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Liver fibrosis is a common consequence of various chronic liver diseases. Although transforming 

growth factor β 1 (TGFβ1) expression is known to be associated with liver fibrosis, the reduced 

clinical efficacy of TGFβ1 inhibition or the inefficiency to completely prevent liver fibrosis in 

mice with liver-specific knockout of TGF receptor II suggests that other factors can mediate liver 

fibrogenesis. As a TGFβ superfamily ligand, activin A signaling modulates liver injury by 

prohibiting hepatocyte proliferation, mediating hepatocyte apoptosis, promoting Kupffer cell 

activation, and inducing hepatic stellate cell (HSC) activation in vitro. However, the mechanism 

of action and in vivo functional significance of activin A in liver fibrosis models remain uncertain. 

Moreover, whether activin B, another ligand structurally related to activin A, is involved in liver 

fibrogenesis is not yet known. This study aimed to investigate the role of activin A and B in liver 

fibrosis initiation and progression. The levels of hepatic and circulating activin B and A were 

analyzed in patients with various chronic liver diseases, including end-stage liver diseases (ESLD), 

non-alcoholic steatohepatitis (NASH), and alcoholic liver disease (ALD). In addition, their levels 

were measured in mouse carbon tetrachloride (CCl4), bile duct ligation (BDL), and ALD liver 

injury models. Mouse primary hepatocytes, RAW264.7 cells, and LX-2 cells were used as in vitro 

models of hepatocytes, macrophages, and HSCs, respectively. The specificity and potency of anti-

activin B monoclonal antibody (mAb) and anti-activin A mAb were evaluated using Smad2/3 

luciferase assay. Activin A, activin B, or their combination were immunologically inactivated by 
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the neutralizing mAbs in mice with progressive or established liver fibrosis induced by CCl4 or 

with developing cholestatic liver fibrosis induced by BDL surgery. In patients with ESLD, NASH, 

and ALD, increases in hepatic and circulating activin B, but not activin A, were associated with 

liver fibrosis, irrespective of etiology. In mice with CCl4-, BDL-, or alcohol-induced liver injury, 

activin B was persistently elevated in the liver and circulation, whereas activin A showed only 

transient increases. Activin B was expressed and secreted mainly by the hepatocytes and other 

cells, including cholangiocytes, activated HSCs, and immune cells. Exogenous administration of 

activin B promoted hepatocyte injury, activated macrophages to release cytokines, and induced a 

pro-fibrotic expression profile and septa formation in HSCs. Co-treatment of activin A and B 

interdependently activated the chemokine (C-X-C motif) ligand 1 (CXCL1)/inducible nitric oxide 

synthase (iNOS) pathway in macrophages and additively upregulated connective tissue growth 

factor expression in HSCs. Activin B and A had redundant, unique, and interactive effects on the 

transcripts related to HSC activation. The neutralization of activin B attenuated the development 

of liver fibrosis and improved liver function in mice with CCl4- or BDL-induced liver fibrosis and 

largely reversed the already established liver fibrosis in the CCl4 mouse model. These effects were 

improved by the administration of additional anti-activin A antibody. Combination of both 

antibodies also inhibited hepatic and circulating inflammatory cytokine production in the BDL 

mouse model. In conclusion, activin B is a potential circulating biomarker and potent promotor of 

liver fibrosis. Its levels in the liver and circulation increase significantly in both acute and chronic 

states of liver injury. Activin B might additively or interdependently cooperate with activin A, 

which directly acts on multiple liver cell populations during liver injury and fibrosis, as the 

combination of both proteins increases pro-inflammatory and pro-fibrotic responses in vitro. In 

addition, the neutralization of both activin A and activin B in vivo enhances the preventive and 
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reversible effects of liver injury and fibrosis compared to that when activin B alone is neutralized. 

Our data reveal a novel target of liver fibrosis and the mechanism of activin B-mediated initiation 

of this process by damaging hepatocytes and activating macrophages and HSCs. Our findings 

show that activin B promotes hepatic fibrogenesis, and that targeting of activin B has anti-

inflammatory and anti-fibrotic effects, which ameliorate liver injury by preventing or regressing 

liver fibrosis. Antagonizing either activin B alone or in combination with activin A prevents and 

regresses liver fibrosis in multiple animal studies, paving way for future clinical studies.
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 INTRODUCTION 

1.1 Clinical aspects of liver fibrosis 

Liver diseases include a wide spectrum of progressive conditions such as hepatic steatosis, hepatic 

inflammation, viral hepatitis, alcoholic liver disease (ALD), nonalcoholic fatty liver disease 

(NAFLD), nonalcoholic steatohepatitis (NASH)1, hepatic fibrosis, liver cirrhosis, and 

hepatocellular carcinoma2. Liver disease is one of the leading causes of mortality in the US with 

3.9 million people (1.6% adult population) diagnosed with chronic liver disease in 20153. Liver 

fibrosis is the common consequence of various chronic liver diseases and results from the 

abnormal wound healing response with progressive and excessive production and deposition of 

extracellular matrix (ECM) or connective tissue along with chronic inflammation1. Infection of 

hepatitis C and B viruses is the most common cause of liver fibrosis. The other causes include 

alcohol consumption, obesity, insulin resistance or type II diabetes, hypertension, hyperlipidemia, 

autoimmune hepatitis, cholestasis, and chronic cholangiophaties4. The accumulation of ECM 

proteins distorts the hepatic architecture by forming a fibrous scar, and the subsequent 

development of nodules of regenerating hepatocytes characterizes advanced liver fibrosis or 

cirrhosis. The major clinical consequences of cirrhosis are hepatocyte dysfunction, portal 

hypertension, and hepatocellular carcinoma. Its severe or life-threatening complications include 

ascites, variceal hemorrhage, spontaneous bacterial peritonitis, coagulation disorders, and hepatic 

encephalopathy5. Therefore, the assessment of liver fibrosis and quantification of hepatic fibrotic 

tissue have become important for diagnosis, defining etiologies, guiding therapeutic strategies, and 

predicting prognosis. At present, the three major clinical approaches for measuring liver fibrosis 

are liver biopsy assessment, liver stiffness measurement, and circulating biomarker detection in 

the blood. Clinically, liver biopsy is considered the golden standard to assess the stage and grade 
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of liver fibrosis for diagnosis and therapeutic efficacy evaluation. The histological scoring systems 

include the five-stage meta-analysis of histological data in viral hepatitis (METAVIR), seven-stage 

Ishak, and three-stage Knodell fibrosis scoring systems6. The most commonly used METAVIR 

fibrosis scoring system includes F0 to F4 stages of liver fibrosis: F0, normal liver or no fibrosis; 

F1, portal fibrosis without septa formation; F2, portal fibrosis with few bridging or septa; F3, portal 

fibrosis with numerous portal to portal or portal to central bridging; F4, portal fibrosis with 

numerous portal to portal or portal to central bridging and nodule formation or cirrhosis. Portal to 

central fibrous bridging is associated with chronic biliary disease-related fibrosis, and portal to 

portal fibrous septa formation in liver fibrosis is caused by chronic viral hepatitis7. The histological 

patterns of liver fibrosis depend on their etiologies. In chronic viral hepatitis, liver fibrosis starts 

with portal enlargement as mild fibrosis; peri-portal fibrosis and portal to portal fibrous bridging 

as advanced fibrosis; and regenerative nodule formation as cirrhosis. In chronic ALD and NASH, 

liver fibrosis is characterized by peri-venular and peri-sinusoidal fibrosis distributed in the 

centrilobular areas. The histological changes are hepatocyte feathery degeneration, cholangiocytes, 

or bile ductular hyperplasia in cholestasis liver fibrosis8. However, the invasive histological 

assessment method is limited by patient unwillingness, pain, expense, associated complications, 

and sampling error. The blood tests for liver fibrosis include N-terminal propeptide of type III 

collagen (PIIINP), hyaluronic acid, and other circulating biomarkers, which might be contributed 

by extrahepatic diseases9. Measurement of liver stiffness by using elastography is a potential 

noninvasive alternative to assess liver fibrosis, although the application of this method is limited 

by its reliability and portability5 10. Clinically, there is an urgent need to identify an invasive 

circulating biomarker associated with severity of liver fibrosis which could assist diagnosis and 

guide therapeutic strategies. 
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In clinical patients and experimental models, liver fibrosis is reversible if the underlying liver 

injury causes are eliminated11. Its reversibility allows the possibility to develop therapeutic 

strategies to treat this disease. To understand the mechanism of regression of liver fibrosis, ECM 

producing myofibroblasts and activated macrophages are two main cell populations which have 

been focused to investigate. Myofibroblasts apoptosis, reduced fibrotic cytokines, upregulated 

increased collagenase activity and elimination of fibrous scars are major characters of regressed 

liver fibrosis12. Presently, although multiple factors have been recognized as pro-fibrotic regulator, 

clinical trials have not shown notable anti-fibrotic effect or causes severe adverse conditions 13 14. 

Liver fibrosis is a complicated process contributed by multiple cell populations, cross-talk of 

various signaling pathways and modified by epigenetic regulation.  At present, no effective 

medicines or Food and Drug Administration-approved molecules are available to treat liver 

fibrosis. Thus far, the only remedial treatment for late-stage cirrhosis is liver transplantation. 

However, this treatment is highly restricted because of the lack of donor organs and the 

incompatible clinical conditions of patients. Thus, developing an effective approach for preventing 

and regressing liver fibrosis has become an urgent and unmet clinical need.  

1.2 Cellular mechanism of liver fibrosis 

The liver is constituted by parenchymal cells (hepatocytes and cholangiocytes) and non-

parenchymal cells, including hepatic stellate cells (HSCs), macrophages, neutrophils, T cells, 

natural killer cells, liver sinusoidal endothelial cells, and progenitor cells15. The cellular and 

molecular mechanisms underlying the initiation and progression of liver fibrosis are not 

completely understood. Multiple cell populations, including hepatocytes, macrophages, and, 

particularly, HSCs, cooperatively modulate the formation and resolution of liver fibrosis. The 

crosstalk between various liver cell types and between different molecular signaling pathways has 
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drawn more attention recently in order to identify the key mediators and thus the potential 

therapeutic targets of this pathogenesis16. Irrespective of the etiologies, including hepatitis virus 

infection and alcohol consumption, hepatocytes, cholangiocytes, and endothelial cells are 

damaged and release damage-associated molecular patterns (DAMPs) and reactive oxygen species 

(ROS), which directly activate HSCs, Kupffer cells, and other immune cells17 18. Accumulating 

evidence shows that myofibroblasts, as liver fibrogenic cells, drive the fibrogenic response and 

play a key role in hepatic fibrogenesis19. Hepatic myofibroblasts are mainly derived from activated 

HSCs and portal fibroblasts, whereas a small population originates from extrahepatic precursors. 

Activated Kupffer cells and other immune cells secrete cytokines and growth factors, including 

transforming growth factor beat (TGFβ), tumor necrosis factor (TNFα), interleukin 1 beta (IL-1β), 

interleukin-6 (IL-6), and chemokine (C-C motif) ligand 2 (CCL2), which along with ROS and 

DAMPs activate HSCs and trans-differentiate them to myofibroblasts to produce fibrillar collagen, 

fibronectin, and laminin20. These cytokines and growth factors also suppress matrix 

metalloproteinase (MMP) expression and promote tissue inhibitor of metalloproteinase (TIMP-1) 

transcripts to inhibit ECM degradation21. Excessive ECM accumulation and fibrous scar formation 

are the characteristic features of liver fibrosis. Fibrous scar tissue formation, hepatocyte loss, 

chronic inflammation, and liver architecture destruction eventually lead to liver dysfunction or 

failure15. While myofibroblasts are the central effectors of fibrogenesis, injured hepatocytes, 

endothelial cells, or bile duct epithelial cells, as well as activated macrophages and other immune 

cells, participate in the initiation and progression of liver fibrosis (Figure 1.1). Herein, we focus 

on reviewing the roles of hepatocytes, macrophages, and myofibroblasts in liver fibrosis 

development. 

 



18 

 

 

Figure 1.1 The cellular mechanism of liver fibrosis.  

Nishikawa K, Osawa Y, Kimura K. Int. J. Mol. Sci. 2018 

 

Hepatocytes 

Hepatocytes, as liver parenchymal cells, are the major cell type in the liver and constitute 

approximately 60% of liver cells and up to 80% of liver mass. Another 40% of liver cells are non-
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parenchymal cells, including Kupffer cells, HSCs, natural killer cells, lymphocytes, and liver 

sinusoidal endothelial cells22,23. The fundamental function of hepatocytes is to mediate lipid, 

carbohydrate, and protein metabolism to maintain homeostasis. Hepatocytes also produce albumin, 

clotting factors, lipoproteins, and bile acids. In addition, they detoxify toxic compounds, modify 

chemicals, and mediate urea metabolism and gluconeogenesis23.  

 

Hepatocytes participate in all the three phases of the liver injury process: initiation, perpetuation, 

and resolution24. The initial response to liver injury is hepatocyte stress and death, which leads to 

the release of ROS and DAMPs. Hepatocyte death is reflected by elevated serum alanine 

transaminase (ALT) and aspartate transaminase (AST), which are clinically used liver injury 

markers. ROS are the major stimuli to activate HSCs and macrophages. They also stimulate 

hepatocytes to increase TGFβ expression. As a representative ROS, hydrogen peroxide induces 

the activation of mitogen-activated protein kinase (MAPK) signaling pathway to activate multiple 

nuclear factors, including nuclear factor κB and nuclear factor erythroid-derived factor 2, in 

hepatocytes25 26. In chronic liver diseases, DAMPs from dying hepatocytes prompt inflammation 

and are represented by high-mobility group protein 1 (HMGB1) that in turn recruit inflammatory 

cells. DAMPs are mainly released when the membrane integrity is lost during hepatocyte necrosis 

and necroptosis. Hepatocyte death can be caused by apoptosis, necrosis, or necroptosis in response 

to diverse liver injuries, and the most common type of hepatocyte death is apoptosis. Hepatocyte 

apoptosis is the characteristic of liver injury and intrahepatic inflammation. Ballooning 

hepatocytes are a histological feature of apoptotic liver cells in NASH27. The death receptor Fas-

FasL, death receptor 5, caspase 8, and mitochondria have been shown to be involved in hepatocyte 

apoptosis28-30. It is induced by multiple insults, including hepatitis virus infection and alcohol 
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consumption, and occurs in NAFLD and cholestatic diseases31. Carbon tetrachloride (CCl4) and 

paracetamol induce hepatocyte necrosis, which is characterized by cell swelling, increased cell and 

organelle membrane permeability, and leakage of intracellular contents and inflammatory factors, 

including DAMPs, interleukin 33 (IL-33), TNFα, IL-6, and CCL2. These factors target 

neighboring or surrounding cells to induce liver inflammation27, which plays a critical role in liver 

fibrogenesis. Hepatocyte swelling is mediated by mitochondrial dysfunction, calcium ion elevation, 

and adenosine triphosphate exhaustion. Hepatocyte necrosis is a predominant inducer of liver 

failure and an effective suppressant of liver regeneration32. Hepatocyte necroptosis is controlled 

necrosis. Alcohol, paracetamol, and TNF-mediated damage induce hepatic necroptosis in the liver. 

