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Abstract

A catalogue of software for computing matrix functions and their Fréchet derivatives
is presented. For a wide variety of languages and for software ranging from commercial
products to open source packages we describe what matrix function codes are available and
which algorithms they implement.
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1 Introduction

The earliest widely available software for computing functions of matrices is probably the func-
tion named fun in the original 1984 Fortran version of MATLAB:

< M A T L A B >

Version of 01/10/84

<>

help fun

FUN For matrix arguments X , the functions SIN, COS, ATAN,

SQRT, LOG, EXP and X**p are computed using eigenvalues D

and eigenvectors V . If <V,D> = EIG(X) then f(X) =

V*f(D)/V . This method may give inaccurate results if V

is badly conditioned. Some idea of the accuracy can be

obtained by comparing X**1 with X .

For vector arguments, the function is applied to each

component.

Since then, and especially in the last decade or so, the quantity of software for matrix functions
has grown tremendously—to such an extent that it is hard to keep track of what is available.
This document is an attempt to produce a catalogue of software for matrix functions available
in different languages and packages.

The document lists what is available with a brief description of and reference to the algo-
rithms that are used (where known). We make no attempt to judge the quality of the software.
We also do not specify version numbers; for software still under development we are referring
to the version current at the time of writing. This document is not intended to be exhaustive.
For example, if a code or package has been superseded or is a translation of an existing code to
another language we will usually omit it.

This catalogue is a revised an updated version of [51]. We welcome notification of errors
and omissions, which will be incorporated into future versions.

For background on functions of matrices see [47], [49], or [55].

2 Applications of Matrix Functions

Matrix functions have applications in a diverse and growing range of areas of science, engineer-
ing, and the social sciences. We list a selection of areas in which we are aware of the use of
matrix function software.

• Multizone models of pollutant transport in buildings take the form of linear systems of
ordinary differential equations, which can be effectively solved using the matrix exponen-
tial [72].

• In Markov models in finance, statistics and social science [47, Sec. 2.3] transition proba-
bility matrices are related to the transition intensity matrix via the matrix exponential.
Transition matrices for shorter time scales can be generated by taking matrix roots, but
there are open questions about the existence and uniqueness of stochastic roots [52], [59].
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• NMR spectroscopy involves evaluating the exponential of a symmetric diagonally domi-
nant relaxation matrix [43], [68]. The package SIMPSON (http://nmr.au.dk/software/
simpson) for numerical simulations of NMR experiments includes several methods for
evaluating the matrix exponential.

• In control theory, linear dynamical systems can be expressed as continuous-time systems
or as discrete-time state-space systems. The matrix exponential and logarithm can be
used to convert between the two forms [47, Sec. 2.4]. In the Control System Toolbox for
MATLAB, functions c2d and d2c carry out these conversions.

• In nuclear engineering the burnup equations are a first-order system of linear ordinary
differential equations that are usually solved by time-stepping with the matrix exponential
[74]. The Python Nuclear Engineering Toolkit (http://pynesim.org) uses the SciPy
function linalg.expm (see Section 19.1).

• In social and information networks the elements of either the exponential or the resolvent
of the adjacency matrix of the network can be used to quantify the importance of nodes
within the network [30]. Recent research and software development has focused on com-
puting these elements, including in cases with special structure; see [15] and the references
therein. In time-varying networks the matrix logarithm is required [39].

• A number of problems in imaging make use of the matrix logarithm, including image
registration [12], patch modeling-based skin detection [57], and in-betweening in computer
animations [75].

• In optics, the Mueller matrix M is a real 4×4 matrix associated with an element that alters
the polarization of light. One method for determining the diattenutation, retardance, and
depolarization properties of M involves computing a pth root with p ≈ 105 [22], [70]. The
logarithm of M also provides understanding of the underlying medium that M describes
[71]. A related Jones matrix can be represented in terms of the matrix exponential [13].

3 Matrix Function Algorithms

There is now a large literature on matrix function algorithms, of which a survey as of 2010
is given in [50]. It may not be clear to users from different fields which algorithms represent
the current state-of-the-art. We list the algorithms that we consider to be preferred for a few
common matrix functions, for the case where a factorization of A can be explicitly computed
and full precision is required.

• Exponential: scaling and squaring algorithm (Al-Mohy and Higham, 2009) [4].

• Logarithm: inverse scaling and squaring algorithm (Al-Mohy, Higham, and Relton, 2012,
2013) [7], [8].

• Square root: Schur algorithm (Björck and Hammarling, 1983) [19], or real version for
real matrices (Higham, 1987) [45]. An algorithm with blocking provides performance
improvements (Deadman, Higham, and Ralha, 2013) [26].

