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Abstract

In visual relationship detection, human-notated relation-

ships can be regarded as determinate relationships. How-

ever, there are still large amount of unlabeled data, such as

object pairs with less significant relationships or even with

no relationships. We refer to these unlabeled but potentially

useful data as undetermined relationships. Although a vast

body of literature exists, few methods exploit these undeter-

mined relationships for visual relationship detection.

In this paper, we explore the beneficial effect of unde-

termined relationships on visual relationship detection. We

propose a novel multi-modal feature based undetermined

relationship learning network (MF-URLN) and achieve

great improvements in relationship detection. In detail, our

MF-URLN automatically generates undetermined relation-

ships by comparing object pairs with human-notated data

according to a designed criterion. Then, the MF-URLN

extracts and fuses features of object pairs from three com-

plementary modals: visual, spatial, and linguistic modals.

Further, the MF-URLN proposes two correlated subnet-

works: one subnetwork decides the determinate confidence,

and the other predicts the relationships. We evaluate the

MF-URLN on two datasets: the Visual Relationship De-

tection (VRD) and the Visual Genome (VG) datasets. The

experimental results compared with state-of-the-art meth-

ods verify the significant improvements made by the unde-

termined relationships, e.g., the top-50 relation detection

recall improves from 19.5% to 23.9% on the VRD dataset.

1. Introduction

Visual relationships have been widely used in multiple

image understanding tasks, such as object categorization

∗Jun Yu is the corresponding author
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Figure 1. This figure shows four images with different relation-

ships. (a) and (b) surround the descriptions of object pairs with

determinate relationships. In addition, (b) presents an unlabeled

relationship: person-on-street. (c) and (d) outline the descriptions

of object pairs with undetermined relationships. In (d), the two

objects are detected by Faster R-CNN [29].

[8], object detection [14], image segmentation [11], image

captioning [6], and human-object interactions [10]. Due to

its wide applications, visual relationship detection has at-

tracted increasingly more attention. The goal of visual rela-

tionship detection is to detect pairs of objects, meanwhile

to predict the object pairs’ relationships. In visual rela-

tionship detection, visual relationships are generally repre-

sented as subject-predicate-object triplets, such as person-

wear-hat and person-on-horse, which are shown in Fig. 1

(a) and (b). Since relation triplets are compositions of ob-

jects and predicates, their distribution is long-tailed. For N

objects and M predicates, the number of all possible rela-

tion triplets is O(N2M). Therefore, taking relation triplets
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as a whole learning task requires a very large amount of

labeling data [4, 7]. A better strategy is to build separate

modules for objects and predicates. Such a strategy reduces

the complexity to O(N + M) and increases the detection

performance on large-scale datasets [23]. Even so, visual

relationship detection is still data-hungry. Another solution

is to obtain more human annotations. However, labeling

relation triplets is truly expensive, as it requires tedious in-

spections of huge numbers of object interactions [38].

We notice that in addition to the human-notated relation-

ships, there is still much unexploited data in images. We

illuminate these data in Fig. 1. The human-notated relation-

ships can be regarded as determinate relationships, such as

Fig. 1 (a) and (b). Contrarily, we refer to the other rela-

tionships constructed from unlabeled object pairs as unde-

termined relationships. These undetermined relationships

include 1) object pairs with relationships but not labeled

by humans, e.g., the unlabeled person-on-street shown in

Fig. 1 (b), and 2) object pairs with no relationships, such

as Fig. 1 (c). Further, object pairs with falsely detected

objects are also classified as undetermined relationships,

such as Fig. 1 (d). Intuitively, these undetermined rela-

tionships can be used as complements of determinate rela-

tionships for the following reasons. First, they contain neg-

ative samples, such as object pairs without relationships and

with falsely detected objects. Second, they reflect humans’

dislike preferences, e.g., the less significant unlabeled rela-

tionships and relationships with unusual expressions (e.g.,

we prefer to say cup-on-table instead of table-under-cup),

which are considered as undetermined relationships. More-

over, they require no human annotation and have beneficial

regular effects for visual relationship detection [39].

Therefore, in this paper, we explore how to utilize these

unlabeled undetermined relationships to improve relation-

ship detection, and propose a multi-modal feature based

undetermined relationship learning network (MF-URLN).