Intrahepatic lipid loading along with cell death is a unique feature of necroptosis. Upregulation of 

receptor interacting serine/threonine protein kinase 3 (RIP3) in response to NASH is important for 

the induction of necroptosis signaling33. Depending on the injury type, hepatocyte death occurs 

via the apoptosis, necrosis, or necroptosis pathway. Apoptotic and necrotic hepatocytes release 

ROS, DAMPs, apoptotic bodies, and necrotic fragments, which activate hepatic macrophages and 

HSCs to promote liver fibrosis during the initiation and perpetuation phases of liver injury34 35. 

During the perpetuation phase, non-parenchymal cell activation leads to increased hepatocyte 

death that prolongs liver injury. Activated HSCs and hepatic macrophages release chemokine (C-

X-C motif) ligand 1 (CXCL1), CXCL2, CXCL8, and IL-1β to attract neutrophils that secrete ROS 

and proteases to cause hepatocyte necrosis. Another mechanism of liver injury perpetuation is 

hypoxia due to blood flow interruption, ischemia, and ECM deposition. Hypoxia induces the death 

of hepatocytes surrounded by fibrous tissue and leakage of DAMPs34 36. In addition to releasing 

ROS and cell debris, hepatocytes mediate ECM remodeling by secreting MMPs and TIMPs. 

During the resolution phase, liver regeneration mainly involves two cell populations. Hepatocytes 
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repopulate to compensate for the lost liver mass and function, and HSC activation mediates ECM 

remodeling and repair. Liver regeneration is driven by multiple mechanisms: local hepatocyte 

proliferation to replace neighboring dead hepatocytes in response to trivial liver damage; 

hypertrophy of healthy hepatocytes if less than 10% of the liver cells are impaired; extensive 

hepatocyte mitosis if more than 10% liver cells are damaged; and activation of hepatic progenitor 

cells to supplement hepatocyte repopulation if the liver is severely damaged37-39. Cholangiopathies, 

which lead to cholestatic liver fibrosis, are the main indication for liver transplantation in up to 80% 

of children with liver diseases and in approximately 20% of adult patients40. The main target of 

cholangiopathies is cholangiocytes, which proliferate, secrete inflammatory cytokines, and 

mediate biliary apoptosis and liver fibrosis in response to cholestatic liver injury41. 

 

Macrophages 

Liver macrophages include residential Kupffer cells and monocyte-derived macrophages. The 

former physiologically self-renew and are non-migratory phagocytes. They reside in hepatic 

sinusoids and have high phagocytic capability to maintain liver homeostasis by recognizing, 

ingesting, and degrading pathogens or cellular debris20. Liver insults activate Kupffer cells to 

secret inflammatory mediators, which in turn attract circulating monocytes to infiltrate into the 

liver. Activation of Kupffer cells and recruitment of monocytes are the key steps in liver fibrosis 

initiation and progression. Kupffer cells release cytokines and chemokines to induce the 

conversion of circulating monocytes to numerous monocyte-derived macrophages. The circulating 

Ly-6Chi and Ly-6Clo monocytes originate from the bone marrow or spleen, respectively, and each 

of them expresses specific receptors. Liver injury-induced chemokines such as CCL2 attract Ly-

6Chi monocyte infiltration from the circulation as they express C-C chemokine receptor type 2 
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(CCR2). In addition, phagocytes can infiltrate from the peritoneal cavity and specifically express 

GATA6 transcription factor42. The phenotypes of Kupffer cells and monocyte-derived 

macrophages adapt to the hepatic microenvironment43-45. Macrophage polarization is defined in 

vitro by M1 and M2 macrophage subsets. In response to different stimulators, Kupffer cells and 

infiltrating macrophages either undergo M1 or M2 activation during the initiation and progression 

of liver fibrosis. Classic M1 activation mediated by lipopolysaccharide (LPS) or interferon γ shows 

a pro-inflammatory phenotype by releasing mediators, including TNF-a, IL-6, and IL-1β, whereas 

the alternate M2 activation by IL-4 or IL-10 exhibits an anti-inflammatory phenotype by secreting 

IL-4, IL-10, TGFβ1, and IL-13 (Figure 1.2)20 46. M1 macrophages induce hepatic steatosis, 

hepatocyte apoptosis, and inflammation through these inflammatory cytokines, whereas M2 

macrophages mediate wound repair and fibrogenesis. In the liver, the balance of M1 and M2 

macrophages is pivotal in hepatic pathogenesis and can be regulated by multiple mediators. IL-10 

secreted by M2 macrophages induces M1 macrophage apoptosis to prevent hepatic steatosis and 

liver damage in mice with ALD and NAFLD47. The phenotypes of liver macrophages in vivo are 

more complicated than this binary classification. In the resolution phase of liver fibrosis, an 

additional macrophage phenotype that expresses mixed markers of M1 and M2 macrophages 

promotes HSC apoptosis48.  

 

The heterogenic phenotypes of liver macrophages are rapidly altered and switched in response to 

a myriad of insults. In acetaminophen-induced liver injury, macrophages express both 

inflammatory and resolution markers49. Various insults activate macrophages, resulting in their 

secretion of cytokines and chemokines, which in turn causes monocyte infiltration to augment the 

number of macrophages in the liver. Monocyte-derived macrophages perform distinct functions, 
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depending on the stage of injury. In addition, microRNAs are another group of mediators that 

regulate the balance of M1/M2 macrophages. For example, micr-155 directly targets and 

downregulates IL-13Ra1 and several IL-13-related genes on M2 macrophages and promotes 

classic M1 activation50. Thus, microRNAs can exacerbate injury or provoke tissue repair events. 

Overall, the central function of macrophages is to mediate hepatocyte injury, advance 

inflammation, and activate HSCs to induce fibrosis or promote resolution by releasing specific 

cytokines and chemokines.  

 

Figure 1.2  The activation of M1 and M2 Kupffer cells.  

Sato K, Hall C, Glaser S, Francis H, Meng F, Alpini G. Am. J. Pathol. 2016 
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Myofibroblasts 

Excessive ECM accumulation is a key characteristic of liver fibrosis, and the major cellular source 

of ECM is hepatic myofibroblasts, which consist of a heterogeneous population of liver fibrogenic 

cells. They mainly originate from resident mesenchymal cells of activated HSCs and portal 

fibroblasts. Extrahepatic precursors, including bone marrow-derived cells and circulating 

fibrocytes, are the minor contributors. Whether myofibroblasts are derived from epithelial or 

endothelial cells through EMT or endothelial–mesenchymal transition (EndoMT), respectively, is 

still debated (Figure 1.3)51. The variety of etiologies and different hepatic fibrotic sites might 

determine the contribution of myofibroblasts from distinct origins. A common characteristic of 

HSCs and portal fibroblasts is the production of fibrillar collagens, which represent the main 

components in the ECM. Vitamin A is contained in HSCs, but not in portal fibroblasts. Phenotype 

analysis showed that HSCs are the main cellular source of myofibroblasts in hepatotoxic liver 

fibrosis. Portal fibroblasts are the major contributors of myofibroblasts in early cholestatic liver 

injury, whereas HSCs become the main source in late-stage cholestatic liver disease52. In 

hepatotoxin-induced liver injury, HSCs produce more than 80% of the myofibroblasts53. HSCs are 

the first recognized fibrogenic cell population; in the normal liver, they are quiescent mesenchymal 

cells, rich in lipid droplets containing retinoid (vitamin A), expressing glial fibrillary acidic 

proteins (GFAPs) and adipogenic genes, and residing in the Disse space between hepatocytes and 

sinusoidal endothelial cells54. Therefore, quiescent HSCs are characterized by peri-sinusoidal 

location and vitamin A and GFAP staining. Various liver injuries induce the activation of HSCs 

and their adoption of fibrotic phenotype; HSCs are the main contributors of myofibroblasts. The 

trans-differentiation of quiescent HSCs to myofibroblasts is induced by a group of fibrogenic 

factors in response to various liver injuries. Myofibroblasts attain a fibrotic phenotype through the 
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expression of specific fibrogenic markers such as α-smooth muscle actin, reducing GFAP and 

adipogenic gene expression, and losing vitamin A and lipid droplet content. Activation of HSCs 

comprises initiation and perpetuation phases. The initiation phase is the pre-inflammatory stage, 

in which HSCs undergo transcriptional changes mainly in response to paracrine cytokines, lipid 

peroxide, or stimuli released by injured hepatocytes, infiltrated and activated Kupffer cells, 

endothelial cells, and platelets. Perpetuation is the maintenance stage of the activated HSC 

phenotype and leads to fibrosis regulated by paracrine and autocrine cytokines or growth factors. 

HSCs migrate toward the inflammatory sites via platelet derived growth factor (PDGF), CCL2, 

and CXCR3 chemotaxis. HSC proliferation is mediated by PDGF, vascular endothelial growth 

factor (VEGF), and other mitogens, which increases the HSC cell number to promote fibrosis. 

TGFβ1 and connective tissue growth factor (CTGF) are the two potent fibrogenic factors that 

induce the generation of ECM, including collagen types I and III, fibronectin, and proteoglycans. 

The alpha-smooth muscle actin (α-SMA) is a cytoskeletal protein and the hallmark of 

myofibroblasts, which acquire contractility from increased α-SMA expression. HSC contractility 

relies on calcium signaling as well as endothelin-1 and nitric oxide55. The balance of matrix 

production and degradation is the key event in matrix remodeling to maintain fibrosis. The MMPs 

can degrade both collagen and non-collagen components of the ECM. The TIMPs inhibit MMP 

activity by binding to them. The fibrotic phenotype of activated HSCs is maintained through 

complicated processes, including chemotaxis, proliferation, fibrogenesis, matrix degradation, and 

contractility.  

 

Portal fibroblasts, which are also liver-resident mesenchymal cells, are another source of liver 

fibrogenic cells. In cholestatic and biliary liver diseases, portal fibroblasts trans-differentiate into 
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myofibroblasts and are the main cellular sources of myofibroblasts in the early phase of cholestatic 

fibrosis development. The trans-differentiation of portal fibroblasts also contributes to the 

formation of peri-portal fibrotic septa associated with chronic liver injury. Activated HSCs and 

portal myofibroblasts share some fibrotic markers such as α-SMA and collagens, but also express 

distinct markers. During the differentiation of HSCs to myofibroblasts, target gene expression is 

regulated by transcription factor activation or transcriptional suppression, and post-transcriptional 

regulation is altered by epigenetic modifications, including microRNA regulation, DNA 

methylation, and histone acetylation56. Activated HSCs specifically express desmin, cytoglobin, 

and synaptophysin, and portal myofibroblasts are characterized by IL-6, fibulin-1, and elastin. 

Both activated HSCs and portal myofibroblasts have common fibrotic functions, although portal 

myofibroblasts have superior proliferation potential and higher resistance to apoptosis than 

activated HSCs. Bone marrow transplant studies indicated that bone marrow stem cells and 

circulating fibrocytes are the minor contributors of myofibroblasts. Previous in vitro studies 

suggested that TGFβ induces hepatocytes and cholangiocytes to differentiate into a mesenchymal 

phenotype with fibroblast-specific protein 1 (FSP-1) expression via EMT57. However, in vivo cell 

fate mapping studies showed that epithelial and mesenchymal markers do not co-localize in injured 

livers58 59. All myofibroblasts are effector cells of liver fibrogenesis characterized by fibrillar 

collagen-rich ECM production and have the ability to migrate, proliferate, and contract. In 

response to numerous fibrogenic factors, including cytokines and growth factors, from injured 

liver, hepatic myofibroblasts proliferate, migrate to the injury sites, and accumulate there. 

Subsequently, hepatic myofibroblasts abundantly synthesize and produce a group of ECM proteins 

that mainly consists of fibrillar collagens I and III. Simultaneously, these cells secrete MMPs such 



27 

 

as ECM-degrading enzymes, MMP activators, and TIMPs. In chronic liver diseases, ECM 

remodeling is balanced by the secretion of MMPs and TIMPs in response to HSC activation60 61.  

 

Figure 1.3  Heterogeneity of hepatic myofibroblasts.  

Mallat, L. Am. J. Physiol. Cell Physiol. 2013 

 

1.3 TGFβ superfamily signaling in liver fibrosis  

Irrespective of etiology, the common mechanisms of hepatic fibrogenesis include the following 

cellular events: (1) hepatocytes and cholangiocytes undergo apoptosis, necrosis, or necroptosis and 

release ROS and DAMPs, growth factors, cytokines, and chemokines in response to liver injury; 

(2) monocytes, macrophages, and neutrophils are attracted by these factors, migrate to the injury 

sites, and secrete additional growth factors and cytokines/chemokines; and (3) hepatic 

myofibroblasts are trans-differentiated from HSCs, portal fibroblasts, bone marrow-derived cells, 
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and circulating fibrocytes possibly via EMT by a collection of these factors. The pro-fibrotic cells 

possess the properties of high ECM production and deposition, proliferation, migration, and 

contractility. Multiple inflammatory and fibrogenic signaling pathways promote the activation of 

HSCs and portal fibroblasts. TGFβ1 is the major growth factor to activate HSCs and portal 

fibroblasts. PDGF, cytokines (e.g., IL-17, IL-22, and IL-33), chemokines (e.g., CCl2, CXCL2, and 

CXCL10), adipokines (e.g., leptin, adiponectin, and resistin), pro-angiogenic factors (e.g., VEGF-

A and angiopoietin), intracellular signaling, and transcription factors all contribute to this process17 

62.  

 

Figure 1.4  Hepatic TGF-β cellular sources.  

Schon H, Weiskirchen R. Hepatobiliary Surg. Nutr. 2014 
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TGFβ signaling molecules constitute one of the most sophisticated signaling pathways known63-

65. The TGFβ superfamily consists of over 50 secretory, structurally related ligands, which are 

divided into four subfamilies: the TGFβ subfamily, the bone morphogenetic protein (BMP) and 

growth differentiation factor (GDF) subfamily, the activin and inhibin subfamily, and a group of 

various divergent ligands. The majority of TGFβ superfamily ligands are secreted as active dimers 

that are inhibited by several secreted proteins, including follistatin, except for GDF8 and TGFβ, 

which are secreted as immature or inactive precursors66. TGFβ superfamily ligands bind to two 

transmembrane receptors: type I and type II receptors67 68. Type II receptors include TGFβ receptor 

II (TGFBRII), activin receptor II A (ActRIIA), and ActRIIB. Soluble ActRIIB binds to various 

TGFβ superfamily ligands, including GDF5, GDF8, GDF11, activin A, activin B, activin C, activin 

E, Nodal, BMP2, BMP4, BMP6/7, BMP9, and BMP1069-71. TGFβ signaling pathways have multi-

functional effects and complicated intracellular interacting components. The TGFβ superfamily is 

known to play critical roles in embryogenesis, reproduction, and adult tissue homeostasis. TGFβ 

signaling critically modulates the initiation and progression of fibrosis in several organs, including 

the liver64. Hepatic TGFβ is expressed in diverse non-parenchymal cells, including HSCs, Kupffer 

cells, cholangiocytes, liver sinusoidal endothelial cells, lymphocytes, and liver-resident dendritic 

cells (Figure 1.4). Liver macrophages and HSCs are the two major cellular sources of TGFβ1. 