• Real matrix power At with t ∈ R: Schur–Padé algorithm (Higham and Lin, 2013) [54].

• Cosine and sine (Al-Mohy, Higham, and Relton, 2015) [9].

• Inverse cosine, inverse sine, inverse hyperbolic cosine, and inverse hyperbolic sine (acosA,
acosA, acoshA, asinhA) (Aprahamian and Higham, 2016) [11].
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Table 1: Availability of recommended algorithms.
MATLAB MATLAB NAG SciPy Julia R

built-in Third party Library
Sec. 4 Secs 7, 8 Sec. 17 Sec. 19.1 Sec. 21 Sec. 15

eA [4]
√ √ √ √

×
√

logA [7], [8]
√ √ √ √ √

×
cosA, sinA [9] ×

√
× × × ×

acos(h)(A), asin(h)(A) [11] ×
√

× × × ×
A1/2 [19], [26], [45]

√ √ √ √ √ √

At [54] ×
√ √ √

× ×
f(A) [23]

√
–

√
× × ×

Estimation of cond(f,A) ×
√ √

× × ×
eAb [6]a ×

√ √ √
× ×

Lexp [3] ×
√ √ √

×
√

Llog [8] ×
√ √

× × ×
Lxt [54] ×

√ √
× × ×

aKrylov methods are also available; see the following sections.

• General matrix function with derivatives of the underlying scalar function available:
Schur–Parlett algorithm (Davies and Higham, 2003) [23]. This uses the recurrence of
Parlett (1976) [73].

• Function of a symmetric or Hermitian matrix: diagonalization (spectral decomposition).

In many applications of matrix functions the matrix is not known exactly, due to data errors
or errors in previous computations. Even with exact data the computation of a matrix function
is subject to rounding errors. It is therefore important to understand the sensitivity of the
matrix function to perturbations in the data, which is determined by the Fréchet derivative,
denoted by Lf . The recommended algorithms for computing the Fréchet derivative are as
follows.

• Exponential: scaling and squaring algorithm (Al-Mohy and Higham, 2009) [3].

• Logarithm: inverse scaling and squaring algorithm (Al-Mohy, Higham, and Relton, 2013)
[8].

• Real matrix power At with t ∈ R: Schur–Padé algorithm (Higham and Lin, 2013) [54].

• General matrix function: complex step algorithm (Al-Mohy and Higham, 2010) [5] or use
of a block 2× 2 matrix formula [50, Sec. 7.3].

Table 1 summarizes the availability of the above algorithms in several key sources of software.
Details are provided in the following sections.

The worst-case sensitivity of a matrix function over all perturbations is measured by the
condition number, cond(f,A) [47, Chap. 3]. The recommended way to estimate the condition
number is by using one of the above algorithms for the Fréchet derivative in conjunction with
[47, Alg. 3.22] and the block matrix 1-norm estimator of [56]; an implementation is the function
funm_condest1 in the Matrix Function Toolbox (see Section 7). We encourage users to compute
a condition number estimate whenever possible.

A rather different problem is to compute f(A)b, where b is a vector—the action of f(A)
on a vector—without explicitly forming f(A). Such problems can involve very large, sparse
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matrices, in which case matrix factorization may not be possible and methods that require only
matrix–vector products with A are needed. The sensitivity of this problem is investigated by
Deadman [24].

Codes for the f(A)b problem are described in some of the following sections.

4 MATLAB Built-in Functions

MATLAB has a number of built-in commands for evaluating functions of matrices.

• expm: matrix exponential by scaling and squaring algorithm (Al-Mohy and Higham, 2009)
[4]. MATLAB R2006a–R2015a used the earlier algorithm of (Higham, 2005, 2009) [46],
[48], which could suffer from overscaling [65].

Also included for pedagogical and historical interest are three older algorithms.

– expmdemo1: matrix exponential by an older scaling and squaring algorithm [36,
Alg. 9.3.1]. This is an M-file implementation of the algorithm that was used by
expm in MATLAB 7 (R14SP3) and earlier versions.

– expmdemo2: matrix exponential by Taylor series.

– expmdemo3: matrix exponential by eigenvalue decomposition.

• logm: matrix logarithm by inverse scaling and squaring algorithm (Al-Mohy, Higham, and
Relton, 2012, 2013) [7], [8]. MATLAB R2008a–R2015a used the Schur–Parlett algorithm
combined with inverse scaling and squaring (Higham, 2008) [47, Alg. 11.11].

• mpower, ^: arbitrary matrix power via eigendecomposition. Not that this approach can
be numerically unstable for noninteger powers of highly nonnormal matrices.

