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Abstract

We study online boosting, the task of convert-
ing any weak online learner into a strong online
learner. Based on a novel and natural definition
of weak online learnability, we develop two on-
line boosting algorithms. The first algorithm is
an online version of boost-by-majority. By prov-
ing a matching lower bound, we show that this
algorithm is essentially optimal in terms of the
number of weak learners and the sample com-
plexity needed to achieve a specified accuracy.
The second algorithm is adaptive and parameter-
free, albeit not optimal.

1. Introduction

We study online boosting, the task of boosting the accu-
racy of any weak online learning algorithm. The theory
of boosting in the batch setting has been studied exten-
sively, leading to a huge practical success. See the book
by Schapire & Freund (2012) for a thorough discussion.

Online learning algorithms receive examples one by one,
updating the predictor after seeing each new example. In
contrast to the batch setting, online learning algorithms
typically don’t make any stochastic assumptions about the
data. They are often much faster, more memory-efficient,
and can adapt to the best predictor changing over time.

The success of boosting in batch learning prompted an in-
vestigation of whether online learning algorithms can be
boosted as well (Oza & Russell, 2001; Grabner & Bischof,
2006; Liu & Yu, 2007; Grabner et al., 2008; Chen et al.,
2012;2014).
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From a theoretical viewpoint, recent work by Chen et al.
(2012) is perhaps most interesting. The authors proposed
an online generalization of the batch weak learning as-
sumption, and made a connection between online boosting
and batch boosting that produces smooth distributions over
the training examples. The resulting algorithm is guaran-
teed to achieve an arbitrarily small error rate as long as the
number of weak learners and the number of examples are
sufficiently large. No assumptions need to be made about
how the data is generated. Indeed, the data can even be
generated by an adversary.

We present a new online boosting algorithm, based on
the boost-by-majority (BBM) algorithm of (Freund, 1995).
This algorithm, called Online BBM, improves upon the
work of Chen et al. (2012) in several ways:

1. Our assumption on online weak learners is weaker and
can be seen as a direct online analogue of the standard
batch weak learning assumption.

2. Our algorithm doesn’t require importance weighted
online learning, instead using a sampling technique
similar to the one used in boosting by filtering in
the batch setting (Freund, 1992; Bradley & Schapire,
2008).

3. Our algorithm is optimal in the sense that no online
boosting algorithm can achieve the same error rate
with fewer weak learners or examples asymptotically
(see the lower bounds in Section 3.2).

The following table presents a comparison of the two pa-
pers for the setting where the weak learner is derived from
an online learning algorithm with an O(+/T') regret bound.
Here N is the number of weak learners and T is the num-
ber of examples needed to achieve error rate €, and +y is an
online analog of the “edge” of the weak learning oracle.'

'In this paper, we use the O(-) and Q(-) notation to suppress
dependence on polylogarithmic factors in the natural parameters.
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A clear drawback of both Online BBM and the algorithm
in Chen et al. (2012) is their lack of adaptivity. These
algorithms require knowledge of v as a parameter. More
importantly, this also means that the algorithm treats each
weak learner equally and ignores the fact that some weak
learners are actually doing better than the others. The best
example of adaptive boosting algorithm is the well-known
parameter-free AdaBoost algorithm (Freund & Schapire,
1997), where each weak learner is naturally weighted by
how accurate it is. In fact, adaptivity is known to be one
of the key features that lead to the practical success of Ad-
aBoost, and therefore should also be essential to the perfor-
mance of online boosting algorithms. In Section 4, we pro-
pose AdaBoost.OL, an adaptive and parameter-free online
boosting algorithm. As shown in the table, AdaBoost.OL
is theoretically suboptimal in terms of N and 7T". However,
empirically it generally outperforms OSBoost and some-
times even beats the optimal Online BBM (see Section 5).

