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Abstract: Capacity Rights and Full Cost Transfer Pricing

This paper examines the theoretical properties of full cost transfer prices in multi-

divisional firms. In our model, divisional managers are responsible for the initial

acquisition of productive capacity and the utilization of that capacity in subsequent

periods, once operational uncertainty has been resolved. We examine alternative

variants of full cost transfer pricing with the property that the discounted sum of

transfer payments is equal to the initial capacity acquisition cost and the present

value of all subsequent variable costs of output supplied to a division. Our analysis

identifies environments where particular variants of full cost transfer pricing induce

efficiency in both the initial investments and the subsequent output levels. Our

findings highlight the need for a proper integration of intracompany pricing rules and

divisional control rights over capacity assets.



1 Introduction

The transfer of intermediate products and services across divisions of a firm is fre-

quently valued at full cost. Surveys and textbooks consistently report that in contexts

where a market-based approach is either infeasible or unreliable, cost-based transfer

pricing is the most prevalent method for both internal managerial and tax reporting

purposes.1 Case studies and many managerial accounting textbooks have pointed

out that full cost transfer pricing may result in sub-optimal resource allocations. One

prominent issue is “double marginalization” which arises when an internal division

is charged on the margin for costs that are fixed and sunk. An additional issue, fea-

tured in the HBS case study “Polysar Limited” (Simons, 2000), for instance, is that

an internal buying division may be induced to reserve too much production capacity

because demand for its product is uncertain and the full cost pricing rule charges the

division only in proportion to the capacity actually utilized.

This paper identifies conditions pertaining to the firm’s production environment

that enable full-cost transfer pricing mechanisms to effectively align divisional and

overall corporate interests. Our model considers settings in which the resource al-

location decisions pertain to upfront capacity investments and the subsequent need

to optimize the available capacity upfront capacity investments.2 In particular, our

model considers two divisions that sell a product each in separate markets. Due to

technical expertise, the upstream division installs and maintains all productive capac-

ity. It also produces the output sold by the downstream division. For performance

evaluation purposes, the upstream division is therefore viewed as an investment cen-

ter, while the downstream division, having no capital assets, is merely a profit center.

We characterize transfer pricing rules that charge the divisions for the full cost

of services provided and induce divisional managers to make both efficient capacity

1See, for instance, Eccles and White (1988), Ernst & Young (1993), Tang (2002), Feinschreiber
and Kent (2012), Datar and Rajan (2014), and Zimmerman (2016).

2The perspective in this paper is similar to that underlying the literature on the use of full cost
measures for pricing and capacity expansion decisions. See, for example, Banker and Hughes (1994),
Balachandran et al.(1997), Goex (2002), Balakrishanan and Sivaramakrishnan (2002), Gramlich and
Ray (2016), and Reichelstein and Sahoo (2018). While these studies examine the role of full cost
primarily from both a central planning and a divisional coordination perspective, our focus is on
divisional incentives and management control.
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investment and capacity utilization decisions. Our criterion for incentive compati-

bility follows the literature on goal congruent performance measures such as Roger-

son (1997), Dutta and Reichelstein (2002), Baldenius et al.(2007), and Nezlobin et

al.(2015). Accordingly, the divisional performance measures must in any particular

time period be congruent with the objective of maximizing firm value. Put differ-

ently, regardless of the managers’ planning horizons and intertemporal preferences, a

goal congruent mechanism must induce (i) the efficient levels of capacity investments

upfront, and (ii) the efficient production quantities in subsequent time periods after

the resolution of revenue uncertainty in those periods.

Unlike the standard textbook definition of full cost which fails to properly account

for the time value of money, our notion of full cost includes imputed interest charges

for capital. Specifically, we refer to a transfer pricing rule as a full cost rule if the

discounted sum of transfer payments is equal to the present value of cash outflows

associated with the capacity assigned to the downstream division and all subsequent

output services rendered to that division. In particular, a two-part pricing rule that

charges in a lump sum fashion for capacity in each period in addition to variable

charges, based on actual production volumes, will be considered a full-cost transfer

price.

Our analysis distinguishes two alternative scenarios depending on whether the

divisions’ products can share the same capacity assets. In the dedicated capacity

scenario, the products require different productive assets, and hence the capacity

cannot be shared across the divisions. Private information at the divisional level

then makes it natural to give each division unilateral capacity rights. We identify

production and information environments where a suitable variant of full cost transfer

pricing induces efficient outcomes. Common to these pricing rules is that the fixed

cost charges for capacity must be equal to what earlier literature has referred to as

the “user cost of capital”3

When both products in question can be produced with same capacity infrastruc-

3In contrast to our framework here, the derivation of the user cost of capital has been derived in
models with overlapping investments in an infinite horizon setting, e.g., Arrow (1964), Carlton and
Perloff (2005), Spear (2003), Rogerson (2008, 2011), Rajan and Reichelstein (2009) and Reichelstein
and Sahoo (2018).
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ture, it suggests itself to allow the divisions to negotiate ex-post over the utilization

of the available capacity. In such fungible capacity settings, the cost-based transfer

price defines the parties’ status quo payoffs in the subsequent negotiations. If the ca-

pacity acquisition decision were to be delegated to the upstream division in its role as

an investment center, the resulting outcome would generally entail under-investment.

The upstream division would then anticipate not earning the full expected return on

its investment because gains from the optimized total contribution margin would be

shared in the negotiation between the two divisions, when the initial acquisition cost

would already be sunk.4 Under certain conditions, we find that the coordination and

hold-up problem associated with the initial capacity choice can be resolved by giving

both divisions the unilateral right to reserve capacity, charging the downstream di-

vision for capacity reserved with a fixed cost and allowing the divisions to negotiate

the actual use of the available capacity in subsequent time periods.

A coordination mechanism that works in a broader class of environments is ob-

tained in the fungible capacity scenario if the downstream division must obtain ap-

proval from the investment center manager for any capacity it wants to reserve for its

own use. The upstream division then becomes essentially a gatekeeper that will agree

to let the downstream division reserve capacity for itself in exchange for a stream of

lump-sum payments determined through initial negotiation. The upstream division

will thereafter have an incentive to invest in additional capacity on its own up to the

efficient level. The resulting mechanism can be viewed as a hybrid between cost-based

and negotiated transfer pricing rules such that the downstream division is charged

the full cost of the total capacity acquired and total output produced.

Taken together, our results yield predictions regarding the environments in which

particular variants of cost-based transfer pricing are likely to perform well. For both

the dedicated and the fungible capacity scenario, full cost transfer pricing rules tend

to work well if the divisional revenue opportunities are expected to be stable over time.

4Even though investments are verifiable in our model, the hold-up problem that arises when only
the upstream division makes capacity investments is essentially the same as in earlier incomplete
contracting literature. One branch of that literature has explored how transfer pricing can alleviate
hold-up problems when investments are “soft” (unverifiable); see, for example, Baldenius et al.(1999),
Edlin and Reichelstein (1995), Sahay (2000), Baldenius (2008), and Pfeiffer et al. (2009).
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Furthermore, cost based transfer pricing tends to work better in environments where

the capacity related costs are large relative to the variable periodic operating costs. If

capacity is fungible across multiple divisions, our results predict that the efficiency of

cost based transfer pricing is enhanced if the divisions do not have symmetric capacity

rights, but instead one division has the effective authority of a gatekeeper.

Numerous theoretical and empirical studies have examined alternative cost mea-

sures that should apply to an internal buyer for receiving intracompany services.5

Among these studies, Dutta and Reichelstein (2010) is structurally closest to the

analysis in this paper. Their findings identify conditions under which full cost trans-

fer pricing will lead to efficient outcomes. However, while capacity investments are

costly, there are no subsequent variable costs associated with producing output in

their model. Unlike our analysis in this paper where it may be efficient not to ex-

haust the available capacity in bad states of the world, capacity is always fully utilized

in Dutta and Reichelstein (2010).

Our analysis also builds on the work of Reichelstein and Rohlfing-Bastian (2015),

which examines the relevant full cost measure for capacity investments from a plan-

ning and product pricing perspective. Baldenius, Nezlobin and Vaysman (2016) is

another precursor to the present paper insofar as they study managerial performance

evaluation in a setting where capacity may remain idle in unfavorable states of the

world. Their analysis is confined to a single division firm, and thus coordination

and internal pricing issues do not arise. In the context of the dedicated capacity

investments, our analysis can be viewed as providing further possibility results for

performance measures that satisfy the requirement of sequential goal congruence.

We view the analysis in this paper as being both descriptive and prescriptive in

nature. The descriptive aspect is that our results provide support for the ubiquitous

practice of full cost transfer pricing. At the same time, our results show that the

specifics of the full cost transfer pricing rule ought to be tailored to the characteristics

of the intrafirm resource allocation problem. Aside from the need for two-part tariffs

5A partial list of references includes Eccles and White (1988), Vaysman (1996), Baldenius et
al. (1999), Sahay (2002), Pfeiffer et al.(2009), Arya and Mittendorf ( 2011), Baldenius (2008), and
Bouwens and Steens (2016).
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and the inclusion of imputed interest charges in the measurement of capacity costs,

our results point to the importance of assigning capacity rights and the attendant

divisional charges for those capacity rights so as to effectively coordinate the initial

investment decisions.

The remainder of the paper proceeds as follows. The basic model is described

in Section 2. Section 3 examines a setting in which the divisions’ products require

different production facilities and therefore capacity is dedicated. Section 4 considers

the alternative setting in which capacity is fungible and can be traded across divisions.

Propositions 2 and 3 demonstrate the importance of allowing the downstream division

to secure capacity rights for itself initially, even if the entire available capacity can be

reallocated through negotiations in subsequent periods. While our initial results apply

to divisional environments that are stationary in expectation, Section 5 identifies

settings in which cost based transfer pricing rules can achieve goal congruence in

non-stationary environments. We conclude in Section 6.

2 Model Description

Consider a vertically integrated firm comprised of two divisions and a central office.

Both divisions sell a marketable product (possibly a service) in separate and unrelated

markets. In order for either division to deliver its product in subsequent periods, the

firm needs to make upfront capacity investments. Because of technical expertise,

only the upstream division (Division 1) is in a position to install and maintain the

productive capacity for both divisions. Division 1 also carries out the production for

both divisions, and therefore incurs all periodic production costs.6

Our analysis considers two distinct scenarios of dedicated and fungible capacity.

In the former scenario, the two products are sufficiently different so as to require

separate production facilities. With fungible capacity, in contrast, both products can

utilize the same capacity infrastructure. The upfront cash expenditure for one unit

of capacity for Division i is vi in the dedicated capacity setting. If Division i acquires

6It is readily verified that our findings would be unchanged if the upstream division were to
transfer an intermediate product which the downstream division can then convert into a final product
after incurring an incremental cost.
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ki units of capacity, it has the option to produce up to ki units of output in each of

the next T periods.7 In case of fungible capacity, the cost of acquiring one unit of

capacity is v, which allows either division to produce one unit of output in each of

the next T periods.

The actual production levels for Division i in period t are denoted by qit. We

assume that sales in each period are equal to the amount of production in that period;

i.e., the divisions do not carry any inventory. Aside from requisite capacity resources,

the delivery of one unit of output for Division i requires a unit variable cost of wit in

period t. These unit variable costs are anticipated upfront by the divisional managers

with certainty, though they may become known and verifiable to the firm’s accounting

system only when incurred in a particular period. The divisional contribution margins

are given by

CMit(qit, ǫit) = xit ·Ri(qit, ǫit)− wit · qit.

The first term above, xit·Ri(qit, ǫit), denotes Division i’s revenues in period t with xit >

0 representing intertemporal parameters that allow for the possibility of declining, or

possibly growing, revenues over time. To avoid laborious checking of boundary cases,

we assume throughout our analysis that the marginal revenue at zero always exceeds

the unit variable cost of production, i.e.,

xit ·R
′
i(0, ǫit)− wit > 0

for all realizations of ǫit.

The periodic revenues vary with the production quantities qit. they are also subject

to one-dimensional transitory shocks ǫit. These random shocks are realized at the

beginning of period t before the divisions choose their output levels for the current

period, and prior to any capacity trades in the fungible capacity setting. We assume

that the random shocks ǫit are distributed according to density functions fi(·) with

support on the interval [ǫi, ǭi]. The random variables {ǫit} are also assumed to be

independently distributed across time; i.e., Cov(ǫit, ǫiτ ) = 0 for each t 6= τ , though

7Studies on capacity investments generally allow for capacity to be subject to economic depreci-
ation possibly in the form of physical delay (Rogerson, 2008, and Nezlobin, Rajan and Reichelstein,
2012). In Section 5, we consider the possibility that revenues obtained from the initial capacity may
be subject to time-driven degradation.
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they may be correlated across the two divisions; i.e., Cov(ǫ1t, ǫ2t) may be non-zero in

any given period t.

Though the exact shapes of divisional revenue functions, Ri(qit, ǫit), are known

to the divisional managers, the firm’s central office does not have this information.8

For this reason, the capacity investment and utilization decisions are delegated to the

divisional managers. The divisional revenue functions are assumed to be increasing

and concave in qit for each i and each t. At the same time, the marginal revenue

functions:

R
′

i(q, ǫit) ≡
∂Ri(q, ǫit)

∂q

are assumed to be increasing in ǫit.

In any given period, the actual production quantity for a division may differ

from its initial capacity rights for two reasons. First, for an unfavorable realization

of the revenue shock ǫit, a division may decide not to exhaust the entire available

capacity because otherwise marginal revenues would not cover the incremental cost

wit. Second, in the case of fungible capacity, a division may want to yield some of its

capacity rights to the other division if that division has a higher contribution margin.