• sqrtm: matrix square root by Schur method with recursive blocking (Björck and Ham-
marling, 1983) [19], (Deadman, Higham, and Ralha, 2013) [26] and with condition number
estimate.

• funm: Schur–Parlett algorithm for general functions (Davies and Higham, 2003) [23]. It
has built-in support for the matrix cosine, sine, hyperbolic cosine, and hyperbolic sine.

• polyvalm: evaluate polynomial with matrix argument.

5 Symbolic Math Toolbox

The Symbolic Math Toolbox [64] is a MATLAB toolbox that carries out computations with
symbolic variables and also provides variable precision arithmetic. The toolbox overloads the
following functions for both symbolic and variable precision matrix arguments. For variable
precision arguments the function digits can be used to specify the number of digits of precision
required.

• expm: matrix exponential.

• logm: matrix logarithm.

• sqrtm: matrix square root.

• mpower, ^: arbitrary matrix power via eigendecomposition.
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• funm: general matrix function.

The Symbolic Math Toolbox also contains the MuPAD computer algebra system, which
provides some additional matrix function capabilities for matrices with numeric (not symbolic)
entries.

• numeric::expMatrix: computes the matrix exponential or the action of the matrix ex-
ponential on another matrix or vector. The numerical precision used can be specified by
the environment variable DIGITS. The exponential is evaluated using a choice of diagonal-
ization, interpolation, a Taylor series (apparently without scaling and squaring), or (for
eAb only) a Krylov subspace method.

• numeric::fMatrix: for a diagonalizable matrix, computes an arbitrary function of the
matrix via a diagonalization.

6 The Advanpix Multiprecision Computing Toolbox

The Advanpix Multiprecision Toolbox [1] is an extension to MATLAB for computing with
arbitrary precision. The toolbox provides arbitrary precision analogues to the built-in MATLAB
matrix functions as well as some trigonometric matrix functions. It is specifically optimized for
quadruple precision.

The following matrix function routines are available in the toolbox: funm, expm, sqrtm,
logm, sinm, cosm, sinhm, and coshm. The first four have the same calling sequences as their
MATLAB counterparts.

7 The Matrix Function Toolbox

The Matrix Function Toolbox (Higham, 2008) [44] contains MATLAB implementations of many
of the algorithms described in the book Functions of Matrices: Theory and Computation [47],
including

• trigonometric matrix functions,

• condition number evaluation and estimation,

• Fréchet derivative evaluation,

• polar decomposition,

• iterative methods for computing matrix roots,

• f(A)b via Arnoldi method.

The toolbox is documented in [47, App. D] and its contents are summarized in Table 2.

Table 2: Contents of Matrix Function Toolbox.

arnoldi Arnoldi iteration
ascent seq Ascent sequence for square (singular) matrix.
cosm Matrix cosine by double angle algorithm.
cosm pade Evaluate Padé approximation to the matrix cosine.
cosmsinm Matrix cosine and sine by double angle algorithm.
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Table 2: (continued)

cosmsinm pade Evaluate Padé approximations to matrix cosine and sine.
expm cond Relative condition number of matrix exponential.
expm frechet pade Fréchet derivative of matrix exponential via Padé approximation.
expm frechet quad Fréchet derivative of matrix exponential via quadrature.
fab arnoldi f(A)b approximated by Arnoldi method.
funm condest1 Estimate of 1-norm condition number of matrix function.
funm condest fro Estimate of Frobenius norm condition number of matrix function.
funm ev Evaluate general matrix function via eigensystem.
funm simple Simplified Schur–Parlett method for function of a matrix.
logm cond Relative condition number of matrix logarithm.
logm frechet pade Fréchet derivative of matrix logarithm via Padé approximation.
logm iss Matrix logarithm by inverse scaling and squaring method.
logm pade pf Evaluate Padé approximant to matrix logarithm by partial frac-

tion form.
mft test Test the Matrix Function Toolbox.
mft tolerance Convergence tolerance for matrix iterations.
polar newton Polar decomposition by scaled Newton iteration.
polar svd Canonical polar decomposition via singular value decomposition.
polyvalm ps Evaluate polynomial at matrix argument by Paterson–Stockmeyer

algorithm.
power binary Power of matrix by binary powering (repeated squaring).
quasitriang struct Block structure of upper quasitriangular matrix.
riccati xaxb Solve Riccati equation XAX = B in positive definite matrices.
rootpm newton Coupled Newton iteration for matrix pth root.
rootpm real pth root of real matrix via real Schur form.
rootpm schur newton Matrix pth root by Schur–Newton method.
rootpm sign Matrix pth root via matrix sign function.
signm Matrix sign decomposition.
signm newton Matrix sign function by Newton iteration.
sqrtm db Matrix square root by Denman–Beavers iteration.
sqrtm dbp Matrix square root by product form of Denman–Beavers iteration.
sqrtm newton Matrix square root by Newton iteration (unstable).
sqrtm newton full Matrix square root by full Newton method.
sqrtm pd Square root of positive definite matrix via polar decomposition.
sqrtm pulay Matrix square root by Pulay iteration.
sqrtm real Square root of real matrix by real Schur method.
sqrtm triang min norm Estimated minimum norm square root of triangular matrix.
sylvsol Solve Sylvester equation.