Our techniques are also very different from those of Chen
et al. (2012), which rely on the smooth boosting algorithm
of Servedio (2003). As far as we know, all other work on
smooth boosting (Bshouty & Gavinsky, 2003; Bradley &
Schapire, 2008; Barak et al., 2009) cannot be easily gener-
alized to the online setting, necessitating completely differ-
ent methods not relying on smooth distributions. Our On-
line BBM algorithm builds on top of a potential based fam-
ily that arises naturally in the batch setting as approximate
minimax optimal algorithms for so-called drifting games
(Schapire, 2001; Luo & Schapire, 2014). The decomposi-
tion of each example in that framework naturally allows us
to generalize it to the online setting where example comes
one by one. On the other hand, AdaBoost.OL is derived by
viewing boosting from a different angle: loss minimization
(Mason et al., 2000; Schapire & Freund, 2012). The theory
of online loss minimization is the key tool for developing
AdaBoost.OL.

Finally, Section 5 presents encouraging experiments on
some benchmark datasets.

2. Setup and Assumptions

We describe the formal setup of the task of online classifi-
cation by boosting. At each time stept = 1,...,7, an ad-
versary chooses an example (x¢, y;) € X x {—1,1}, where

X is the domain, and reveals x; to the online learner. The
learner makes a prediction on its label g, € {—1,1}, and
suffers the 0-1 loss 1{§: # y:}. As is usual with online
algorithms, this prediction may be randomized.

For parameters v € (0, 1), § € (0,1), and a constant S >
0, the learner is said to be a weak online learner with edge
~ and excess loss S if, for any T" and for any input sequence
of examples (x;,y;) fort =1,2,...,T chosen adaptively,
it generates predictions gj; such that with probability at least
1—9,
T
S Aur <G -NT+S. )
t=1
The excess loss requirement is necessary since an online
learner can’t be expected to predict with any accuracy with
too few examples. Essentially, the excess loss S yields a
kind of sample complexity bound: the weak learner starts
obtaining a distinct edge of () over random guessing
when T" > % Typically, the dependence of the high prob-

ability bound on ¢ is polylogarithmic in %; thus in the fol-
lowing we will avoid explicitly mentioning 4.

For a given parameter ¢ > 0, the learner is said to be a
strong online learner with error rate e if it satisfies the same
conditions as a weak online learner except that its edge is
é — €, or in other words, the fraction of mistakes made,
asymptotically, is €. Just as for the weak learner, the excess
loss S yields a sample complexity bound: the fraction of
mistakes made by the strong learner becomes O(e) when

T > 5.

€
Our main theorem is the following:

Theorem 1. Given a weak online learning algorithm with
edge v and excess loss S and any target error rate € >
0, there is a strong online learning algorithm with error
rate € which uses O(%2 In(1)) copies of the weak online

learner, and has excess loss O(% + 7%)’ thus its sample

complexity is O(%(% + %)) Furthermore, if S > Q(%)
then the number of weak online learners is optimal up to
constant factors, and the sample complexity is optimal up

to polylogarithmic factors.

The requirement that S > Q(%) in the lower bound is not
very stringent; this is precisely the excess loss one obtains
when using standard online learning algorithms with regret
bound O(\/T), as is explained in the discussion following
Lemma 2. Furthermore, since we require the bound (1) to
hold with high probability, typical analyses of online learn-
ing algorithms will have an O(ﬁ) deviation term, which
also leads to S > Q(%)

As the theorem indicates, the strong online learner (here-
after referred to as “booster”) works by maintaining N
copies of the weak online learner, for some positive integer
N to be specified later. Denote the weak online learners
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WL fori = 1,2,..., N. At time step t, the prediction of
i-th weak online learner is given by WL'(x;) € {—1,1}.
Note the slight abuse of notation here: WL’ is nor a func-
tion, rather it is an algorithm with an internal state that is
updated as it is fed training examples. Thus, the predic-
tion WL'(x,) depends on the internal state of WL, and for
notational convenience we avoid reference to the internal
state.

In each round ¢, the booster works by taking a weighted ma-
jority vote of the weak learners’ predictions. Specifically,
the booster maintains weights ai € R fori = 1,..., N
corresponding to each weak learner, and its final prediction
will then be? §; = sign(>~ | aiWL(x,)), where sign(-)
is 1 if the argument is nonnegative and —1 otherwise. After
making the prediction, the true label y; is revealed by the
environment. The booster then updates WL’ by passing
the training example (x;,%;) to WL with a carefully cho-
sen sampling probability p¢ (and not passing the example
with the remaining probability). The sampling probabil-
ity p! is obtained by computing a weight w! and setting®
pi = ﬁ, where w' = (wi,w}, ..., wh). At the same
time the booster updates !} as well, and then it is ready to
make a prediction for the next round.