In the MF-URLN, a generator is proposed to automatically

produce useful undetermined relationships. Specifically, we

use an object detector to detect objects, and two differ-

ent objects compose an object pair; then, this object pair

is compared with human-notated relationships using a de-

signed criterion. Those object pairs without corresponding

determinate relationships are classified as undetermined re-

lationships. For each object pair, the MF-URLN extracts

and fuses features from three different modals: the visual

modal, the spatial modal, and the linguistic modal. These

features comprehensively gather information on one rela-

tionship. Afterwards, the MF-URLN constructs two cor-

related subnetworks: one depicts the object pairs as either

determinate or undetermined, and the other predicts the re-

lationships. In addition, the second subnetwork uses infor-

mation from the first subnetwork. The final relationships

are decided according to the scores from the two subnet-

works. We perform experiments on two relationship detec-

tion datasets, namely VRD [23] and VG [18, 37], to ver-

ify the effectiveness of the MF-URLN. The experimental

results demonstrate that the MF-URLN achieves great im-

provements on both datasets by using undetermined rela-

tionships, e.g., the top-50 phrase detection recall improves

from 25.2% to 31.5 % in the VRD dataset.

Our contributions can be summarized as: 1) we explore

undetermined relationships to improve visual relationship

detection. We propose an automatic method to obtain effec-

tive undetermined relationships and a novel model to utilize

these undetermined relationships for visual relationship de-

tection. 2) We propose a novel and competitive visual rela-

tionship detection method, the MF-URLN, by using multi-

modal features based on determinate and undetermined re-

lationships. The experimental results, when compared with

state-of-the-art methods, demonstrate the capability of the

MF-URLN for visual relationship detection.

2. Related Work

Visual Relationship Detection. Earlier works on visual

relationship detection treated object and predicate detection

as a single task. These methods required a large amount of

training data, but could be applied only to limited situations

[4, 7]. Then, Lu et al. [23] proposed an efficient strategy

for detecting the objects and predicates separately. Later,

linguistic knowledge showed its power. Yu et al. [34] com-

bined rich visual and linguistic representations using the

teacher-student deep learning framework. Deep structural

learning is another recent attempt. In [21], a deep struc-

tural ranking model was proposed by integrating multiple

cues to predict the relationships. The methods mentioned

above contained two steps for objects and predicates. In

contrast, other methods had end-to-end models. In [37], the

authors proposed a end-to-end visual translation embedding

network for relationship detection. Although the previous

methods performed satisfactorily, few of them took unde-

termined relationships into account.

Positive Unlabeled Learning. Utilization of undeter-

mined relationships is related to positive unlabeled (PU)

learning. PU learning refers to the task of learning a bi-

nary classifier from only positive and unlabeled data [5].

PU learning has been used in a variety of tasks, such as

matrix completion [13], multi-view learning [40], and data

mining [19]. Most PU learning methods emphasize only

binary classification [27]; e.g., [30] proposed an unlabeled

data in sequential minimal optimization (USMO) algorithm

to learn a binary classifier from an unlabeled dataset. How-

ever, visual relationship detection is a multi-label classifica-

tion task. Therefore, this paper is one of the works for PU

learning on multi-label tasks, similar to [16, 17, 39]. Fol-

lowing [39], we consider the beneficial effect of unlabeled

relationships to improve visual relationship detection.
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Figure 2. The framework of the MF-URLN. The MF-URLN detects objects through an object detector. Then, determinate and undetermined

relationships are generated from the proposed generator. Afterwards, the MF-URLN extracts and fuses features from three modals to

describe each object pairs. Finally, the relationships are predicted based on the determinate confidence subnetwork and the relationship

detection subnetwork.

3. MF-URLN

Our novel multi-modal feature based undetermined rela-

tionship learning network (MF-URLN) is presented in this

section. We suppose s, p, o, d, and R to represent the sub-

ject, predicate, object, determinate confidence, and relation-

ship, respectively. Therefore, the probabilistic model of the

MF-URLN for visual relationship detection is defined as:

P (R) = P (p|s, o, d)P (d|s, o)P (s|Bs)P (o|Bo). (1)

Here, Bs and Bo are two individual boxes for subject

and object, which compose an object pair. P (s|Bs) and

P (o|Bo) represent the subject box’s and object box’s prob-

abilities for belonging to an object category. Since object

detection is not a key topic in this paper, the MF-URLN di-

rectly obtains these object probabilities from an object de-

tector, following [23, 34]. P (d|s, o) represents the probabil-

ity of the object pair having a determinate relationship; in

other words, P (d|s, o) reflects the probability of one object

pair being manually selected and labeled. P (p|s, o, d) is the

probability of the object pair belonging to a predicate cate-

gory. Note that only P (s|Bs) and P (o|Bo) are independent.