We assume that each divisional manager is evaluated by a performance measure

Πit in each of the T time periods. The downstream division, which has only oper-

ational responsibilities for procuring and selling output, is treated as a profit center

whose performance measure is measured by its divisional profit. In contrast, the up-

stream division, which also has control over capacity assets, is viewed as an investment

center with residual income as its performance measure.9 The remaining design vari-

ables of the internal managerial accounting system then consist of divisional capacity

rights, depreciation schedules, and the transfer pricing rule. The default scenario in

our analysis is that the capacity investment decisions are decentralized in the sense

that each manager can unilaterally decide the amount of capacity that will be avail-

8In Section 3 below, our analysis allows for the divisional revenue functions to be private informa-
tion of that division’s management. For the fungible capacity setting in Section 4, the two managers
are assumed to have the same information about divisional revenues. In either setting, the managers
will have superior information about expected divisional revenues relative to the firm’s central office.

9Earlier literature, including Reichelstein (1997), Dutta and Reichelstein (2002), and Baldenius
et al.(2007), has argued that among a particular class of accounting based metrics only residual
income can satisfy the requirement of goal congruence.
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able to his/ her division in the future. For certain environments, it will turn out to

be advantageous to consider a more asymmetric assignment of capacity rights.

Figure 1 illustrates the structure of the multi-divisional firm and its two con-

stituent responsibility centers.

Income Statement

External Revenue

- TP

Income

Upstream 

Division

Downstream 

Division

2t
q

t
TP

Income Statement

External Revenue

- Operating Costs

- Depreciation

+     TP

Income

Balance Sheet

Capacity Assets

Multi-Divisional Firm

Figure 1: Divisional Structure of the Firm

The downstream division’s performance measure (i.e., its operating income) in period

t is given by

Π2t = Inc2t = x2t ·R2(q2t, ǫ2t)− TPt(k2, q2t), (1)

where TPt(k2, q2t) denotes the transfer payment to the upstream division in period

t for securing k2 units of capacity and obtaining q2t units of output. Equation (1)

reflects that Division 1 incurs the variable cost of producing output for Division 2.

The transfer pricing rule TPt(k2, q2t) specifies how Division 2 is charged for these

variable costs.
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The residual income measure for the upstream division is given by

Π1t = Inc1t − r · BVt−1, (2)

where BVt denotes book value of capacity assets at the end of period t and r denotes

the firm’s cost of capital. The corresponding discount factor is denoted by γ ≡ (1 +

r)−1. The residual income measure in (2) depends on two accruals: the transfer price

received from the downstream division and the depreciation charges corresponding to

the initial capacity investments. Specifically,

Inc1t = x1t ·R1(q1t, ǫ1t)− w1t · q1t − w2t · q2t −Dt + TPt(k2, q2t),

where Dt is the total depreciation expense in period t. When there are two distinct

capacity assets, dit denotes the depreciation charge in period t per dollar of initial

capacity investment undertaken for Division i. Thus,

Dt = d1t · v1 · k1 + d2t · v2 · k2.

The depreciation schedules satisfy the usual tidiness requirement that
∑T

τ=1
diτ = 1;

i.e, the depreciation charges sum up to an asset’s historical acquisition cost over its

useful life. Book values at time t then become: BVt = BVt−1 − Dt, with BV0 =

v1 · k1 + v2 · k2 and BVT = 0. In the fungible capacity scenario, v1 = v2, though

the central office may still apply different depreciation schedules for the expenditures

associated with the reserved capacity by each division.

Under the residual income measure, the overall capital charge imposed on the

upstream division is the sum of depreciation charges plus imputed interest charges.

Given the depreciation schedules {dit}
T
t=1, the overall capital charge becomes:

Dt + r · BVt−1 = z1t · v1 · k1 + z2t · v2 · k2, (3)

where zit ≡ dit + r · (1 −
∑t−1

τ=1
diτ ) for t ≥ 2. It is well known from the general

properties of the residual income metric that regardless of the depreciation schedule,

the present value of the zit is equal to one; that is,
∑T

t=1
zit · γ

t = 1 (Hotelling, 1925).
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Our model is in the tradition of the earlier literature which does not model explicit

agency problems and their associated costs, but instead focuses on identifying goal

congruent performance measures. A performance measure is said to be goal congruent

if in equilibrium it induces decisions that maximize the net present value of firm-wide

future cash flows. Consistent with this earlier literature, we impose the criterion

of strong goal congruence, which requires performance measures to be robust in the

sense that they induce the managers to make efficient production and investment

decisions even if the managers are less patient than the firm’s owners (possibly because

of higher discount rates or shorter planning horizons) and the compensation rules

vary over time. Formally, suppose the manager of Division i attaches non-negative

weights {uit}
T
i=1 to her performance measure in different time periods. The weights

ui = (ui1, ..., uiT ) reflect both the manager’s discount factor as well as the bonus

coefficients attached to the periodic performance measures. Manager i’s objective

function can thus be written as
∑T

t=1
uit · E[Πit]. A combination of transfer pricing

and depreciation rules is said to satisfy the requirement of strong goal congruence

if the divisional managers are incentivized to make efficient quantity and capacity

decisions for any configuration of the coefficients uit ≥ 0.

The goal congruence approach essentially separates the problems of choosing ac-

counting rules and performance measures from that of choosing compensation rules

for a particular agency problem. The perspective is that the accounting rules and

performance measures are chosen before the specifics of the managerial contracting

problem become known. Yet, the chosen rules and performance measures are robust

enough to generate desirable incentives for managers with different time preferences.10

A central implication of strong goal congruence requirement is that the managers must

not face any intertemporal tradeoffs in making their decisions; i.e., value maximizing

decisions may not lower the performance measure in any period. That is, each man-

ager must have incentives to make efficient production and capacity decisions even if

10Arya et al (2009) study design of robust mechanisms in an auction setting with private values.
Similar to our approach, they assume that the mechanism must be designed before agent charac-
teristics are fully known. In contrast to our goal congruence framework, however, they adopt a
Bayesian perspective in which the mechanism is designed by taking expectations over possible agent
characteristics that will subsequently emerge.
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that manager were solely focused on maximizing her performance measure Πit in any

particular period t.11

Managerial accounting textbooks usually define full cost as the sum of fixed and

variable product costs, where the fixed costs include accruals like depreciation. Since

we seek to identify full cost transfer pricing rules that can induce divisional managers

to make efficient investment decisions, the measure of full cost must include imputed

interest charges on the capital employed so as to reflect the time value of money.

Accordingly, we classify a transfer pricing rule as full cost if the sum of the discounted

cash outflows is equal to the sum of the discounted transfer payments.

Definition A transfer pricing rule is said to be a full cost pricing rule if, in equilib-

rium:
T
∑

t=1

TPt(k2, q2t) · γ
t = v2 · k2 +

T
∑

t=1

w2t · q2t · γ
t.

The qualifier “in equilibrium” in the preceding definition refers to the notion

that the transfer payments must be balanced only for the investment and operating

decisions that the divisional managers are supposed to make in equilibrium. The

specific notion of equilibrium we refer to will vary with the particular environment

considered.

Our analysis first focuses on stationary environments in which the economic fun-

damentals are, in expectation, identical across periods. Formally, an environment is

said to be stationary if xit = 1, wit = wi and the {ǫit} are i.i.d. for each i. We assume

that these stationarity conditions hold for the dedicated and fungible capacity set-

tings analyzed in Sections 3 and 4, respectively. For these stationary environments,

we drop subscript t from CMit(·). Section 5 examines how our results generalize to

non-stationary environments.

11The concept of goal congruence dates back to the early work of Solomons (1964). Dutta (2008)
identifies settings in which the accrual accounting rules that emerge as goal congruent are also part
of optimal contracting arrangements in agency problems.
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3 Dedicated Capacity

We first investigate a setting in which the divisional products require different ca-

pacity infrastructures. The firm’s capacity and production planning problem then

separates across the two divisions. In some contexts, it may actually be possible for

the two products to share the same capacity infrastructure, but long lead times for

the setup required to switch to a different product may effectively preclude the firm

from redeploying the available capacity after the random shocks (ǫ1t, ǫ2t) have been

realized in period t.12

The divisional managers are assumed to have private information regarding their

future revenue opportunities, and each division is therefore given the unilateral right

to procure capacity for its own use. The analysis in this section focuses on identifying

the depreciation schedules and transfer pricing rules that provide incentives for the

divisional managers to choose efficient levels of capacity upfront and make optimal

production decisions in subsequent periods. The following time line illustrates the

sequence of events at the initial investment date and in a generic period t.

Figure 2: Sequence of Events in the Dedicated Capacity Scenario

If the central office had full information regarding future revenues, it would choose

the optimal capacities (k1, k2) so as to maximize the net present value of the firm’s

expected future cash flows NPV (k1, k2) = NPV1(k1) +NPV2(k2), where

NPVi(ki) =
T
∑

t=1

Eǫi [CMi(ki|wi, ǫ̃it)] · γ
t − vi · ki, (4)

and CMi(·) denotes the maximized value of the expected future contribution margin

in period t. That is,

12The case study on the Timken company illustrates this issue in connection with tapered roller
bearings produced for automotive and industrial applications (Bastian and Reichelstein, 2004. In
that industrial environment, the random shocks (ǫ̃1t, ǫ̃2t) tended to be positively correlated.
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CMi(ki|wi, ǫit) ≡ Ri(q
o
i (ki, ·), ǫit)− wi · q

o
i (ki, ·),

with

qoi (ki, ·) = argmax
qi≤ki

{Ri(qi, ǫit)− wi · qi}.

The notation qoi (ki, ·) above is short-hand for the sequentially optimal quantity

qoit(ki, wi, ǫit) that maximizes the divisional contribution margin in period t, given the

initial capacity choice ki, the unit variable cost wi, and the realization of the current

revenue shock ǫit. The result below characterizes the efficient capacity levels, koi , for

the dedicated capacity setting.

Lemma 1 Suppose capacity is dedicated and the divisional environments are station-

ary. The optimal capacity level koi is given by the unique solution to the equation:

Eǫi

[

R
′

i(q
o
i (k

o
i , wi, ǫ̃it), ǫ̃it)

]

= ci + wi, (5)

where

ci =
vi

∑T

t=1
γt
. (6)

Proof: All proofs are in Appendix A.13

Earlier literature, including Rogerson (2008) and Rajan and Reichelstein (2009),

refers to ci as the user cost of capital or the unit cost of capacity. The user cost of

capital ci is obtained by annuitizing the unit cost of capacity vi (i.e., dividing vi by
∑T

t=1
γt, which is the present value of $1 annuity over T periods). It is readily verified

that ci is the price that a hypothetical supplier would charge for renting out capacity

for one period of time if the rental business breaks even.

13Lemma 1 implicitly assumes that ko
i
> 0. We note that ko

i
= 0 if the left-hand side of (5) is less

than ci + wi at ki = 0.
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Lemma 1 says that the optimal capacity level koi is such that the expected marginal

revenue at the sequentially optimal production levels, qoi (k
o
i , ·) is equal to the sum of

the unit cost of capacity c and the variable cost wi. We shall subsequently refer

to the sum, ci + wi, as the full cost per unit of output. This value will generally

exceed the traditional measure of full cost in managerial accounting because the latter

measure does not include the imputed interest charges for capital. For instance, if

the depreciation charges are uniform, the traditional measure of full cost in each

period is given by vi
T
+wi, which is less than vi∑

T

t=1
γt
+wi ≡ ci +wi (Reichelstein and

Rohlfing-Bastian, 2015).

In the context of our model, one common representation of full cost transfer pricing

is that the downstream division is charged in the following manner for intra-company

transfers:

1. Division 2 has the unilateral right to reserve capacity at the initial date.

2. Division 2 can choose the quantity, q2t, to be transferred in each period subject

to the initial capacity limit.

3. In period t, Division 2 is charged the full cost of output delivered, that is:

TPt(k2, q2t) = (w2 + c2) · q2t.

This variant of full cost transfer pricing is essentially the one featured in the

Harvard case study “Polysar” (Simons, 2000). The downstream division is charged

for capacity only to the extent that it actually utilizes that capacity. A key takeaway

from the Polysar case study is that the buying division will tend to reserve too much

capacity upfront in the face of uncertain demand for its product. Such a strategy

preserves the division’s option to meet market demand if it turns out to be strong,

while it incurs no penalty for idling capacity if market conditions turn out to be

unfavorable. Adding to this bias, the downstream division faces the classic double-

marginalization problem.

14



With dedicated capacity, the requirement of strong goal congruence can be for-

malized as follows. A goal congruent mechanism must induce efficient production

qoi (k
o
i , ·) in each period given the optimal capacity level koi ; that is,

qoi (k
o
i , wi, ǫit) ∈ argmax

qit≤ko
i

{Πit(qit, k
o
i , wi, ǫit)} (7)

for all ǫit in each period 1 ≤ t ≤ T . Furthermore, strong goal congruence requires

that the divisional managers have incentives to choose the optimal capacity levels at

the outset and that these incentives hold not only over the entire planning horizon,

but also on a period-by-period basis. This implies that koi must be a maximizer of

the expected performance measure in each period t; i.e.,

koi = argmax
ki

{Eǫi [Π
∗
it(ki, wi, ǫ̃it)]}, (8)

for each t, where Π∗
it(ki, wi, ǫit) denotes the maximized value of Πit(qit, ki, wi, ǫit) with

regard to qit. The requirement that koi must be Division i’s preferred choice in each

period follows directly from the initial definition of strong goal congruence if one holds

the weight uit > 0 but allows for all other weights uiτ , τ 6= t, to go to zero.