8 Other MATLAB Functions

Various other MATLAB functions implementing algorithms developed in research papers are
freely available online. We organize them according to the problem that they treat: f(A) or
the action of f(A) on a vector, f(A)b.
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8.1 f(A)

• Al-Mohy, Higham, and Relton (2013) [8]: an algorithm for the matrix logarithm (a real
version of the algorithm in [7]) together with Fréchet derivatives and condition number
estimates. Available from http://www.mathworks.com/matlabcentral/fileexchange/

38894-matrix-logarithm-with-frechet-derivatives-and-condition-number.

• Al-Mohy, Higham, and Relton (2015) [9]: algorithms for the matrix cosine, the matrix
sine, and for simultaneous evaluation of the matrix cosine and sine. Available from https:

//github.com/sdrelton/cosm_sinm and http://uk.mathworks.com/matlabcentral/

fileexchange/53130-matrix-cosine-and-sine-functions.

• Aprahamian and Higham (2014) [10]: an algorithm for computing the matrix unwinding
function. Available at http://eprints.ma.man.ac.uk/2094.

• Aprahamian and Higham (2016) [11]: algorithms for the matrix inverse cosine, inverse
sine, inverse hyperbolic cosine, and inverse hyperbolic sine. Available at https://github.
com/higham/matrix-inv-trig-hyp.

• Deadman and Higham (2014) [25]: a method for testing matrix function algorithms us-
ing identities. Available from https://github.com/edvindeadman/testing_matrix_

functions.

• Fasi, Higham, and Iannazzo (2015) [31]: the Lambert W function of a matrix. Available
from http://riccati.dm.unipi.it/software/lambertw.

• Greco and Iannazzo (2010) [38]: a binary powering Schur algorithm for matrix roots.
Available from http://poisson.phc.unipi.it/~maxreen/bruno/codes/rootpm_real_

2.m.

• Higham and Lin (2013) [54]: a Schur–Padé algorithm for fractional matrix powers to-
gether with Fréchet derivatives and condition estimates. Available from http://www.

mathworks.com/matlabcentral/fileexchange/41621-fractional-matrix-powers-with-

frechet-derivatives-and-condition-number-estimate

• Iannazzo and Manasse (2013) [58]: a Schur logarithmic algorithm for fractional powers
of matrices. Available from http://poisson.phc.unipi.it/~maxreen/bruno/codes/

pthrootlog.m.

8.2 f(A)b

• Al-Mohy and Higham (2011) [6]: a scaled Taylor series algorithm for the action of the
matrix exponential on a vector. Available from https://github.com/higham/expmv.

• Caliari, Kandolf, Ostermann, and Rainer (2014) [20]: a method for computing the action
of the matrix exponential (for a matrix with spectrum in the left half of the complex
plane) based on interpolation at Leja points. Available from http://www.mathworks.

com/matlabcentral/fileexchange/44039-matrix-exponential-times-a-vector

Caliari, Kandolf, Ostermann, and Rainer (2015) [21]: a newer version of the Leja algorithm
with no restriction on the spectrum of A. Available from https://numerical-analysis.

uibk.ac.at/exp-int-software.

• Eiermann and Güttel (2008) [2], [28]: a restarted Krylov algorithm for computing f(A)b; it
also implements deflated restarting [29] and harmonic Arnoldi approximation [32]. Avail-
able from http://www.guettel.com/funm_kryl.
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• Frommer, Güttel and Schweitzer (2014) [33]: a quadrature-based restarted Krylov method
for f(A)b. It implements deflated restarting [29]. Available from http://www.guettel.

com/funm_quad.

• Güttel (2010): a rational Chebyshev series method for computing eAb, where A is sym-
metric and has no positive eigenvalues. Available from http://www.mathworks.com/

matlabcentral/fileexchange/28199-matrix-exponential.

• Güttel and Knizhnerman (2011) [40]: a black-box rational Arnoldi method for comput-
ing f(A)b, where f is a Markov matrix function. Available from http://guettel.com/

markovfunmv. See also [41].

• Hale, Higham and Trefethen (2008) [42]: algorithms for evaluating f(A) and f(A)b by
contour integration. MATLAB code is embedded in the paper.

