
RATIONAL DOUBLE AFFINE HECKE ALGEBRAS

JOSÉ SIMENTAL RODRIGUEZ. NOTES BY BRADLEY HICKS.

Rational DAHA

In this lecture we will define the Rational Double Affine Hecke Algebra (DAHA), its presen-
tations, and some of its subalgebras and standard modules. For us let W ⊂ GL(h) be a com-
plex reflection group, which requires |W | <∞ and a subset S = {s ∈ W | codim(Fix(s)) =
1} that generates W . We call elements of S reflections of W . For each reflection s ∈ S we
associate an element αs ∈ h∗ satisfying Fix(s) = ker(αs) and sαs = λsαs for some λs 6= 1.
Note that this element is defined only up to multiplication by a nonzero scalar.

Next we need a parameter: a function c : S → C that is constant on conjugacy classes,
that is to say we require c(wsw−1) = c(s) for all s ∈ S and w ∈ W . With these data we can
introduce the Dunkl operator on the space of polynomial functions C[h].

Definition. Let y ∈ h. The Dunkl operator associated to y is

Dy = ∂y −
∑
s∈S

2c(s)

1− λs
〈αs, y〉
αs

(1− s)

where ∂y is the directional derivative: ∂y(x) = 〈y, x〉 for x ∈ h∗, and ∂y(f) can be computed
from any f ∈ C[h] = Sym(h∗) using the Leibniz rule.

As written this is only an operator on hreg := h \
⋃
s∈S{αs = 0} because it has pole set

{αs = 0}. In fact, it is an element of the algebra D(hreg) oW . Here D(X) is the space of
differential operators on X and the algebra has the underlying vector space D(X) ⊗ CW
and the multiplication is defined to be

(d1 ⊗ w1)(d2 ⊗ w2) = d1w1(d2)⊗ w1w2

However, even if the operator Dy has poles, it does act on C[h], polynomials in dim h vari-
ables, because given a polynomial f : h → C the result of (1 − s)f [x] = f(x) − f(sx) is
divisible by αs(x). Hence we may think of these operators as elements of EndC(C[h])

These operators generate part of our rational DAHA:

Definition. The Rational DAHA Hc is the subalgebra of EndC(C[h]) generated by

• C[h] acting on itself by multiplication,
• CW ,
• Dy for y ∈ h.

Note that, by definition, Hc acts faithfully on C[h].

This algebra is a deformation of D(h)oW in the sense that this algebra is recovered when
c ≡ 0. We can also give presentations of Hc. For each s ∈ S, take a nonzero element α∨s ∈ h
such that sα∨s = λ−1s α∨s . This element is again only defined up to a nonzero scalar, and we
partially normalize so that 〈αs, α∨S〉 = 2. Of course, this normalization is inspired by the case
when W is the Weyl group of a root system, αs is a root and α∨s the corresponding coroot.
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Theorem 1 (Etingof, Ginzburg). Below we assume y ∈ h and x ∈ h∗. There is an isomor-
phism

Hc

∼=−→ T (h⊕ h∗) oW/R
where T is tensor algebra functor and

R =

〈
[x, x′] = [y, y′] = 0, [y, x] = 〈y, x〉 −

∑
s∈S

c(s) 〈αs, y〉 〈α∨s , x〉 s

〉
are the relations.

Hc has the following notable subalgebras:

(1) C[h]
(2) CW
(3) Dc, the subalgebra generated by Dy for all y ∈ h.

The following theorem of Dunkl shows the relationships between these subalgebras and
other algebras.

Theorem 2 (Dunkl). Dc is isomorphic to Sym(h) = C[h∗], i.e. the multilinear forms on h.
Moreover

(1) The algebra generated by C[h] and CW is isomorphic to C[h] oW .
(2) The algebra generated by CW and Dy is isomorphic to C[h∗] oW .

Another important property of Hc is that it has a basis akin to the PBW basis for the
universal enveloping algebra U(g) for a Lie algebra.

Theorem 3 (PBW: Etingof, Ginzburg). There is an isomorphism

C[h]⊗ CW ⊗ C[h∗]
∼=−→ Hc

given by h⊗ w ⊗ h∗ 7→ hwh∗.