The rest of the factors are correlated. P (d|s, o) depends on

the subject and the object, and P (p|s, o, d) relies on the sub-

ject, the object, and the determinate confidence.

As shown in Fig. 2, the MF-URLN uses an object detec-

tor to detect objects and to provide the scores of P (s|Bs)
and P (o|Bo). Then, an undetermined relationship gener-

ator is utilized. For training, object pairs are classified as

determinate relationships and undetermined relationships.

For testing, all object pairs are directly used as testing data.

Finally, an undetermined relationship learning network is

proposed to extract and fuse multi-modal features and to

calculate the scores of P (d|s, o) and P (p|s, o, d). More de-

tails about the object detector, the undetermined relation-

ship generator, and the undetermined relationship learning

network are explained in the following subsections.

3.1. Object Detector

In the MF-URLN, we use the Faster R-CNN [29] with

the VGG-16 network to locate and detect objects. Specif-

ically, we first sample 300 proposed regions generated by

the RPN with IoU > 0.7. Then, after classification, we per-

form the NMS with IoU > 0.4 on the 300 proposals. The

retained proposals with category probabilities higher than

0.05 are regarded as the detected objects in one image. The

Faster R-CNN with the VGG-16 is selected, because it is

commonly used in visual relationship detection [32, 33, 37].

Note that the MF-URLN uses the same parameter settings

of Faster R-CNN for different datasets, but these parameters

can be adjusted to obtain better object proposals, following

[37, 41]. In addition, the MF-URLN can be married to any

object detector such as the fast RCNN [9] and YOLO [28].

3.2. Undetermined Relationship Generator

Different datasets of undetermined Relationships seri-

ously affect the detection performance. Therefore, in this

subsection, we introduce a fast manner to automatically

generate useful undetermined relationships.

Specifically, two different detected objects compose one

object pair. Afterwards, all of the object pairs are com-

pared with the manually annotated relationships (i.e., the

ground truth) for categorization purposes. We suppose ls,

lp, and lo represent the labels for the s, p, and o. A rep-

resents the set of manually annotated relationships, and D

denotes the set of object pairs constructed from the de-

tected objects. An object pair (si, oi) ∈ D is determinate

only if ∃(sk, pk, ok) ∈ A, in which lsi = lsk , loi = lok ,

IoU(si, sk) > 0.5, and IoU(oi, ok) > 0.5. In this way,

lpi
= lpk

. Otherwise, (si, oi) is classified as an undeter-

mined relationship, and lpi
is unknown and probably does

not belong to any predicates. Here, IoU(a, b) is the inter-

section over union (IoU) between the objects a and b.

We choose this generator because most of the generated
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undetermined relationships belong to the situations men-

tioned in the introduction. In addition, such a method also

yields a good empirical performance. Note that we use the

same object detector to detect objects and generate unde-

termined relationships, so as to make the generated unde-

termined relationships highly correlated with the detected

objects of the MF-URLN.

3.3. Undetermined Relationship Learning Network

The undetermined relationship learning network of the

MF-URLN includes two parts: the multi-modal feature ex-

traction network and the relationship learning network.

3.3.1 Multi-modal Feature Extraction Network

The MF-URLN depicts a full picture of one relationship

from features of three different modals: visual modal, spa-

tial modal, and linguistic modal.

Visual Modal Features. Visual modal features are use-

ful to collect the category characteristics as well as the di-

versity of objects from the same category in different sit-

uations. Following [34], the MF-URLN directly uses the

VGG-16 with ROI pooling from the Faster R-CNN to ex-

tract the visual features from the individual boxes of sub-

jects and objects, and the union box of subject and object

in object pairs. In this way, our learning network is highly

correlated with the object detector and the generated unde-

termined relationships.

Spatial Modal Features. Spatial modal features

are complementary to visual modal features, because

ROI pooling deletes the spatial information of ob-

ject pairs. We suppose (xs
min, y

s
min, x

s
max, y

s
max),

(xo
min, y

o
min, x

o
max, y

o
max), and (xu

min, y
u
min, x

u
max, y

u
max)

denote the locations of the subject box, the object box, and

the union box of subject and object in one image, respec-

tively. The spatial modal features are calculated as:

[
xs
min − xu

min

xu
max − xu

min

,
ys
min − yu

min

yu
max − yu
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,
xs
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max
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min
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max
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min
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min

,
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max
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,
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max

yu
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min

].