To characterize the transfer pricing and depreciation rules that meet these require-

ments of strong goal congruence, we consider (i) transfer pricing rules TPt(k2, q2t) that

are differentiable in both variables, and (ii) proper depreciation rules that satisfy
∑T

t=1
dit = 1.

Proposition 1 Suppose capacity is dedicated and the environment is stationary.

Strong goal congruence will be achieved if and only if

TPt(k2, q2t) = c2 · k2 + w2 · q2t (9)

and Division 1’s capacity assets are depreciated according to the annuity rule.

We note that the transfer pricing rule in (9) is not only unique in achieving strong

goal congruence, but also meets the above definition of full cost pricing. By charging

the downstream division separately for (i) the amount of capacity reserved and (ii)

the variable cost of output procured actually in each period, this division will no
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longer have a tendency to reserve too much capacity upfront nor will it be subject to

any double marginalization. We note that the transfer prices in (9) can be rewritten

as:

TPt(k2, q2t) = (w2 + c2) · q2t − c2 · (k2 − q2t),

where the last term c2 · (k2 − q2t) can be interpreted as a fixed overhead volume

variance (Datar and Rajan, 2014). The allocation of such variances among different

departments has been discussed extensively in the cost accounting literature; see,

for example, Kaplan (2006) and Martinez-Jerez (2007). In the context of our multi-

divisional firm model, the conclusion is that a simplistic full cost transfer pricing rule

of the form TPt(k2, q2t) = (w2 + c2) · q2t can generate efficient incentives, provided

any fixed overhead volume variances are charged to the buying division that is given

authority to choose both the initial capacity choice and the subsequent production

levels.

The uniqueness of the additively separable full-cost transfer pricing rule in (9)

reflects that our criterion of goal congruence requires the divisional managers to have

the requisite incentives for any revenue function satisfying the regularity conditions

specified in Section 2. That domain of possible revenue functions including the special

case of quadratic functions. The proof in Appendix A shows that in case the under-

lying revenue functions do assume a quadratic form, the sequential goal congruence

requirement in (7) implies that

∂

∂q
TPt(k2, q2t) ≡ w2

for all k2. Furthermore, the initial incentive compatibility condition in (8) requires

that
∂

∂k
TPt(k2, q2t) ≡ c2.

These two requirements on the partial derivatives imply that, up to an indetermi-

nate constant, the transfer pricing rule must be equal to that in (9).14 If Division 1’s

14Our approach here is the same as in earlier studies on resource allocation mechanisms where
the uniqueness of a particular mechanism emerged because certain performance requirements had
to be met for a broad class of possible environments; see, for instance, Mount and Reiter (1974) and
Marschak and Reichelstein (1998).
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investment is depreciated according to the annuity rule, the effective charge for ca-

pacity and actual production in period t is c1 · k1 +w1 · q1t, ensuring goal congruence.

Since there is a 1-1 relationship between depreciation schedules and intertemporal

cost allocations under the residual income performance measure (Rogerson, 1997),

the annuity rule emerges as the unique goal congruent solution.15 The depreciation

schedule for Division 2’s operating assets remains indeterminate since the choice of de-

preciation schedule only affects the upstream division. One advantage of applying the

annuity rule for both divisions would be that the performance measures for the two

divisions become effectively independent of each other since Division 2’s transactions

is merely a pass-through from Division 1’s perspective.

In contrast to our result in Proposition 1 which shows that it is necessary to

use a two-part full cost transfer price, Dutta and Reichelstein (2010) argue that with

dedicated capacity, a simplistic full cost transfer pricing rule of the form TPt(k2, q2t) =

c2 · q2t can result in efficient capacity investments. In their setting, however, the

issue of capacity under-utilization never arises, irrespective of the initial capacity

investment, because there are no variable costs of production (i.e., wi = 0). Even

though divisional managers may face uncertainty regarding the value of capacity, they

will ex-post always prefer to exhaust the available capacity.

4 Fungible Capacity

In contrast to the scenario considered thus far, where the products or services provided

by the two divisions required different production assets, we now consider the plausible

alternative of fungible capacity. Accordingly, the production processes of the two

divisions have enough commonalities and the demand shocks ǫt are realized sufficiently

early in each period, so that the initial capacity choices can be reallocated across the

15The literature on value-based management frequently refers to the annuity rule as “sinking fund”
depreciation (Young and O’Byrne, 2000). Though the annuity depreciation method is not generally
admissible for financial reporting purposes, the new lease accounting standard, ASC 842, requires
its use for a class of leased assets. Specifically, if a lease is classified as an operating lease, the leased
asset must be effectively depreciated according to the annuity rule. The annuity rule is the only
amortization rule with the property that total lease related expenses (i.e., the sum of depreciation
and interest expenses) are identical across periods.
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two divisions. The following analysis assumes that the two divisional managers have

symmetric information regarding the expected cost and revenue structure of both

divisions. In particular, they are assumed to negotiate the capacity rights under

conditions of symmetric information.16 This information is, of course, not known to

the firm’s central office that sets the transfer pricing and depreciation rules. The

following time line illustrates the sequence of events at the initial investment date

and in a generic period t.

Figure 3: Sequence of Events in the Fungible Capacity Scenario

The analysis in this section again focuses on stationary environments. With fun-

gible capacity, the optimal investment from a firm-wide perspective is the one that

maximizes total expected future cash flows:

NPV (k) =
T
∑

t=1

Eǫt [CM(k|w, ǫ̃t)] · γ
t − v · k, (10)

where w ≡ (w1, w2), ǫt ≡ (ǫ1t, ǫ2t), and CM(·) denotes the maximized value of the

aggregate contribution margin in period t. That is,

CM(k|w, ǫt) ≡
2

∑

i=1

[Ri(q
∗
i (k, ·), ǫit)− wi · q

∗
i (k, ·)],

where

(q∗1(k, ·), q
∗
2(k, ·)) = argmax

q1+q2≤k

{

2
∑

i=1

[Ri(qi, ǫit))− wi · qi]}.

As before, the notation q∗i (k, ·) is short-hand for q∗i (k, w, ǫt).

Provided the optimal quantities q∗i (k, ·) are both positive, the first-order condition:

R
′

1(q
∗
1(k, ·), ǫ1t)− w1 = R

′

2(q
∗
2(k, ·), ǫ2t)− w2 (11)

16In the dedicated setting above, it did not matter whether a divisional manager also had infor-
mation pertaining to the other division’s revenue opportunities.
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must hold. Allowing for corner solutions, we define the shadow price of capacity in

period t, given the available capacity k, as follows:

S(k|w, ǫt) ≡ max{R
′

1(q
∗
1(k, ·), ǫ1t)− w1, R

′

2(q
∗
2(k, ·), ǫ2t)− w2}. (12)

The shadow price of capacity identifies the maximal change in periodic contribution

margin that the firm can obtain from an extra unit of capacity.17 We note that S(·)

is increasing in ǫit, but decreasing in wi and k.

Lemma 2 Suppose capacity is fungible and the divisional environments are station-

ary. The optimal capacity level, k∗, is given by the unique solution to the equation:18

Eǫ [S(k
∗|w, ǫ̃t)] = c, (13)

where

c =
v

∑T

t=1
γt
. (14)

Proposition 1 has shown that unilateral capacity rights combined with a two-part

full cost transfer pricing rule can attain strong goal congruence when capacity is

dedicated. An obvious question is whether there are circumstances under which a

symmetric allocation of capacity decision rights can also solve the coordination prob-

lem when capacity is fungible across the two business segments. If the two divisions

are given unilateral capacity rights at the outset, an ex-post efficient allocation of the

available capacity will require the flexibility of allowing the divisions to renegotiate

in each period as current revenue information is revealed.

Suppose that the central office has imposed the two-part full cost transfer pricing

rule TPt(k2, q2t) = c · k2 + w2 · q2t, and capacity assets are depreciated according to

the annuity rule. Suppose further that at the outset Division i has procured ki units

of capacity for its own use. Given symmetric information about each other’s revenues

and costs, the divisional managers can increase the firm-wide contribution margin by

17The assumption that R
′

i
(0, ǫit) > wi for all ǫit ensures that the shadow price of capacity is always

positive.
18As in Lemma 1, the statement of Lemma 2 makes the implicit assumption that k∗ 6= 0.
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reallocating the available capacity k1 + k2 at the beginning of each period after the

relevant shock ǫt is realized. The resulting “trading surplus” of

TSP ≡ CM(k|w, ǫt)−
2

∑

i=1

CMi(ki|wi, ǫit) (15)

can then be shared by the two divisions. Let δ ∈ [0, 1] denote the fraction of the

total surplus that accrues to Division 1. Thus, the parameter δ measures the relative

bargaining power of Division 1, with the case of δ = 1

2
corresponding to the familiar

Nash bargaining outcome. The negotiated adjustment in the transfer payment, ∆TPt,

that implements the above sharing rule is given by

R1(q
∗
1(k, ·), ǫ1t)− w1 · q

∗
1(k, ·) + ∆TPt = CM1(k1|w1, ǫ1t) + δ · TSP,

where we recall that q∗1(k, ·) and q∗2(k, ·) are the divisional production choices that

maximize the aggregate contribution margin. At the same time, Division 2 obtains:

R2(q
∗
2(k, ·), ǫ2t)− w2 · q

∗
2(k, ·)−∆TPt = CM2(k2|w, ǫ2t) + (1− δ) · TSP.

These payoffs ignore any transfer payment that Division 2 makes in each period to

account for its initial capacity choice, since this payment is viewed as sunk at the

renegotiation stage. The total transfer payment made by Division 2 in return for the

ex-post efficient quantity q∗2(k, ·) is then given c · k2 + w2 · q
∗
2(k, ·) + ∆TPt.

After substituting for TSP from (15), the effective contribution margin to Division

i can be expressed as follows:

CM∗
1 (k1|k2, ǫt) = (1− δ) · CM1(k1|w1, ǫ1t) + δ · [CM(k|w, ǫt)− CM2(k2|w2, ǫ2t)]

and

CM∗
2 (k1|k2, ǫt) = δ · CM2(k2|w2, ǫ2t) + (1− δ) · [CM(k|w, ǫt)− CM1(k1|w1, ǫ1t)] .

We note that the expected value of the effective contribution margin, Eǫ [CM
∗
i (ki|kj, ǫt)],

is identical across periods for stationary environments. Combined with the annuity
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depreciation rule for capacity assets, this implies that Division i will choose ki to

maximize:

Eǫ [CM
∗
i (ki|kj, ǫ̃t)]− c · ki (16)

taking division j’s capacity request kj as given. With fungible capacity, we interpret

strong goal congruence to mean that, given the optimal k∗, there exist unilateral

capacity choices (k∗1, k
∗
2) that constitute a Nash equilibrium at the initial capacity

choice stage, and k∗1 + k∗2 = k∗.

The following possibility result concerning goal congruent mechanism relies on two

structural assumptions. First, we assume that the revenue shocks ǫit exhibit limited

volatility in the sense that capacity is fully utilized on the equilibrium path in the

dedicated capacity scenario. Following Reichelstein and Rohlfing-Bastian (2015), the

limited volatility condition is said to hold if qoi (k
o
i , ·) = koi for all realizations of ǫit

where qoi (·, ·) and k
o
i denote the efficient quantity and capacity levels in the dedicated

capacity scenario. Clearly, this condition will be met if and only if

R
′

i(k
o
i , ǫit)− wi ≥ 0

for all realizations of ǫit. Intuitively, the available capacity will always be exhausted

in environments with relatively low volatility in terms of the range and impact of

the ǫ̃it, or alternatively, if the unit variable cost, wi, is small relative to the full cost,

wi + ci.

The limited volatility condition is thus a joint condition on the range of ex-post

uncertainty and the relative magnitude of the unit variable cost relative to the full

cost. If the separability condition Ri(qi, ǫit) = ǫit · R̂i(qi) with E(ǫ̃it) = 1 is met, the

limited volatility condition holds if and only if ǫit ≥
wi

wi+ci
. We emphasize that the

limited volatility condition does not trivialize the capacity utilization decision. The

incentive compatibility conditions need to consider the possibility that the managers

may opt for larger capacity levels than what is optimal for the firm, and if they do

so it may then become sequentially rational not to exhaust the available capacity in

unfavorable states of of the world. Such possibility may lead the parties away from

the desired capacity choice, koi .
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The next result assume that the divisional revenue functions take the following

quadratic form

Ri(q, ǫit|θi) = θi · ǫit · q − hi · q
2, (17)

where θi is a positive constant. Though the quadratic functional form in (17) is

common knowledge, the firm’s central office does not have sufficient information about

the divisional revenue functions because the parameters (θ1, θ2) are known only to the

two divisional managers.

Proposition 2 Suppose the divisional revenue functions take the quadratic form in

(17) and the limited volatility condition is satisfied in the dedicated capacity setting.

A system of decentralized initial capacity choices combined with the full cost transfer

pricing rule

TPt(k2, q2t) = c · k2 + w2 · q2t

achieves strong goal congruence, provided the divisions are free to renegotiate the

initial capacity rights and capacity assets are depreciated according to the annuity

rule.

Suppose (k1, k2) constitutes a Nash equilibrium of the divisional capacity choice

game with ki > 0 for each i. By the Envelope Theorem, the following first-order

conditions are met:

Eǫ

[

(1− δ) · CM
′

1(k1|w1, ǫ̃1t) + δ · S(k1 + k2|w, ǫ̃t)
]

= c (18)

and

Eǫ

[

δ · CM
′

2 (k2|w2, ǫ̃2t) + (1− δ) · S(k1 + k2|w, ǫ̃t)
]

= c, (19)

where CM ′
i(ki|wi, ǫit) ≡ R′

i(q
o
i (ki, ·), ǫit) − wi is the marginal contribution margin in

the dedicated capacity scenario. It can be verified from the proofs of Lemmas 1

and 2 that CM
′

i (·) and S(·) are decreasing functions of ki, and hence each division’s

objective function is globally concave.