• Kloster and Gleich [62]: an algorithm for computing a column of the exponential of a
stochastic matrix. Code is available from https://www.cs.purdue.edu/homes/dgleich/

codes/nexpokit.

9 Expokit

Expokit (Sidje, 1998) [79], [80] is a package of Fortran and MATLAB codes to compute eA

(using scaling and squaring) and eAb (using Krylov subspace methods). An R interface to
Expokit is available at http://cran.r-project.org/web/packages/expoRkit.

10 EXPINT

EXPINT (Berland, Skaflestad and Wright, 2007) [16], [17] is a MATLAB package providing
exponential integrators for ordinary differential equations. A large range of Runge–Kutta,
multistep, and general linear integrators is available. The functions ϕk(z) =

∑∞
j=0 z

j/(j + k)!
underlying the methods are evaluated at matrix arguments using Padé approximants with a
scaling and squaring scheme.

11 GNU Octave

GNU Octave [34] is an open source problem-solving environment (PSE)1 with a high-level
programming language similar to (and mostly compatible with) MATLAB. It contains several
matrix function routines.

• expm: matrix exponential by Ward’s version of the scaling and squaring algorithm (1977)
[83].

• logm: matrix logarithm by an inverse scaling and squaring algorithm (Higham, 2008) [47].

• sqrtm: matrix square root by the Schur method (Björck and Hammarling, 1983) [19].

An extra package linear-algebra is available (http://octave.sourceforge.net/linear-
algebra), which contains some additional matrix function routines.

1 A PSE provides a programming language, an interactive command window with the display of graphics,
and the ability to export graphics and more generally publish documents to HTML, PDF, TEX, and so on.
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• thfm: trigonometric and hyperbolic functions and their inverses. It implements textbook
definitions, in terms of expm, logm, and sqrtm.

• funm: general matrix function via diagonalization.

12 Scilab

Scilab [78] is another open source PSE. Scilab syntax is similar to that of MATLAB and a code
translator is available to convert code from MATLAB to Scilab. Scilab contains several matrix
function routines.

• expm: matrix exponential using block diagonalization with a Padé approximant applied
to each block.

• logm: matrix logarithm via diagonalization.

• sqrtm: matrix square root via diagonalization.

• Trigonometric and hyperbolic functions, which are implemented via their definitions in
terms of the matrix exponential.

• power: matrix power using diagonalization for non-integer powers.

13 Maple

Maple contains some matrix function routines in its LinearAlgebra package. The matrix
functions are computed symbolically using polynomial interpolation at the matrix eigenvalues.

• MatrixExponential: exponential of a matrix.

• MatrixPower: general (non-integer) power of a matrix.

• MatrixFunction: general function of a matrix. The function is supplied in the form of
an analytic expression by the user.

14 Mathematica

Mathematica evaluates the functions listed below for numeric or symbolic matrices.

• MatrixFunction: evaluates a general matrix function. The Schur–Parlett algorithm
(Davies and Higham, 2003) [23] is used for numeric matrices (derivatives are computed
symbolically), and the Jordan form is used for symbolic matrices.

• MatrixExp: the matrix exponential is computed by scaling and squaring (Higham, 2005)
[46], [48]. This function can also compute the action of the matrix exponential on a vector,
using Krylov methods.

• MatrixLog: the matrix logarithm is evaluated via a Schur decomposition for numeric
matrices or the Jordan form for symbolic matrices.

15 R

Three packages from CRAN (the Comprehensive R Archive Network) include codes for matrix
functions.
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15.1 Expm

Goulet, Dutang, Maechler, Firth, Shapira, and Stadelmann have written the R package expm
[37]. It contains codes not only for the matrix exponential but also for the logarithm and square
root.

• expm: the default method corresponds to option Higham08.b, which uses the algorithm
of (Higham, 2005) [46], [48] with balancing. The option AlMohy-Hi09 implements the
algorithm of Al-Mohy and Higham [4]. Also available are options for using an eigende-
composition and other Padé and Taylor-based methods.

• expAtv uses a Krylov method of Sidje (1998) [80] to compute the action of the matrix
exponential on a vector.

• expmCond: computes or approximates the 1-norm or Frobenius norm condition number of
the matrix exponential using the algorithm of Al-Mohy and Higham (2009) [3] or methods
from [47, Sec. 3.4].

• expmFrechet: Fréchet derivative of matrix exponential (Al-Mohy and Higham, 2009) [3].

• logm: matrix logarithm by inverse scaling and squaring (Higham, 2008) [47, Alg. 11.9].

• sqrtm: matrix square root by the Schur method (Björck and Hammarling, 1983) [19].

• matpow: positive integer powers via binary powering.