TGFβ1 stimulates hepatic fibrosis through multiple mechanisms. TGFβ signaling is involved in 

approximately all the stages of liver disease progression, from the initiation of liver injury through 

hepatic inflammation, liver fibrogenesis, cirrhosis, and even hepatocellular carcinoma. The TGFβ 

effect is also context-dependent. Primarily, bioactive TGFβ1 first binds to TGFβ receptor II, and 

then phosphorylates TGFβ type I receptor; next, intracellular events activate Smad2/3 and non-

Smad signaling pathways to initiate or suppress target gene transcription (Figure 1.5)17. Presently, 
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although TGFβ1 have been recognized as pro-fibrotic regulator, clinical trials have shown TGFβ1 

inhibition does not offer preventive or regressive effects on liver fibrosis progression, but, in turn, 

causes severe adverse effects such as inflammation and ontogenesis13. 

 

In TGFβ superfamily, different subfamily ligands generally signal via distinct, but overlapping, 

subsets of receptors and Smads. BMPs bind BMP-type II receptors (BMPR2), ActRIIA, and 

ActRIIB; type I receptors ALK1, ALK2, ALK3, and ALK6; and Smads 1, 5, and 8, whereas TGF-

βs and activins use their respective type II receptor TGFBR2 or ActRIIA and ActRIIB, but share 

the type I receptors ALK4, ALK5, ALK7 and Smads 2 and 372 73. Interaction is known to occur 

between BMPs and TGFβ/activin signaling. In particular, BMP7 is a negative regulator for TGFβ 

signaling74. In developmental biology, activin A synergistically acts with BMP4, basic fibroblast 

growth factor, and Wnt to drive embryonic stem cells to the definite endoderm75 76. In the central 

nervous system, activin B and TGF synergistically induce the proliferation and maturation of 

oligodendrocytes during myelin formation77. In HSCs, the activated target genes of TGFβ1 include 

fibrillar collagen I and III and other ECM genes, which contribute to ECM accumulation and liver 

fibrosis, whereas suppressed target genes consist of MMP transcripts that mediate ECM 

degradation. In hepatocytes, TGF-β1 inhibits growth and division by causing G1 phase cell cycle 

arrest and inducing hepatocyte cell death via the apoptosis response. The cytostatic and apoptotic 

effects of TGFβ1 on hepatocytes are pivotal for liver mass homeostasis and tumor development. 

In addition, TGF-β1 causes the trans-differentiation of hepatocytes to myofibroblasts via EMT78. 

In hepatic tumorigenesis, TGFβ1 might exhibit tumor suppressive effects at the early stages and 

promote tumor progression in the late stages when hepatocytes become resistant to the previous 

suppressive effect.   
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Therefore, the clinical application of TGFβ signaling inhibition is limited by the complex role of 

TGFβ in liver fibrogenesis, carcinogenesis, and immune modulation. Moreover, liver TGFBRII 

knockout only partially prevented liver fibrosis in the CCl4-treated mouse model79. Even with such 

high structural similarities of 74% conservation of sequence identifies between TGFβ1 and TGFβ2, 

78% between TGFβ1 and TGFβ3, 82% between TGFβ2 and TGFβ3, TGFβ1 and TGFβ2 act as 

pro-fibrotic factors80, whereas TGFβ3 acts oppositely81 82. Ligand-dependent consequences are 

exemplified by BMP7 counteracting TGFβ1 activities during organ fibrosis65 83. Individual 

investigations of TGFβ superfamily ligands are required for determining their roles in organ 

fibrogenesis.  

 

Figure 1.5  TGFβ superfamily canonical Smad and non-Smad signaling pathways. 

 Wharton K, Derynck R. Development 2009 
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1.4 Activins in liver fibrosis  

Activin was discovered approximately 40 years ago; activins are homo- or heterodimers formed 

by four inhibin subunits—inhibin βA, inhibin βB, inhibin βC, and inhibin βE—in mammals84. At 

present, the homo-dimers of activins include activin A, activin B, activin C, and activin E, whereas 

the heterodimers are activin AB, activin AC, activin BC, and activin AE22. The inhibin βA or 

inhibin βB subunit can also form inhibin A or inhibin B protein by dimerization with the inhibin 

α subunit. Inhibins function as antagonists of activins in the reproductive system85. The inhibin βA 

and inhibin βB genes are widely and relatively highly expressed in the reproductive system. 

Activin A and B are essential for inducing mesoderm formation during development and 

stimulating follicle stimulating hormone production in the reproductive system86-88. Inhibin βC 

and inhibin βE are expressed primarily in the liver and are dispensable for development and adult 

homeostasis89. Activin A is a homodimer of inhibin βA–inhibin βA, and activin B is a homodimer 

of inhibin βB–inhibin βB (Figure 1.6)84. Activins A, B, and AB signal through activin receptors II 

and I90, whereas activins C and E might not91. Thus far, two type II receptors (ActRIIA and 

ActRIIB) and three type I receptors (activin receptor like kinase, ALK4, ALK5, and ALK7) have 

been identified for activin A and B. Both activin receptors II and I are single transmembrane serine 

threonine kinase receptors that are shared with other TGFβ superfamily ligands92.  

 

Figure 1.6  Structure of activin as dimers of inhibin βA and inhibin βB subunits.  

Asashima M, Ariizumi T. Zoological Science 1995 
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 Activin A and B act through the activin type II receptor and type I receptor pathways. They bind 

to one of ActRIIA and ActRIIB expressed on target cell surfaces, and the type II receptor then 

interacts with an activin type I receptor. Activin A binds to ALK4 and ALK5, whereas activin B 

might act via ALK4 and ALK7 (Figure 1.7)93 94. Binding of the activin type II receptor to activin 

type I receptor results in the phosphorylation of intracellular domains of activin type I receptor, 

which in turn phosphorylates the intracellular proteins Smad2 and Smad3. These phosphorylated 

proteins bind with Smad4, a common mediator, to form a protein complex that translocates to the 

nucleus to act as a transcription factor to regulate target gene expression and affect cellular 

proliferation, differentiation, or apoptosis95. Furthermore, other Smad-independent intracellular 

signaling events via activins/ActRII/ActRI include p38 MAPK, JNK, and ERK1/296 97. 

Intracellularly, Smad2 interacts with other components in wingless/integratiob-1 (Wnt) signaling 

and the β-catenin pathway98. The ability of activins to signal through canonical Smad signaling, 

Smad-independent transduction, and crosstalk of Smad with other signaling pathways lead to a 

complex signaling behavior. None of the activins has been extensively investigated in liver 

homeostasis and disease. Relatively, activin A is the most studied activin in this regard. Activin A 

is expressed and secreted by hepatocytes and other non-parenchymal cells such as HSCs, 

cholangiocytes, and endothelial cells99-101. Several lines of evidence show that activin A is 

associated with liver regeneration, inflammation, fibrosis, and hepatocellular carcinoma22 90 102-104. 

Notably, activin A inhibits hepatocyte DNA synthesis and proliferation and induces hepatocyte 

apoptosis, indicating that it is a negative regulator of liver homeostasis100 101 105. Furthermore, 

activin A stimulates the activation of in vitro cultured HSCs and induces TGFβ1 production in 

fibroblasts from different organs (lung, kidney, and pancreas). TGFβ1 in turn stimulates activin A 

secretion from fibroblasts. These findings imply that activin A is involved in the hepatic fibrogenic 
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response99 102 106. Activin A can stimulate Kupffer cells to release TNFα and TGFβ1, which then 

can activate HSCs107. Activin A is induced in acute liver injury and blocking activin A ameliorates 

CCl4-induced liver injury108. Hepatocytes express abundant inhibin βA and relatively low amount 

of inhibin βB in rodent livers99. CCl4 upregulated hepatic inhibin βB expression in acute liver 

injury109. As two structurally related proteins, activin A and activin B share 63% identity and 87% 

similarity, and both bind to the same activin receptors II and I. Moreover, multiple common AP-1 

sites have been identified in the promoters of inhibin βA and inhibin βB. This suggests that activin 

B might mediate liver pathogenesis in a similar manner as activin A84 95 110 111. Recently, activin B 

was shown to activate the ALK2/ALK3/Smad1/5/8 signaling pathway and thus upregulate 

hepcidin expression in the hepatocytes of mice subjected to several inflammatory insults, 

suggesting a role of activin B in mediating the hepatic inflammatory response112. Because of its 

ability to bind multiple type I receptors (ALK2, ALK3, ALK4, and ALK7) to activate both 

Smad2/3 and Smad 1/5/8 signaling pathways, activin B might be considered to possess a broad 

spectrum of biological functions, unlike activin A. Whether activin B plays a role in liver 

fibrogenesis is not yet known. This is the major question addressed in this study.   
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Figure 1.7  Modified schematic representation of activin signaling pathway.  

Werner S, Alzheimer C. Cytokine & Growth Factor Reviews. 2006 

1.5 Objectives of the study 

Based on the literature and our preliminary studies, we measured the mRNA and protein 

expression levels of activin B and A in the liver and blood of patients with human liver fibrosis 

and mouse models of various liver fibrosis. We also delineated the detailed molecular mechanisms 

by which activin B directly stimulates different liver cells, including hepatocytes, macrophages, 

and HSCs, along with the well-known pro-fibrotic regulator TGFβ1 in liver cells. Finally, we 

investigated the effect of the inhibition of activin B and A individually or in combination by using 

specific monoclonal antibodies (mAbs) on liver function and fibrosis in CCl4- and BDL-induced 

liver fibrosis models. We hypothesize that activin B participates in modulating the initiation and 

progression of liver fibrogenesis. To test this hypothesis, we defined the following objectives: 
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1. Determine whether activin B is associated with liver fibrosis in human patients. 

2. Determine whether activin B is associated with liver fibrosis in mouse liver injury and 

fibrosis models. 

3. Determine whether activin B directly acts on hepatocytes, macrophages, and HSCs. 

4. Determine whether activin B modulates the initiation of CCl4-induced liver fibrosis. 

5. Determine whether activin B modulates the progression of CCl4-induced liver fibrosis.  

6. Determine whether activin B modulates the initiation of bile duct ligation (BDL)-induced 

liver fibrosis.   

The outcomes of this study might enable to potentially consider activin B as a novel and critical 

regulator of liver fibrogenesis, providing new mechanistic insight into this pathogenesis. Moreover, 

future studies can be directed to evaluate whether activin B is an effective target for the prevention 

and treatment of liver fibrosis.  

  



37 

 

 MATERIALS AND METHODS 

2.1 Human liver and serum samples 

Human liver and serum samples were provided by the Division of Gastroenterology and 

Hepatology of Indiana University School of Medicine; the study protocol was reviewed and 

approved by the Institutional Review Board. Normal liver samples from healthy volunteers (n = 5) 

or from patients with ESLD with advanced fibrosis or established cirrhosis (n = 8) were obtained. 

Liver samples were collected from the patients with ESLD during their liver transplantation 

procedure. Demographic data, cirrhosis etiology, and other relevant information such as 

medication, alcohol use, and smoking history were obtained at the time of enrollment. Liver biopsy 

(n = 21) and blood samples (n = 44) were collected from patients with non-alcoholic steatohepatitis. 

NASH was staged based on the severity of scarring or fibrosis: F0, no scarring; F1, minimal 

scarring; F2, significant fibrosis; F3, severe fibrosis; and F4, cirrhosis or advanced scarring113. 

Blood samples were harvested from healthy controls (n = 16), heavy alcohol drinkers without liver 

disease (n = 36), and heavy alcohol drinkers with liver disease (n = 15). Liver tissue samples were 

snap frozen in liquid nitrogen. Serum and frozen liver samples were stored at -80 ºC until use. 

2.2 CCl4 liver injury model 

All mouse experiments were approved by the Institutional Animal Care and Use Committee of Eli 

Lilly and Company and Indiana University–Purdue University, Indianapolis. Animals were housed 

in a room with controlled temperature (22 ± 2 °C) and a 12-h light-dark cycle, with ad libitum 

access to food (Diet 2014; Envigo, Indianapolis, IN) and water. C57BL/6 female mice (10–12 

weeks of age; Envigo) received intraperitoneal injection of CCl4 (1:10 dilution in corn oil, 1 ml/kg; 

Sigma Aldrich, St. Louis, MO) once to induce acute liver injury or twice per week for 4 or 10 
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weeks to induce liver fibrosis114 115. Activin A mAb (10 mg/kg; MAB3381; R&D Systems, 

Minneapolis, MN), activin B mAb (50 mg/kg; AB-306-AI005; Ansh Labs, Webster, TX), or 

control mouse IgG were administered twice a week. CCl4 is a widely used toxin that is very 

effective in inducing acute and chronic liver injury. It induces hepatotoxicity, hepatocyte necrosis, 

and eventually centrilobular liver fibrosis with repeated administration. CCl4-induced liver fibrosis 

model in rodents is widely applied in pre-clinical studies owing to its high reproducibility and 

similarity to the mechanism of certain human liver diseases. The pathologic feature of CCl4 liver 

fibrosis animal model is similar to those of toxin-induced human liver fibrosis. The mechanism of 

CCl4-induced liver injury involves many complex reactions116. Initially, CCl4 is transformed to 

trichloromethyl radical (CCl*
3) in the liver by the cytochrome P450 Family 2 Subfamily E Member 

1 (CYP2E1), CYP2B1, CYP2B2, and CYP3A of the cytochrome P450 superfamily 

monooxygenases. Subsequently, the highly reactive CCl*
3 induces nucleic acid mutation, protein 

hypomethylation, and lipid peroxidation, leading to protein synthesis reduction and hepatic 

steatosis. CCl*
3 is then oxidized to form another highly reactive trichloromethylperoxy radical 

(CCl3OO*), which can induce lipid peroxidation and polyunsaturated fatty acid destruction. These 

free radical reactions and pro-fibrotic cytokine and growth factor production result in centrilobular 

hepatocyte necrosis, Kupffer cell activation, inflammation, fibrosis, and cirrhosis117.  

2.3 Bile duct ligation liver injury model 

The surgical procedure was performed under sterile conditions, as previously described118. Under 

isoflurane anesthesia, male C57bl/6 mice (n = 6 to 8) were placed on a heat pad; following a 

median abdominal incision or laparotomy, the common bile duct was exposed, isolated, and 

doubly ligated with non-resorbable sutures (polyester 6–0; Catgut, Markneukirchen, Germany). 