Similar to the arguments in Dutta and Reichelstein (2010), the above first-order

conditions show that each division’s incentives to acquire capacity stem both from the
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unilateral “stand-alone” use of capacity as well as the prospect of trading capacity

with the other division. The second term on the left-hand side of both (18) and (19)

represents the firm’s aggregate and optimized marginal contribution margin, given by

the (expected) shadow price of capacity. Since the divisions individually only receive

a share of the aggregate return (given by δ and 1 − δ, respectively), this part of

the investment return entails a “classical” holdup problem.19 Yet, the divisions also

derive direct value from the capacity available to them, even if the overall capacity

were not to be reallocated ex-post. The corresponding marginal revenues are given

by the first terms on the left-hand side of equations (18) and (19), respectively.20

The proof of Proposition 2 shows that the quadratic form of divisional revenues in

(17) has the property that the resulting shadow price function S(k|θ, w, ǫt) is linear

in ǫt. Combined with the limited volatility condition, linearity of the shadow price

S(·) in ǫt implies that the efficient capacity in the fungible capacity scenario is the

same as in the dedicated capacity setting; i.e., k∗ = ko1 + ko2. Furthermore, when

the limited volatility condition holds, the stand-alone capacity levels (ko1, k
o
2) are the

unique solution to the divisional first-order conditions in (18) and (19).

To ensure that the divisions produce efficient quantities, it is essential that the

divisions are allowed to renegotiate initial capacity rights after the revenue shocks

(ǫ1t, ǫ2t) are realized in each period. If the divisions were prohibited from such ex-post

renegotiations, the two divisions would still choose the efficient capacity levels (ko1, k
o
2)

provided the quadratic revenue functions are quadratic and the limited volatility

conditions holds. However, the production choices would now be those that maximize

the stand-alone divisional contribution margins (i.e., qoi (k
o
i , ·)), rather than the firm-

wide contribution margin (i.e., q∗i (k
o
1 + ko2, ·)). Clearly, the efficiency loss from this

inability to tailor divisional production plans to ex-post revenue information would be

19Earlier papers on transfer pricing that have examined this hold-up effect include Edlin and
Reichelstein (1995), Baldenius et al.(1999), Anctil and Dutta (1999), Wielenberg (2000), Goex and
Schiller (2007) and Pfeiffer et al. (2009).

20A similar convex combination of investment returns arises in the analysis of Edlin and Reichel-
stein (1995), where the parties sign a fixed quantity contract to trade some good at a later date.
While the initial contract will almost always be renegotiated, its significance is to provide the di-
visions with a return on their relationship-specific investments, even if the status quo were to be
implemented.
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small when the revenue shocks ǫit are concentrated around a narrow range of values,

but large when the probability density function of ǫit is more spread out.

We note that the mechanism in Proposition 2 allows each division to acquire

capacity rights for its use at the outset. Equations (18) and (19) show that the firm

would generally face an under-investment problem if only one division were allowed to

secure capacity. For instance, if only the upstream division were to acquire capacity,

its marginal contribution margin at the efficient capacity level k∗ would be:

Eǫ

[

(1− δ) · CM
′

1(k
∗|w1, ǫ̃1t) + δ · S(k∗|w, ǫ̃t)

]

.

This marginal revenue is, however, less than Eǫ [S(k
∗|w, ǫ̃t)] = c because

Eǫ [CM
′
1(k

∗|w1, ǫ̃1t)] = Eǫ

[

R
′

1(q
o(k∗, ·), ǫ̃1t)− w1

]

≤ Eǫ

[

R
′

1(q
∗
1(k

∗, ·), ǫ̃1t)− w1

]

≤ Eǫ [S(k
∗|w, ǫ̃t)] ,

where the first inequality above is a consequence of the fact that qo1(k
∗, ·) ≥ q∗1(k

∗, ·).

Thus the upstream division would have insufficient incentives to secure the firm-wide

optimal capacity level on its own, since it would anticipate a classic hold-up on its

investment in the subsequent negotiations.

We now proceed to investigate the possibility of goal congruent transfer pricing

rules if two major assumptions in Proposition 2, i.e., limited volatility and quadratic

revenue functions, are not met. To solve the divisional coordination problem for

a broader class of environments, we consider sequential mechanisms that give the

upstream division additional supervisory authority. In effect, the upstream division

can now be viewed as a “gatekeeper” whose approval is required for any capacity

the downstream division wants to reserve for itself. Specifically, in order to acquire

unilateral capacity rights, the downstream division needs to receive approval from

the upstream division.21 If the two divisions reach such an upfront agreement, it

21We focus on the upstream division as a gatekeeper because this division was assumed to have
unique technological expertise in installing and maintaining production capacity. Yet, the following
analysis makes clear that the role of the two divisions could be switched. Bockem and Schiller (2008)
discuss specific gatekeeper arrangements in the context of a long-term supply contract between
Samsung and Fairchild Semiconductor.
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specifies the downstream division’s unilateral capacity rights k2 and a corresponding

transfer payment p(k2) that must be made to the upstream division for granting these

rights in each subsequent period. The parties report the outcome of this agreement

(k2, p(k2)) to the central office, which commits to enforce this outcome unless the

parties renegotiate it.

The upstream division is free to install additional capacity for its own needs in

addition to what has been secured by the downstream division. As before, capacity

assets are depreciated according to the annuity depreciation rule, and thus the up-

stream division is charged c for each unit of capacity that it acquires. If the parties

fail to reach a mutually acceptable agreement, the downstream division would have no

ex-ante claim on capacity, though it may, of course, obtain capacity ex-post through

negotiation. Thus, k2 = p(k2) = 0 is the default scenario of no ex-ante contract. We

summarize this negotiated gatekeeper transfer pricing arrangement as follows:

• The two divisions negotiate an ex-ante contract (k2, p(k2)) which gives Division

2 unilateral rights to k2 units of capacity in return for a fixed payment of p(k2)

in each period.

• Subsequently, Division 1 installs k ≥ k2 units of capacity,

• If Division 2 procures q2t ≤ k2 units of output in period t, the corresponding

transfer payments is calculated as TPt(k2, q2t) = p(k2) + w2 · q2t.

• After observing the realization of revenue shocks ǫt in each period, the divisions

can renegotiate the initial capacity rights.

For the result below, we assume that the optimal dedicated capacity level koi is

non-zero for each i. A necessary and sufficient condition for koi to be positive is

Eǫi [R
′
i(0, ǫit)] > ci + wi. (20)
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Proposition 3 Suppose the divisional environments are stationary and the down-

stream division’s capacity rights are determined through bilateral negotiation. The

transfer pricing rule

TPt(k2, q2t) = p(k2) + w2 · q2t

achieves strong goal congruence, provided the divisions are free to renegotiate the

initial capacity rights in each period and operating assets are depreciated according to

the annuity depreciation rule.

A gatekeeper arrangement will attain strong goal congruence if it induces the

two divisions to acquire collectively the efficient capacity level, k∗. The proof of

Proposition 3 demonstrates that in order to maximize their joint expected surplus,

the divisions will agree on a particular amount of capacity level k∗2 ∈ [0, k∗) that

the downstream can claim for itself in any subsequent renegotiation. Thereafter, the

upstream division has an incentive to acquire the optimal amount of capacity k∗,

giving this division then an exclusive claim on k∗ − k∗2 units of capacity.

Suppose the two divisions have negotiated an ex-ante contract that gives the

downstream division rights to k2 units of capacity in each period. In response to this

choice of k2, the upstream division chooses r1(k2) units of capacity for its own use,

and thus installs r1(k2) + k2 units of aggregate capacity. The upstream division’s

reaction function, r1(k2), will satisfy the first-order condition in (18); i.e.,

Eǫ

[

(1− δ) · CM
′

1(r1(k2)|w1, ǫ̃1t) + δ · S(r1(k2) + k2|w, ǫ̃t)
]

= c. (21)

As illustrated in Figure 4 below, the reaction function r1(k2) is downward-slopping

because both CM ′
1(k1|·) and S(k|·) are decreasing functions.

26



Figure 4: Division 1’s Reaction Function

Furthermore, the proof of Proposition 3 shows that r1(0) ≤ k∗ and r1(k
∗) > 0.

Therefore, as shown in Figure 4, there exists a unique k∗2 ∈ [0, k∗) such that the

upstream division responds with r1(k
∗
2) = k∗ − k∗2, and hence installs the optimal

amount of aggregate capacity k∗1 on its own.

The ex-ante agreement (k∗2, p(k
∗
2)) must be such that it is preferred by both di-

visions to the default point of no agreement. If the two divisions fail to reach an

ex-ante agreement, the upstream division will choose its capacity level unilaterally,

and the downstream division will receive no initial capacity rights. By agreeing to

grant k∗2 units of capacity rights to the downstream division, the two divisions can

generate additional surplus. The fixed transfer payment p(k∗2) is chosen such that this

additional surplus is split between the two divisions in proportion to their relative

bargaining powers.

In the gatekeeper mechanism of Proposition 3, k∗2 denotes the capacity right of the

downstream division as approved by the upstream division. Let k∗1 = r1(k
∗
2) denote

the upstream division’s optimal response with k∗1 + k∗2 = k∗. We have the following
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comparative statics result:

Corollary to Proposition 3 The efficient capacity investment for each division, k∗i ,

is independent of the bargaining power parameter δ. Furthermore, k∗i is decreasing in

the variable cost of production wi for each i.

At first glance, equation (21) for the upstream division 1’s reaction function sug-

gests that k∗1 should generally depend on the bargaining power parameter δ. However,

the proof of above corollary shows that the downstream division’s initial capacity

rights are chosen so as to induce the upstream division to acquire ko1 units of capacity

for its own use. That is, k∗1 = ko1, and hence both k∗1 and k∗2 = k∗ − ko1 are indepen-

dent of δ. Intuitively, k∗1 = ko1 ensures that the expected marginal returns from the

“stand-alone” use of capacity, Eǫ1 [CM
′
1(k

∗
1, w1, ǫ̃1t)], and from the “combined” use of

capacity, Eǫ[S(k
∗|w, ǫ̃t)], are both equal to the user cost of capacity c, and hence the

upstream division does not face any hold-up problem.

We note that the downstream division is worse-off under the gatekeeper arrange-

ment relative to a setting where the two divisions have symmetric capacity rights. The

upstream division will extract some of the expected surplus contributed by the other

division. At the same time, the rules in case the parties do not reach an agreement at

the initial stage, can be specified differently from the one shown in Proposition 3. The

same outcome, albeit with a different transfer payment, would result, for instance, if

the mechanism were to specify that in the absence of an agreement the downstream

division could claim any share of the available capacity at the transfer price:

TP (q2t) = (c+ w2) · q2t.

We also note that the divisional efficient capacity levels (k∗1, k
∗
2) remain unchanged

with this alternative default specification.

Our goal congruence results in Propositions 2 and 3 do not depend on the direction

or extent of any correlation between the periodic shocks ǫ̃1t and ǫ̃2t. Correlation

does matter for goal congruence provided the divisional managers have the same

expectation regarding future revenues. However, the optimal capacity level, k∗ will
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generally vary with the extent of correlation in the periodic shocks to the divisional

revenues.

The allocation mechanism in Proposition 3 can be interpreted as a hybrid between

full cost and negotiated transfer pricing such that the upstream division is charged

for the full cost of the entire capacity and output produced by the divisions. Those

charges are split between the two divisions through a two-stage negotiation. The

latter feature is also the key to the efficiency of the fixed quantity contracts in Edlin

and Reichelstein (1995). In their model, a properly set default quantity of a good to

be traded provides the parties with incentives to make efficient relationship-specific

(unverifiable) investments. In the context of our model, an agreement on the uni-

lateral capacity rights of the downstream division induces the investment center to

acquire residual capacity rights for itself such that the overall capacity procured is

efficient from a firm-wide perspective.

5 Non-Stationary Environments

Our analysis has thus far focused on characterizing transfer pricing rules and depre-

ciation schedules for environments in which the firm’s economic fundamentals are, in

expectation, identical across periods. Absent stationarity, divisional managers will

generally anticipate that alternative capacity levels will induce tradeoffs in terms of

the divisional profits attained in different time periods and thus violate the require-

ment of strong goal congruence, unless the initial capacity expenditure can be charged

in a suitable manner via depreciation charges and transfer prices. In this section, we

relax the assumption of stationarity by allowing the divisional revenue parameters xit,

variable costs wit, and the distributions of revenue shocks ǫit to differ across periods.

Returning first to the dedicated capacity setting, the following result extends

Lemma 1 to settings with non-stationary environments:

Lemma 3 If capacity is dedicated, koi , in (5) is given by the unique solution to:22

22Again, Lemma 3 only holds as stated if ko
i
> 0. Furthermore, ko

i
= 0 if and only if the left-hand

side of (5) is less than ci + wi at ki = 0.

29



T
∑

t=1

Eǫit

[

xit ·R
′

i(q
o
it(k

o
i , ǫ̃it, xit, wit), ǫ̃it)

]

· γt = vi + w̄i (22)

where

w̄i =
T
∑

t=1

wit · γ
t.