(2)

Linguistic Modal Features. Linguistic modal features

provide similarities among objects from linguistic knowl-

edge, which are difficult to obtain from visual appearances

and spatial locations. In the MF-URLN, object categories

are obtained from the object detector; then, two kinds of lin-

guistic modal features are extracted based on the labels as-

sociated with the classifier: external linguistic features and

internal linguistic features. For external linguistic features,

we employ the pretrained word2vec model of Wikipedia

2014 [25] to extract the semantic representations of subject

and object. However, such external linguistic features may

contain noise because the training texts are not limited to

relationships. Thus, the internal linguistic features are pro-

posed as complements. For internal linguistic features, we

count the frequencies of all relation triplets in the training

set, and transform these frequencies into probability distri-

butions according to the subject’s and object’s categories,

based on Naive Bayes with Laplace smoothing [24]. The

Laplace smoothing is used to consider the zero-shot data

influence [23].

Feature Fusion. In previous methods, the commonly

used feature fusion method is directly concatenating fea-

tures [34, 37]. However, as different features’ dimen-

sions vary widely, high-dimensional features, such as the

4096-dimensional visual features, easily overwhelm low-

dimensional features, such as the 8-dimensional spatial fea-

tures. To alleviate such problems, in the MF-URLN, all

individual features of the same modalities are transformed

into the same dimensions and concatenated; then, these

concatenated features of single modalities are again trans-

formed into the same dimensions before being concatenated

for multi-modal feature fusion.

3.3.2 Relationship Learning Network

Previous methods considered only determinate relation-

ships. Contrarily, the MF-URLN predicts relationships

from two kinds of data: determinate relationships and un-

determined relationships. In detail, two subnetworks are

proposed: a determinate confidence subnetwork and a rela-

tionship detection subnetwork.

Determinate Confidence Subnetwork. The determi-

nate confidence subnetwork decides the determinate con-

fidence of an object pair, which reflects the probability of

the object pair being manually selected and labeled. As

shown in Fig. 2, our determinate confidence subnetwork

uses multi-modal features. In the MF-URLN, we use sig-

moid cross entropy loss [3], which is defined as:

CE(p, y) =

{

−log(p) if y = 1

−log(1− p) otherwise.
(3)

We define (sd, pd, od) as determinate relationships, and

(si, pi, oi) as undetermined relationships. For a determinate

relationship, y = 1, and its determinate confidence loss is

defined as: Ld
det = CE(P (dd|sd, od), 1). For an undeter-

mined relationship, y = 0, and its determinate confidence

loss is defined as: Li
det = CE(P (di|si, oi), 0). The final

determinate confidence loss is weighted calculated as:

Ldet = L
d
det + αL

i
det, (4)

where α is the parameter to adjust the relative importance of

undetermined relationships and determinate relationships.

We believe that determinate relationships and undetermined
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relationships contribute equally to the determinate confi-

dence loss and thus set α = 1.

Relationship Detection Subnetwork. The relationship

detection subnetwork predicts the relationship of all object

pairs. As shown in Fig. 2, our relationship detection sub-

network depends on multi-modal features and the determi-

nate confidence subnetwork. In this manner, the two sub-

networks are correlated. In addition, the determinate confi-

dence experimentally improves the relationship detection.

Determinate relationships contain clear human-notated

predicates. Therefore, the relationship detection loss from a

determinate relationship is defined as:

L
d
rel =

M
∑

k=1

CE(P (pdk|sd, od, dd), yk), (5)

where pk and yk are the kth predicate and the corresponding

label. yk = 1 means the kth predicate’s label is human-

notated; otherwise, yk = 0. M is the number of predicate

categories.

The undetermined relationships with unlabeled predi-

cates should have at least one predicate, whereas the un-

determined relationships without any relationships or with

falsely detected objects should have no predicates. There

is currently no reliable methods to automatically label these

undetermined relationships. Therefore, we treat these data

as having no predicates, following [39]. This method is

naive but experimentally useful. The relationship detection

loss from an undetermined relationship is defined as:

L
i
rel =

M
∑

k=1

CE(P (pik|si, oi, di), 0). (6)

The relationship detection loss is finally calculated as:

Lrel = L
d
rel + λ1L

i
rel. (7)

Here, λ1 is the parameter to adjust the relative signifi-

cance of undetermined relationships and determinate rela-

tionships for the relationship detection loss.