Sham-operated mice were subjected to laparotomy with exposure of the bile duct, but without its 



39 

 

ligation. The abdominal muscle and skin layers were stitched, and the mice were treated with 

ketoprofen as an analgesic. A common BDL model represents cholestatic fibrosis due to the 

obstruction of the common bile duct to induce peri-portal biliary fibrosis. The mechanism of BDL-

induced liver fibrosis is the reaction of biliary epithelial cells or cholangiocytes to increased biliary 

pressure; the bile acids and other components secrete inflammatory cytokines, leading to 

cholestasis117. BDL-induced liver fibrosis is characterized by proliferation of cholangiocytes, 

upregulation of cholangiocyte-specific marker cytokeratin 19 (CK19), and increased expression 

of fibrogenic markers such as α-SMA, collagen I, and TGFβ1.   

2.4 Alcohol liver injury model 

Ten-week-old C57/B6 male mice were fed ethanol-containing Lieber-DeCarli liquid diet to study 

alcoholic liver disease. The mice were randomly divided into pair-fed and ethanol-fed groups. The 

mice were subjected to chronic feeding for 10 days with ethanol-containing (5%) Lieber-DeCarli 

liquid diet for 10 days plus binge with ethanol (5 g/kg), as described previously119. The animals 

were killed after 3 h. Chronic alcohol consumption induced liver diseases starting with liver 

steatosis and progression to fibrosis and cirrhosis. In the liver, ethanol is mainly metabolized 

through two oxidative pathways120. First, ethanol is oxidized by alcohol dehydrogenases, cytosolic 

aldehyde dehydrogenase 1, and mitochondrial aldehyde dehydrogenase 2 to generate reduced 

nicotinamide adenine dinucleotide121. Second, CYP2E1 and catalase oxidize ethanol to produce 

ROS, which induce hepatocyte damage. These oxidative stress metabolites induced by ethanol 

damage mitochondria and cause hepatocyte necrosis or apoptosis. In addition to oxidative stress, 

another mechanism of alcohol-induced liver fibrosis is peri-central hypoxia resulting from 

increased oxygen consumption. Sustained hypoxia has multiple effects on hepatocyte damage, 

including increased ROS production, impaired mitochondrial lipid metabolism, and hepatocyte 
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cell death122. Lipid synthesis dysregulation is another mechanism of alcohol-induced liver disease. 

Ethanol exposure leads to liver steatosis via the inhibition of sirtuin1 activity and other associated 

molecules, leading to abnormal lipogenesis123. Damaged hepatocytes and activated Kupffer cells 

release cytokines and chemokines to mediate inflammatory response and activate HSCs to 

differentiate into myofibroblasts124. These mechanisms induce hepatocyte apoptosis or necrosis, 

Kupffer cell-mediated inflammation, and HSC activation and differentiation in alcohol-induced 

liver disease. 

2.5 Cell culture 

Primary mouse hepatocytes (PMHs) were isolated and grown from adult male C57Bl/6 mice, as 

described previously125. Briefly, under anesthesia, the peritoneal cavity was opened, and the liver 

was perfused in situ via the portal vein for 4 min at 37 C with calcium-magnesium (CM)-free 

HEPES buffer and for 7 min with CM-free HEPES buffer containing Type IV collagenase (35 

mg/100 mL) and CaCl2 (10 mM). Cells were used only if the cell viability was above 90% as 

assessed by trypan blue exclusion. After three centrifugations (44 g for 2 min) in Leibovitz’s L-15 

washing media supplemented with 0.2% bovine albumin, cells were plated onto 24-well or 96-

well plates (26,000 cells/cm2). Cells were cultured in high-glucose (25 mM) DMEM supplemented 

with 10% FBS. All culture media contained penicillin (100 units/ml) and streptomycin (100 μg/ml). 

After cell attachment for 2 h, the medium was replaced with fresh medium supplemented with 10% 

fetal bovine serum (FBS). PMH cultures were maintained under 5% CO2 atmosphere at 37 C. 

RAW264.7 cells, a mouse macrophage cell line, were purchased from American Type Culture 

Collection (Manassas, VA) and cultured following manufacturer’s manual. LX-2 cells, a human 

hepatic stellate cell line, were cultured in DMEM supplemented with 2% FBS (Gibco, Invitrogen, 

Carlsbad, CA); they were a gift from Dr. Scott L. Friedman from the Mount Sinai School of 
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Medicine (New York, NY). These cells were treated with activin A, activin B, activin C, CXCL1, 

and TGFβ1 (Table 2.1). 

Table 2.1  Proteins used in the in vitro studies 

Protein Catalogue number Vendor 

Activin A 338-AC R & D systems 

Activin B 8260-AB R & D systems 

Activin C 489-AC R & D systems 

TGF β1 7666-MB R & D systems 

CXCL1 453-KC R & D systems 

 

2.6 Smad2/3-binding element reporter assay 

HEK293 cells stably expressing the Smad2/3-binding element (SBE)-12-luciferase system 

(Qiagen) were seeded at 50,000 to 100,000 cells/well/100 µL DMEM/F12 (Invitrogen) containing 

10% FBS into a poly-D-lysine-coated 96-well plate. Following at least 16 h of incubation at 37 C, 

the media was aspirated and replaced with 50 µL of 1% FBS-DMEM/F12. Anti-activin A mAb or 

anti-activin B mAb were serially diluted (1:2) with 1× PBS, pH 7.4 to produce the following 

titration range (3000 ng/mL to 23.4 ng/mL). Each concentration was then mixed with an equal 

volume of 15 ng/mL of activin A or activin B (R&D Systems) and incubated at room temperature 

for 30 min, after which 100 µL of the mixture was added to individual wells. The Smad reporter 

(I.E. 100% signal) was induced by either activin A or activin B alone, and negative controls (I.E. 

0% background signal) were induced by vehicle alone. Plates were incubated at 37 °C for 20 h, 

followed by aspiration, and washed once with 1× PBS. Cells in individual wells were subjected to 

lysis, and luminescence was measured using a GeniosPRO instrument with substrate injection 

(Luciferase Reporter Gene Assay Kit, Roche). Values shown in the figures are representative of 
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experiments performed in triplicate. Relative luciferase units were measured, and IC50 curves were 

fitted using GraphPad Prism software (GraphPad Software, Inc.). 

2.7 The in-situ hybridization assay  

The cellular source of TGFβ ligands in injured liver tissue was determined by subjecting liver 

sections to in situ hybridization (ISH) for inhibin βA, inhibin βB, and TGFβ1. The in-situ detection 

of these transcripts was performed on paraffin-embedded tissue sections by using the RNAScope 

assay (Advanced Cell Diagnostics). Sections were pretreated using an extended protease treatment 

and hybridized under conditions as described (RNAScope Sample Preparation and Pretreatment 

Guide) by using automated RNAScope probes for activin A, activin B, and TGFβ1, as well as 

standard negative dihydrodipicolinate reductase (DapB; a bacterial gene) and positive 

peptidylprolyl isomerase B (PPIB) control probes (Table 2.2). The probes were detected using 

RNAScope LS 2.5 Duplex brown Assay for the Leica Bond RX auto-stainer (Cat. no. 322440) and 

Brown DAB (Cat. no.DS9800). Slides were counter-stained with hematoxylin. 

Table 2.2  RNAscope probes used in the in-situ hybridization 

RNAscope probe Catalogue number Vendor 

Inhibin βA 455871 Advanced Cell Diagnostics 

Inhibin βB 475271 Advanced Cell Diagnostics 

TGF β1 407751 Advanced Cell Diagnostics 

PPIB 321651 Advanced Cell Diagnostics 

DapB 320759 Advanced Cell Diagnostics 

 

 



43 

 

2.8 Microarray and quantitative RT-PCR analysis 

Human stellate cells (LX-2 cells) were cultured overnight in six-well dishes at 5 × 105 cells per 

well. The LX-2 cells were then treated with activin A, activin B, or TGFβ1 (R&D System, 

Minneapolis, MN) for 6 h. The RNA was extracted from treated LX-2 cells by using TRIzol 

reagent (Life Technologies, Waltham, MA). Following manufacturer’s instructions, 1 mL of 

TRIzol was added to each cell pellet. Next, 500 µL of chloroform was added and mixed well, and 

then the samples were centrifuged at 12,000 g for 15 min at 4 °C. The aqueous phase was carefully 

removed and transferred to a new tube. RNA was precipitated with 100% isopropanol and 

centrifuged at 12,000 g for 10 min at 4 °C. The supernatant was removed, and the RNA pellet was 

washed with 75% ethanol and centrifuged at 7500 g for 5 min at 4 °C. The pellet was air dried and 

re-suspended in RNase-free water. The absorbance at 260 and 280 nm was measured to determine 

the RNA yield.  

 

Next, 2 µg of total RNAs was reverse transcribed using the High-capacity cDNA Archive Kit 

(Applied Biosystems, Beverly, MA) and then applied to HG-U133 plus 2 chips for microarray 

analysis. For real-time RT-PCR analysis, all cDNAs were assayed for house-keeping genes such 

as glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and ribosomal protein lateral stalk 

subunit P0 (RPLPO) and genes of interest by using TaqMan Gene Expression Analysis and the 

Assay-On-Demand primer/probe sets (Applied Biosystems, Beverly, MA; Table 2.3). The mRNA 

levels of genes of interest were quantified by determining the cycle number at which amplification 

detection threshold was achieved. Real-time PCR analyses were performed in 10 µL reactions 

according to manufacturer’s guidelines. Triplicate samples were subjected to quantitative PCR by 

using QuanStudio 7 Flex (Applied Biosystems, Beverly, MA) real-time PCR system with the 

maximum cycle number of 40. After the expression was normalized to the housekeeping gene, the 
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expression of the genes of interest was examined in the treated group compared to that in the 

vehicle control or sham group for subsequent analysis.  

 

Table 2.3  Primers/probe sets used for RT-PCR 

Gene Catalogue number Amplicon length (base pair) 

GAPDH Mm99999915_g1 109 

RPLPO Mm00725448_s1 124 

Inhibin βA Mm00434339_m1 65 

Inhibin βB Mm03023992_m1 120 

Inhibin βC Mm00439684_m1 82 

TGF β1 Mm01178820_m1 59 

CTGF Mm01192933_g1 67 

Col1α1 Mm00801666_g1 89 

ACTA1 Mm00808218_g1 134 

Smad3 Mm01170760_m1 59 

IKBKB Mm01222247_m1 63 

TNFα Mm00443258_m1 81 

CCL2 Mm00441242_m1 74 

TWEAK Mm02583406_s1 87 

Fn14 Mm01302476_g1 88 

CXCL1 Mm04207460_m1 111 

iNOS Mm00440502_m1 66 

ACVR1 Mm01331069_m1 65 
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Table 2.3 continued 

CKDNiB Mm00438168_m1 81 

CASP3 Mm01195085_m1 70 

CASP6 Mm01321726_g1 96 

GNDF Mm00599849_m1 101 

SOX4 Mm00486320_s1 94 

CXCR2 Mm99999117_s1 64 

IL-6 Mm00446190_m1 78 

IL-1β Mm00434228_m1 90 

 

2.9 Blood chemistry analysis 

Serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), glucose, and total 

bilirubin levels were measured using a Hitachi Modular Analyzer (Roche Diagnostics, 

Indianapolis, IN).   

2.10 ELISA of activin A and activin B 

Liver lysates were generated using 1 mL of lysis buffer per 100 mg liver tissue (Cell signaling 

Technologies, Dancers, MA). The protein concentration of the liver lysates was determined using 

bicinchoninic acid Protein Assay Kit (Thermo Scientific, Waltham, MA)43, which is a standard 

method for colorimetric detection of total protein. Serially diluted bovine serum albumin (BSA) 

was used as a protein standard. The protein concentration was quantified at 570 nm. The same 

amount of total protein of liver lysate samples was treated with 10 mmol/L dithiothreitol in PBS 

for 1 hour at room temperature before plating. Anti-activin A antibody was coated and 



46 

 

reconstituted in PBS at a final concentration of 100 mg/mL (AF338; R&D Systems). Anti-activin 

A antibody (100 mL per well) was diluted to 1 mg/mL in coating buffer (SH30256.01; Hyclone, 

Waltham, MA), incubated for 1 hour at 37 °C, and blocked for 1 hour; next, the samples were 

incubated at room temperature for 1 hour. Poly-streptavidin horseradish peroxidase and 3-, 30-, 5-, 

and 50-tetramethylbenzidine block steps were performed, and plates were read at 450 to 630 

nmol/L. The enzyme-linked immunosorbent assay (ELISA) was validated using purified activin 

A protein. Activin B proteins in the liver tissue, serum, or cell culture supernatants were quantified 

using ELISA (Activin B ELISA kit; Ansh Labs, Webster, TX) according to the manufacturer 

protocol. 

2.11 Histology and immunohistochemistry  

The livers were preserved in 10% neutral-buffered formalin for 24 h, embed in paraffin, cross-

sectioned at 3 µm, deparaffinized at room temperature, and stained with hematoxylin and eosin 

(H&E). Adjacent 3 µm sections were immunolabeled using heat-induced epitope retrieval 

(HIER)91 and a Dako autostainer. Briefly, sections were deparaffinized at room temperature and 

rehydrated in 1× TBST immediately before HIER treatment by using Biocare Decloaking 

Chamber Pro with DIVA, pH 6 solution (Biocare). The set point 1 was programmed for 125 °C 

for 30 s (20 PSI) and then cooled down to 89.5 °C for 10 s. The slides were removed and slowly 

rinsed with ddH20 for 5 min, and then immediately rinsed several times in 1× TBST. Endogenous 

peroxidase was blocked for 10 min, and endogenous biotins were blocked for 15 min. Additional 

protein block was performed for 30 min before the sections were subjected to commercial anti-

mouse F4/80, MPO, CK19, and Ki67 clone BM8 (Table 2.4) for 1 h. Biotinylated polyclonal rabbit 

anti-rat secondary antibodies (Dako) were applied for 30 min. Next, HRP-labeled streptavidin-

biotin (Dako) was applied for 10 min, and 3-3-diaminobenzidine tetrahydrochloride (Dako) was 
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applied for 5 min; the slides were counterstained with hematoxylin. Negative controls were 

produced by replacing the primary antibodies with purified rat IgG2aK. Immunolabeled slides 

were examined along with H&E-stained slides to relate cell type identification to cytological 

features. Muscle images were acquired using a digital camera (Spot Digital Camera; Diagnostics 

Instruments, Inc.) and associated software (Spot Advanced) attached to an upright light 

microscope (Leica DM5000B) at 20× magnification.   