15.2 pbdDMAT

The pbdDMAT (Programming with Big Data—Distributed Matrix Methods) R package [77]
includes a code expm that implements the scaling and squaring algorithm of Al-Mohy and
Higham (2009) [4] for the matrix exponential.

15.3 Matrix

The Matrix R package [14] contains a code expm that is “a translation of the implementation
of the corresponding Octave function contributed to the Octave project by A. Scottedward
Hodel”. The expm code in the Expm package (see Section 15.1) is to be preferred.

16 ϕ Functions in Fortran 95

Koikari (2009) [63] has written Fortran 95 software for computing the functions ϕ`(z) =∑∞
k=0 z

k/(k + `)! by scaling and squaring and by a block Schur–Parlett algorithm. The code is
available as a supplement to the paper on the ACM website.

17 NAG Library

The NAG Library [67] has a large set of matrix function routines in its Chapter F01, covering
computation of matrix functions and their Fréchet derivatives and estimation of the condition
numbers of matrix functions.

• NAG Fortran Library Mark 23 and NAG Toolbox for MATLAB Mark 23 (released 2011):

– Matrix exponential using scaling and squaring algorithm (Higham, 2005) [46], [48].
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– Function of real symmetric or Hermitian matrix via eigendecomposition.

• NAG C Library Mark 23, released 2012, also contains:

– Schur–Parlett algorithm for general functions and for cos, sin, cosh, sinh, exp (Davies
and Higham, 2003) [23].

– Matrix logarithm by Schur–Parlett algorithm with inverse scaling and squaring al-
gorithm (Higham, 2008) [47].

• NAG Fortran Library Mark 24 and the NAG Toolbox for MATLAB Mark 24 (released
2013) also contain:

– Action of the matrix exponential by scaled Taylor series algorithm (Al-Mohy and
Higham, 2011) [6].

– Condition number estimation in the 1-norm for general matrix functions and for cos,
sin, cosh, sinh, exp.

• The NAG C Library Mark 24 (2014), NAG Fortran Library Mark 25 (2015), and NAG
Toolbox for MATLAB Mark 25 (2015) also contain:

– Improved scaling and squaring algorithms for matrix exponential and logarithm (Al-
Mohy and Higham, 2009, 2012) [4], [7], with computation of the logarithm of a real
matrix in real arithmetic (Al-Mohy, Higham, and Relton, 2013) [8].

– Matrix square root using Schur method with blocking (including real arithmetic
algorithm of Higham [45]) [19], [26].

– Matrix power Ap, p ∈ R, via Schur–Padé algorithm (Higham and Lin, 2011, 2013)
[53], [54].

– Latest Fréchet derivative and condition number algorithms for the matrix exponen-
tial, logarithm, and real powers [3], [8], [54].

Documentation can be found at: http://www.nag.co.uk/support_documentation.asp.
A complete list of all of the NAG matrix function routines, together with their Mark of intro-
duction and the algorithms used, is given in Table 3.

18 SLICOT

SLICOT (Subroutine Library in Systems and Control Theory) [81] includes Fortran 77 codes
for three matrix functions.

• MB05MD computes the exponential of a real matrix by diagonalization, optionally with
balancing.

• MB05ND computes the matrix exponential and an integral involving the matrix exponential
for a real matrix

• MB05OD computes the exponential of a real matrix by Ward’s version of the scaling and
squaring algorithm (1977) [83] and returns an accuracy estimate.
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Table 3: Matrix Function Routines in the NAG Library.