Joint loss function. Finally, a joint loss function is

proposed to simultaneously calculate the determinate confi-

dence loss and the relationship detection loss. The joint loss

function is defined as follows:

L = Lrel + λ2Ldet. (8)

Here, λ2 is the parameter used to trade off between two

groups of objectives: the determinate confidence loss and

the relationship detection loss. By combining Eq. (4), Eq.

(7), and Eq. (8), the joint loss function is rewritten as:

L = L
d
rel + λ1L

i
rel + λ2L

d
det + λ2L

i
det. (9)

4. Experiments

In this section, we conduct experiments to validate the

effectiveness of the MF-URLN and the usefulness of un-

determined relationships by answering the following ques-

tions. Q1: is the proposed MF-URLN competitive, when

compared with the state-of-the-art visual relation detection

methods? Q2: what are the influences of the features on the

proposed MF-URLN? Q3: are undetermined relationships

beneficial to visual relationship detection?

4.1. Datasets, Evaluation Tasks, and Metrics

Datasets. Two public datasets are used for algorithm

validation: the Visual Relationship Detection dataset [23]

and the Visual Genome dataset [18].

The Visual Relationship Detection (VRD) dataset con-

sists of 5,000 images with 100 object categories and 70

predicate categories. In total, the VRD contains 37,993 re-

lationships with 6,672 types. The default dataset split in-

cludes 4,000 training images and 1,000 test images. There

are 1,169 relation triplets that appear only in the test set,

which are further used for zero-shot relationship detection.

We split the default training images from the VRD into two

parts: 3,700 images for training and 300 for validation.

The Visual Genome (VG) dataset is one of the largest

relationship detection datasets. We note that there are mul-

tiple versions of VG datasets [20, 33, 34, 37]. In this paper,

we use the pruned version of the VG dataset provided by

[37]. This VG was also used in [12, 21, 32, 38, 41]. In

summary, this VG contains 99,652 images with 200 object

categories and 100 predicates. The VG contains 1,090,027

relation annotations with 19,561 types. The default dataset

split includes 73,794 training and 25,858 testing images.

We split the default training images from the VG into two

parts: 68,794 images for training and 5,000 for validation.

Evaluation Tasks. Three commonly used tasks are

adopted: predicate detection, phrase detection, and relation

detection, following [33, 34]. In predicate detection, we are

given an input image and ground truth bounding boxes with

corresponding object categories. The outputs are predicates

that describe each pair of objects. In phrase detection, we

are given an input image. The output is a set of relation

triplets and localization of the entire bounding box for each

relation, which overlap at least 0.5 with the ground-truth

joint subject and object boxes. In relation detection, we are

given an input image. The output is a set of relation triplets

and localization of individual bounding boxes for subjects

and objects in each relation, which overlap at least 0.5 with

the ground-truth subject and object boxes.

Evaluation Metrics. We follow the precedent set by [23,

34] by using Recall as our evaluation metric. The top-N

recall is denoted as RN . To be more specific, for one image,

the outputs are the aggregation of the first k top-confidence

predicates from all the potential visual relation triplets in the
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image. The RN metric ranks all the outputs from an image

and computes the recall of the top N . We use R50 and R100

for our evaluations. For both datasets, k = 1.

4.2. Implementation Details

We first train Faster R-CNN object detectors [1] for the

VRD and VG datasets individually. Then, undetermined

and determinate relationships are generated from the pro-

posed undetermined relationship generator. In our unde-

termined relationship learning network, the dimensions of

all features’ transforming layers are set as 500, following

[37]. The determinate confidence subnetwork includes two

layers: a 100-dimensional fully connected feature-fusing

layer and a sigmoid classification layer. The relationship

detection subnetwork includes three layers: a concatenat-

ing layer for features of multi modals and the determinate

confidence subnetwork, a 500-dimensional fully connected

feature-fusing layer, and a sigmoid classification layer. We

use the relu function and the Adam Optimizer with an ex-

ponential decay learning rate to train the MF-URLN. For

the VRD dataset, the initial learning rate is set at 0.0003,

and it decays 0.5 every 4,000 steps. For the VG dataset, the

initial learning rate is set at 0.0003, and it decays 0.7 every

35,000 steps. For the predicate detection task, we do not

use undetermined relationships and set λ1=λ2=0. For the

phrase and relation detection tasks, in each batch, the ratio

of undetermined and determinate relationships is set at 3:1,

following [29]. We set λ1=0.5 and λ2=1. The training sets

are used to train the Faster R-CNN and the MF-URLN 1.