Hc has further filtered and graded properties.

(1) Hc has a filtering in the following way. Let degW = 0 and deg h = deg h∗ = 1. This
induces a filtration on Hc and by the PBW theorem we can identify the associated
graded

grHc

∼=−→ C[h⊕ h∗] oW .

(2) From the relations, we can see that Hc has a grading by setting degW = 0, deg h =
−1, and deg h∗ = 1. This grading is inner, meaning that there exists an element
h ∈ Hc satisfying [h,m] = deg(m)m for a homogeneous element m. We can construct
such an element (called the Euler element) as follows. Given a basis of yi of h and a
dual basis xi this element is

h =

dim h∑
i=1

xiyi + yixi
2

=

dim h∑
i=1

xiyi −
1

2
dim h−

∑
s∈S

2c(s)

1− λs
s

This element is in fact independent of the choice of basis and satisfies

[h,w] = 0 [h, x] = x [h, y] = −y

where w ∈ W, y ∈ h, x ∈ h∗.
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Some Representation Theory of Hc

Definition. Let O = Oc be the category of finitely generated Hc modules which have a
locally nilpotent action of h ⊂ Hc.

An example object in this category is the polynomial representation C[h]. Indeed, h acts
on C[h] by Dunkl operators, which decrease the degree of a polynomial by at least 1. Given
an irreducible representation λ of the group W we can extend the action to one of algebra
C[h∗] oW by letting h act by zero. This gives us our standard modules

∆c(λ) := IndHcC[h∗]oW (λ) = Hc ⊗
C[h∗]oW

λ
PBW
= C[h]⊗ λ

The last equality is as a C[h] module and follows from the PBW theorem. As a simple
example if we induce the trivial represention λ = 1 we have the polynomial representation
∆c(1) = C[h].

Generally we have a subspace 1⊗ λ ⊂ ∆c(λ), on which h acts by some scalar cλ because
h commutes with W . Hence the action of h is diagonalizable with eigenvalues of the form
cλ + k for k ∈ Z≥0 and weight spaces

∆c(λ)cλ+k = C[h]k ⊗ h ,

where C[h]k are the homogeneous polynomials of degree k. This seemingly innocent fact
has a couple of important consequences. First, it can be deduced that there is a unique
irreducible quotient Lc(λ) of ∆c(λ). These irreducible quotients form a complete list of
irreducibles in Oc. Second, note that if Lc(µ) appears as a composition factor in ∆c(λ), then
cµ = k + cλ for some k ≥ 0 (and, if µ 6= λ, k > 0). It follows that if c is a parameter so
that cλ − cµ 6∈ Z for any two irreducibles λ 6= µ, then the category Oc is semisimple and
equivalent to the category of representations of W .

The category Oc is intimately related to the category of finite-dimensional representations
of a certain finite Hecke algebra, as follows. First, consider the element δ :=

∏
s∈S αs ∈

C[h] ⊆ Hc. Since Hc ⊆ D(hreg) o W and hreg is precisely the principal open set defined
by δ, the non-commutative localization Hc[δ

−1] makes sense and it follows from the formula
defining the Dunkl operators that Hc[δ

−1] = D(hreg) oW .
Now take M ∈ Oc. By definition, it is finitely generated over Hc. It is an exercise to see

that, moreover, it is finitely generated over C[h]. It follows that M [δ−1] := C[h][δ−1]⊗C[h]M
is a D(hreg)oW -module that is finitely generated over C[hreg]. From the theory of D-modules
it follows that M [δ−1] is a W -equivariant vector bundle on hreg with a flat connection. Taking
W -invariants, we obtain a vector bundle on hreg/W with a flat connection. The monodromy
representation then equips a fiber of this vector bundle with an action of the fundamental
group π1(h

reg/W ).
This analysis can be encoded as functors

Oc Rep(Hc[δ
−1]) Rep(D(hreg/W )) Rep(π1(h

reg/W ))

M M [δ−1] M [δ−1]W M [δ−1]Wv

where we use the fact Hc[δ
−1] = D(hreg) oW to induce the second map, and the notation

M [δ−1]Wv means the fiber of the bundle M [δ−1]W at a point v ∈ hreg/W (any choice of points
yields isomorphic representations).
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RATIONAL DAHA JOSÉ SIMENTAL RODRIGUEZ. NOTES BY BRADLEY HICKS.