Short

Name

Long Name Purpose Arithmetic Algorithms Used Marks of
Introduction

F01EC nag real gen matrix exp Exponential Real Scaling & squaring [4] FL22 & CL9
F01ED nag real symm matrix exp Exponential, symmetric matrix Real Diagonalization FL23 & CL9
F01EF nag matop real symm matrix fun Symmetric matrix function Real Diagonalization FL23 & CL23
F01EJ nag matop real gen matrix log Logarithm Real Scaling & squaring [7] FL24 & CL23
F01EK nag matop real gen matrix fun std sin, cos, sinh, cosh or exp Real Schur–Parlett [23] FL24 & CL23
F01EL nag matop real gen matrix fun num General user-provided function Real Schur–Parlett [23] FL24 & CL24
F01EM nag matop real gen matrix fun usd General user-provided function Real Schur–Parlett [23] FL24 & CL23
F01EN nag matop real gen matrix sqrt Square root Real [19], [45], [26] FL25 & CL24
F01EP nag matop real tri matrix sqrt Upper triangular square root Real [19], [45], [26] FL25 & CL24
F01EQ nag matop real gen matrix pow General real power Real [53], [54] FL25 & CL24
F01FC nag complex gen matrix exp Exponential Complex Scaling & squaring [4] FL23 & CL23
F01FD nag complex gen matrix exp Exponential, Hermitian matrix Complex Diagonalization FL23 & CL23
F01FF nag matop complex symm matrix fun Hermitian matrix function Complex Diagonalization FL23 & CL23
F01FJ nag matop real gen matrix log Logarithm Complex Scaling & squaring [7] FL24 & CL23
F01FK nag matop real gen matrix fun std sin, cos, sinh, cosh or exp Complex Schur–Parlett [23] FL24 & CL23
F01FL nag matop real gen matrix fun num General user-provided function Complex Schur–Parlett [23] FL24 & CL24
F01FM nag matop real gen matrix fun usd General user-provided function Complex Schur–Parlett [23] FL24 & CL23
F01FN nag matop real gen matrix sqrt Square root Complex [19], [26] FL25 & CL24
F01FP nag matop real tri matrix sqrt Upper triangular square root Complex [19], [26] FL25 & CL24
F01FQ nag matop real gen matrix pow General real power Complex [53], [54] FL25 & CL24
F01GA nag matop real gen matrix actexp Action of matrix exponential Real [6] FL24 & CL24
F01GB nag matop real gen matrix actexp rcomm Action of matrix exponential Real [6] rev comm1 FL24 & CL24
F01HA nag matop complex gen matrix actexp Action of matrix exponential Complex [6] FL24 & CL24
F01HB nag matop complex gen matrix actexp rcomm Action of matrix exponential Complex [6] rev comm1 FL24 & CL24
F01JA nag matop real gen matrix cond std sin, cos, sinh, cosh, exp cond Real Schur–Parlett [23] FL24 & CL24
F01JB nag matop real gen matrix cond num User function, condition Real Schur–Parlett [23] FL24 & CL24
F01JC nag matop real gen matrix cond usd User function, condition Real Schur–Parlett [23] FL24 & CL24
F01JD nag matop real gen matrix cond sqrt Square root, condition Real [19], [45], [26] FL25 & CL24

1“Rev comm” denotes a reverse communication interface.
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F01JE nag matop real gen matrix cond pow General real power, condition Real [54] FL25 & CL24
F01JF nag matop real gen matrix frcht pow Real power, Fréchet derivative Real [54] FL25 & CL24
F01JG nag matop real gen matrix cond exp Exponential, condition number Real [3] FL25 & CL24
F01JH nag matop real gen matrix frcht exp Exponential, Fréchet derivative Real [3] FL25 & CL24
F01JJ nag matop real gen matrix cond log Logarithm, condition number Real [7], [8] FL25 & CL24
F01JK nag matop real gen matrix frcht log Logarithm, Fréchet derivative Real [7], [8] FL25 & CL24
F01KA nag matop complex gen matrix cond std sin, cos, sinh, cosh, exp cond Complex Schur–Parlett [23] FL24 & CL24
F01KB nag matop complex gen matrix cond num User function, condition Complex Schur–Parlett [23] FL24 & CL24
F01KC nag matop complex gen matrix cond usd User function, condition Complex Schur–Parlett [23] FL24 & CL24
F01KD nag matop complex gen matrix cond sqrt Square root, condition Complex [19], [26] FL25 & CL24
F01KE nag matop complex gen matrix cond pow General real power, condition Complex [54] FL25 & CL24
F01KF nag matop complex gen matrix frcht pow Real power, Fréchet derivative Complex [54] FL25 & CL24
F01KG nag matop complex gen matrix cond exp Exponential, condition number Complex [3] FL25 & CL24
F01KH nag matop complex gen matrix frcht exp Exponential, Fréchet derivative Complex [3] FL25 & CL24
F01KJ nag matop complex gen matrix cond log Logarithm, condition number Complex [7], [8] FL25 & CL24
F01KK nag matop complex gen matrix frcht log Logarithm, Fréchet derivative Complex [7], [8] FL25 & CL24
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19 Python

19.1 SciPy

SciPy [60] is a Python package for scientific computing. It has a number of matrix function
codes.

• sparse.linalg.expm: matrix exponential by scaling and squaring algorithm (Al-Mohy
and Higham, 2009) [4].

• linalg.expm3, linalg.expm2, linalg.expm: matrix exponential using Taylor series,
eigenvalue decomposition, and scaling and squaring (Higham, 2005) [46], respectively.

• linalg.logm: matrix logarithm via inverse scaling and squaring algorithm (Al-Mohy and
Higham, 2012) [7].

• linalg.sinm, linalg.cosm, linalg.tanm, linalg.sinhm, linalg.coshm, linalg.tanhm:
implemented in terms of linalg.expm.