The validation sets are used only to determine parameters.

4.3. Performance Comparisons (Q1)

In this subsection, we compare the MF-URLN with

state-of-the-art relationship detection models to show the

competitiveness of the MF-URLN. We first compare the

proposed MF-URLN with fifteen methods on the VRD

dataset. The fifteen methods include: linguistic knowledge

methods, such as VRD-Full [23], LKD: S [34], LKD: T

[34], and LKD: S+T [34]; end-to-end network methods,

such as VTransE [37], VIP-CNN [20], DVSRL [22], and

TFR [15]; deep structural learning methods, such as DSL

[41]; and some other visual relationship detection meth-

ods, such as Weak-S [26], PPRFCN [38], STA [32], Zoom-

Net[33], CAI+SCA-M [33], and VSA [12]. These methods

encompass distinct and different properties. The results are

provided in Table 12. The best methods are highlighted in

bold font. From Table 1, it is apparent that the MF-URLN

outperforms all the other methods in all tasks. In predicate

detection, the MF-URLN outperforms the second-best com-

petitor by 3.9% on R50/100. In phrase detection, compared

1Code available on https://github.com/Atmegal/
2In predicate detection, R50=R100, because there are not enough ob-

jects in ground truth to produce more than 50 pairs.

Table 1. Performance comparison of visual relationship detection

methods on the VRD dataset. Pre., Phr., and Rel. represent pred-

ication detection, phrase detection, and relation detection, respec-

tively. “-” denotes that the result is unavailable.

Pre. Phr. Rel.

R50/100 R50 R100 R50 R100

VRD-Full [23] 47.9 16.2 17.0 13.9 14.7

VTransE [37] 44.8 19.4 22.4 14.1 15.2

VIP-CNN [20] - 22.8 27.9 17.3 20.0

Weak-S [26] 52.6 17.9 19.5 15.8 17.1

PPRFCN [38] 47.4 19.6 23.2 14.4 15.7

LKD:S [34] 47.5 19.2 20.0 16.6 17.7

LKD:T [34] 54.1 22.5 23.6 18.6 20.6

LKD:S+T [34] 55.2 23.1 24.0 19.2 21.3

DVSRL [22] - 21.4 22.6 18.2 20.8

TFR [15] 52.3 17.4 19.1 15.2 16.8

DSL [41] - 22.7 24.0 17.4 18.3

STA [32] 48.0 - - - -

Zoom-Net [33] 50.7 24.8 28.1 18.9 21.4

CAI+SCA-M [33] 56.0 25.2 28.9 19.5 22.4

VSA [12] 49.2 19.1 21.7 16.0 17.7

MF-URLN 58.2 31.5 36.1 23.9 26.8

Table 2. Performance comparison of six methods on the VG

dataset. “-” denotes that the result is unavailable.

Pre. Phr. Rel.

R50 R100 R50 R100 R50 R100

VTransE [37] 62.6 62.9 9.5 10.5 5.5 6.0

PPRFCN [38] 64.2 64.9 10.6 11.1 6.0 6.9

DSL [41] - - 13.1 15.6 6.8 8.0

STA [32] 62.7 62.9 - - - -

VSA [12] 64.4 64.5 9.7 10.0 6.0 6.3

MF-URLN 71.9 72.2 26.6 32.1 14.4 16.5

with the second-best method, the MF-URLN increases R50

and R100 by 25.0% and 24.9%, respectively. In relation

detection, compared with the second-best method, the MF-

URLN improves upon R50 and R100 by 22.6% and 19.6%,

respectively. These high performances demonstrate the ca-

pacity of the MF-URLN for relationship detection.

Table 2 provides the performance of the MF-URLN and

five competitive methods (VtransE, PPRFCN, DSL, STA,

and VSA-Net) on the VG dataset. The results from the other

methods are not provided, because these methods were not

tested on the version of VG dataset [37] in their correspond-

ing papers. In Table 2, the top methods are highlighted in

boldface. The MF-URLN performs the best in all of the

tasks no matter the evaluation criteria. For predicate detec-

tion, The MF-URLN yields 11.6% and 11.2% gains on R50

and R100 for predicate detection, 103.1% and 105.8% on

R50 and R100 for phrase detection, and 111.8% and 106.3%

on R50 and R100 for relation detection, respectively. These

improvements verify that the MF-URLN can be applied to
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Table 3. Performance comparison on the zero-shot set of the VRD

dataset. “-” denotes that the result is unavailable.

