
David S. Gilliam
Department of Mathematics
Texas Tech University
Lubbock, TX 79409

806 742-2566
gilliam@texas.math.ttu.edu
http://texas.math.ttu.edu/~gilliam

Mathematics 4330/5344 – # 3
Loops, Conditionals, Examples

and Programming

1 Introduction

Matlab provides a friendly interactive environment for scientific programming and visualiza-
tion. Matlab has evolved into a powerful computing environment for developing and testing
of models, as well as, obtaining immediate feedback in solving difficult problems. In addi-
tion there are numerous toolboxes that greatly expand the potential uses of Matlab. For
example, with the C-compiler toolbox you can transform matlab programs into C-code and
even executable C-programs. In this lesson I want to continue to introduce you to various
basic constructs in Matlab. We will talk about for loops, if statements, while statements,
relations such as equal (==) and not equal (~=), less than (<) (or equal <=) and greater than
(>) (or equal >=). We will begin to introduce the concept of a matlab m-file (program) and
some tools for making these programs interactive, such as, the input command. We will talk
about the important programming commands any, all and find. Some of the exercises at the
end of this lesson are intended to continue to reinforce your ability to build matrices with
special structures using builtin Matlab commands such as diag, eye, rot90, tril, triu and of
course colon notation.

2 Lesson 3: For Loops, If and While Statements, More

Matlab Syntax

In this section we will introduce many useful constructs used over and over again in Matlab
programming.

1

1. The program statement

x=input(’{some text defining x}’)

allows you to interactively input the value of x during program execution. For example,
in the last worksheet you built vectors of given length with given properties. For
programming purposes it is useful to allow someone to input any desired length of a
vector at the time of program execution.

n=input(’ input an integer n = ’);

Then issue the command

v=(1:2:n).^2

2. In matlab programming there are several types of loops and conditionals.

(a) First we consider the for loop. The syntax is

for {var} = {a vector of counter values}

{statements}

end

for example

for i=1:3

x(i)=i^2

end

produces x=[1,4,9] .

(b) Here is an example of nested for loops

for i=1:5

for j=1:5

a(i,j)=1/(i+j)

end

end

To do these same operations more efficiently in matlab we can use the following:
aa=hilb (5)

(c) Here is an example using a for loop to exhibit the phenomenon of “rounding er-
rors.” By computing the values of a sixth degree polynomial in a “dumb” way,
then zooming in on a plot of the function, you will see that we get a picture
that tells us something very disturbing – namely that a polynomial of degree
six appears to have many more than six zeros. The necessity of being careful
in programming should be clear from this example. This file is available in the
subdirectory SciCompFiles which is from [2]. You can change directories to Sci-
CompFiles and execute the file by simply typing the name zoom. The full name
of the file is zoom.m – remember all script and function files must end with a “dot
m”.

2

% Script File Zoom

%

% Plots (x-1)^6 near x=1 with

%increasingly refined scale.

% Evaluation (x-1)^6 via

% x^6 - 6x^5 + 15x^4 - 20x^3 + 15x^2 - 6x +1

% leads to severe cancellation.

close all

k=0;

for delta = [.1 .01 .008 .007 .005 .003]

x = linspace(1-delta,1+delta,100)’;

y = x.^6 - 6*x.^5 + 15*x.^4 - 20*x.^3 ...

+ 15*x.^2 - 6*x + ones(100,1);

k=k+1;

subplot(2,3,k)

plot(x,y,x,zeros(1,100))

axis([1-delta 1+delta -max(abs(y)) max(abs(y))])

end

3. The next conditional is the if statement.

if {relation} {statements} end

More generally, you can write

if {relation}

{statements}

elseif {relation}

{statements}

else

{statements}

end

(a) Here is an example of nested for loops and if statements First, we use an input
statement to select a value of n

3

n=4

clear A

for i=1:n

for j=1:n

if i < j

A(i,j)=-1;

elseif i > j

A(i,j)=0;

else

A(i,j)=1;

end

end

end

A

As an illustration of the power of using builtin functions in Matlab programming
this matrix can also be built as follows:

AA=eye(n)-triu(ones(n),1)

4. Next we have the conditional loop while

while {relation}

{statements}

end

(a) Here is an example

j=1

while j <= 10

k(j)=cos(j*pi);

j=j+1;

end

k

% compare this with

kk=cos((1:10)*pi)

(b) Here is an example from [2]: The problem is to find the smallest positive integer
q so that 2−q = 0 in floating point arithmetic.

x=1;q=0;

while x>0

x=x/2;q=q+1;

end

q

(c) Here is an example to find the smallest integer p so that 1 + 2−p = 1 in floating
point arithmetic.

4

x=1; p=0; y=1; z=x+y;

while x~=z

y=y/2; p=p+1; z=x+y;

end

p

2*y

eps

Note 2 ∗ y gives the smallest nonzero floating point number in Matlab eps.