An amazing fact now is that the action of π1(h
reg/W ) factors through a much smaller

quotient of the group algebra Cπ1(hreg/W ), known as the finite Hecke algebra. Here, we
will only give details on the case when W = Sn is the symmetric group, acting on h = Cn

by permuting the coordinates. Note that in this case there is a single conjugacy class of
reflections, and so our parameter is a single complex number c ∈ C. The set hreg consists
of points in Cn with pairwise distinct coordinates, and π1(h

reg/W ) is the usual Artin braid
group, generated by T1, . . . , Tn−1 with relations TiTj = TjTi if |i − j| > 1, and TiTi+1Ti =
Ti+1TiTi+1 (the element Ti represents a half loop around the hyperplane xi = xi+1, that
descends to a loop in the quotient hreg/W ). For a module M ∈ Oc, the action of Cπ1(hreg/W )
on M [δ−1]Wv factors through the quotient

Hq = Cπ1(hreg/W )/〈(Ti − 1)(Ti + e2π
√
−1c)〉i=1,...,n−1

that, up to a renormalization, coincides with the finite Hecke algebra that appeared in
Monica Vazirani’s lectures. To summarize, we have a functor KZ : Oc → Hq -mod, known
as the Knizhnik-Zamolodchikov functor (because the connection appearing in its definition
coincides with the Knizhnik-Zamolodchikov connection). This functor is exact, and it is one
of the most important tools in the representation theory of the rational DAHA Hc.

Examples

Example 1. Let ι =
√
−1. Let W = Z/`Z = 〈s | s` = 1〉 act on h = C via multiplication

by η = e2πι/`, i.e. s.z = ηz which is the rotation of the complex plane by the angle 2π/`.
Our reflections are S = si | 1 ≤ i ≤ `− 1 and our function c is determined by the numbers
c(si) = ci, or just the vector c = (c1, . . . , c`−1). Pick x ∈ h∗ and define αs = x ∈ h∗; the
number λs is η−1 since the W acts via the adjoint on h∗. Then the Dunkl operator is

Dy = ∂y −
`−1∑
i=1

2ci
1− η−i

1− si

x

Then Hc can be presented as the algebra

C[x, y, s]/R

with relations

R =

〈
s` = 1, sxs−1 = ηx, sys−1 = η−1y, [y, x] = 1−

`−1∑
i=1

2cis
i

〉
.

Example 2. Let W = Sn act on h = Cn by permutation of the coordinates and take

S = {(ij) | i < j} .

Then α(ij) = xi − xj, the usual GLn(C) positive roots, and the numbers λs are all seen to
be −1. Since all elements of S are conjugate in Sn we need only specify a single complex
number c. Then the Dunkl operators take the form

Dy = ∂y −
∑
j 6=i

c

xi − xj
(1− (ij))

and Hc can be presented with the relations

R =

〈
[xi, xj] = [yi, yj] = 0, [yj, xi] = c(ij) if i 6= j , [yi, xi] = 1− c

∑
i 6=j

(ij)

〉
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as the algebra
Hc = C[x1, . . . , xn, y1, . . . , yn] o Sn/R .

Recall that the irreducible representations of Sn correspond exactly to partitions λ of n.
Let S(λ) be these modules. Then −s

∑
s∈S s acts on S(λ) by

−c
n∑
i=1

JMi

where JMi =
∑

j<i(ji) are the Jucys-Murphy’s elements. S(λ) has a basis consisting of

standard Young tableaux of shape λ and JMi acts by JMi t = ct( i )t, where ct( i ) is the

content of the cell i which is defined to be its column coordinate minus its row coordinate,

ct( i ) = col( i )− row( i ) .

Therefore
cλ = −n

2
− c

∑
�∈λ

ct(�)

We note that if L(µ) appears in the Jordan-H older series for ∆(λ) then cµ = cλ + k for
k ∈ Z≥0. For generic complex numbers c the category Oc is semi-simple.
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