We introduce some more notation to ease the presentation.
Let zi = y,WL'(x;) and s} = 5.~ + aiz} with s) = 0.
Define z' = (2%, 2%, ..., z%.). Finally, a martingale concen-
tration bound using (1) yields the following bound. (See
Appendix A in the supplementary material for a proof.)
The bound can be seen as a weighted version of (1) which
is necessary for the rest of the analysis.

Lemma 1. There is a constant S = 25 + O(%) such that
Jor any T, with high probability, for every weak learner
WL' we have

w'oz' > flw = Sw|oc.

2.1. Handling Importance Weights

Typical online learning algorithms can handle importance
weighted examples: each example (x;,y:) comes with a
weight p; € [0, 1], and the loss on that example is scaled
by p¢, i.e. the loss for predicting §; is p:1{J: # y:}-
Consider the following natural extension to the definition
of online weak learners which incorporates importance
weighted examples: we now require that for any sequence
of weighted examples (x¢,y;) with weight p; € [0, 1] for
t=1,2,...,T, the online learner generates predictions g

’In Section 4 a slightly different final prediction will be used.

In the algorithm we simply use a tight-enough upper bound
on ||w*||ss (such as the bound from Lemma 4) to compute the
values p}; we abuse notation here and use || w*||o to also denote
this upper bound.

such that with probability at least 1 — 4,

T T
Zptl{ﬂt#yt}ﬁ (%*V)Zpt+5- 2)
t=1

t=1

Having access to such a weak learner makes the boost-
ing algorithm simpler: we now simply pass every example
(Xt,yt) to every weak learner WL" using the probability

p; = H“:Uﬁ as the importance weight. The advantage is
that the bound (2) immediately implies the following in-
equality for any weak learner WL', which can be seen as a
(stronger) analogue of Lemma 1.

wh.zt > 2’y||wi||1 — 25|\Wi||oo. 3)

Since the analysis depends only on the bound in Lemma 1,
if we use the importance-weighted version of the boosting
algorithm, then we can simply use inequality (3) instead in
the analysis, which gives a slightly tighter version of The-
orem 1, viz. the excess loss can now be bounded by O(%)

In the rest of the paper, for simplicity of exposition we as-
sume that the p!’s are used as sampling probabilities rather
than importance weights, and give the analysis using the
bound from Lemma 1. In experiments, however, using the
pi’s as importance weights rather than sampling probabili-
ties led to better performance.

2.2. Discussion of Weak Online Learning Assumption

We now justify our definition of weak online learning, viz.
inequality (1). In the standard batch boosting case, the
corresponding weak learning assumption (see for example
Schapire & Freund (2012)) made is that there is an algo-
rithm which, given a training set of examples and an arbi-
trary distribution on it, generates a hypothesis that has error
at most % — ~ on the training data under the given distri-
bution. This statement can be interpreted as making the
following two implicit assumptions:

1. (Richness.) Given an edge parameter y € (0, %), there
is a set of hypotheses, H, such that given any training
set (possibly, a multiset) of examples U, there is some
hypothesis h € H with error at most % — 7, ie.

> Hh(x) #y} < (5 -

(x,y)eU

2. (Agnostic Learnability.) For any € € (0, 1), there is
an algorithm which, given any training set (possibly,
a multiset) of examples U, can compute a nearly opti-
mal hypothesis h € H, i.e.

Y. Hh(x) #y} < inf > AN (x) # y}elU].

(x,y)€U (x,y)eU
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Our weak online learning assumption can be seen as aris-
ing from a direct generalization of the above two assump-
tions to the online setting. Namely, the richness assumption
stays the same, whereas the agnostic learnability of H as-
sumption is replaced by an agnostic online learnability of
‘H assumption (c.f. Ben-David et al. (2009)). L.e., there is
an online learning algorithm which, given any sequence of
examples, (x;,y;) for t = 1,2,...,T, generates predic-
tions ¢; such that

T

T
D0 # u) < fnf, 5 1UGe) # we} + R(T),

t=1

where R : N — R, is the regret, a non-decreasing, sublin-
ear function of the number of prediction periods 7. Since
online learning algorithms are typically randomized, we as-
sume the above bound holds with high probability. The
following lemma shows that richness and agnostic online
learnability immediately imply our online weak learning
assumption (1):

Lemma 2. Suppose the sequence of examples (x¢,y:) is
obtained from a data set for which there exists a hypoth-
esis class H that is both rich for edge parameter 2y and
agnostically online learnable with regret R(-). Then, the
agnostic online learning algorithm for ‘H satisfies the weak
learning assumption (1), with edge v and excess loss S =
maxy (R(T) —~T).