 

Table 2.4  Antibodies used in immunohistochemistry 

Antibody Catalogue number Dilution Vendor 

MPO AF3667 1:500 R & D systems 

F4/80 14-4801-82 1:500 eBioscience 

CK19 ab133496 1:500 Abcam 

Ki67 RM-9106 1:200 Thermo Fishers Scientific 

 

2.12 Statistical analysis 

All data are expressed as mean ± standard error of the mean. Significance of differences among 

group means was determined using ANOVA or Dunnett’s tests, followed by two-tailed unpaired 

Student’s t-test. Statistical significance is considered at P < 0.05. GraphPad Prism Software was 

used for data analysis and figure preparation.  
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 ACTIVIN B MEDIATES HEPATIC FIBROSIS 

3.1 Introduction 

Liver fibrosis is the common consequence of liver injury secondary to ALD, NASH, viral hepatitis, 

and autoimmune liver disease126. The initiation and progression of liver fibrosis are driven by 

complicated cellular and molecular mechanisms11 127-129. Damaged hepatocytes and cytokines 

released from inflammatory cells such as Kupffer cells can directly or indirectly activate the 

conversion of HSCs to myofibroblasts, leading to the accumulation of collagen I and III and other 

ECM components as well as liver fibrosis62 126 130.  

 

Activins are dimers formed by four inhibin subunits—inhibin βA, inhibin βB, inhibin βC, and 

inhibin βE—in mammals84. Widely expressed inhibin βA and inhibin βB genes are essential for 

inducing mesoderm formation during development and follicle stimulating hormone production in 

the reproductive system86-88. Inhibin βC and inhibin βE are expressed predominantly in the liver 

and are dispensable during development and for maintenance of adult homeostasis89. Activin A, 

B, AB, C, and E represent homo- or hetero-dimers of inhibin βAβA, βBβB, βAβB, βCβC, and 

βEβE, respectively84. Activin A, B, and AB signal through activin receptors/Smad2/3 pathway, 

whereas activin C and E might not91. Activin A is expressed and secreted by hepatocytes and non-

parenchymal cells such as HSCs, cholangiocytes, and endothelial cells in the liver99-101. Several 

lines of evidence show that activin A is associated with liver regeneration, inflammation, fibrosis, 

and hepatocellular carcinoma22 90 102-104. Notably, activin A inhibits hepatocyte DNA synthesis and 

proliferation and induces hepatocyte apoptosis, which indicates that it is a negative regulator for 

liver homeostasis100 101 105. Furthermore, activin A stimulates the activation of cultured HSCs, 

implying its involvement in the hepatic fibrogenic response99 102 106. It also stimulates primary 
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Kupffer cells to release TNFα and TGFβ1, which activate HSCs107. Activin A production is 

induced in acute liver injury, and neutralization of activin A has been shown to reduce CCl4-

induced liver injury in mice108. 

 

 As a structurally close protein, activin B shares 63% identity and 87% similarity to activin A84. 

Both ligands bind to the same activin receptors II and I, and multiple common AP-1 sites in the 

individual promoters of both inhibin βA (subunit of activin A) and inhibin βB (subunit of activin 

B) have been identified, suggesting that activin B might share similarities to activin A with regard 

to the mediation of liver pathogenesis84 95 110 111. Hepatocytes constitutively express abundant 

inhibin βA, but relatively low level of inhibin βB99. However, hepatic inhibin βB expression is 

highly upregulated in CCl4-induced acute liver injury109. Recently, activin B was shown to 

upregulate hepcidin expression in hepatocytes via Smad1/5/8 signaling in response to several 

inflammatory insults in mice. This finding suggests that activin B is involved in mediating hepatic 

inflammatory response112. However, whether activin A, especially activin B, can mediate liver 

fibrogenesis is not yet known. This study aimed to determine the role of activin B and its 

mechanism in liver fibrosis.   

3.2 The levels of hepatic and circulating activin B significantly increase in patients with liver 

fibrosis 

First, we determined whether activin B and A are clinically relevant to different etiologies of liver 

fibrosis. With regard to mRNA expression, inhibin βA represents activin A, and inhibin βB 

symbolizes activin B as activin A and activin B are the homodimers of inhibin βAs and inhibin 

βBs, respectively. We found that, in patients with advanced liver fibrosis or cirrhosis, hepatic 

activin B mRNA and protein were markedly increased relative to those in healthy controls (Figures 
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3.1A&B). Circulating activin B did not increase in excessive alcohol users without liver disease 

but showed more than five-fold elevation in patients with alcoholic cirrhosis (Figure 3.1C). In 

patients with NASH, the hepatic and serum levels of activin B significantly increased only in those 

with F4 fibrosis, but not in those of the F0 and F1 groups (Figures 3.1D&E). In addition, we found 

that the serum level of activin A markedly increased in individuals with F1 fibrosis. Thus, we 

showed that the expression of activin B is correlated with advanced fibrosis/cirrhosis, irrespective 

of the underlying disease etiologies.  

A                                                                   B                           

 

 

 

 

Figure 3.1  Liver and serum activin B levels increase in patients with liver fibrosis. 

(A) The mRNA expression of hepatic inhibin βA and inhibin βB in patients with ESLD (n = 8) 

and healthy controls (n = 5) was analyzed using qRT-PCR. (B) Protein expression of hepatic 

activin A and activin B in patients with ESD (n = 8) and healthy controls (n = 5) was quantified 

using ELISA. (C) The concentrations of serum activin A and activin B proteins were determined 

using ELISA in healthy controls (HC; n = 16), heavy drinkers without liver diseases (HD; n = 

36), and heavy drinkers with liver disease (HD + LD; n = 15). Activin A and activin B proteins 

were evaluated using ELISA in the livers (D) and serum (E) of patients with different stages of 

NASH (F0: n = 4, F1: n = 6, F3: n = 4, and F4: n = 6). For all the above assays, data are 

expressed as means ± S.E.M. *, P < 0.05 compared to healthy controls or the F0 group. 
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Figure 3.1 continued 

C                                                                    D 
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3.3 Hepatic and circulating activin B levels are elevated in mouse models of CCl4-induced acute 

liver injury and liver fibrosis  

To further investigate the expression pattern and cellular sources of activin B and A in liver injury, 

we performed acute and chronic liver injury studies in mice. In an acute model after the single 

administration of CCl4, we found significant upregulation of hepatic inhibin βB mRNA expression 

up to 3 days after injection (Figure 3.2A), concomitant with the increase in hepatic activin B 

protein concentration (Figure 3.2B). In addition, we found an increase in serum activin B protein 

at 6 and 24 h after injection (Figure 3.2C). Unlike activin B, hepatic mRNA and protein 

A c t iv in  A A c t iv in  B
0

2 0 0

4 0 0

6 0 0

8 0 0

 P
ro

te
in

 (
p

g
/

m
l)

H D
*H C

H D  + L D

S e r u m

A c t iv in  A A c t iv in  B
0

5 0 0

1 0 0 0

1 5 0 0

P
ro

te
in

 (
n

g
/

g
)

      L iv e r

F 0

F 1

F 3

F 4

*

A c t iv in  A A c t iv in  B
0

3 0 0

6 0 0

9 0 0

P
ro

te
in

 (
p

g
/

m
l) *

S e r u m

*

F 0

F 1

F 3

F 4



52 

 

concentrations and serum levels of activin A increased only at 24 h after CCl4 injection (Figures 

3.2D–F). We used mouse liver fibrosis model with CCl4 injection for 4 weeks and ALD model of 

chronic alcohol plus binge to determine the levels of activin B in hepatic fibrogenesis and chronic 

liver injury. In the CCl4 model, only the mRNA expression and serum levels of activin B increased, 

but not of activin A (Figures 3.2G&H). Similar findings were found in mice fed chronic alcohol 

plus binge model (Figures 3.2J&K). The cellular sources of activin B were revealed using ISH. 

Activin B was mainly transcribed in the hepatocytes and biliary epithelial cells of livers in vehicle 

controls as well as in fibrogenic cells in the mice with fibrotic livers (Figure 3.2I). We concluded 

that, in CCl4-induced liver injury, activin B is persistently associated with liver disease progression 

from the acute to chronic phase, whereas activin A is transiently relevant to the acute phase.  
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Figure 3.2  Liver and serum activin B levels increase in mouse acute liver injury and chronic 

liver fibrosis models induced by CCl4 administration.  

(A) The mRNA expression of hepatic inhibin βB was analyzed using qRT-PCR at the indicated 

time points after single CCl4 or vehicle administration in mice (n = 6). (B&C) Activin B protein 

was quantified using ELISA in the livers (B) and serum (C) at 6 and 24 h after single CCl4 or 

vehicle administration in mice (n = 8). (D) The mRNA expression of hepatic inhibin βA was 

analyzed using qRT-PCR at the indicated time points after single CCl4 or vehicle administration 

in mice (n = 6). (E&F) Activin A protein was quantified using ELISA in the livers (E) and 

serum (F) at 6 and 24 h after single CCl4 or vehicle treatment in mice (n = 8). (G–I) After CCl4 

or vehicle was administered twice per week for 4 weeks in mice, (G) mRNA expression of 

hepatic inhibin βA and inhibin βB was assessed using qRT-PCR (n = 10); (H) concentrations of 

serum activin B protein were quantified using ELISA (n = 10); (I) inhibin βA-, inhibin βB-, and 

TGFβ1-expressing cells were visualized using in situ hybridization on liver sections by using 

mouse inhibin A and inhibin B RNAscope probes and a 2.5 HD Assay-Brown kit. (J&K) Ten 

days after oral alcohol administration in mice, (J) hepatic inhibin βA and inhibin βB transcript 

levels were determined using qRT-PCR (n = 7), and (K) hepatic activin A and activin B protein 

contents were quantified using ELISA (n = 7). For all above quantitative assays, data are 

expressed as means ± S.E.M. *, P < 0.05 relative to vehicle controls.  
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Figure 3.2 continued 
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3.4 Hepatic and circulating activin B levels are elevated in mouse models of BDL-induced acute 

liver injury and liver fibrosis  

To determine whether the increase in activin levels in liver fibrosis and acute live injury models is 

a generalized event or liver disease etiology-dependent, we measured the levels of the two activin 

ligands in another mouse liver injury model. Within one day (the acute phase) after BDL surgery, 

a surgical approach to induce cholestasis-mediated liver injury, we noted persistent increase in 

activin B protein and transient increase in activin A protein in the circulation (Figures 3.3A&B). 

Two weeks after BDL when the livers became fibrotic, activin B, but not activin A, mRNA 

expression was elevated in the livers and protein expression was elevated in the blood (Figures 
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3.3C&D). The ISH results showed that inhibin βA, inhibin βB, and TGFβ1 transcription was active 

mainly in the hepatocytes and biliary epithelial cells of sham controls and in the fibrogenic cells 

of mice with fibrotic livers (Figure 3.3E). We found that, in BDL-induced liver injury, activin B 

is persistently associated with liver disease progression from the acute to chronic phase, whereas 

activin A is transiently relevant to the acute phase.  
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A                                                                     B 

 

 

 

C                                                                   D 
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Figure 3.3 Liver and serum activin B levels increase in BDL-induced acute liver injury and 

chronic liver fibrosis mouse models.  

(A and B) Protein quantification of activin A and activin B in the serum at 6 and 24 h after BDL 

surgery. (C) RT-PCR of activin A and activin B in the liver tissue at 2 weeks of BDL surgery. 

(D) Serum activin A and activin B levels in the serum at 2 weeks after BDL surgery. (E) Inhibin 

βA-, Inhibin βB-, and TGFβ1-expressing cells were visualized using in situ hybridization on 

liver sections by using mouse inhibin βA and inhibin βB RNAscope probes and a 2.5 HD Assay-

Brown kit. Data are expressed as means ± S.E.M. Significance is indicated at *P ≤ 0.05, treated 

group vs. vehicle group (Dunnett’s one-way ANOVA). 
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3.5 Hepatic activin B levels are elevated in the ALD mouse model  

Next, we determined activin B and activin A levels in the alcoholic liver fibrosis model. After 

mice were fed alcohol for 10 days, both mRNA and protein expression of activin B, but not of 

activin A, was upregulated in the liver (Figures 3.4A&B). Thus, we showed that, irrespective of 

liver injury types, activin B is persistently associated with liver disease progression from the acute 

to chronic phase, whereas activin A is transiently relevant to the acute phase. Moreover, the 

association of activin B with chronic liver injury is highly conserved between humans and mice.  
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A                                                                    B 

   

Figure 3.4  Liver activin B level increases in the alcohol-induced liver injury mouse model.  

(A) Hepatic inhibin βA and inhibin βB transcript levels were determined using qRT-PCR (n = 7), 

and (B) hepatic activin A and activin B protein contents were quantified using ELISA (n = 7). 

For all the above quantitative assays, data are expressed as means ± S.E.M. *, P < 0.05 relative 

to vehicle controls. 

3.6 Activin B and A are associated with hepatocyte injury and might induce hepatocyte 

differentiation 

The ISH results showed that hepatocytes are the main cellular sources in the liver that express 

inhibin βA and inhibin βB mRNAs (Figures 3.2I&3.3E). To determine whether activin A and B 

proteins are secreted by hepatocytes and how these proteins respond to hepatocyte injury, we 

exposed PMHs to CCl4 or LPS. We found that CCl4 damaged these cells, induced necrosis, and 

elevated ALT and AST in culture supernatants (Figures 3.5A&B) as well as activin A and B 

protein levels (Figure 3.5C). Cell viability was marginally, significantly, and additively improved 

by neutralizing activin A, activin B, and their combination in PMHs, respectively (Figure 3.5D). 

In contrast, LPS only stimulated PMHs to increase activin A production without affecting activin 

B, ALT, and AST (Figure 3.5C). These data suggest that hepatocytes are one of the cellular sources 

responsible for the secretion of activin B, and activin A exhibits toxin-dependent responses. 

Moreover, activin B production in hepatocytes was accompanied by hepatocyte injury and cell 

death. Notably, the two activins modulate hepatocyte injury, as neutralization of these proteins 

improved cell viability following insults. We also found that PMHs responded to individual or 
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combined exogenous treatment of these two proteins by uniformly upregulating the transcription 

of TGFβ1, CTGF, and Col1α1, as well as by variously regulating the mRNA expression of ACTA1, 

Smad3, and IKBKB (Figure 3.5E). These genes are associated with myofibroblast activity, 

suggesting that activin A and activin B might be involved in the differentiation of hepatocytes into 

myofibrolast-like cells following injury. Thus, these results suggest that activin B and A have 

redundant, specific, and interactive actions in hepatocytes 

 

A                                                                  B 

 

Figure 3.5  Activin A and B are produced in PMHs and induce differentiation of these cells. 