It is readily seen that the claim in Lemma 3 reduces to that in Lemma 1 whenever

xit = 1, wit = wi and the {ǫit} are iid. Beginning with the work of Rogerson (1997),

earlier work on goal congruent performance measures has shown that if the expected

cash flows vary across time periods, proper intertemporal cost allocation of the initial

investment expenditure can be obtained by relative benefit cost allocation. Formally,

the weights under the relative benefit cost allocation rule are given by:23

ẑit ≡
xit

∑T

τ=1
xiτ · γτ

,

with the corresponding intertemporal cost charges per unit of capacity given by ĉit ≡

ẑit · vi.

With dedicated capacity, strong goal congruence for the downstream division

hinges entirely on the transfer pricing rule, while the incentives for the upstream

division are shaped entirely by the depreciation schedule. Since these two design in-

struments are separate in the dedicated capacity setting, the following results focus

on transfer pricing rules that achieve strong goal congruence for Division 2.

Proposition 4 With dedicated capacity, the following full cost transfer pricing rules

achieve strong goal congruence for the downstream division:

i. TPt(k2, q2t) = ĉ2t · k2 + w2t · q2t, provided w2t = x2t · w2.

ii. TPt(k2) = ĉ2t · k2 + ẑ2t · w̄2 · k2, provided the limited volatility condition holds

and the {ǫ2t} are i.i.d.

23As pointed out by earlier studies, the corresponding relative benefit depreciation charges will
coincide with straight-line depreciation if the xit decline linearly over time at a particular rate
(Nezlobin et al. 2012).
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Part (i) of the above result shows that the two-part full cost transfer pricing rule,

as described in the stationary setting of Proposition 1, can also be used to generate

strong goal congruence for non-stationary environments provided the intertemporal

variations in periodic revenues and variable costs exhibit identical patterns; i.e., w2t =

x2t · w2. Absent such coordinated variations in periodic revenues and variable costs,

the two-part full cost transfer pricing rule TPt(k2, q2t) = ĉ2t ·k2+w2t ·q2t will generally

fail to meet the requirement of strong goal congruence because the optimal capacity

choice k∗2 would no longer be the preferred choice independently of how the manager

trades-off performance attained in different time periods.

If the limited volatility assumption introduced in connection with Proposition 2

above is met, part (ii) of Proposition 4 shows that goal congruence is still attainable

through a two-part full cost transfer pricing mechanism. The downstream division

is then not charged for actually incurred variable costs, but for the present value of

anticipated future variable costs, w̄2 · k2. This may be interpreted as “conservative”

since the anticipated variable costs are viewed as intrinsic follow-on costs associated

with the initial capacity investment. The overall charge must be apportioned in

accordance with the relative benefit rule so as to ensure that the downstream division

does not face any intertemporal trade-offs at the initial decision stage.

Suppose the downstream division is entirely focused on its performance measure in

period t. Given the transfer pricing rule in part (ii) of Proposition 4, the downstream

division will always produce at the capacity limit because it is not charged for actually

incurred variable costs. Consequently, Division 2 will choose its capacity k2 so as to

maximize:

x2t · Eǫ2 [R2(k2, ǫ2t)]− [ĉ2t · k2 + ẑ2t · w̄2 · k2] . (23)

The above objective function has a unique maximizer since R2(q, ·) is concave in

q. We also note that the objective function in (23) is proportional to the objective

function of the firm for any k2 ≤ ko2 because qo2(k2, w2, ǫ2t) ≡ k2 for any k2 ≤ ko2. It

thus follows that ko2 is the unique maximizer of the downstream division’s objective

function in (23). We finally note that TPt(k2) = ĉ2t · k2 + ẑ2 · w̄2 · k2 is a full-cost

transfer pricing rule because, given limited volatility, Division 2 will in equilibrium
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procure ko2 and subsequently exhaust the available capacity.

If the limited volatility condition in part (ii) of Proposition 4 fails to hold, the

downstream division will generally tend to underinvest. Appendix B shows in exam-

ples that as the limited volatility condition fails to hold by an “increasing margin”,

the corresponding loss in capacity investments and firm-wide value (npv) increases

continuously and monotonically.

The results of Baldenius, Nezlobin and Vaysman (2016, Proposition 1) have shown

that goal congruence can be achieved in non-stationary environments where the ca-

pacity choices are binary rather than continuous. Specifically, suppose that Division 2

can install a specific amount of capacity k̄2 or not; i.e., k2 ∈ {0, k̄2}. Suppose further

that the divisional manager’s private information is a one-dimensional parameter

θ2 that shifts the probability distributions of ǫ̃2t, but otherwise the revenue func-

tion R2(·, ǫ̃2t) is publicly known. The essential simplification with binary investment

choices is that the accrual accounting rules, i.e., depreciation schedule and transfer

pricing rule, only need to separate those θ2 types for whom capacity investment is

in the firm’s interest from the ones for whom it is not. Accordingly, we denote the

threshold type where the firm is just indifferent between investing and not investing

by θ∗2. Thus,

NPV2(k̄2|θ
∗
2) =

T
∑

t=1

Eǫ2

[

CM2t(k̄2|x2t, w2t, ǫ̃2t)|θ
∗
2)
]

· γt − v2 · k̄2 = 0. (24)

As before, CM2t(·) denotes the maximized value of the expected future contribution

margin in period t:

CM2t(k̄2|x2t, w2t, ǫ2t) ≡ x2t ·R2(q
o
2t(k̄2, ·), ǫ2t)− w2t · q

o
2t(k̄2, ·).

Following the terminology in Baldenius, Nezlobin and Vaysman (2016), we refer

to the Relative Expected Optimized Benefit (REOB) cost allocation rule as:

z̄2t =
Eǫ2

[

CM2t(k̄2|x2t, w2t, ǫ̃2t)|θ
∗
2

]

∑T

τ=1
Eǫ2

[

CM2τ (k̄2|x2τ , w2τ , ǫ̃2τ )|θ∗2
]

· γτ
.

The REOB rule is effectively the relative benefit rule corresponding to the thresh-

old type θ∗2. Finally, we denote c̄2t ≡ z̄2t · v2.
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Proposition 5 With dedicated capacity, suppose Division 2’ capacity choice is binary

and the future realizations of ǫ̃2t are drawn according to conditional densities f(ǫ2t|θ2)

such that θ2 shifts f(ǫ2t|θ2) in the sense of first-order stochastic dominance. The full

cost transfer pricing rule:

TPt(k2, q2t) = c̄2t · k2 + w2t · q2t

then achieves strong goal congruence for the downstream division.

As shown in Appendix A, the net present value of the capacity investment,

NPV2(k̄2|θ2), is increasing in the distributional parameter θ2 because of the assumed

first-order stochastic dominance effect of θ2 on ǫ̃2t. If Division 2 were to focus exclu-

sively on its profit measure in period t, 1 ≤ t ≤ T , it would seek to maximize:

Eǫ2 [Π2(k|θ2, ǫ̃2t)] ≡ Eǫ2 [CM2t(k2|x2t, w2t, ǫ̃2t, θ2)]− z̄2t · v2 · k2.

By construction of the REOB rule, Eǫ2 [Π2(k|θ2, ǫ̃2t)] > 0 if and only if

Eǫ2

[

CM2t(k̄2|x2t, w2t, ǫ̃2t)|θ2
]

> Eǫ2

[

CM2t(k̄2|x2t, w2t, ǫ̃2t)|θ
∗
2

]

or equivalently θ2 > θ∗2.

We finally turn to a setting of fungible capacity for non-stationary environments.

Generalizing the result in Lemma 2, it can be shown that the optimal capacity k∗ is

given by:

Eǫ

[

T
∑

t=1

γt · St(k
∗|xt, wt, ǫ̃t)

]

= v

where

St(k|xt, wt, ǫt) ≡ max{x1t ·R
′
1(q

∗
1t(k, ·), ǫ1t)− w1t, x2t ·R

′
2(q

∗
2t(k, ·), ǫ2t)− w2t}

is the shadow price of capacity in period t.

The result below generalizes our finding in Proposition 3 to non-stationary envi-

ronments. As in the setting of Proposition 3, suppose the divisional revenue functions,

xit ·Ri(q, ǫit|θi), are parameterized by θi > 0 and Ri(q, ǫit|θi) takes the quadratic form

in (17). We assume that while the functional form of divisional revenues is common
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knowledge, the central office does not have complete information about the divisional

revenue functions because the parameters (θ1, θ2) are known only to both divisional

managers.

Proposition 6 Suppose the divisional revenue functions take the quadratic form in

(17), the limited volatility condition is satisfied in the dedicated capacity setting, and

the revenue shocks ǫit are i.i.d. A system of decentralized initial capacity choices

combined with the full cost transfer pricing rule

TPt(k2) = ĉ2t · k2 + ẑ2t · w̄2 · k2

achieves strong goal congruence provided (i) the divisions are free to renegotiate the

initial capacity rights, (ii) the anticipated variable production costs of each division,

w̄i · ki, are capitalized, and (iii) the capitalized costs, (v + w̄i) · ki, are depreciated

according to the respective relative benefit rule.

Unlike the goal congruent mechanism identified in the stationary setting of Propo-

sition 3, the above mechanism does not charge the divisions for the variable costs at

the actual rates of wit per unit. Instead, the present value of anticipated future vari-

able costs, w̄i · ki, for each division is capitalized along with the fixed capacity costs

at the outset. The capitalized costs are then allocated across subsequent periods

according to the relative benefit rule to ensure that the divisions do not face any

intertemporal trade-offs in choosing their initial capacity levels.

The transfer pricing rule TPt(k2) = ĉ2t ·k2+ ẑ2t ·w̄2 ·k2 ensures that the stand-alone

capacity levels (ko1, k
o
2) constitute a Nash equilibrium at the initial stage, provided

the divisions can renegotiate their initial capacity rights. Thus, the two divisions will

install the efficient capacity level k∗ at the outset, since the efficient capacity in the

fungible setting is the same as in the dedicated setting; i.e., k∗ = ko1 + ko2, owing to

the linearity of the shadow price of capacity in ǫ̃it.

34



6 Conclusion

This paper has re-examined the incentive properties of full cost transfer pricing rule in

multi-divisional firms. Our analysis is motivated by the fact that this form of internal

pricing remains ubiquitous in practice despite the many concerns that have been

expressed about it in textbooks and the academic literature. The main ingredients in

our model are that divisional managers are responsible for the initial acquisition of

capacity as well as its subsequent utilization in future periods. An upstream division

installs capacity and provides production services for both divisions, since it has the

necessary technical expertise. In each period, the upstream division receives a transfer

payment for providing capacity- and production services to the downstream division.

We identify circumstances in which a suitable variant of full cost transfer pricing

induces efficient capacity acquisition and subsequent production decisions. From an

ex-ante capacity planning perspective, variable cost pricing is clearly inadequate be-

cause the buying division will not internalize the relevant capacity costs, and hence

this pricing rule generates incentives for the buying division to initially request an

excessive amount of capacity. At the same time, a simplistic form of full cost transfer

pricing that charges the buying division only for the cost of actually utilized capac-

ity will also not achieve efficient outcomes as this rule again motivates the buying

division to request an inefficiently large amount of capacity. Our results demonstrate

that, depending on the characteristics of the underlying production and market envi-

ronment, particular variants of two-part full cost transfer pricing can indeed lead to

efficient decentralization.

When the divisions can share the same productive assets for their production

needs, efficient capacity investments and ex-post allocations can be achieved through

bilateral negotiation. Potential hold-up problems on investments resulting from ex-

post negotiation can be alleviated through an appropriate assignment of initial ca-

pacity rights that determine the divisions’ default payoffs at the negotiation stage.
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Appendix A

Proof of Lemma 1:

With dedicated capacity, the firm’s objective function is additively separable across

the two divisions. The firm seeks a capacity level koi for division i to maximize the

net present value of expected cash flows

NPVi(ki) =
T
∑

t=1

Eǫi [Ri(q
o
i (ki, ·), ǫ̃it]− wi · q

o
i (·)]γ

t − vi · ki. (25)

Dividing by the annuity factor
∑T

t=1
γt, the objective function in (25) can be equiva-

lently expressed as follows:

Eǫi [CMi(ki|wi, ǫ̃it)]− c · ki,

where

CMi(ki|wi, ǫit) ≡ Ri(q
o
i (ki, ·), ǫit)− wi · q

o
i (ki, ·)

is the maximized value of the contribution margin. Once the differentiability of the

value function, CMi(·) has been established, the claim in equation (5) of Lemma 1

essentially amounts to the well-known result that the derivative of the value function

with respect to ki is given by the shadow price of the constrained resource (i.e., ci);

see, for instance, Zangwill (1969, p.69).

Claim: CMi(ki|wi, ǫit) is differentiable in ki for all ǫit and wi. Furthermore,

∂

∂ki
CMi(ki|wi, ǫit) = R′

i(q
o
i (ki, ·), ǫit)− wi.

Proof of Claim:24 We first note that

24The validity of this claim can be verified by invoking proposition 4.3 in Oyama and Takenawa
(2018). In particular, they postulate as a sufficient condition that the value function, CMi(ki|wi, ǫit),
be concave. This holds in our context due to the assumed concavity of the divisional revenue
functions. We provide here an elementary argument that CMi(ki|wi, ǫit) is in fact everywhere
differentiable in ki.
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CMi(ki +∆|wi, ǫit)− CMi(ki|wi, ǫit)

∆

≥
Ri(q

o
i (ki, ·) + ∆, ǫi)−Ri(q

o
i (ki, ·), ǫit)

∆
− wi. (26)

This inequality follows directly by observing that

CMi(ki +∆|wi, ǫit) ≥ Ri(q
o
i (ki, ·) + ∆, ǫit)− wi · [q

o
i (ki, ·) + ∆].