Proof. For the given sequence of examples (xi,y:) for
t =1,2,...,T, the richness with edge parameter 2y and
agnostic online learnability assumptions on A imply that
with high probability, the predictions y; generated by the
agnostic online learning algorithm for H satisfy

T

> g #w} < (3 - 29T+ R(D).

t=1

It only remains to show that
(3 =27+ RT) < (3 -)T + S,

or equivalently, R(T) < ~T + S, which is true by the
definition of S. This concludes the proof. O

Various agnostic online learning algorithms are known that
have a regret bound of O(y/T In(5)); for example, a stan-

dard experts algorithm on a finite hypothesis space such
as Hedge. If we use such an online learning algorithm as
a weak online learner, then a simple calculation implies,

1
via Lemma 2, that it has excess loss @(1n(5) ). Thus, by
Theorem 1, we obtain an online boosting algorithm with
near-optimal sample complexity.

3. An Optimal Algorithm

In this section, we generalize a family of potential based
batch boosting algorithms to the online setting. With a
specific potential, an online version of boost-by-majority is
developed with optimal number of weak learners and near-
optimal sample complexity. Matching lower bounds will
be shown at the end of the section.

3.1. A Potential Based Family and Boost-By-Majority

In the batch setting, many boosting algorithms can be
understood in a unified framework called drifting games
(Schapire, 2001). Here, we generalize the analysis and pro-
pose a potential based family of online boosting algorithms.

Pick a sequence of /N +1 non-increasing potential functions
®;(s) such that

Dy (s) > 1{s <0},

D 1(s) > (5 — 3)Pils —
Then the algorithm is simply to set of = 1 and w] =
1(@;(s;7" — 1) — ®;(s;~" + 1)). The following theorem
states the error rate bound of this general scheme.

Lemma 3. For any T and N, with high probability, the
number of mistakes made by the algorithm described above
is bounded as follows:

4
D+ (34 1)®i(s+1). @

T

Zl{ﬂt # Yy} < ©o(0)T + SZ W oo -

t=1

Proof. The key property of the algorithm is that for any
fixed ¢ and ¢, one can verify the following:

Bi(s) +wi(zf —7) = Bulsi™ + 2) + iz - )
— (3= POl D+ G+ POl + D)
< (I)i—1(si_1)

by plugging the formula of w?, realizing that z} can only be
—1 or 1, and using the definition of ®;_1(s) from Eq. (4).
t=1toT, we get

T T
D vi(sp) +w ez —qwil <Y ®ia(sih).
t=1 t=1
Using Lemma 1, we get
T T
Do @ils) < D Bima(si) + S|W|eo
t=1 t=1
which relates the sums of all examples’ potential for two

successive weak learners. We can therefore apply this in-
equality iteratively to arrive at:

T T
S en(st) <D 2(0) + 5D [Wle-
t=1 t=1 1
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Algorithm 1 Online BBM
I: fort =1to T do
Receive example x;. ,
3:  Predict gy = sign(Z?L1 WL*(x¢)), receive label y;.
4 Sets? =0.
5. fori=1to N do ‘
6: Set sy = si_l + y: WL (x¢).
7
8
9

. : i—1
Setkj = [ N==si AL

i (N—i\ (1 ki (1 N—i—kj
Setuj = () (3 +9)" (-3,
Pass training example (x;,y;) to WL
with probability pi = %t

10:  end for
11: end for

Wy
[wlloo

The proof is completed by noting that
O (si) > sy <0} = 1{ge # m}

since y;§; = sign(slY) by definition. O

Note that the S||w’ || term becomes a penalty for the final
error rate. Therefore, we naturally want this penalty term
to be relatively small. This is not necessarily true for any
choice of the potential function. For example, if ®;(s) is
the exponential potential that leads to a variant of AdaBoost
in the batch setting (see Schapire & Freund, 2012, Chap.
13), then the weight w? could be exponentially large.