• linalg.funm: unblocked Schur–Parlett algorithm [36, Alg. 9.1.1], [47, Alg. 4.1.3].

• linalg.fractional matrix power: arbitrary real power of matrix by Schur–Padé algo-
rithm (Higham and Lin, 2011, 2013) [53], [54].

• linalg.signm: matrix sign function via Newton iteration [47, Sec. 5.3].

• linalg.expm frechet: Fréchet derivative of matrix exponential by scaling and squaring
algorithm (Al-Mohy and Higham, 2009) [3].

• linalg.expm cond: Frobenius norm condition number of matrix exponential.

• linalg.sqrtm: matrix square root by blocked version of Schur method of Björck and
Hammarling (1983) [19], [26].

• linalg.expm multiply: action of matrix exponential on a vector or matrix via scaled
Taylor series algorithm (Al-Mohy and Higham, 2011) [6].

• linalg.polar: polar decomposition via the singular value decomposition [47, Chap. 8].

19.2 Python: SymPy

SymPy [82] is a Python library for symbolic mathematics. It contains some numerical matrix
function capabilities in its mpmath module and variable precision arithmetic is supported. The
precision is set using either mp.prec (to set the binary precision, measured in bits) or mp.dps

(to set the decimal precision).

• mpmath.expm: matrix exponential by scaling and squaring with Taylor series or Padé
approximant.

• mpmath.logm: matrix logarithm evaluated via inverse scaling and squaring and a Taylor
series.

• mpmath.sinm, mpmath.cosm: matrix sine and cosine implemented via the matrix expo-
nential.

• mpmath.sqrtm: matrix square root evaluated using the Denman–Beavers (1976) iteration
[27].
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• mpmath.powm: Ap for p ∈ C, implemented as ep logA.

Note that both SymPy and SciPy are available in Sage [76], an open source Python-based
mathematical software package.

19.3 Other Python Functions

Python implementations of the algorithms in Deadman (2015) [24], for computing the condition
number of f(A)b, are available at https://github.com/edvindeadman/fAbcond.

20 Java

A Java implementation by Bilge of the algorithm of Al-Mohy and Higham (2011) [6] for the ac-
tion of the matrix exponential on a vector is available from https://github.com/armanbilge/

AMH11.

21 Julia

Julia [18], [61] is an open-source, high-level, dynamic programming language designed specif-
ically for high-performance numerical and scientific computing. Its extensive mathematical
function library is largely written in Julia itself, but also includes calls to other libraries such
as LAPACK and OpenBLAS. Four matrix function routines are available in the Julia Standard
Library:

• expm: matrix exponential using the scaling and squaring algorithm of Higham (2005) [46],
[48].

• logm: matrix logarithm by inverse scaling and squaring algorithm of Al-Mohy and Higham
(2012) [7].

• sqrtm: matrix square root using the Schur method of Björck and Hammarling (1983) [19].

22 C++: Eigen

Niesen has written a matrix functions module for the Eigen C++ template library for linear
algebra [69].

• MatrixBase::exp(): matrix exponential by scaling and squaring algorithm (Higham,
2005) [46], [48].

• MatrixBase::sin(), MatrixBase::sinh(), MatrixBase::cos(), MatrixBase::cosh()
and MatrixBase::matrixFunction() are all based on the Schur–Parlett algorithm (Davies
and Higham, 2003) [23].

• MatrixBase::log(): matrix logarithm by the Schur–Parlett algorithm with inverse scal-
ing and squaring [47, Alg. 11.11].

• MatrixBase::pow(): real matrix powers At (t ∈ R) using the Schur–Padé algorithm
(Higham and Lin, 2011) [53].

• MatrixBase::sqrt(): matrix square root by Schur method (Björck and Hammarling,
1983) [19] and the real Schur method (Higham, 1987) [45].
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23 The GNU Scientific Library

The GNU Scientific Library (GSL) is an open-source numerical library written in C (although
wrappers exist for many other programming languages) [35]. GSL includes an undocumented
function gsl_linalg_exponential_ss to compute the matrix exponential. This routine uses
scaling and squaring and a truncated Taylor series. The scaling and truncation parameters are
chosen as in Moler and Van Loan (2003) [66, Method 3].
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of a restarted Krylov subspace method for the evaluation of matrix functions. Linear
Algebra Appl., 429(10):2293–2314, 2008.

[3] Awad H. Al-Mohy and Nicholas J. Higham. Computing the Fréchet derivative of the matrix
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matrix. SIAM J. Matrix Anal. Appl., 32(3):1056–1078, 2011.

[54] Nicholas J. Higham and Lijing Lin. An improved Schur–Padé algorithm for fractional
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