At the same time, we find that

CMi(ki +∆|wi, ǫit)− CMi(ki|wiǫit)

∆

≤
Ri(q

o
i (ki +∆, ·), ǫit)−Ri(q

o
i (ki +∆, ·)−∆, ǫit)

∆
− wi. (27)

To see this, we note that

CMi(ki +∆|wi, ǫit)− CMi(ki|wi, ǫit)

≤ Ri(q
o
i (ki +∆, wi, ǫit), ǫit)− wi · q

o
i (ki +∆, wi, ǫit)

− [Ri(q
o
i (ki +∆, wi, ǫit)−∆, ǫit)− wi · (q

o
i (ki +∆, w, ǫ)−∆)].

because qoi (ki+∆, wi, ǫit)−∆ ≤ ki if the division invested ki+∆ units of capacity. We

also note that for ∆ sufficiently small, qoi (ki+∆, wi, ǫit)−∆ ≥ 0 because qoi (ki, wi, ǫit) >

0 by the assumption that R′
i(0, ǫit)− wi > 0.

By the Intermediate Value Theorem, the right-hand side of (27) is equal to

R′
i(q̂i(∆), wi, ǫi) ·∆

∆
− wi,

for some intermediate value q̂i(∆) such that qoi (ki+∆, ·)−∆ ≤ q̂i(∆) ≤ qoi (ki+∆, ·).

As ∆ → 0, the right-hand side in both (26) and (27) converge to the following:

R′
i(q

o
i (k, wi, ǫit), ǫit)− wi,
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proving the claim.

If koi > 0 is the optimal capacity level, then

∂

∂ki
[Eǫ[CMi(k

o
i |wi, ǫ̃i)]− ci · k

o
i ] = Eǫi

[

∂

∂ki
CMi(k

o
i |wi, ǫ̃i)

]

− ci

= Eǫi [R
′
i(q

o
i (ki, ·), ǫ̃i)]− (ci + wi)

= 0.

Thus koi satisfies equation (5) in the statement of Lemma 1.

To verify uniqueness, suppose that both koi and koi +∆ satisfy equation (5). Since

by definition qoi (k
o
i +∆, ·) ≥ qoi (k

o, ·) for all ǫit, it would follow that in fact

qoi (k
o
i +∆, ·) = qoi (k

o
i , ·)

for all ǫit. That in turn would imply that the optimal production quantity in the

absence of a capacity constraint, i.e., q̂i(ǫit, ·), is less than k
o
i , and therefore

Eǫi [R
′
i(q̂i(ǫ̃it, ·), ǫ̃it)] = Eǫi [R

′
i(q

o
i (k

o
i , ǫ̃it, wi), ǫ̃it)] = wi,

which would contradict that koi satisfies equation (5) in the first place. ✷

Proof of Proposition 1:

Contingent on (k1, k2) and (q1t, q2t) ≤ (k1, k2), Division 1’s residual income perfor-

mance measure in period t is given by

Π1t = R1(q1t, ǫ1t)− w1 · q1t − w2 · q2t + TP (q2t, k2)− z1t · v1 · k1 − z2t · v2 · k2. (28)

Regardless of the decisions made by Division 2, Division 1 will therefore choose

the production quantity qo1(k1, ·) that maximizes its contribution margin in period t.

If Division 1 were to make the initial capacity decision entirely with a focus on its

expected performance measure in period t, i.e., Eǫ1 [Π̃1t], it will choose k
o
1 if and only

if:

z1t · v1 =
1

∑

t γ
t
· v1 ≡ c1.

This follows immediately from the observation that the objective function of the

central office, NPV1(k1), is proportional to (28) once the terms pertaining to Division
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2 are disregarded in (28). As observed in Rogerson (1997), there is a 1-1 mapping

between depreciation schedules and intertemporal cost charges:

z1t = d1t + r(1−
t−1
∑

τ=1

d1τ ).

Furthermore, if z1t · v1 =
1∑
t
γt , then the unique corresponding depreciation schedule

is the annuity rule (Rogerson, 1997).

To show that only the transfer pricing rule TPt(k2, q2t) = c2 · k2 +w2 · q2t achieves

strong goal congruence for Division 2, we note that the function TPt(k2, q2t) is natu-

rally indeterminate for any q2t > k2, as this contingency can never arise. In addition,

TPt(k2, q2t) can only be unique up to an additive constant. In the dedicated capacity

scenario with a stationary environment we can drop both the index 2 and the index t,

without loss of generality. Suppose now that Division 2’s revenue is of the quadratic

form:

R(q, ǫ|θ) = θ · ǫ · q −
1

2
· h · q2

For a given value of θ, we denote by ko(θ) the efficient capacity level holding fixed

the parameter h and the probability distribution of the shocks ǫ̃ on the interval [0, ǭ].

The first-order condition for the efficient production quantities are:

w ≡ θ · ǫ− h · qo(ǫ, ko(θ)) ≡
∂

∂q
TP (qo(ǫ, ko(θ)), ko(θ)). (29)

The first equality reflects that qo(ǫ, ko(θ)) is the ex-post efficient production quantity.

The second equation represents the first-order condition for Division 2’ quantity choice

in any given period, following the realization of ǫ. These equations have to hold as

identities for all ǫ ≥ ǫ(ko(θ)), where qo(ǫ(ko(θ)), ko(θ)) is defined by the requirement

that qo(ǫ(ko(θ)), ko(θ)) = ko(θ). By the Fundamental Theorem of Calculus:

TP (q, ko(θ)) =

∫ q

0

∂

∂q
TP (y, ko(θ)) dy + TP (0, ko(θ)).

As ǫ varies on [0, ǫ(ko(θ))], the quantity qo(ǫ, ko(θ)) varies linearly between zero and

ko(θ), (and qo(ǫ, ko(θ)) = ko(θ) for ǫ ≥ ǫ(ko(θ))). Thus,
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TP (q, ko(θ)) = w · q + C(ko(θ)),

for 0 ≤ q ≤ ko(θ), with C(ko(θ)) ≡ TP (0, ko(θ)). Since ko(θ) is an increasing and

unbounded function of θ, it follows that TP (q, k) = w·q+C(k), modulo some additive

constant, for all q ≤ k.

For the final step in the proof, suppose the environment is such that ǫ̃ concentrates

its probability mass entirely on the value ǫ̂. The incentive compatibility condition for

the initial capacity choice then becomes:

θ · ǫ̂− h · qo(ǫ̂, ko(θ))− w = C ′(ko(θ)). (30)

Since ko(θ) is the efficient capacity level, Lemma 1 shows that the left-hand side of

(30) is equal to c and thus C ′(ko(θ)) = c. Varying the value of θ then shows that

C ′(k) ≡ c. ✷

Proof of Lemma 2:

The maximized contribution margin is given by

CM(k|w, ǫt) =
2

∑

i=1

[Ri(q
∗
i (k, ·), ǫit)− wi · q

∗
i (ki, ·)]

where q∗i (k, ·) ≡ q∗i (k, w, ǫt)

Claim: CM(k|w, ǫt) is differentiable in k for any ǫt and w, such that

∂

∂k
CM(k|w, ǫt) = S(k|w, ǫt),

where

S(k|w, ǫt) = max{R
′

1(q
∗
1(k, ·), ǫ1t)− w1, R

′

2(q
∗
2(k, ·), ǫ2t)− w2}.

The proof is analogous to the one in Lemma 1 showing the differentiability of CMi(·).

The expected value of the maximized contribution margin, Eǫ [CM(k|w, ǫ̃t)], is

identical across periods in the stationary setting. Hence, the firm will choose the
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optimal capacity level k∗ to maximize the following objective function:

Eǫ [CM(k|w, ǫ̃t)]− c · k.

Equation (13) in the statement of Lemma 3 then follows from the first-order condition

of the above optimization problem. The uniqueness of k∗ follows from an argument

similar to that in the proof of Lemma 1. ✷

Proof of Proposition 2:

We first show that with quadratic revenue functions of the form Ri(q, ǫit|θi) = θi · ǫit ·

q − hi · q
2 and limited volatility, the efficient capacity level in the fungible scenario

is equal to the sum of the efficient capacity levels in the dedicated capacity scenario;

that is

k∗ = ko1 + ko2.

From Lemma 1, we know that in the dedicated capacity setting the efficient capacity

levels satisfy:

Eǫi [R
′

i(q
o
1(k

o
i , ǫ̃it), ǫ̃it|θi)]− wi = c.

The limited volatility condition implies that for all ǫ̃it

qoi (k
o
i , ǫ̃it) = koi .

Furthermore, with quadratic revenue functions, we find that

Eǫi [R
′

i(q
o
i (k

o
i , ǫ̃it), ǫ̃it|θi)]− wi = Eǫi [R

′

i(k
o
i , ǫ̃it|θi)]− wi

= R
′

i(k
o
i , ǫ̂it|θi)]− wi

= c, (31)

where ǫ̂it ≡ E(ǫ̃it). In the fungible capacity scenarios, Lemma 2 has shown that at

the efficient k∗

Eǫ[R
′

i(q
∗
i (k

∗, ·), ǫ̃it|θi)]− wi = c.

It is readily seen that in the quadratic revenue scenario, q∗i (k
∗, θ, w, ǫt) is linear in ǫt
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provided that q∗i (·) > 0 for all ǫt. Thus,

Eǫ[S(k
∗|θ, w, ǫ̃t)] = Eǫ[R

′

i(q
∗
i (k

∗, ·), ǫ̃it|θi)]− wi

= Eǫ[θi · ǫ̃it − 2hi · q
∗
i (k

∗, θ, w, ǫ̃t)]− wi

= θi · ǫ̂it − 2hi · q
∗
i (k

∗, θ, w, ǫ̂t)− wi

= R
′

i(q
∗
i (k

∗, θ, w, ǫ̂t), ǫ̂it|θi)− wi

= c, (32)

where ǫ̂t ≡ E(ǫt). It follows from (31) and (32) that

q∗i (k
∗, θ, wi, ǫ̂t) = koi ,

and thus k∗ = ko1 + ko2.

It remains to show that (ko1, k
o
2) is a Nash equilibrium at the initial date. Given

the full cost transfer pricing rule TPt(k2, q2t) = c · k2 +w2 · q2t, the divisional profit of

Division 2 in period t, contingent on ǫt and k
o
1 is:

π2t(k2, ǫt|k
o
1) = δ·CM2(k2|θ2, w2, ǫ2t)+(1−δ)[CM(ko1+k2|θ, w, ǫt)−CM1(k

o
1|θ1, w1, ǫt)]−c·k2,

where, as before,

CMi(ki|θi, wi, ǫit) = max
qi≤ki

{Ri(qi, ǫit|θi)− wi · qi}.

We note that in a stationary environment, the expected value of Division 2’s profit,

Eǫ[π2t(k2, ǫ̃t|k
o
1)], is the same in each period. By definition, ko2 is the unique maximizer

of Eǫ2 [δ ·CM(k2|θ2, w2, ǫ̃2t)]−δ ·c ·k2. By Lemma 2, ko2 maximizes Eǫ[(1−δ) ·CM(ko1+

k2|θ, w, ǫ̃t)]− (1− δ) · c · k2. It thus follows that k
o
2 is also a maximizer of Division 2’s

expected profit in each period, Eǫ[π2t(k2, ǫ̃t|k
o
1)].

A symmetric argument can be used to show that in order to maximize its expected

residual income in any period, Division 1 will choose ko1 if it conjectures that the

downstream division chooses ko2. ✷

Proof of Proposition 3:
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Suppose that the two divisions have agreed to an ex-ante contract under which the

downstream division has initial rights for k2 units of capacity for a transfer payment

of p(k2) + w2 · q2t in each period. Further, suppose that Division 1 has installed a

capacity of k1 units over which it has unilateral rights.

After observing ǫt, the two divisions will renegotiate the initial capacity rights to

maximize the joint surplus in each period. Following the same arguments as used in

deriving (16), it can be checked that Division 1’s effective contribution margin after

reallocation of capacity rights is given by

CM∗
1 (k1|k2, w, ǫt) = (1−δ)·CM1(k1|w1, ǫ1t)+δ·[CM(k1 + k2|w, ǫt)− CM2(k2|w2, ǫ2t)] .

For stationary environments, the expected value of effective contribution margin,

Eǫ [CM
∗
1 (k1|k2, w, ǫt)], is the same in each period. Since capacity assets are depreci-

ated according to the annuity rule, this implies that taking k2 as given, Division 1

will choose k1 to maximize

Eǫ [CM
∗
1 (k1|k2, w, ǫ̃t)]− c · k.

As a function of k2, let r1(k2) denote Division 1’s optimal response; i.e., k1 =

r(k2) maximizes the above objective function. Let r(k2) ≡ r1(k2) + k2 denote the

corresponding aggregate amount of capacity. Division 1’s reaction function, r1(k2),

will satisfy the following first-order condition:

Eǫ

[

(1− δ) · CM
′

1(r1(k2)|w1, ǫ̃1t) + δ · S(r(k2)|w, ǫ̃t)
]

≤ c, (33)

which must hold as an equality whenever r1(k2) > 0. We note from (33) that r1(k2) is

downward slopping because CM ′
1(k1|·) and S(k|·) are decreasing functions of k1 and

k, respectively.