Fortunately, there is indeed a set of potential functions that
produces small weights, which, in the batch setting, cor-
responds to an algorithm called boost-by-majority (BBM)
(Freund, 1995). All we need to do is to let Eq. (4) hold
with equality, and direct calculation shows:

AU [0 RO

wizl N —i 1_,_1 g 1_7 Nk (5)
L2\ K 2 2 2 2

where ki = LN_%:IHJ and (7}) is defined to be 0 if
k < 0or k > n. In other words, imagine flipping a bi-
ased coin whose probability of heads is % + 3 for N —i
times. Then ®;(s) is exactly the probability of seeing at
most (N — i — s)/2 heads and w? is half of the probability
of seeing k¢ heads. We call this algorithm Online BBM (see
algorithm 1), and the version that uses importance weights

on examples (see Section 2.1), Online BBM.W.

One can see that the weights produced by this algorithm
are small since trivially w§ < 1/2. However, the following
lemma gives a better estimate of ||w?|| .

Lemma 4. If w} is defined as in Eq. (5), then we have
wi = O(1/v/N —i) forany i < N.

This lemma was essentially proven before by Freund
(1993, Lemma 2.3.10). We give an alternative and simpler
proof in Appendix B in the supplementary material, by us-
ing the Berry-Esseen theorem directly. We are now ready
to state the main results of Online BBM.

Theorem 2. For any T and N, with high probability, the
number of mistakes made by the Online BBM algorithm is
bounded as follows:

exp(—%N*yz)T-l-ON(\/N(S—&- %)) (6)

Thus, in order to achieve error rate €, it suffices to use
N = G)(A%2 In %) weak learners, which gives an excess loss

bound of(:)(% + %)

Proof. A direct application of Hoeffding’s inequality gives
®(0) < exp(—N~2/2). With Lemma 4 we have

> IWllee =0 (ij \/Nli_l> = O(VN).

Applying Lemma 3 proves Eq. (6). Now if we set N =
% In L, then

T
> Ui # u} < THO(VN(S+1)) = eT+0(2+5).

5
t=1

O

3.2. Matching Lower Bounds

We give lower bounds for the number of weak learners and
the sample complexity in this section that show that our
Online BBM algorithm is optimal up to logarithmic factors.
We only give a proof sketch here; detailed calculations ap-
pear in appendix C in the supplementary material.

1
Theorem 3. For any v € (0,%), S > IHEYS), 0 € (0,1)
and ¢ € (0,1), there is a weak online learning algorithm
with edge v and excess loss S satisfying (1) with probability
at least 1 — 0, such that to achieve error rate €, an online

boosting algorithm needs at least Q(%2 In %) weak learners

and a sample complexity on(%) = Q(%(% + ,y%))

Proof. (Sketch.) The proof of both lower bounds use a
similar construction. In either case, all examples’ labels
are generated uniformly at random from {—1,1}, and in
time period ¢, each weak learner outputs the correct label
y; independently of all other weak learners and other ex-
amples with a certain probability p, to be specified later.
For the lower bound on the number of weak learners, we
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set p; = % + 27, and then the Azuma-Hoeffding inequal-
ity implies that the inequality (1) guarantee holds. In this
case, the Bayes optimal output of a booster using N weak
learners is to simply take a majority vote of all the weak
learners (see for instance Schapire & Freund, 2012, Chap.
13.2.6), and the probability that the majority vote is incor-
rect is ©(exp(—8N~?)). Setting this error to € and solving
for N gives the desired lower bound.

Now we turn to the lower bound on the sample complexity.
We divide the whole process into two phases: fort < T =
%, we set p; = %, and for t > Ty, we set p; = % +
2. Again the Azuma-Hoeffding inequality implies that the
inequality (1) guarantee holds. However, in the first phase
(i.e. t < Tp), since the predictions of the weak learners are
uncorrelated with the true labels, it is clear that no matter
what the booster does, it makes a mistake with probability
1. Thus, it will make €2(7;) mistakes with high probability
in the first phase, and thus to achieve e error rate, it needs
at least Q(Tp/€) = Q(=2) examples. O

ey

4. An Adaptive Algorithm

Although the Online BBM algorithm is optimal, it is un-
fortunately not adaptive since it requires the knowledge of
~ as a parameter, which is unknown ahead of time. As
discussed in the introduction, adaptivity is essential to the
practical performance of boosting algorithms such as Ad-
aBoost.