 Primary hepatocytes were isolated from adult male mice and cultured overnight. Subsequently, 

the cells were treated with vehicle (corn oil), lipopolysaccharide (LPS, 10 µg/mL), or 0.5% CCl4 

for 24 h. (A) Cell viability, (B) supernatant ALT and AST, and (C) supernatant actin A and 

activin B proteins were analyzed. (D) Cell viability of primary hepatocytes after 24-h treatment 

with 0.5% CCl4 and co-treatment with IgG, anti-activin A antibody, and anti-activin B antibody, 

or the combination of anti-activin A and B antibodies at 100 ng/mL each. (E) The mRNA levels 

of the indicated genes were evaluated using real-time RT-PCR in PMHs after treatment with 

activin A and activin B (100 ng/mL each), or their combination, for 24 h. For all the above 

assays, data are expressed as means ± S.E.M. *, P < 0.05 vs. vehicle controls.  
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Figure 3.5 continued 

C                                                                    D 

 

E 

 

 

3.7 Activin B and A directly target macrophages and modulate inflammatory cytokines 

Immune cells centrally mediate inflammation largely by regulating cytokine production. To 

understand how activin B and A regulate inflammatory responses in macrophages, we exposed 

RAW264.7 cells to activin B and/or activin A and evaluated the expression of inflammatory 

cytokines or chemokines. We found that treatment with individual or combination of both ligands 

exerted similar potency in upregulating TNFα, CCL2, TWEAK, and Fn14 expression (Figure 
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3.6A), indicating that activin B and A might have redundant actions on macrophages. Notably, 

treatment with individual ligands equally, whereas treatment with both ligands additively, elevated 

CXCL1 transcript level, coincident with inducible nitric oxide synthase (iNOS) activation only 

after exposure to both ligands (Figure 3.6A). This suggests that the additive increase in CXCL1 

expression after exposure to both ligands, but not to either of the single ligands, was necessary to 

achieve iNOS activation. To test this, we treated RAW264.7 cells with CXCL1 protein and found 

that CXCL1 upregulated iNOS expression by 30-fold after 24 h of treatment (Figure 3.6B). Thus, 

activin B and A were found to directly target macrophages and additively stimulate sufficient 

production of autocrine CXCL1 to induce iNOS transcription. These data suggest the existence of 

an activin B/activin A/CXCL1/iNOS signaling pathway that modulates macrophage activity, 

further supporting the notion that activin B and A essentially collaborate with each other to activate 

the transcription of a subset of inflammatory cytokines and chemokines.  
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  Figure 3.6  Activin A and B induce macrophages to express inflammatory cytokines or 

chemokines.  

(A) Transcripts of the genes indicated were quantified using qRT-PCR in RAW264.7 cells after 

exposure to activin A (100 ng/mL), activin B (100 ng/mL), or both (100 ng/mL each) for 24 h. 

(B) The mRNA expression of iNOS was evaluated using qRT-PCR in RAW264.7 cells 

following vehicle or CXCL1 treatment for 6 or 24 h. For the above quantitative analyses, data 

are presented as means ± S.E.M. *, P < 0.05 vs. vehicle controls.  
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3.8 Activin B and A directly and coordinately promote HSC activation 

Myofibroblasts centrally drive liver fibrogenesis and are primarily differentiated from activated 

HSCs. The human HSC cell line LX-2 has been widely used to study the function of HSCs. We 

assessed the behavioral response of LX-2 cells to activin A, activin B, their combination, and 

transforming growth factor (TGF)1, a recognized regulator of HSC activity. We found that LX-

2 cells formed a septa-like structure following 24 h of exposure to these three ligands (Figure 3.7A), 

a common behavior observed in HSCs during liver fibrogenesis. This observation suggests that 

activin B and A directly activate HSCs. Based on this finding, we intended to determine whether 

these activin ligands redundantly act on HSCs at the molecular level. Hence, we treated LX-2 cells 

with activin A, activin B, or TGF1 protein for 6 h and profiled their early responsive genes by 

using microarray analysis. We found that these three proteins regulate overlapping, but differential, 

gene networks (Figure 3.7B). The 877 overlapping genes were predominately associated with HSC 

activation and hepatic fibrosis, including upregulated TGF signaling negative feedback 

modulator transmembrane prostate androgen-induced protein (TMEPAI), early growth response 

protein 2 (EGR2), and calcium ion-binding protein matrix gla protein (MGP), and downregulated 

BMP4, dual specificity phosphatase 6 (DUSP6), extracellular matrix glycoprotein TNXB, IL-8, 

and IL-17 receptor C (Figures 3.7C–D). These data suggest that activin signaling redundantly 

dictates a spectrum of HSC properties via multiple ligands, including activin A and B. Conversely, 

each of these individual ligands has a large and unique set of genes associated with critical cellular 

functions. For instance, activin B exclusively decreased cell migration-associated scaffold protein 

Ezrin and calcium-dependent phospholipid-binding protein 3, implying its role in controlling HSC 

migration. These data suggest that activin B is a novel direct regulator of HSCs, and that activin 

ligands distinctly, but coordinately, regulate the transcriptome of HSCs.  
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To gain insight into how activin A and B interactively act on HSCs, we treated LX-2 cells with 

activin A or B alone or in combination and then determined the transcriptional response of a group 

of genes known to regulate HSC activity. We observed four scenarios: (1) ACVR1 and CKDNiB 

equivalently responded to individual ligands (Figure 3.7E); (2) CASP6 solely responded to activin 

A (Figure 3.7E); (3) CASP3, GNDF, and CXCL1 specifically responded to dual ligands (Figure 

3.7F); and (4) CTGF equally responded to individual ligands, but interdependently to dual ligands 

(Figure 3.7F). These results indicate that activin B and A have redundant, unique, and interactive 

effects on HSCs. Taken together, these in vitro data show that activin B and A both redundantly 

and interactively modulated HSCs. 

A 

 

 

Figure 3.7  Activin A and B morphologically and molecularly activate HSCs.  

(A) LX-2 cells were treated with bovine serum albumin (BSA, 100 ng/mL), activin A (100 

ng/mL), activin B (100 ng/mL), their combination (100 ng/mL each), or TGFβ1 (5 ng/mL) for 24 

h and then subjected to 4′,6-diamidino-2-phenylindole (DAPI) staining. (B) LX-2 cells were 

treated with activin A (100 ng/mL), activin B (100 ng/mL), or TGFβ1 (5 ng/mL) for 6 h. Total 

RNAs were isolated and reverse transcribed to cDNA. Microarray analysis was conducted using 

HG-U133 plus 2 chips (n = 6). The pie chart shows the numbers of genes commonly or uniquely 

regulated by individual TGFβ ligands. (C) The top ten signaling pathways revealed by Ingenuity 

canonical pathway analysis of the 877 target genes shared by these three TGFβ ligands. (D) Heat 

map of 20 genes exhibiting the highest magnitude of upregulation or downregulation in response 

to these three TGFβ ligands. (E & F) LX-2 cells were treated with vehicle, activin A (100 

ng/mL), activin B (100 ng/mL), or their combination (100 ng/mL each) for 24 h. The expression 

of these genes was assessed using qRT-PCR. Data are shown as means of fold changes relative 

to vehicle controls ± S.E.M. *, P < 0.05.  

  



65 

 

Figure 3.7 continued 

B 

 

 

C 

 



66 

 

Figure 3.7 continued 
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3.9 Individual or combinational neutralization of activin B and A distinctly ameliorates the 

progression of CCl4-induced liver fibrosis 

The above association studies in humans and mice and in vitro studies strongly suggested that 

activin B and A differently participate in the regulation of liver fibrosis progression, and hence, 

we intended to confirm this notion. Global gene knockouts of these two widely produced activin 

ligands cause developmental defects, reproductive failure, or postnatal death in mice86-88. 

Therefore, we used a neutralizing antibody to systemically inactivate these two proteins and 

subsequently investigated their effects on the initiation of CCl4-induced liver fibrosis. Five 

treatment groups were included: (1) vehicle; (2) IgG + CCl4; (3) anti-activin A antibody + CCl4; 

(4) anti-activin B antibody + CCl4; and (5) combination of both antibodies + CCl4. In the initial 

association studies, we found time windows during which both activin A and B were induced in 

the acute phase of liver injury (Figures 3.2A–F). This co-induction suggested a possible 

spatiotemporal coordination between the two activin ligands, warranting their combined 

application in this study. Antibodies were initially dosed half an hour before the first CCl4 injection 

and were dosed weekly thereafter.  

 

A dosage of 10 mg/kg of anti-activin A antibody weekly was used because our previous study 

showed the greatest efficacy of this regimen in regressing degeneration of injured skeletal muscle 

in mice131. We administered 50 mg/kg as the maximal efficacy dose of anti-activin B antibody 

once per week as the IC50 was found to be five-fold higher than that of anti-activin A antibody, as 

determined by using a SME promoter luciferase assay (Figures 3.8A–D)132, and liver mass 

increased in a mouse homeostasis study (Figure 3.8E). Anti-activin B antibody exerted numerous 

beneficial effects, including reduced liver injury indicated by serum ALT and AST (Figures 

3.8F&G), elevated serum glucose and decreased total bilirubin level (Figures 3.8H&I), and 
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decreased liver fibrosis analyzed using collagen staining and collagen 1α1 mRNA expression 

(Figures 3.8J–L). Anti-activin A antibody treatment reduced liver injury and improved liver 

functions to a lesser extent than anti-activin B antibody, but did not decrease total bilirubin and 

liver fibrosis, although collagen 1α1 mRNA expression was inhibited (Figures 3.9E–J). The dual 

antibodies showed beneficial effects equivalent to, or, in some cases, greater than that of activin B 

mAb alone (Figures 3.8E–J). However, only activin B mAb treatment did not increase the liver to 

body weight ratio (Figure 3.8M). In livers chronically damaged by CCl4, activin B and A are 

essential collaborators to induce CXCL1, because neutralizing either one of them prevented 

CXCL1 upregulation, resulting in prohibited iNOS elevation (Figure 3.8P). In addition, hepatic 

CTGF and TGFβ1 upregulation was completely suppressed by neutralizing either one of the two 

activin ligands in mice chronically treated with CCl4 (Figure 3.8P). CXCL1 has multiple functions, 

one of which is to attract neutrophils to infiltrate the liver injured by alcohol133. However, we 

observed that, in livers chronically damaged by CCl4, myeloperoxidase (MOP)-positive 

neutrophils were concentrated in the septa (Figure 3.8Q). When anti-activin A antibody treatment 

prevented hepatic CXCL1 induction without affecting septa formation, MOP-positive neutrophils 

were still largely located in the septa (Figure 3.8Q). These observations suggest that neutrophils 

are closely associated with liver fibrogenesis, and their infiltration might not be regulated by 

CXCL1 in this setting. When liver fibrosis was largely prevented, neutrophils were overtly reduced 

and diffused (Figure 3.8Q). The distribution of F4/80-positive hepatic macrophages (Kupffer cells) 

was similar to that of neutrophils in all experimental groups (Figure 3.8Q). These data suggest that 

(1) activin B, and to a lesser extent activin A, mediate the initiation of liver fibrosis by promoting 

inflammatory response and fibrogenesis, and (2) activin B inhibition or, even better, both activin 

B and A inhibition prevents liver fibrosis.  
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Figure 3.8  Anti-activin A antibody, anti-activin B antibody, and their combination show distinct 

effects in preventing liver fibrosis induced by CCl4 in mice.  

The Smad2/3 Binding Element (SBE) luciferase assay in SBE-transfected HEK 293 cells to 

determine activin antibody specificity. SBE-transfected HEK293 cells co-treated with activin A 

and activin B antibodies (A), or activin AB (B), activin A (C), or activin C (D) proteins for 24 h. 

Adult female mice were subjected to CCl4 or vehicle injection (i.p.) twice per week for 4 weeks. 

Half an hour before the first CCl4 injection, mice were treated (s.c.) with IgG (60 mg/kg), anti-

activin A antibody (10 mg/kg of anti-activin A antibody + 50 mg/kg of IgG), anti-activin B 

antibody (50 mg/kg of anti-activin B antibody + 10 mg/kg of IgG), or combination of activin A 

and activin B antibodies (10 mg/kg of anti-activin A antibody + 50 mg/kg of anti-activin B 

antibody). Subsequently, antibody treatments were performed once per week. Four weeks after 

the initial CCl4 injection, (E) ALT, (F) AST, (G) glucose, and (H) total bilirubin in the blood 

were analyzed. (I) Representative liver sections stained with Masson trichrome. (J) 

Quantification of the percentage of Masson trichrome staining areas. (K) The mRNA expression 

of hepatic Col1α1 was evaluated using qRT-PCR. (L) Liver-to-body weight ratios. (M–O) Total 

liver RNA samples generated from the experiment described in Figure 3 were subjected to qRT-

PCR analysis for determining the expression of the genes indicated. (P) Immunohistochemical 

analysis of MOP-positive cells (neutrophils), F4/80-positive cells (Kupffer cells), and Ki67-

positive cells (proliferating hepatocytes) on liver sections prepared from the experiment 

described in Figure 3. Data are expressed as means ± S.E.M. (n = 10). *, P < 0.05 compared to 

vehicle controls. #, P < 0.05, compared to IgG controls. 
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Figure 3.8 continued 
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Figure 3.8 continued 
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3.10 Neutralization of activin B and A regresses CCl4-induced liver fibrosis  

Because of the superior effects of antibody-mediated inactivation of activin B or both activin B 

and A in preventing liver fibrosis, we tested the same strategy to reverse fibrosis in the CCl4 mouse 

model after the disease has been established. Following the same study design as the preventive 

liver fibrosis study, CCl4 was injected twice per week for 10 continuous weeks. Starting at the 

seventh week when liver fibrosis was completely established, antibodies were dosed weekly for 

the remaining 4 weeks. Consequently, we found distinct reversal effects in both the anti-activin B 

and A antibody treatment groups. The reversal effects followed the sequence of the magnitude of 

effect where inactivating both activin B and A had greater effect than inactivating activin B alone, 

and inactivating activin A had the lowest effect. Combinational inactivation exerted the most 

beneficial effects across all assessments, including reduced liver injury (as measured by serum 

ALT and AST), increased serum glucose and total bilirubin level, decreased collagen deposition, 

and less macrophage infiltration (Figures 3.9A–K). Inactivating activin B alone generated a 

stronger anti-fibrotic effect, but nearly equal effects in other assessments, compared with those 

noted after inactivating activin A alone (Figures 3.9A–K). Notably, inactivating activin B alone 

and inactivating both activin B and A equivalently regressed liver fibrosis (Figure 3.9F). 

Neutrophils and Kupffer cells were similarly distributed in fibrotic livers and were concentrated 

in the septa. Neutralizing activin A, activin B, or both did not alter the total number of neutrophil 

infiltrations, but almost equally reduced the total number of Kupffer cells (Figures 3.9H–K). This 

suggests that activin B and activin A essentially cooperate to modulate the functional state of 

Kupffer cells. Taken together, these results suggest that activin B is a stronger driver of liver 

fibrogenesis than activin A, and that these two activin ligands might act cooperatively during the 

progression of chronic liver injury. Moreover, neutralization of either or both ligands might largely 

reverse the already established liver fibrosis, in addition to preventing the onset of disease. 
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Figure 3.9  Anti-activin B antibody, anti-activin A antibody, and their combination show 

different effects in regressing liver fibrosis induced by CCl4 in mice.  