We now investigate the values of r1(k2) at k2 = 0 and k2 = k∗. We first claim

that r1(0) ≤ k∗. Suppose to the contrary, r1(0) > k∗. This implies that r(0) > k∗,

and hence

Eǫ[S(r(0)|w, ǫ̃t)] < Eǫ[S(k
∗|w, ǫ̃t)] = c. (34)
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Furthermore,

Eǫ1 [CM
′
1(r1(0)|w1, ǫ̃1t)] < Eǫ1 [CM

′
1(k

∗|w1, ǫ̃1t)]

= Eǫ1 [R
′
1(q

o
1(k

∗, ǫ̃1t, ·), ǫ̃1t)− w1]

≤ Eǫ [R
′
1(q

∗
1(k

∗, ǫ̃t, ·), ǫ̃1t)− w1]

≤ Eǫ[S(k
∗|w, ǫ̃t)]

= c, (35)

where we have used the result that qo1(k
∗, ǫ1t, ·) ≥ q∗1(k

∗, ǫt, ·) for all ǫt to derive

the second inequality above. Inequalities in (34) and (35) imply that the first-order

condition in (33) cannot hold as an equality, which contradicts the assumption that

r1(0) > k∗ is optimal.

We next claim that r1(k
∗) > 0, and hence r(k∗) > k∗. Suppose to the contrary

r1(k
∗) = 0. This implies that r(k∗) = k∗, and hence

Eǫ[S(r(k
∗)|w, ǫ̃t)] = c.

Furthermore,

Eǫ1 [CM
′
1(r1(k

∗)|w1, ǫ̃1t] = Eǫ1 [CM
′
1(0|w1, ǫ̃1t] > c,

because of the assumption in (20). It thus follows that the left hand side of (33) is

strictly greater than c, which contradicts the assumption that r(k2) = 0 is the optimal

response to k2 = k∗.

We have thus proven that r(0) ≤ k∗ and r(k∗) > k∗. The Intermediate Value

Theorem then implies that there exists a k∗2 ∈ [0, k∗) such that r(k∗2) = k∗. We

have thus shown that if the two divisions sign an ex-ante contract that provides the

downstream division with initial capacity rights of k∗2 units, Division 1 will choose the

efficient amount of aggregate capacity k∗.

To complete the proof, we need to show that there exists a fixed transfer payment

p(k∗2) such that the ex-ante contract (k∗2, p(k
∗
2)) will be preferred by both divisions

to the default point of no agreement. If the two divisions fail to reach an ex-ante

agreement, Division 1 will choose its capacity level unilaterally, and Division 2 will

receive no capacity rights (i.e., k2 = 0). Let k̂ denote Division 1’s optimal choice of
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capacity under the “default” scenario. Division 1’s expected periodic payoff under

the default scenario is then given by

Π̂1 = Eǫ

[

(1− δ) · CM1(k̂|w1, ǫ̃1t) + δ · CM(k̂|w, ǫ̃t)
]

− c · k̂

while Division 2’s default payoff is

Π̂2 = (1− δ) · Eǫ

[

CM(k̂|w, ǫ̃t) − CM1(k̂|w1, ǫ̃1t)
]

.

By agreeing to transfer k∗2 units of capacity rights to Division 2, the two divisions can

increase their periodic joint surplus by

∆Π ≡ Eǫ [CM(k∗|w, ǫ̃t)− c · k∗]− Eǫ

[

CM(k̂|w, ǫ̃t)− c · k̂
]

.

The two divisions can then split this additional surplus between them in proportion

to their relative bargaining power. The periodic transfer price p(k∗2) that implements

this allocation is given by

Eǫ [(1− δ) · CM1(k
∗ − k∗2|w1, ǫ̃1t) + δ · CM(k∗|w, ǫ̃t)]− c · k∗ + p(k∗2) = π̂1 + δ ·∆Π.

Division 2’s expected periodic payoff with this choice of transfer payment will be

equal to Π̂2 + (1− δ) ·∆Π. Therefore, both divisions will prefer the ex-ante contract

(k∗2, p(k
∗
2)) to the default scenario of no contract (0, 0). ✷

Proof of Corollary to Proposition 3:

Since r(k∗2) = k∗, it follows that Eǫ[S(r(k
∗
2)|w, ǫ̃t] = c. The first-order condition in

(33) for division 1’s optimal response then yields

Eǫ1 [CM
′
1(k

∗
1)|w1, ǫ̃1t] ≤ c,

which can hold as a strict inequality only if k∗1 ≡ r1(k
∗
2) = 0. However, k∗1 cannot be

zero because Eǫ1 [CM
′
1(0|w1, ǫ̃1t] > c by assumption. It thus follow that

Eǫ1 [CM
′
1(k

∗
1)|w1, ǫ̃1t] = c, (36)
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and hence k∗1 = ko1. Thus, the efficient capacity choices under the gatekeeper mecha-

nism in Proposition 3 are uniquely given by k∗1 = ko1 and k∗2 = k∗− ko1. We claim that

k∗2 is non-negative; i.e., k∗ − ko1 ≥ 0. To prove this, suppose to the contrary k∗ < ko1.

This implies that

c ≥ Eǫ[R
′
1(q

∗
1(k

∗, ·), ǫ1t)−w1] ≥ Eǫ1 [R
′
1(q

o
1(k

∗, ·), ǫ1t)−w1] > Eǫ1 [R
′
1(q

o
1(k

o
1, ·), ǫ1t)−w1],

which contradicts the optimality condition c = Eǫ1 [R
′
1(q

o
1(k

o
1, ·), ǫ1t)− w1].

Clearly, k∗1 and k∗2 are independent of the bargaining power parameter δ. It

follows from equation (36) that k∗1 is decreasing in w1 because CM ′
1(k

∗
1|w1, ǫ1t) =

R′
1(q

o
1(k

∗
1, ·), ǫ1t) − w1 is decreasing in w1. Since the shadow price S(k∗|w, ǫt) is de-

creasing in w2, equation (13) implies that k∗ is also decreasing in w2. It thus follows

that k∗2 = k∗ − ko1 is decreasing in w2. ✷

Proof of Lemma 3:

The proof proceeds along the lines of the proof of Lemma 1. In particular

CMit(ki|wit, ǫit) = max
qit≤ki

{xit ·Ri(qit, ǫit)− wit · qit}

is differentiable in ki and

CM
′

it(ki|wit, ǫit) = xit ·R
′

i(q
o
it(ki, ·), ǫit)− wit.

We can interchange the order of differentiation and integration to conclude that the

firm’s objective function Γi(ki) is differentiable with derivative:

NPV
′

i (ki) =
T
∑

t=1

Eǫit [xit ·R
′

i(q
o
it(ki, ·), ǫ̃it)− wit] · γ

t − vi.

Given the definition of w̄i ≡
∑T

t=1
wit ·γ

t in the statement of Lemma 3, the first-order

condition in the statement of Lemma 3 now follows immediately. ✷

Proof of Proposition 4:

Part (i): When w2t = wt ·x2t, the firm’s objective function regarding the downstream

division is:
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T
∑

t=1

Eǫ2 [CM2(k2|ǫ̃2t, w2t)] · γ
t − v2 · k2,

where

CM2(k2|ǫ2t, w2t) = max
q2t≤k2

{R2(q2t, ǫ2t)− w2t · q2t} = R2(q
o
2t(k2, ·), ǫ2t)− w2t · q

o
2t(k2)

If w2t = x2t · w2, the above objective function reduces to

T
∑

t=1

Eǫ2 [x2t · CM2(k2|ǫ̃2t, w2t)] · γ
t − v2 · k2

Given the transfer pricing rule

TPt(k2, q2t) = ĉ2t · k2 + w2t · q2t,

the expected profit for Division 2 in period t is given by

Eǫ2 [x2t ·R2(q
o
2t(k2, ·), ǫ̃2t)− x2t · w2 · q

o
2t(k2, ·)]− ĉ2t · k2.

Since ĉ2t =
x2t∑

T

τ=1
x2τ ·γτ

· v2, Division 2’s objective function in period t is proportional

to the firm’s overall objective function, NPV2(k2), and thus Division 2 will choose

the optimal capacity level ko2 at the initial stage.

Part (ii): When the limited condition volatility holds and ǫit are i.i.d., the optimal

koi is such that

NPVi(k
o
i ) ≡ Eǫi

[

T
∑

τ=1

γτ [xiτ ·Ri(q
o
iτ (k

o
i , ·), ǫ̃iτ )− wiτ · q

o
iτ (k

o
i , ·)]

]

− vi · k
o
i

= Eǫi

[

T
∑

τ=1

γτ · xiτ ·Ri(k
o
i , ǫ̃iτ )

]

− (vi + w̄i) · k
o
i

≥ NPVi(ki)

≥ Eǫi

[

T
∑

τ=1

γτ · xiτ ·Ri(ki, ǫ̃iτ )

]

− (vi + w̄i) · ki

(37)

for all ki.
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We next show that in case Division 2 is only concerned with its profit in period t,

it will choose ko2. To see this, we recall that because TP (k2) = (ĉ2t + ẑ2tw̄2) · k2, the

expected profit for Division 2 in period t is given by

Eǫ2 [Π̃2t(k2)] = Eǫ2 [x2t ·R2(q
o
2t(k2, ·), ǫ̃2t)]− (ĉ2t + ẑ2tw̄2) · k2.

Clearly qo2t(k2, ·) = k2 as Division 2 is not charged any variable costs. We recall that

ĉ2t = ẑ2t · v2 and ẑ2t =
x2t∑

T

τ=1
x2t·γτ

under the relative benefit depreciation rule, and

therefore

Eǫ2 [π̃2t(k2)] = ẑ2t ·

[

T
∑

t=1

x2τ · γ
t · Eǫ2 [R2(k2, ǫ̃2t)]− (v2 + w̄2) · k2

]

,

which, according to (37), is maximized at ko2. ✷

Proof of Proposition 5:

As defined in the main text, the threshold type θ∗2 is the one achieving a zero NPV

for the capacity investment k̄2; that is,

T
∑

τ=1

Eǫ2

[

CM2τ (k̄2|x2τ , w2τ , ǫ̃2τ )|θ
∗
2

]

· γτ = v2 · k̄2.

We note that the net present value, NPV (k̄2|θi), is increasing in θ2 because (i) θ2

shifts the densities f2(·|θ2) in the sense of first-order stochastic dominance, and (ii)

CM2t(k̄2|x2t, w2t, ǫ2t) is increasing in ǫ2t (Theorem 6D1,MasCollel et al., 1995). If

the downstream division were to focus exclusively on its profit measure in period t,

1 ≤ t ≤ T , it would seek to maximize:

Eǫ2 [Π2(k|θ2, ǫ̃2t)] ≡ Eǫ2 [CM2t(k2|x2t, w2t, ǫ̃2t)|θ2)]− z̄2t · v2 · k2.

Direct substitution for z̄2t according to the REOB rule shows that

Eǫ2 [Π2(k|θ2, ǫ̃2t)] = Eǫ2

[

CM2t(k̄2|x2t, w2t, ǫ̃2t)|θ2
]

− Eǫ2

[

CM2t(k̄2|x2t, w2t, ǫ̃2t)|θ
∗
2

]

,

which will be greater than zero if and only if θ2 > θ∗2. ✷

Proof of Proposition 6:
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Following the similar arguments as used in the proof of Proposition 3, it can be shown

that the efficient capacity in the fungible setting is the same as in the dedicated

setting; i.e., k∗ = ko1 + ko2.

To show that (ko1, k
o
2) is a Nash equilibrium at the initial date, we first prove

that Division 2 will optimally choose ko2 if it conjectures that the upstream divisions

chooses ko1. Since Division 2 is not charged any variable cost, qo2(k2, ·) = k2. Therefore,

Division 2’s effective contribution margin after reallocation of capacity rights in period

t is given by:

CM∗
2t(k2|k

o
1, θ, wt, ǫt) = δ · x2t ·R2(k2, ǫ2t|θ2) + (1− δ) · [CMt(k

o
1 + k2|wt, , θ, ǫt)− Γ1t] ,

where

Γ1t ≡ CM1t(k
o
1|w1t, θ1, ǫ1t)− w2t · k2

and

CMt(k
o
1 + k2|wt, θ, ǫt) =

2
∑

i=1

[xit ·Ri(q
∗
i (k

o
1 + k2, ·), ǫit|θi)− wit · q

∗
i (k

o
1 + k2, ·)]

Given the full cost transfer pricing rule TPt(k2) = ĉ2t ·k2+ ẑ2t ·w̄2 ·k2 = ẑ2t ·(v+w̄2)·k2,

Division 2’s profit in period t, contingent on ko1 and ǫt, is:

π2t(k2|k
o
1, ǫt) = CM∗

2t(k2|k
o
1, θ, wt, ǫt)− ẑ2t · (v + w̄2) · k2.

It will be convenient to rewrite the above expression as follows:

π2t(k2|k
o
1, ǫt) = δ · φ2t(k2|ǫ2t) + (1− δ) · ψ2t(k2|k

o
1, ǫt) + α,

where α is a constant term independent of k2,

φ2t(k2|ǫ2t) = x2t ·R2(k2, ǫ2t|θ2)− ẑ2t · (v + w̄2) · k2,

and

ψ2t(k2|k
o
1, ǫt) = CMt(k

o
1 + k2|wt, θ, ǫt) + w2t · k2 − ẑ2t · (v + w̄2) · k2.

To prove that ko2 is an optimal response to ko1, it suffices to show that both

Eǫ2 [φ2t(k2|ǫ2t)] and Eǫ[ψ2t(k2|k
o
1, ǫ2t)] are maximized at k2 = ko2 for each t. We re-

call that ẑ2t =
x2t∑

T

τ=1
γτ ·x2τ

, and therefore

Eǫ2 [φ2t(k2, ǫ2t)] = ẑ2t ·

[

T
∑

t=1

γt · Eǫ2 [x2t ·R2(k2, ǫ2t|θ2)− w2t · k2]− v · k2

]

.
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By definition of ko2, the above expression is indeed maximized at k2 = ko2 for each t.