We now design an adaptive online boosting algorithms us-
ing the theory of online loss minimization. Boosting can
be viewed as trying to find a linear combination of weak
hypotheses to minimize the total loss of the training ex-
amples, usually using functional gradient descent (see for
details Schapire & Freund, 2012, Chap. 7). AdaBoost,
for instance, minimizes the exponential loss. Here, as dis-
cussed before, we intuitively want to avoid using exponen-
tial loss since it could lead to large weights. Instead, we
will consider logistic loss £(s) = In(1 + exp(—s)), which
results in an algorithm called AdaBoost.L in the batch set-
ting (Schapire & Freund, 2012, Chap. 7).

In the online setting, we conceptually define N different
“experts” giving advice on what to predict on the current
example x;. In round ¢, expert ¢ predicts by combining
the first i weak learners: §i = sign(Z;:1 ] WL (x4)).
Now as in AdaBoost.L, the weight w} for WL’ is obtained
by computing the logistic loss of the prediction of expert
i —1,1ie. £(s."), and then setting w! to be the negative
derivative of the loss:

. , 1
wi= (s =

=  _€][o,1]
e - Y

In terms of the weight of WL', ie. «l, ideally we

wish to mimic AdaBoost.L and use a fixed o for all
t such that the total logistic loss is minimized: o =
arg min,, Zthl {(si™! + az}). Of course this is not pos-
sible because o depends on the future unknown exam-
ples. Nevertheless, we can almost achieve that using online
learning algorithm which allow us perform almost as well
as the best fixed choice (o) in hindsight.

Specifically, it turns out that it suffices to restrict « to the
feasible set [—2,2]. Then consider the following simple
one dimensional online learning problem: on each round ¢,
algorithm predicts o} from a feasible set [—2, 2]; the envi-
ronment then reveals loss function f,(a) = £(s:™! + az})
and the algorithm suffers loss f;(a!). There are many so-
called “low-regret” algorithms in the literature (see the sur-
vey by Shalev-Shwartz (2011)) for this problem ensuring

T T
> filed) = min > fi(e) < Ry,
t=1 t=1

ac[—2,2

where RY. is sublinear in T so that on average it goes to 0
when T is large and the algorithm is thus doing almost as
well as the best constant choice o’. The simplest low-regret
algorithm in this case is perhaps online gradient descent
(Zinkevich, 2003):

) . . . 2t
o =11 (of = nefita)) =11 (af + 22 ).
where 7; is a time-varying learning rate and II rep-
resents projection onto the set [—2,2], ie., II(-) =
max{—2,min{2,-}}. Since the loss function is actually
1-Lipschitz (| f{(a)| < 1), if we set 7; to be 4/+/t, then
standard analysis shows RiT = 4ﬁ .

Finally, it remains to specify the algorithm’s final predic-
tion g;. In Online BBM, we simply used the advice of
expert N. Unfortunately the algorithm described in this
section cannot guarantee that expert /N will always make
highly accurate predictions. However, as we will show in
the proof of Theorem 4, the algorithm does ensure that at
least one of the N experts will have high accuracy. There-
fore, what we really need to do is to decide which ex-
pert to follow on each round, and try to predict almost
as well as the best fixed expert in the hindsight. This is
again another classic online learning problem (called ex-
pert or hedge problem), and can be solved, for instance, by
the well-known Hedge algorithm (Littlestone & Warmuth,
1994; Freund & Schapire, 1997). The idea is to pick an
expert on each round randomly with different importance
weights according to their previous performance.

We call the final resulting algorithm AdaBoost.OL,* and
summarize it in Algorithm 2. The version of this algo-
rithm using importance weights on examples (see Sec-

*0 stands for online and L stands for logistic loss.
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Algorithm 2 AdaBoost.OL
1: Initialize: Vi : v = 1,0} = 0.
2: fort =1to T do

3:  Receive example x;.
fori=1to N do

4
5: Set g = sign(>__; af WL (x;)).
6:  end for
7.
8
9

Randomly pick 4, with Pr[i; = i] o vj.
Predict §; = ', receive label y;.