5. In the if and while constructs above we have introduced the notation of a relation. A
relation has the general form

{matrix} {relation} {matrix}

(a) The relational operations are

== equals

~= not equal

< less than

<= less than or equal

> greater than

>= greater than or equal

(b) The value of a relation is a matrix containing zeros and ones. An entry is 0 if the
matrix entry relation is not true and 1 if it is true.

(c) For example, if

A=[1 2;3 4]; B=[1 2;2 4]

T1= A == B

returns the matrix

T=[1 1;0 1]

Try these other examples

T2= A <= B

T3= A > B

T4= A <= 3

T5= A ~= B

(d) Another useful set of devices used in relational expressions are

& % and,

| % or

~ % not

These are used on matrices obtained from a relational matrix (as above with all
zeros and ones). For example,

5

T1=[1 1;0 1]; T2=[1 0;0 0]

T=T1&T2

gives the matrix

T1=[1 0; 0 0]

and

T=T1|T2

gives the matrix

T=[1 1;0 1]

Finally,

T=~T1

gives the matrix

T=[0 0;1 0]

6. Two useful programming commands that yield matrices consisting of zeros and ones
are any and all.

For vectors, any(V) returns 1 if any of the elements of the vector are non-zero. Other-
wise it will return a 0. For matrices, any(X) operates on the columns of X, returning
a row vector of 1’s and 0’s As an example of how you might use the any command, let

M=floor(11*rand(3,4))-1

any(M>=8)

Here is a program the does the same as the any command.

v(5:2:10)=5:2:10;

w=0;

k=1;

while (k<=length(v)&w==0)

if v(k)~=0

w=1

end

k=k+1;

end

This should be compared with

any(v)

6

7. Now consider the all command. For vectors, all(V) returns 1 if all of the elements of
the vector V are non-zero. Otherwise it will return a 0. For matrices, all(X) operates
on the columns of X, returning a row vector of 1’s and 0’s.

Here is an example

M=floor(11*rand(3,4))-1

all(M<=8)

8. The find is also very useful in programming. I = find(X) returns the indices of the
vector X that are non-zero. For example, I = find(A>100), returns the indices of the
elements of A that are greater than 100.

[I,J] = find(X) returns the row and column indices of the nonzero entries in the
matrix X.

x=floor(10*rand(1,20))

I=find(x==3)

J=find(x<5)

9. Another useful construct is the diag command. If V is a row or column vector with
N components, diag(V,k) is a square matrix of order N+abs(k) (remember abs is
the absolute value) with the elements of V on the k-th diagonal. k = 0 is the main
diagonal, k > 0 is above the main diagonal and k < 0 is below the main diagonal.
diag(V) simply puts V on the main diagonal. For example,

m=3

D= diag(-m:m) + diag(ones(2*m,1),1) ...

+ diag(ones(2*m,1),-1)

produces a tridiagonal matrix of order 2 ∗m+ 1.

If A is a matrix, (A,k) is a column vector formed from the elements of the k-th diagonal
of A. diag(A) is the main diagonal of A. diag(diag(A)) is a diagonal matrix.

V=round(10*rand(1,4))

diag(V)

diag(V,1)

and

A=round(10*rand(4))

diag(A)

diag(diag(A))

7

10. Finally consider the commands triu and tril for upper and lower triangular matrices.
We will only describe triu, see help for tril. For a matrix A, triu(A) is the upper
triangular part of A. triu(A,k) is the elements on and above the k-th diagonal of A.
k = 0 is the main diagonal, k > 0 is above the main diagonal and k < 0 is below the
main diagonal.

A=round(10*rand(4))

triu(A)

triu(A,1)

triu(A,-1)

11. Finally, we describe an often used command rot90 which is used to rotate matrix
elements. The general syntax is rot90(A,k) where k is a positive or negative integer
corresponding to a k ∗ 90 degree rotation.

A=diag(-2:2)

B=rot90(A)

ASSIGNMENT 3

1. Write a short Matlab program to input an integer n and build a n by n matrix with
the numbers 1, 2, ..., n on the main diagonal and zeros everywhere else (hint: Look at
the command diag .

2. Write a short Matlab program to input an integer n and build the n by n matrix A
with entries aij = 3ij . First use loops to do this and then try to redo it without loops.

3. Write a short Matlab program using loops to compute the first 100 Fibonnaci numbers:
a1 = 1, a2 = 1, an = an−1 + an−2

4. Write a Matlab m-file to Input an integer n , a number w and a vector x with n
components. Then write a for loop program to build n× n matrices A, B and C with
the given entries. Then, try to redo the problem another way using matlab syntax
without loops:

(a) aij = w(i−1)(j−1)

(b) bij = 1/(i+ j − 1)

(c) cij = x
(j−1)
i

Here is some syntax to input n,w, x.

n=input(’input an integer n = ’);

w=input(’input a number w = ’);

x=input(’ input an n-vector, x = ’)

8

5. In this exercise we consider an example of while loops to solve a problem related to the
example in part 4 b) above where we determined the smallest integer q so that 2−q = 0.
Write a short Matlab code to find the smallest positive integer r so that 2r = ∞ in
floating point arithmetic. Note in Matlab infinity is inf. Hint: you might want to use
a while statement with: while x ~= inf.