Differentiating ψ2t(k2|k
o
1, ǫ2t) with respect to k2 yields

ψ′
2t(k2|k

o
1, ǫt) = St(k

o
1 + k2|wt, θ, ǫt) + w2t − ẑ2t · (v + w̄2).

Substituting St(k
o
1 + k2|wt, θ, ǫt) = x2t ·R

′
2(q

∗
2t(k

o
1 + k2, ·), ǫ2t|θ2)−w2t and noting that

ẑ2t =
x2t∑

T

τ=1
γτ ·x2τ

and w̄2 =
∑T

t=1
γt · w2t, we get:

Eǫ[ψ
′
2t(k2|k

o
1, ǫt)] = ẑ2t ·

[

t
∑

t=1

γt · Eǫ [x2t ·R
′
2(q

∗
2t(k

o
1 + k2, ·), ǫ2t|θ2)− w2t]− v

]

= ẑ2t ·

[

t
∑

t=1

γt · Eǫ[St(k
o
1 + k2|wt, θ, ǫt)]− v

]

.

We recall that the efficient capacity level k∗ is given by the first-order condition:

t
∑

t=1

γt · Eǫ[St(k
∗|wt, θ, ǫt)]− v = 0.

Since k∗ = ko1 + ko2,

Eǫ[ψ
′
2t(k2|k

o
1, ǫt)] = 0

at k2 = ko2, and hence Eǫ[ψ2t(k2|k
o
1, ǫt)] is maximized at ko2. This proves that k

o
2 is an

optimal response to ko1.

A similar argument can be used to show that the upstream division will optimally

choose ko1 when it conjectures that the downstream division chooses ko2. This proves

that (ko1, k
o
2) is a Nash equilibrium. ✷
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Appendix B

In this Appendix, we demonstrate through examples that the full cost transfer

pricing mechanism in part (ii) of Proposition 4 will generally lead the downstream

division to underinvest if the limited volatility condition does not hold. We also show

that the amount of underinvestment and corresponding efficiency losses increase with

the degree to which the limited volatility conditions fails to hold. Thus, the amount

of underinvestment and the efficiency loss both increase as the probability density

function of the revenue shocks ǫit becomes more spread out.

Consider a stationary setting in which the downstream division’s revenue functions

take the following form:

R2(q2, ǫ2t) = ǫ2t · q2t −
h

2
· q22t

with h > 0. Suppose the revenue shocks ǫ2t are distributed with support over the

interval [ǫ2, ǭ2] with ǫ2 > w2. For a given capacity k2, the efficient quantity choice is

given by

qo2(k2, ǫ2t) = min

{

ǫ2t − w2

h
, k2

}

.

Lemma 1 then yields the following expression for the efficient capacity level ko2:

E

[

ǫ̃2t − h ·min

{

ǫ̃2t − w2

h
, ko2

}]

= w2 + c2.

We note that the limited volatility condition will hold if and only if ǫ̃2t−w2

h
≥ ko2 for

all ǫ̃2t ∈ [ǫ2, ǭ2]. This is equivalent to the condition that

ǫ2 ≥ h · ko2 + w2. (38)

Now suppose the limited volatility condition does not hold, but the two-part full

cost mechanism in part (ii) of Proposition 4 is still used for transfer pricing purposes.

The downstream division will then produce at the capacity level for all realizations

of the revenue shock ǫ2t because it is not charged for actually incurred variable costs.

Consequently, this transfer pricing mechanism will induce Division 2 to choose its
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capacity so as to maximize E(ǫ̃2t) · k2 −
h
2
· k22 − w2 · k2 − c2 · k2. The first order

condition yields that the induced capacity level kI2 is given by

kI2 =
E(ǫ̃2t)− (w2 + c2)

h
.

We note that the induced capacity level kI2 depends on the distribution of the revenue

shocks only through the expected value E(ǫ̃2t).

Suppose now the revenue shocks ǫ̃2t are uniformly distributed over the interval

[m2 − σ2,m2 + σ2] with σ2 ≥ 0. As σ2 increases, the variance of ǫ̃2t increases but

its expected value remains unchanged at m2. The revenue volatility can therefore

be conveniently parameterized by σ2. Figure 5 below plots the efficient and induced

capacity levels as functions of the revenue volatility parameter σ2 when c2 = w2 = 1,

m2 = 3, and h = 0.01.

Figure 5: Investments and revenue volatility

For these parameter values, it can be verified that the limited volatility condition

holds if and only if σ2 ≤ 1.25 Figure 5 shows that the full cost transfer pricing

25Equation (38) yields that the limited volatility condition holds if and only if m2−σ2 ≥ h·ko2+w2.

This simplifies to σ2 ≤ c2 = 1, since ko2 = m2−(w2+c2)
h

.
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mechanism in part (ii) of Proposition 4 induces the efficient capacity choice (i.e.,

kI2 = ko2) when the limited volatility condition holds (i.e., σ2 ≤ 1). The downstream

division underinvests (i.e., kI2 < ko2) when the limited volatility condition fails to hold

(i.e., σ2 > 1.). The amount of underinvestment increases in the revenue volatility

parameter σ2, and becomes arbitrarily small as σ2 approaches one from above.

Figure 6 below plots the expected profit per period generated by the full cost

transfer pricing mechanism, πI
2 , and the first-best expected profit per period, πo

2. It

confirms that the efficiency loss from using the full cost transfer pricing mechanism,

πo
2 − πI

2 , increases in the degree to which the limited volatility condition fails to hold

(i.e., the degree to which σ2 exceeds the threshold value of one).

Figure 6: Expected profits and revenue volatility

53



References

Anctil, R. and S. Dutta (1999). Negotiated Transfer Pricing and Divisional vs. Firm-

Wide Performance Evaluation. The Accounting Review 74(1), 87-104.

Arrow, K. (1964). Optimal Capital Policy, The Cost of Capital and Myopic Decision

Rules. Annals of the Institute of Statistical Mathematics 1-2, 21-30.

Arya, A., J. Demski, J. Glover, and P. Liang (2009), “Quasi-Robust Multiagent

Contracts,” Management Science 55(5), 752-762.

Arya, A., and B. Mittendorf (2011), “Supply Chains and Segment Profitability: How

Input Pricing Creates a Latent Cross-Segment Subsidy,” The Accounting Review,

86(3) 805-824.

Balachandran, B., Balakrishnan, R. and S. Sivaramakrishnan (1997). On the Effi-

ciency of Cost-Based Decision Rules for Capacity Planning. The Accounting Re-

search 72(4), 599-619.

Balakrishnan, R. and S. Sivaramakrishnan (2002). A Critical Overview of Full-Cost

Data for Planning and Pricing. Journal of Management Accounting Research 3-31.

Baldenius, T., Dutta, S. and S. Reichelstein (2007). Cost Allocations for Capital

Budgeting Decisions. The Accounting Review 82(4), 837-867.

Baldenius, T., Nezlobin, A., and I. Vaysman (2016). Managerial Performance Evalu-

ation and Real Options. The Accounting Review 91(3), 741-766.

Baldenius, T. and S. Reichelstein, and S. Sahay (1999). Negotiated versus Cost-Based

Transfer Pricing. The Review of Accounting Studies 4(2), 67-91.

Banker, R. and J. Hughes (1994). Product Costing and Pricing. The Accounting

Review 69(3), 479-494.

Bastian, N. and S. Reichelstein (2004). Transfer Pricing at Timken. Stanford GSB,

Case # A-190.

Bockem, S. and U. Schiller (2008). Full-Cost Transfer Pricing and Cost Management.

Journal of Economics and Management Strategy 28(3), 63-81.

Bouwens, J and B. Steens (2016). Full-Cost Transfer Pricing and Cost Management.

Journal of Management of Accounting Research 17(1), 219-245.

Carlton, S., & Perloff, J. (2005). Advanced Industrial Organization. 4th ed. New

54



York, NY: Pearson/Addison Wesley.

Datar, S. and M. Rajan. (2014). Managerial Accounting: Making Decisions and

Motivating Performance. Pearson, NY: Pearson/Addison Wesley.

Dutta, S. (2008). Dynamic Performance Measurement. Foundations and Trends in

Accounting, 2 (3), 175-240.

Dutta, S., and S. Reichelstein (2002). Controlling Investment Decisions: Depreciation

and Capital Charges. Review of Accounting Studies 7, 253-281.

Dutta, S. and S. Reichelstein (2010). Decentralized Capacity Management and In-

ternal Pricing. Review of Accounting Studies, 15 (3), 442-478.

Eccles, R., and H. White (1988). Price and Authority in Inter-Profit Center Trans-

actions. American Journal of Sociology (94) (Supplement), 17-51.

Edlin, A. and S. Reichelstein (1995). Negotiated Transfer Pricing: An Efficiency

Result. The Accounting Review 69(3), 479-494.

Ernst & Young (2003), Global Transfer Pricing Survey. www.ey.com.

Feinschreiber, R. and M. Kent. (2012). Transfer Pricing Handbook. Wiley Publishers.

Goex, R. (2002), Capacity Planning and Pricing under Uncertainty. Journal of Man-

agement Accounting Research 59-79.

Goex, R. and U. Schiller (2007). An Economic Perspective on Transfer Pricing.

Handbook of Management Accounting Research. C.S. Chapman, A. Hopwood and

M. Shields

Gramlich, J. and K. Ray (2016). Reconciling full-Cost and Marginal-Cost Transfer

Pricing. Journal of Management Accounting Research 28(1), 27-37.

Hotelling, H. (1925). A General Mathematical Theory of Depreciation. Journal of

the American Statistical Association 20, 340-353.

Kaplan, R. (2006). Activity-based Costing and Capacity. Harvard Business School,

Case # 9-105-059

Marschak, T. and S. Reichelstein (1998). Network Mechanisms and Informationally

Efficient Hierarchies. Journal of Economic Theory 79, 106-141.

Martinez-Jerez, A. (2007). Understanding Customer Profitability at Charles Schwab.

Harvard Business School, Case # 106-002.

Mas-Colell, A., Whinston, M. and J. Green (1995), Microeconomic Theory, Oxford

55



University Press, Oxford, New York.

Mount, K. and S. Reiter (1974). The Informational size of Message Spaces. Journal

of Economic Theory 8, 161-192.

Nezlobin, A., Rajan, M and S. Reichelstein (2012). Dynamics of Rate of Return

Regulation. Management Science 58(5), 980-995.

Oyama, D. and T. Takenawa (2018). On the (non-)differentiability of the optimal

value function when the optimal solution is unique. Journal of Mathematical

Economics 76, 21-32.

Pfeiffer, T., Lengsfeld, S., Schiller, U. and J. Wagner (2009). Cost-based Transfer

Pricing. Review of Accounting Studies 7, 253-281.

Pfeiffer, T. and G. Schneider (2007), “Residual Income-Based Compensation Plans

for Controlling Investment Decisions Under Sequential private Information,” Man-

agement Science 53(3), 495-507.

Rajan, M. and S. Reichelstein (2009). Depreciation Rules and The Relation Between

Marginal and Historical Cost. Journal of Accounting Research 47(3),1-43.

Reichelstein, S. and A. Rohlfing-Bastian (2015). Levelized Product Cost: Concept

and Decision Relevance. The Accounting Review 90 (4), 1653-1682.

Reichelstein, S. and A. Sahoo (2018). Relating Long-Run Marginal Cost to Product

Prices: Evidence from Solar Photovoltaic Modules. Contemporary Accounting

Research 35(3), 1464 - 1498.

Rogerson, W. (1997) Inter-Temporal Cost Allocation and Managerial Investment In-

centives: A Theory Explaining the Use of Economic Value Added as a Performance

Measure. Journal of Political Economy 105, 770-795.

Rogerson, W. (2008). Inter-Temporal Cost Allocation and Investment Decisions.

Journal of Political Economy 116, 931-950.

Rogerson, W. (2011). On the relationship between historic cost, forward looking cost

and long run marginal cost. Review of Network Economics 10(2), 1-31.

Sahay, S. (2002). Transfer Pricing Based on Actual Cost. Journal of Management

Accounting Research 15, 177-192.

Simons, R. (2000). Polysar Limited. Harvard Business School Case # 9-187-098.

Solomons, D. (1964), Divisional Performance Measurement and Control. Irvin. Home-

56



wood, Illinois.

Spear, S. (2003). The Electricity Market Game. Journal of Economic Theory 109(2),

300-323.

Tang, R. (2002). Current Trends and Corporate Cases in Transfer Pricing. Westport,

CT: Quorum Books.

Vaysman, I. (1996), “Cost-based Transfer Pricing,” Review of Accounting Studies

Vol.1, 73-108.

Wielenberg, S. (2000). Negotiated Transfer Pricing, Specific Investment and Optimal

Capacity Choice. Review of Accounting Studies 5, 197-216.

Young, D and O’Byrne, J. (2000), EVA and Value-Based Management, McGraw Hill,

New York.

Zangwill, W. (1969), Nonlinear Programming. McGraw Hill, New York.

Zimmerman, J. (2016), Accounting for Decision Making and Control., 8th ed., Pren-

tice Hall, New York.

57



 

Contact: 

Prof. Dr. Caren Sureth-Sloane 

Paderborn University 

Faculty of Business Administration and Economics 

Department of Taxation, Accounting and Finance 

Warburger Str. 100, 33098 Paderborn, Germany 

 

trr266@mail.upb.de 

www.accounting-for-transparency.de 

TRR 266 Accounting for Transparency 

 

 