: Sets) =0.
10:  fori=1to N do
11: Set zt = thLZ(xt)
12: Set st = st 4 izl
13: Setaj,; =1I (at + Hlt(ipt()) with n; = 4//1.
14: Pass example (x¢,y¢) to WL with probability’
pi=w; =1/(1+exp(si)).
15: Set vy, = vj - exp(— 1{yt # Ui })-
16:  end for
17: end for

tion 2.1) is called AdaBoost.OL.W. Note that as promised,
AdaBoost.OL is an adaptive online boosting algorithm and
does not require knowing - in advance. In fact, in the anal-
ysis we do not even assume that the weak learners satisfy
the bound (1). Instead, define the quantities -y; £ ﬁ
for each weak learner WL’. This can be interpreted as the
(weighted) edge over random guessing that WL obtains.
Note that 7; may even be negative, which means flipping
the sign of WL’s predictions performs better than random
guessing. Nevertheless, the algorithm can still make ac-
curate predictions even with negative ~y; since it will end
up choosing negative weights o in that case. The perfor-
mance of AdaBoost.OL is provided below.

Theorem 4. For any T and N, with high probability, the
number of mistakes made by AdaBoost.OL is bounded by

2T JrO( N? )
Ei’yz? 21%2 '

Proof. Let the number of mistakes made by expert ¢ be

2 S 1{y: # i}, also define My = T for con-
venience. Note that AdaBoost.OL is using a variant of the
Hedge algorithm with 1{y; # ¢!} being the loss of expert
i on round ¢ (Line 7 and 15). So by standard analysis (see
e.g. Cesa-Bianchi & Lugosi, 2006, Corollary 2.3), and the
Azuma-Hoeffding inequality, we have with high probabil-

ity

T
> {ye # G} < 2min M +2I(N) + OVT). (D)

t=1

>Note that we are using the bound ||w’||cc < 1 here.

Now, whenever expert < — 1 makes a mistake (i.e. sl <
0), we have w} = 1/(1 + exp(si~')) > 1/2 and therefore

w1 > M;_1/2. ®)

Note that Eq. (8) holds even for 7 = 1 by the definition of
M. We now bound the difference between the logistic loss
of two successive experts, A; 2 S (£(st) — £(si71)).
Online gradient descent (Line 13) ensures that

T

ZE (s9) § mm €(

[~2.2) &

Ypaz) +4VT,  (9)

as discussed previously. On the other hand, di-
rect calculation shows £(si™' + azl) — £(si71)

In (1 + wi(e o — 1)) < wt(e_“zz —1). With o; =
T wi i
Doi—1 Twiy Het =

1} = % + ~;, we thus have

T
i, 3 (67 +ash) — 667)
< min ||wi|1(oe™ + (1 — 0y)e™ — 1)
a€e[—2,2]
< —3||w'(|1(20; — 1)° (10)
= —297[|w’[h (11)
< =M. (12)

Here, inequality (10) follows from Lemma 5 and inequality
(12) from inequality (8). The above inequality and inequal-
ity (9) imply that

Ai < %

M;_1 + 4VT.

Summing over ¢ = 1,..., N and rearranging gives

T

N T
STWMia Y sy <D U0
i=1 t=1

)+ ANVT

which implies that

In(2 4N
min M; <min M;_; < n( )2T+ sVT
v v > >

since M; < M, for all 4, £(sY) > 0 for all ¢ and ¢(0) =
In(2). Using this bound in inequality (7), we get

2In(2)T NVT
Zi%‘ +O<Zi%2 e (N)>

< 2T +O<N2>
7272 Z/Yzz 7
cNﬁ<

where the last inequality follows from the bound 7 S

I /\

T
Z Hy: # 9e}
t=1

5 E 77 Z _2, where ¢ is the hidden O(1) factor in the

O( gf ) term, using the arithmetic mean-geometric mean
inequality. O
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Figure 1. Performance of various online boosting algorithms on various datasets. The lowest loss attained for each dataset is bolded.
The baseline is the loss obtained by running the weak learner, VW, on the data.