Pre. Phr. Rel.

R50/100 R50 R100 R50 R100

VRD-Full [23] 12.3 5.1 5.7 4.8 5.4

VTransE [37] - 2.7 3.5 1.7 2.1

Weak-S [26] 21.6 6.8 7.8 6.4 7.4

LKD:S [34] 17.0 10.4 10.9 8.9 9.1

LKD:T [34] 8.8 6.5 6.7 6.1 6.4

DVSRL [22] - 9.2 10.3 7.9 8.5

TFR [15] 17.3 5.8 7.1 5.3 6.5

STA [32] 20.6 - - - -

MF-URLN 26.9 5.9 7.9 4.3 5.5

MF-URLN-IM 27.2 6.2 9.2 4.5 6.4

large-scale datasets with complex situations.

We also provide the zero-shot detection performances of

ten methods in Table 32 to evaluate the ability of the MF-

URLN to tackle zero-shot data. These methods include:

VRD-Full, VtransE, Weak-S, LKD: S, LKD: T, DVSRL,

TFR, the MF-URLN, and the MF-URLN-IM. The remain-

ing methods are not compared, because the correspond-

ing papers did not consider zero-shot relationship detection.

Here, the MF-URLN-IM is the MF-URLN with the infer-

ring model3. In Table 3, the best methods are highlighted

in boldface. The MF-URLN still performs nearly the best

on predicate detection. However, on phrase detection and

relation detection, the MF-URLN does not perform as well.

This result may occur because some unseen determinate re-

lationships have been mistakenly classified as undetermined

and consequently influence the zero-shot detection perfor-

mance. The MF-URLN-IM improves the performance of

the MF-URLN, because of the inferring model. However,

this inferring model is not proper for seen data. The R50/100

predicate relation on the VRD of the MF-URLN-IM is only

57.2. Better strategies to generate and utilize undetermined

relationships are still necessary.

4.4. Discussion of Multi­modal Features (Q2)

In this subsection, the effects of multi-modal features

on the MF-URLN are discussed. The MF-URLN is com-

pared with its eight variants by conducting predicate and

relation detection on the VRD dataset. These eight vari-

ants include three baselines of single-modal features, the

“V ”, the “S”, and the “Lex,in”, in which the MF-URLN

uses only visual modal features, spatial modal features,

and linguistic modal features, respectively; three methods

of bi-modal features, the “V +S”, the “V +Lex,in”, and the

“Lex,in+S”, in which the MF-URLN uses visual and spa-

tial modal features, visual and linguistic modal features, and

linguistic and spatial modal features, respectively; and two

3The inferring model is explained in the supplement materials.

Table 4. R50 predicate detection and relation detection of the MF-

URLN and its eight variants on the VRD dataset.

Transforming Concatenating

Pre. Rel. Pre. Rel.

Baseline: V 52.29 22.64 53.01 22.85

Baseline: Lex,in 53.39 18.49 53.94 18.07

Baseline: S 43.43 17.94 43.44 17.95

V +S 54.66 23.15 52.36 22.75

V +Lex,in 57.27 23.21 55.45 22.62

Lex,in+S 57.10 23.67 56.04 23.29

V +S+Lin 56.87 23.15 53.25 22.51

V +S+Lex 57.69 23.50 55.29 22.83

MF-URLN 58.22 23.89 55.77 22.61

methods of multi-modal features, the “V +S+Lin” and the

“V +S+Lex”, in which the MF-URLN uses internal and ex-

ternal linguistic features, respectively. Additionally, we dis-

cuss two kinds of feature fusion methods: the “Transforma-

tion”, in which methods transform features into the same di-

mensions before concatenating, and the “Concatenating”, in

which methods directly concatenate features. Note that con-

catenating methods have the same layer number and layer

dimensions as their corresponding transforming methods to

ignore the improvements caused by deepening the net.

The performances of all compared methods are provided

in Table 4. We draw the following conclusions. 1) By com-

paring the MF-URLN with methods having different fea-

tures, we can see that the MF-URLN obtains the best perfor-

mance. Features from different modalities are complemen-

tary and all contribute to the performance of the MF-URLN.