6. Write a new program based on the m-file zoom.m where you only change the way the
function is calculated. Use

y=(x-1).^6

instead of the expanded version. What is your conclusion as to the best way to evalute
this function?

7. The following code generates 100 2× 2 matrices with integer coefficients in the ranges
k = 1, 2, · · · , 20. For each fixed k it finds the percent that are singular.

percent =zeros(1,20);

for k=1:20

for i=1:100

if det(floor((2*k+1)*rand(2) - k)) ==0

percent(k)=percent(k)+1;

end

end

end

percent

(a) What does the values of the answer percent tell you about the percent of matrices
that are singular as k increases?

(b) Repeat the experiment for 3 × 3 matrices. What can you say about the percent
of singular matrices in this case?

(c) What does this indicate about the percent of singular matrices as the size of the
matrix increases?

8. For any n build the n× n matrix

A =


1 0 0 · · · 0
1 1 0 · · · 0
...

...
...

...
...

0 · · · 0 1 1


and find the inverse.

9

9. Write a program that inputs vectors a and b of the same length n and builds the matrix

C =


1 a1 a2 · · · an
1 a1 + b1 a2 · · · an
1 a1 a2 + b2 · · · an
...
1 a1 a2 · · · an + bn


Find the determinant. Take some simple cases. You will see that the answer only
depends on the vector b. Can you guess how?

10. Write a program that inputs two numbers a and b and builds the 2k× 2k matrix (you
must input k)

C =


a 0 · · · 0 b

0
. . . · · · . . . 0

...
...

0 0
b 0 · · · 0 a


(i.e., a is on the main diagonal, b is on the backwards diagonal and there are zeros
everywhere else.) Find the determinant. Take some simple cases. A formula for the
determinant looks like (ax − by)z for some x, y and z. Find x, y, and z.

11. For any positive integer n build the matrix

A =


1 1 12 · · · 1n−1

1 2 22 · · · 2n−1

1 3 32 · · · 3n−1

...
...

...
...

...
1 n n2 · · · nn−1


Compute the determinant. Compare d = 1!2!3! · · · (n− 1)!.

Bonus Problems

1. Write a program that inputs a vector a of length n and builds the matrix

C =


a1 1 0 · · · · · · 0
−1 a2 1 0 · · · 0
0 −1 a3 1 · · · 0
...

...
...

...
...

...
0 · · · · · · 0 −1 an


Let Ck denote the determinant of the submatrix of C given by C(1 : k, 1 : k) for k
from 3 to n. Does it appear true that

Ck = akCk−1 + Ck−2?

10

2. Write a program that inputs two vectors a and b of length n and then builds the matrix

C =


1 1 1 · · · 1
b1 a1 a1 · · · a1

b1 b2 a2 · · · a2
...

...
...

b1 b2 b3 · · · an


(Note the size of C is (n + 1) × (n + 1).) Find the determinant. Can you guess a
formula for the determinant in terms of a and b?

3. Write a program that inputs a vector a of any length n and a number x and builds the
n× n matrix

A =


a(1) x · · · x

x a(2)
. . . x

...
.

...
x · · · x a(n)


Then define the function f(x) =

n∏
j=1

(a(j) − x), compute the derivative of f . The try

to compare the determinant of A with d = f(x)− xf ′(x) (i.e., write a series of matlab
statements that computes f and f ′ and d – you might want to determine the derivative
of f by hand first so you have a formula for it.)

References

[1] The Matlab Primer, Kermit Sigmon

[2] Introduction to scientific computing: a matrix vector approach using Matlab, Printice
Hall, 1997, Charles Van Loan

[3] Mastering Matlab, Printice Hall, 1996, Duane Hanselman and Bruce Littlefield

[4] Advanced Mathematics and Mechanics Applications Using Matlab, CRC Press, 1994,
Howard B. Wilson and Louis H. Turcotte

[5] Engineering Problem Solving with Matlab, Printice Hall, 1993, D.M Etter

[6] Solving Problems in Scientific Computing Using Maple and Matlab, Walter Gander and
Jiri Hrebicek

[7] Computer Exercises for Linear Algebra, Printice Hall, 1996, Steven Leon, Eugene Her-
man, Richard Faulkenberry.

[8] Contemporary Linear Systems using Matlab, PWS Publishing Co., 1994, Robert D.
Strum, Donald E. Kirk

11