[ Dataset | VW baseline [ Online BBM.W | AdaBoost.OL.W [ AdaBoost.OL | OSBoost.OCP | OSBoost |

20news 0.0812 0.0775 0.0777 0.0777 0.0791 0.0801
a%a 0.1509 0.1495 0.1497 0.1497 0.1509 0.1505
activity 0.0133 0.0114 0.0128 0.0127 0.0130 0.0133
adult 0.1543 0.1526 0.1536 0.1536 0.1539 0.1544
bio 0.0035 0.0031 0.0032 0.0032 0.0033 0.0034
census 0.0471 0.0469 0.0469 0.0469 0.0469 0.0470
covtype 0.2563 0.2347 0.2495 0.2450 0.2470 0.2521
letter 0.2295 0.1923 0.2078 0.2078 0.2148 0.2150
maptaskcoref 0.1091 0.1077 0.1083 0.1083 0.1093 0.1091
nomao 0.0641 0.0627 0.0635 0.0635 0.0627 0.0633
poker 0.4555 0.4312 0.4555 0.4555 0.4555 0.4555
rcvl 0.0487 0.0485 0.0484 0.0484 0.0488 0.0488
vehv2binary 0.0292 0.0286 0.0291 0.0291 0.0284 0.0286

For the case when the weak learners do satisfy the bound
(1), we get the following bound on the number of errors:
Theorem 5. If the weak learners satisfy (1), then for any T
and N, with high probability, the number of mistakes made
by AdaBoost.OL is bounded by

8 5 ( N s>

7N o)
Thus, in order to achieve error rate e, it suffices to use N >
5%2 weak learners, which gives an excess loss bound of
O(2 + ).
Proof. The proof is on the same lines as that of Theorem 4.
The only change is that in inequality (11), we use the bound

2> % — ﬁ which follows from Lemma 1 using the

fact that @ > b — c implies a? > b? — 2bc for non-negative
a,b and ¢, and the fact that ||w?||o, < 1. This leads to the
following change in inequality (12):

T 2

min (st +az)) —(sih) < —%Mi—ﬁﬂg-

ac[—-2,2] P

Continuing using this bound in the proof and simplifying,
we get the stated bound on the number of errors. O

The following lemma is a simple calculation and the proof
appears in Appendix D in the supplementary material.

Lemma 5. Forany o € [0, 1],

i Y4 (1—0)e*<1—1(20-1)>2
(i o +(1—-0)e* < 5(20 —1)

Although the number of weak learners and excess loss
for Adaboost.OL are suboptimal, the adaptivity of Ad-
aBoost.OL is an appealing feature and leads to good per-
formance in experiments. The possibility of obtaining an
algorithm that is both adaptive and optimal is left as an
open question.

5. Experiments

While the focus of this paper is a theoretical investigation
of online boosting, we have also performed experiments to
evaluate our algorithms.

We extended the Vowpal Wabbit open source machine
learning system (VW) to include the algorithms studied in
this paper. We used VW’s default base learning algorithm
as our weak learner, tuning only the learning rate. The
boosting algorithms implemented were Online BBM.W,
AdaBoost.OL.W, OSBoost (using uniform weighting on
the weak learners) and OSBoost.OCP from (Chen et al.,
2012), all using importance weighted examples in VW, as
in Section 2.1. We also implemented AdaBoost.OL from
Algorithm 2, which samples examples sent to VW.

All experiments were done on a diverse collection of 13
publically available datasets, described in Appendix E in
the supplementary material. For each dataset, we per-
formed a random split with 80% of the data used for single-
pass training and the remaining 20% for testing. We tuned
the learning rate, the number of weak learners, and the edge
parameter -y (for all but the two versions of AdaBoost.OL)
using progressive validation 0-1 loss on the training set.
Progressive validation is a standard online validation tech-
nique, where each training example is used for testing be-
fore it is used for updating the model (Blum et al., 1999).
Reported is the 0-1 loss on the test set.

It should be noted that the VW baseline is already a strong
learner. The results obtained are given in Figure 4. As can
be seen, for most datasets, Online BBM.W had the best
performance. The average improvement of Online BBM.W
over the baseline was 5.14%. For AdaBoost.OL.W, it was
2.57%. Using sampling in AdaBoost.OL boosts the aver-
age to 2.67%. The average improvement for OSBoost.OCP
was 1.98%, followed by OSBoost with 1.13%.
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