2) By comparing concatenating methods with transforming

methods, we can conclude that directly concatenating fea-

tures is a low effective feature fusion strategy and that trans-

forming all features into the same dimensions improves the

performance. However, we notice that concatenating meth-

ods slightly outperforms transforming methods on single

modal features. Better feature fusion strategy is still nec-

essary and remains a future topic.

4.5. Analysis of undetermined Relationships (Q3)

In this subsection, we first validate the usefulness of un-

determined relationships in visual relationship detection.

We compare the MF-URLN with its three variants by

conducting relation detection on the VRD dataset. The

three variants include the baseline “MFLN”, which is the

MF-URLN without using undetermined relationships; the

“MFLN-Triplet NMS”, which is the MFLN with triplets

NMS [20]; and the “MFLN-Pair Filtering”, which is the

MFLN that uses pair filtering [2]. The triplets NMS and

pair filtering have both been proposed to delete negative

object pairs. The performances of these four methods are

compared in Table 5. We see that “MFLN-Triplet NMS”

decreases the performance of “MFLN”, partly because the
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Table 5. Relation detection of four methods on the VRD dataset.

Entire Set Unseen Set

R50 R100 R50 R100

Baseline: MFLN 17.36 21.76 4.02 4.96

MFLN-Triplet NMS 15.53 17.95 3.76 4.19

MFLN-Pair Filtering 21.58 23.39 3.59 3.93

MF-URLN 23.89 26.79 4.28 5.47

(a) The effects of λ1 and λ2. (b) MF-URLN vs MF-URLN-NS.

Figure 3. (a) Detection performance of the MF-URLN with dif-

ferent values of modal parameters: λ1 and λ2. (b) Performance

comparison of the MF-URLN and the MF-URLN-NS.

NMS has already been used in our object detector. “MFLN-

Pair Filtering” increases the performance of “MFLN”, be-

cause it excludes some undetermined object pairs. The MF-

URLN achieves the best performance. The improvement of

the MF-URLN verify the utility of undetermined relation-

ships for visual relationship detection.

Then, we discuss the beneficial effects of undetermined

relationships on the MF-URLN by studying the perfor-

mance impacts of the modal parameters, λ1 and λ2. The

R50 relation detection on the VRD dataset is used as the

evaluation criterion. Specifically, the evaluation is con-

ducted by changing one of the observed parameters while

fixing the other, as in [36]. We set the ranges of λ1 and λ2

as {0, 0.3, 0.5, 0.7, 1} and {0, 0.01, 0.1, 1, 10}, respec-

tively. Fig. 3 (a)4 shows the performance. We can observe

that when λ1=0.5 and λ2=1, the MF-URLN yields the best

performance. λ1=0.5 reveals that labeling undetermined re-

lationships as having no predicates is a useful strategy; un-

determined relationships do have beneficial regular effects

on the relationship detection. λ2=1 reveals that both of the

subnetworks contribute to the detection of the MF-URLN.

Next, we show the benefit of sharing information from

the determinate confidence subnetwork with the relation-

ship detection subnetwork. We compare the MF-URLN

with the MF-URLN-NS, in which the relationship detec-

tion subnetwork does not use information from the confi-

dence subnetwork. The comparing performances are shown

in Fig. 3 (b). It can be seen that the MF-URLN performs

better. This result verifies that the determinate confidence

4λ1=0 and λ2=0 denote the MF-URLN without using undetermined

relationships, the result is 17.36.
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Figure 4. Visualization of detection results. For predicate detec-

tion, the top-3 predicates of the MF-URLN are provided. For rela-

tion detection, the top-5 triplets of the MFLN and the MF-URLN

are provided. The
√

represents the correct results.

also contributes to the relationship detection.

We also provide the quantitative performances of the

MF-URLN in Fig. 4. For predicate detection, it can be

seen that the MF-URLN yields accurate predictions, which

reveals the ability of the MF-URLN. For relation detec-

tion, the MF-URLN obtains much better detections than the

MFLN. Utilization of undetermined relationships highlights

object pairs with determinate relationships.

5. Conclusion

In this paper, we explore the role of undetermined re-

lationships in visual relationship detection. And accord-

ingly, we propose a novel relationship detection method,

MF-URLN, which extracts and fuses multi-modal features

based on determinate and undetermined relationships. The

experimental results, when compared with state-of-the-

art methods, demonstrate the competitiveness of the MF-

URLN and the usefulness of undetermined relationships.

Our future works include better utilizing undetermined rela-

tionships for relationship detection and promoting undeter-

mined relationships to scene graph generation [15, 31, 35].
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