonals are not 

perpendicular. The diagram will be as drawn on the right or its reflection, and it will be 

sufficient to consider only the one case. Let the lengths be as given on the figure, where  

x ≠ 0 because AC is not perpendicular to BD. Using Pythagoras’ theorem,

a2 + c2 = p2 + q2 + r2 + s2

and b2 + d2 = (q + x) 2 + r2 + (s + x)2 + p2 

so (b2 + d2) – (a2 + c2) = 2x(q + s + x), 

which is not zero because x ≠ 0.

Hence if a2 + b2 = c2 + d2 then AC  BD as required
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EXERCISE 8

Using Pythagoras’ theorem, the required radius is 3 2cm.

EXERCISE 9

a Construct points P on BC and Q on DC so that                          

 BP : PC = DQ : QC = 2 : 1 

 Then the triangles APB and APC have the same altitude AB, 

 and their bases are in the ratio 2 : 1, so

 area APB : area APC = 2 : 1

Similarly area AQD : area AQC = 2 : 1. Since the diagonal AC divides the square into 

two congruent regions of equal area, the lines AP and AQ dissect the square into three 

regions of equal area. 

or show that the area of each region is a2

3
    

b  A similar argument works

EXERCISE 10

Take the convex case first. Using equilateral triangles and Pythagoras’ theorem, the axis is 

4 3 + 3cm and the other diagonal is 8cm. Using trigonometry, the angle at the other end 

of the axis is about 106.26°, and the other two angles are each about 60° + 36.87°.

In the non‑convex case, the axis is 4 3 – 3cm and the other diagonal is still 8cm. The 

angle at the other end of the axis is about 253.74°, and the other two angles are each 

about 60° – 36.87°.

EXERCISE 11

a Since the axis AC bisects the vertex angle at A, 

 ABM  ADM (SAS);

 from which it follows that AMB = AMD = 90°. 

b Let BAM = DAM = a (the axis bisects the vertex angle),

and let ABM = ADM =  (base angles of isosceles ABD),

Then 2a + 2 = 180° (angle sum of ABD)

a +  = 90° 

Hence AMB = 90° (angle sum of AMB).
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EXERCISE 12

Using the AAS congruence test, ABC  ADC. 

So AB = AD, BC = DC and the quadrilateral is a kite.

EXERCISE 13

Using the SAS congruence test, ABM  ADM and CBM  CDM.

So AB = AD and CB = CD and the quadrilateral is a kite.

EXERCISE 14

Diagram: Kite 10

  

If one of the equal angles is included by the given sides, then there is no reason for the 

figure to be a kite, as is illustrated in the diagram on the left above.

If neither equal angle is included by the equal sides, then the figure is a kite. Be careful, 

however, because joining the diagonal AC in the diagram on the right above would not 

give a congruence proof because the angle in each triangle would be non‑included.

Instead, join the other diagonal BD, as in the diagram on the right above. 

Then ABD = ADB (base angles of isosceles ABD),

so CBD = CDB (subtracting equal angles from equal angles) 

so BC = DC (opposite angles are equal in BCD)

ABCD is a kite

EXERCISE 15

In the diagram to the right, join BD and let DBC = .

Then CDB =  (base angles of isosceles CBD) 

so ABD =  (alternate angles, AB || DC) 

so ADB =  (base angles of isosceles ABD)

Hence AD || BC (alternate angles are equal)

so ABCD is a rhombus, because it is a parallelogram with two adjacent sides equal.
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EXERCISE 16

The triangles ABC and DBC have the same perpendicular height and the same base 

BC, so area ABC = area DBC. 

Subtracting the triangle MBC from both regions, 

area AMB = area DMC.

EXERCISE 17

Adding MBC to both regions,

area ABC = area DBC 

These two triangles have the same base BC, so they have the same perpendicular height. 

Hence AD || BC. 

EXERCISE 18
a Let B =  and construct P on BC so that DP || AB. 

Then DP = AB (opposite sides of a parallelogram)

and DPC =  (corresponding angles, AB || DP).

Suppose first that AB = DC. 

Then PD = DC

so C =  (base angles of isosceles DPC)

Conversely, suppose that C = 

Then DC = DP (opposite angles of DPC are equal) 

so DC = AB 

b If FG is an axis of symmetry, then reflection 

 in FG maps AB to DC, so AB = DC.  

 Conversely, suppose that AB = DC. 

 Then B = C by part a. 

 Drop perpendiculars AL and DM to the line BC. 

 Then AL = DM  (opposite sides of rectangle ALMD)

 so ABL DMC (AAS)

 Hence BL = CM  (matching sides of congruent triangles)
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 so LG = MG  (subtract equal lengths from equal lengths)

 so LG = AF  (opposite sides of a rectangle)

 Hence FG  BC

 so reflection in FG swaps B and C, and swaps A and D, as required.

 

c Since AD ≠ BC, a reflection cannot swap AD and BC. 

If a reflection swapped AD and AB, then it would also swap BC and DC, so ABCD 

would be a kite with parallel sides, so it would be a parallelogram. Similarly a reflection 

cannot swap AD and DC.
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