Adult female mice were subjected to CCl4 or vehicle injection (i.p.) twice per week for 10 

weeks. Starting from the seventh week, the mice were treated (s.c.) with IgG (60 mg/kg), activin 

A mAb (10 mg/kg of activin A mAb + 50 mg/kg of IgG), activin B mAb (50 mg/kg of activin B 

mAb + 10 mg/kg of IgG), or the combination of activin A and activin B antibodies (10 mg/kg of 

activin A mAb + 50 mg/kg of activin B mAb) once per week. Ten weeks after the initial CCl4 

injection, (A) ALT, (B) AST, (C) glucose, and (D) total bilirubin in the blood were analyzed. (E) 

Representative liver sections stained with Masson trichrome. (F) Quantification of the 

percentage of Masson trichrome staining areas. (G) Liver-to-body weight ratios. (H) 

Immunohistochemical analysis of MOP-, F4/80-, and Ki67-positive cells on liver sections. 

Quantification of the percentage of MOP- (I), F4/80- (J), and Ki67-positive cells (K). Data are 

expressed as means ± S.E.M. (n = 10). *, P < 0.05 compared to vehicle controls. #, P < 0.05, 

compared to IgG controls. 
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Figure 3.9 continued 

 

 

E 

 
 

F                                                                G 

 

 

 

 

 

  



78 

 

Figure 3.9 continued 
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Figure 3.9 continued 
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3.11 Individual or combinational neutralization of activin B and A distinctly prevents the 

progression of BDL-induced liver fibrosis 

To further validate the above in vivo findings, we conducted a similar study in mice with BDL-

induced chronic liver injury. Experimental groups included (1) sham control; (2) IgG + BDL; (3) 

activin A mAb + BDL; (4) activin B mAb + BDL; and (5) activin A mAb + activin B mAb + BDL. 

We dosed the first antibody one day before BDL surgery and the second one a week after BDL. 

Endpoint analyses were conducted 2 weeks after BDL. We found that BDL induced the 

upregulation of activin B mRNA expression without affecting activin A and activin C in the liver 

(Figure 3.10A). Individual antibody mildly, but dual antibodies almost entirely, inhibited activin 

B mRNA induction in bile duct-ligated livers (Figure 3.10A). Anti-activin B antibody treatment 

reduced liver injury, improved liver function, and decreased liver fibrosis (Figures 3.10B–G). 

Surprisingly, anti-activin A antibody did not show beneficial effects in nearly all the endpoints 

analyzed except that it ameliorated the total bilirubin index (Figure 3.10E). Remarkably, the dual 

antibodies exerted the most prominent efficacy, manifested by reduced liver injury, improved liver 

functions, and decreased liver fibrosis, but further enlarged the livers compared to those of IgG 

controls (Figures 3.10B–H). BDL typically induces biliary ductal reaction or new bile duct 

formation, which was not overtly affected by these antibodies, as revealed by CK19 

immunostaining (Figure 3.10J). Activin B mAb and combination of both antibodies decreased 

hepatic inflammatory cytokines, CXCL1, IL-6, and IL-1β in the liver, and IL-6, TNFα, and IL-1β 

in the blood, whereas activin A mAb only inhibited serum IL-2 (Figures 3.10K–P). These results 

suggest that, in this model, (1) activin B strongly, but activin A minimally, promotes the 

progression of chronic liver injury; (2) activin B profoundly, but activin A slightly, induces the 

inflammatory response of liver fibrosis; and (3) the presence of activin A enhances the promoting 

actions of activin B, indicating why the dual targeting approach is the most beneficial.   
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Figure 3.10  Anti-activin A antibody, anti-activin B antibody, and their combination exhibit anti-

inflammatory and anti-fibrotic effects in the BDL liver fibrosis model. 

Liver injury marker ALT (A) and AST (B), liver functional marker glucose (C), and total 

bilirubin (D) levels were determined in the serum of all the groups. (E) Representative 

histological images of trichrome staining, and (F) quantitative graph for collagen in all groups. 

(G) Liver index (ratio of liver weight to body weight) and (H) RT-PCR used to measure the 

levels of Col1a1, CTGF and TGFβ1, iNOS, CXCL1, SOX4, CXCR2, IL-6 and IL-1β at 2 weeks 

after BDL surgery after co-treatment with vehicle (mIgG), anti-activin A antibody, anti-activin B 

antibody, and combination of both (n = 8). (I) RT-PCR used to measure the level of activin A, 

activin B, and activin C in all groups. (J) Representative histological images of 

immunohistochemistry and CK19 fluorescence staining. (L and M) Quantification of 

inflammatory cytokines, TNFα, IL-2, and IL-6 in the serum and (N) CXCL1, IL-6, and IL-1β in 

the liver lysates of mice at 2 weeks after BDL surgery.  Data are expressed as means ± S.E.M. 

Significance is indicated as *P ≤ 0.05, treated group versus vehicle group (Dunnett’s one-way 

ANOVA). 
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Figure 3.10 continued 
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Figure 3.10 continued 
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Figure 3.10 continued 
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Figure 3.10 continued 
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3.12 Discussion 

This study mainly aimed to investigate the role of activin B in hepatic fibrogenesis. Our clinical 

and animal studies revealed a correlation between circulating activin B and liver fibrosis severity, 

which indicates that activin B is a potential biomarker and therapeutic target of liver fibrosis. In 

the liver, activin B acts directly on multiple cell populations to induce hepatic fibrogenesis either 

by itself or cooperatively with activin A, especially in HSCs and macrophages. Our study suggests 

that activin B promotes hepatocyte damage and macrophage and HSC activation to induce hepatic 

fibrogenesis by regulating TWEAK/Fn14, CXCL1/iNOS, CTGF, and TGFβ1 multiple signaling 

pathways. Moreover, the inhibition of activin B action remarkably decreased liver injury, 

inflammation, and fibrosis and improved liver function in liver fibrosis mouse models; these 

effects were enhanced when combined with activin A inhibition. The effects of activin B and A 

inhibition on liver fibrosis in animal models open potential clinical therapeutic possibilities for 

patients with liver fibrosis. The primary function of activin A and B is to regulate the reproductive 

system, developmental processes, inflammation, immunity, hematopoiesis, and tumorigenesis. In 

addition to these functions, our findings suggest that activins play a pivotal role in liver fibrosis.  
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The novel roles of activin B in hepatic fibrogenesis other than the reproductive function 

Activins were initially isolated and identified for their roles in regulating developmental and 

reproductive processes. Activin A, a 28 kDa protein, was isolated in 1986 and activin B, a 25 kDa 

protein, was purified in 1992 from porcine ovarian follicular fluid134 135. Both activin A and B 

possess the ability to release follicle stimulating hormone from rat anterior pituitary cells in vitro. 

In developmental processes, activin A plays an important role in embryonic induction, limb and 

nervous system development, and morphogenesis of branched glandular organs and Wolffian duct.  

The involvement of activin A and B in development is also highlighted by the phenotype changes 

in corresponding genetically modulated mice. The phenotype of mice with inhibin βA gene 

knockout is lethal because of the failure in sucking due to mandibular and palate defects and 

absence of coiling in the epididymis86 136 137. Even though mice with inhibin βB gene knockout 

remain alive and fertile, their eye lids are dysfunctional and hence the eyes remain open, resulting 

in permanent ocular damage, and females show prolonged gestation and poor nursing behavior87 

88. In addition, double knockout of inhibin βA and inhibin βB leads to the same defects as those 

noted after individual knockout, without any additional abnormalities86. Knockout of either inhibin 

βA or inhibin βB gene exhibits a distinct phenotype, indicating that each of them has a distinct and 

irredundant function in development. Furthermore, even though activin A and activin B have 

similar actions, their potency varies in developmental and reproductive processes. Activin A is a 

more effective regulatory protein of ovarian and testicular development, whereas activin B is more 

potent to induce embryonic mesoderm formation135 138. In addition, only activin B is involved in 

central nervous system development77 139. All these findings suggest that activin A and activin B 

share certain redundant functions and have some specific functions in developmental and 

reproductive processes, which might extend to other process such as liver fibrosis. 
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The complicated dual roles of activin A in mediating inflammation were shown by in vitro 

monocyte and macrophage studies. At low concentration, activin A induced inflammatory 

cytokines, including IL-1β, IL-6, and TNFα, via the p38 MAPK and ERK1/2 pathways in resting 

monocytes/macrophages, whereas it had inhibitory inflammatory effects in activated macrophages. 

Recently, accumulating evidence shows that activin B is involved in inflammation in acute liver 

injury112 140 141. In mice, activin B mRNA and protein are induced in the liver at 6 hours after the 

administration of LPS, and Kupffer cells and vascular endothelial cells are the main cellular 

sources of activin B140. In cell culture, activin A induced fibroblast proliferation and differentiation 

into myofibroblasts142. It also stimulated TGFβ1 production in renal and lung fibroblasts as well 

as pancreatic stellate cells, indicating that activin A might be a generalized pro-fibrotic regulator 

in multiple tissues143-145. The results of these in vitro and in vivo studies indicate that activin A and 

B might participate in the regulation of inflammation and pathogenesis of liver fibrosis.  

Liver fibrosis is the common consequence of liver injury secondary to various chronic liver 

diseases126. The pathogenesis of liver fibrosis is mediated by complex cellular and molecular 

mechanisms. Herein, we provide the first clinical and experimental evidence suggesting that 

activin B has a functional role in liver fibrosis in initiating liver inflammation and fibrogenesis by 

inducing CXCL1/iNOS in macrophages and CTGF/TGFβ1 in HSCs. In this study, we also showed 

that activin B has substantially similar effects on hepatocytes, macrophages, and HSCs as those of 

activin A, whereas activin B specifically induced a group of genes in HSCs. Moreover, the in vivo 

efficacy results from multiple liver fibrosis mouse models showed that the administration of activin 

B mAb remarkably prevents liver injury and fibrosis induced by CCl4 and BDL, and activin A 

mAb enhanced these preventive effects. The results of our study provide evidence that, in addition 
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to their role in reproductive and developmental processes, activin B and A are involved in liver 

fibrosis.  

 

Activin B is a potential biomarker of liver fibrosis 

Our study identified activin B as a factor closely associated with liver injury, irrespective of 

etiology and species. This reveals a highly conserved, activin B-mediated machinery, which 

fundamentally supports the liver’s ability to respond to various insults in mammals. This 

machinery is activated rapidly following liver injury, operates stably throughout the pathogenesis, 

and predominates until the injured liver becomes fibrotic. We found that activin B mRNA was 

abundantly transcribed in fibrotic cells in chronically injured livers, and hepatic activin B transcript 

expression and protein level were always concomitantly elevated and were correlated with 

enriched circulating activin B. Therefore, increased production of hepatic activin B could largely 

contribute to its systemic enrichment during liver fibrosis development. As activin B is elevated 

both locally as well as systemically in multiple liver fibrosis rodent models and in patients with 

NASH, it is considered a promising biomarker. Further investigations are warranted to potentially 

develop activin B as a reliable and sensitive serum marker for monitoring liver fibrosis progression, 

especially for the diagnosis, staging, and prognosis of liver fibrosis and cirrhosis. The diagnosis of 

liver fibrosis is critical because hepatic fibrosis might progress and ultimately lead to cirrhosis 

with severe complications or hepatocellular carcinoma if the underlying insults persist, and 

management of patients with different stages of liver fibrosis relies on reliable diagnosis. At 

present, liver biopsy remains the gold standard for diagnosis and staging purposes146. Although it 

allows the histological assessment and quantification of liver fibrosis, it has several shortcomings, 

including patient’s unwillingness because of its invasiveness, subsequent pain, and potential 

complications; sampling error; and high cost. These disadvantages limit its repeated application in 
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patients, requiring the exploration of non-invasive and reliable biomarkers of liver fibrosis. In 

addition to liver biopsy, the two other options for diagnosing liver fibrosis are image-based 

assessments and blood tests. Ultrasound-based elastography and magnetic resonance imaging are 

two representative imaging methods for liver fibrosis even though their diagnostic accuracy for 

fibrosis is low147 148. Blood tests might be divided into two classes: class I markers are direct serum 

markers that can be used to measure liver ECM turnover, whereas class II markers are indirect 

serum markers calculated from a mathematical model of liver function change. MMPs, TIMPs, 

collagen IV and VI, hyaluronic acid (HA), and laminin belong to class I biomarkers149 150. 

Collagens and HA are the most widely used markers for evaluating liver fibrosis development. 

The limitations of class I biomarkers are not always correlated with whole tissue function and are 

affected by other factors such as inflammation. Class II biomarkers are cost-effective and include 

ALT, AST, ALP, platelet count, and bilirubin, which reflect liver function, but are not necessary 

for monitoring liver fibrosis151 152. The sensitivity and specificity of these markers can be improved 

by combining diverse serological biomarkers in various degree of complexity. Two representatives 

of combined biomarkers are ALT/AST ratio and AST to platelet ratio index (APRI). Both are 

effective in diagnosing liver fibrosis with relatively high sensitivity in patients with HCV, although 

APRI might not be used in ALD due to the significant platelet suppression of alcohol153 154. 

Nevertheless, these investigations need further exploration, particularly for the detection of 

intermediate fibrosis grades. An ideal non-invasive biomarker is correlated with liver fibrosis 

severity. Activin B is a strong candidate because it is increased in the liver and blood in animal 

models and human patients with liver fibrosis. In particular, hepatic and serum activin B protein 

levels are significantly increased at the F4 stage of NASH (Figure 3.2 D&E). Because of the 

possible direct participation of activin B in hepatic fibrogenesis, this finding provides a new way 
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to explore liver fibrosis biomarkers other than ECM turnover components or liver functional 

enzymes. Future studies need to focus on identifying liver- and serum-correlated soluble proteins 

that are associated with the severity and staging of liver fibrosis. At present, no Food and Drug 

Administration-approved standard medicine is available for liver fibrosis treatment155. The 

promising targets revealed in animal studies encourage scientists to evaluate them in clinical trials. 

However, clinical trials of liver fibrosis are costly, and recruiting patients is difficult as they are 

usually long-term studies that require serial liver biopsies to assess fibrosis progression. Therefore, 

reliable noninvasive markers of liver fibrosis become a key factor to design and monitor clinical 

trials. 

   

Activin B is a novel driver of hepatic fibrogenesis 

Liver fibrosis is a severe health problem as the destruction of the normal liver architecture by ECM 

accumulation and fibrous scar formation along with the loss of functional hepatocytes eventually 

leads to liver failure. At present, no clinically effective therapies are available for liver fibrosis 

except liver transplantation. The potential targets of hepatic fibrogenesis are explored using 

activated HSCs and Kupffer cells as the key fibrogenic effector cells to determine ways to prevent 

its progression and/or induce its resolution. The majority of myofibroblasts are differentiated from 

activated HSCs, and HSC activation is a key step during hepatic fibrogenesis. The molecules and 

pathways required for HSC activation are attracting attention and are investigated as potential 

therapeutic targets. The therapeutic strategy involves suppression of HSC activation, induction of 

activated HSC apoptosis, or manipulation of macrophage activity. In experimental studies, some 

molecules have been shown to be the targets for liver fibrosis. TGFβ1 and hepatocyte growth factor 

(HGF) are representatives of these targets. TGF-β1 promotes HSC activation and proliferation, as 
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well as induces EMT and EndoMT to contribute to myofibroblast populations. However, the 

inhibition of TGFβ1 is ineffective in long-term treatment because of the serious adverse effects 

and complications because of its pleiotropic roles in homeostasis. HGF is a multifunctional 

cytokine involved in hepatic fibrogenesis. In animal models, blocking HGF activity is effective, 

but it increases the risk of carcinogenesis. Therefore, identifying a general target of liver fibrosis 

that is associated with liver fibrosis severity and its blocking has anti-fibrotic effects in multiple 

models is urgently required. 

 

By using both in vitro and in vivo approaches, we showed that activin B is a potent driver of the 

complications (hepatocyte injury, inflammation, and fibrosis) of chronic liver injury. In the liver, 

the initiation and perpetuation of liver fibrosis are controlled by multiple cell populations that 

mainly include hepatocytes, macrophages, and HSCs. We found that activin B mediates hepatocyte 

injury. This is manifested by improved hepatocyte viability and reduced ALT after activin B is 

neutralized in vitro and in vivo. In addition, activin B and A stimulate TGFβ1, CTGF, Col1α1, and 

ACTA1 gene expression in hepatocytes. These activin A- and activin B-induced fibrotic transcripts 

facilitate the trans-differentiation of to a myofibroblast-like phenotype, which provides evidence 

that EMT could be one of the possible sources of myofibroblasts. At the molecular level, we 

revealed some important clues for further mechanistic investigations to understand how activin B 

regulates the activities of macrophages and other immune cells. For example, activin B upregulated 

TWEAK and its receptor Fn14 in macrophages. The TWEAK/Fn14 pathway was shown to 

promote ROS production and oxidative stress in these cells156. TWEAK is known to be primarily 

produced by macrophages and natural killer cells; it induces the expansion of liver progenitor cells, 

mediates the cross-talk among liver progenitor cells/immune cells/HSCs, and eventually augments 
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inflammatory and fibrotic responses in chronically injured livers157-159. This reveals an activin 

B/TWEAK/Fn14 axis operating in multiple liver cell populations in injured livers. Strikingly, we 

showed that activin B is a potent pro-fibrotic factor. It massively altered the transcriptome of HSCs 

in vitro and forced them to form a septa-like structure. Neutralizing activin B alone largely 

repressed septa formation, collagen deposition, and fibrotic gene expression, such as CTGF and 

TGFβ1, in chronically injured liver in vivo. The microarray data provided a list of activin B target 

genes of interest for further studies to elucidate how activin B controls the activities of HSCs. 

Based on these findings and given the persistent increases of hepatic and systemic activin B with 

the progression of liver injuries regardless of etiology and species, we propose activin B as a 

primary and critical factor to sustain the activation of immune cells and HSCs during various 

chronic liver diseases.  

 

Activin B and A are novel and direct regulators of HSCs 

Previous studies have shown that TGF signaling might modulate liver fibrogenesis, for which 

HSCs are central. However, the subset of TGF superfamily ligands that directly target HSCs has 

not been well defined, and whether the ligands activate redundant or distinct TGF signaling in 

these cells remains unclear. We found that TGF ligand, activin B was persistently induced in the 

liver and blood during both CCl4- and BDL-induced chronic liver injury in mice. More remarkably, 

both activin B and activin A proteins stimulated LX-2 cells to form a septa-like structure in vitro, 

similar to TGF1, a mostly studied TGF ligand in liver fibrosis. These findings suggest that 

activin A and B are involved in liver injury progression at least by directly regulating the activities 

of HSCs. To further confirm this at the molecular level, we treated LX-2 cells with activin A, 

activin B, or TGF1 for 6 h and subsequently profiled their early responsive genes by using 
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microarray analysis. We found that these three TGFβ ligands regulate overlapping, but differential 

gene networks, which are associated predominately with HSC activation and hepatic fibrosis and 

with many other HSC activities. Notably, with equivalently high magnitudes, these three TGFβ 

ligands upregulated TMEPAI, apoptosis regulator SOX4, calcium ion-binding protein MGP, and 

EGR2 and down-regulated dual specificity phosphatase 6, BMP4, extracellular matrix 

glycoprotein TNXB, IL-8, and IL-17 receptor C. These data suggest that TGF signaling dictates 

a spectrum of HSC properties independent of its ligands. However, each of these three TGFβ 

ligands targets a unique and large set of genes associated with critical cellular functions. In 

particular, activin A specifically down-regulates solute carrier family 25 member 29, a 

mitochondrial transporter of basic amino acids, suggesting its role in mitochondrial amino acid 

metabolism. Activin B exclusively decreased cell migration-associated scaffold protein Ezrin and 

calcium-dependent phospholipid-binding protein 3, implying that activin B plays a role in HSC 

migration. TGF1 exceptionally suppressed myostatin, a well-established potent inhibitor of 

myogenesis, indicating its possible role in liver–muscle cross-talk. Thus, we showed that (1) 

activin A and B are new regulators of HSCs and thus potentially participate in mediating liver 

fibrogenic responses, and (2) TGF signaling exhibits ligand-independent and ligand-dependent 

actions in HSCs, warranting future studies of individual TGF ligands in liver fibrogenesis.  

 

Activin A and B additively and interdependently act on HSCs and macrophages 

Our study showed that the presence of both activin B and activin A is required to optimally 

promote liver injury progression. We showed that hepatic and systemic activin A was transiently 

increased at the acute phase of liver injury and was maintained at the pre-injury level during the 

long-lasting chronic phase. Although the neutralization of activin A alone produced beneficial 
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effects, they were weaker than those noted after the neutralization of activin B alone in both the 

prevention and reversal studies. Furthermore, we observed many additive or synergistic effects 

between activin B and A in vitro in macrophages and HSCs as well as in vivo in chronically injured 

livers, as described in the result section. For example, we showed a novel activin B and 

A/CXCL1/iNOS pathway that modulates macrophages. In response to immunological stimuli, 

iNOS is highly induced and generates a large amount of nitric oxide and hence promotes many 

pathological processes, including liver fibrosis of diverse etiology160-162. Identification of this 

pathway enabled us to gain important mechanistic insights into the actions of activin B and A. 

Another example is that the upregulation of CTGF and TGFβ1 gene expression requires the 

collaboration of activin B and A in chronically damaged livers. Most strikingly, inactivating both 

activin B and A yielded the most profound beneficial effects across our structural and functional 

assessments compared to those noted after inactivating activin B or A alone. These observations 

indicate that, as liver injury progresses, elevated activin B needs constitutive activin A for the 

activation of certain cellular programs that otherwise would not be initiated by a single ligand. 

Thus, unchanged activin A is not only an auxiliary factor, but also an essential collaborator, of 

increased activin B, on which individual cellular programs depend, in persistently injured livers. 

This represents a novel mode of action of TGFβ ligands in general and a new mechanism governing 

the actions of activins B and A in specific.  
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Neutralization of both activin A and B is highly efficient in preventing and regressing liver 

fibrosis 

 

Our pre-clinical studies showed that targeting activin B or ideally both activin B and A is a 

promising strategy to prevent and even reverse liver fibrosis. In addition to blocking activin A and 

B, neutralization of both activin A and B produced additive or synergistic effect that can be 

attributed to the blocking of activin AB; partial inactivation of activin AC, activin AE, activin BC, 

inhibin A, and inhibin B; and potential interactions between activin A/Smad2/3 signaling and 

activin B/Smad1/5/8 pathway. Anti-activin A antibody neutralizes activin A and any of the 

heterodimers having inhibin βA subunit, whereas anti-activin B antibody blocks activin B and 

partially blocks any of the heterodimers having inhibin βB subunit. This broad-spectrum 

neutralization of multiple activins and inhibins provides enhanced anti-fibrotic and anti-

inflammatory effects. Furthermore, the inhibition of both of Smad2/3 and Smad1/5/8 pathways 

supports the profound anti-fibrotic efficacy. Both pathways share Smad4, the common 

transcription factor, which might explain the additive or synergistic effects after combined 

activation or inhibition of activin A and B. Improved understanding of TGFβ signaling in 

homeostasis and pathophysiology has accelerated continuous preclinical and clinical efforts 

targeting its ligands, receptors, or Smads for therapeutic benefits, including reversing organ 

fibrosis. However, few studies have shown positive patient outcomes largely because of off-target 

complications3 64. Thus far, Pirfenidone is the only small-molecule TGFβ signaling inhibitor 

approved for the treatment of human idiopathic pulmonary fibrosis. It has significant adverse 

effects in the gastrointestinal tract and skin132. A soluble ActRIIB, ACE-031 has been tested in 

clinical trials in healthy volunteers and patients with Duchene Muscular Dystrophy163. Soluble 

ActRIIB binds to various TGFβ superfamily ligands, including GDF5, GDF8, GDF11, activin A, 

activin B, activin C, activin E, Nodal, BMP2, BMP4, BMP6/7, BMP9, and BMP10 and other 
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negative regulators of muscle mass. Clinically, ActRIIB showed pronounced effect on increasing 

skeletal muscle growth, but caused bleeding, which might be attributed to its non-specific binding 

to TGFβ superfamily ligands, limited its clinical application164. Although our study has some 

limitations in that the PK/PD of the antibodies was not determined and thus the dosing regimens 

used might not be optimal, once per week administration of activin B antibody alone or activin B 

and A dual antibodies showed high therapeutic efficacy. Our results might form a basis for further 

translational development of this strategy.  

 

Liver fibrosis is mediated by multiple cell populations 

The development of hepatic fibrogenesis is orchestrated by many cell populations in the liver, such 

as hepatocytes, HSCs, and macrophages. Other cell types also participate in liver fibrosis, 

including endothelial cells, progenitor cells, and natural killer cells. At present, therapeutic targets 

of liver fibrosis only focus on myofibroblast inactivation and apoptosis and/or macrophage 

phenotype switch. Other cell types might need to be considered in liver pathogenesis. Recently, 

accumulating evidence implies that epigenetic regulation might affect liver fibrosis development, 

which is represented by DNA methylation and histone modification165-167. The proteins and non-

coding regulatory RNA molecules involved in epigenetic mechanism might reveal new biomarkers 

and therapeutic targets for liver fibrosis. In the present study, we identified activin B as a novel 

biomarker and therapeutic target of liver fibrosis. Interestingly, serum activin B was also elevated 

in idiopathic pulmonary fibrosis, indicating that it might be involved in fibrogenesis in other 

organs168 169.  
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3.13 Conclusion 

In summary, we identified activin B as a potent driver, potential clinical biomarker, and a 

promising therapeutic target of liver fibrosis. Based on our findings, we propose the following 

theory (Figure 3.13). Irrespective of the etiology, chronically injured livers constantly produce 

increased activin B. Synergistically with constitutive activin A, it promotes hepatocyte injury and 

possibly trans-differentiation; modulates macrophages and other immune cells to secrete 

inflammatory cytokines through CXCL1/iNOS, TWEAK/Fn14, and other signaling pathways; and, 

most importantly, initiates and maintains the activation of HSCs by increasing the expression of 

pro-fibrotic genes, including CTGF and TGFβ1. Thus, activin B potently promotes liver 

fibrogenesis. This theory directs our future investigations to elucidate activin B- and A-triggered 

signaling pathways and their functions in each liver cell population during the progression of liver 

fibrosis. 
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Figure 3.11   Scheme of the proposed role of activin B and activin A in promoting hepatic 

fibrogenesis 

Hepatic fibrogenesis mediated by activin B and activin A is orchestrated by multiple cell types, 

including hepatocytes, HSCs, and KCs. (1) Liver injury (for example by CCl4 and alcohol) 

causes parenchymal cell (hepatocytes and cholangiocytes) necrosis and/or apoptosis. (2) The 

injured hepatocytes release various growth factors, including activin A and activin B, which in 

turn activate hepatic stellate cells, attract and activate Kupffer cells, and trans-differentiate 

hepatocytes to myofibroblasts as autocrine cytokines. (3) The sustained elevation of activin B 

and constitutive activin A, in particular, lead to the trans-differentiation of hepatic stellate cells 

and hepatocytes into myofibroblasts, which express profibrotic genes, including ACTA1, 

collagen I, CTGF, and TGFβ1. Activin A and activin B activate macrophages that highly express 

inflammatory genes such as TWEAK, Fn14, and CCL2. TWEAK/Fn14 and CXCL1/iNOS 

signaling promotes a hepatic inflammatory response. (4) Synergistic induction by activin A and 

activin B of CXCL1 and iNOS in macrophages and CTGF, GNDF, IL-6, IL-1β, caspase 3, and 

CXCL1 in HSCs promote hepatocytes apoptosis, hepatic inflammation, and liver fibrogenesis. 
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3.14 Future directions 

Our results reveal that activin B is a novel biomarker and mediator of liver fibrosis. Circulating 

activin B level is associated with fibrosis progression in preclinical liver fibrosis induced by 

hepatotoxins such as CCl4 or ethanol and cholestasis and in human NASH and alcoholic liver 

diseases. Further clinical evidence from liver and serum samples from patients with NASH and 

ALD as well as other chronic liver diseases, including chronic virus hepatitis or autoimmune 

hepatitis, is required. Neutralization of activin A or activin B alone prevents and even reverses 

hepatotoxin-induced liver fibrosis, whereas neutralization of both enhances the anti-fibrotic effect 

and optimally improves liver function. Antagonizing both activin A and activin B signaling seems 

to be a promising target for preventing and reversing liver fibrosis. Thus, a conjugate antibody 

needs to be developed to block both activin A and B. Dual antibody generation and its PK/PD 

results might allow its evaluation in preclinical animal models and even in clinical trials of liver 

fibrosis or NASH.   

 

In the microarray study, we found a novel transcription factor, the SRY-related High Mobility 

Group box transcription factor 4 (SOX4), which was upregulated with activin A, activin B, and 

TGFβ1 in HSCs. In developmental biology, gene knockout studies revealed that SOX4 

cooperatively with SOX9 acts as a pivotal transcription factor and regulator of biliary 

development170. The role of SOX4 in hepatic fibrogenesis has not yet been determined. The 

mechanism of SOX4 in hepatic fibrogenesis, especially in HSC activation and differentiation, 

needs to be further investigated. Liver-specific or stellate cell-specific SOX4 knockout or 

overexpression studies might enable the elucidation of target genes and their effects on septa 

structure formation in liver fibrosis development. Further studies are required to investigate 

whether activin A and B mediate hepatic fibrogenesis through SOX4 in HSCs.   
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In conclusion, future translational studies are required to develop activin B as a potential biomarker, 

generate dual antibodies, and conduct evaluations in rodent models and clinical patients, as well 

as to determine the mechanism of SOX4 in activin-mediated liver fibrosis.  
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