
International Journal of Information Science and Management

Parallelism Exploration in B2C and B2B Systems

 H. Alipour, M.S. M. Smaeili, M.S.

 Shahid Beheshti University, I. R. of Iran Shahid Beheshti University, I. R. of Iran

Corresponding Author: hamid.alipour@gmail.com email: mo.esmaeili@sbu.ac.ir

K. Sheikhi, M.S.

Shahid Beheshti University, I. R. of Iran

email: k.shykhy@sbu.ac.ir

Abstract

As the e-commerce sites are being more secure and reliable in recent years

and the number of transactions is rising rapidly, parallelism can help us to

reduce response time and increase throughput for e-commerce transactions.

This paper will investigate parallelism in on-line transaction processing. It

aims to specify those aspects of e-commerce transactions that would profit

from parallel processing and analyze current parallel processing techniques

to determine those which can be used for e-commerce transactions. The

parallel processing techniques proposed in this paper can be easily applied to

B2C and B2B on-line transaction processing. Although some parallel

implementations of databases have been proposed, to the best of our

knowledge, parallel implementations of on-line transaction processing

specific to e-commerce are rarely existed.

Keywords: E-Commerce, Parallel Systems, OLTP, Business-to-Consumer (B2C),

Business-to-Business (B2B).

Introduction

Electronic commerce (e-commerce) is the use of computers and telecommunication

technologies to share business information, maintain business relationships, and conduct

business transactions. Its genesis is traced back to the Electronic Data Interchange (EDI)

activity in the 1960's. EDI refers to the set of activities that are related to the electronic

facilitation of the transactions between venders and buyers (purchase orders, waybills,

manifests and schedules). Currently, e-commerce depends mostly on the Internet as the

underlying platform. Business transactions are events that serve the mission of a

business. A transaction provides the primary means by which a business interacts with

its suppliers, customers, partners, employees, and the government. Transactions are

significant because they capture and/or create data about and for businesses (Whitten &

Bently, 1997). Examples of transactions include purchases, orders, sales, reservations,

Parallelism Exploration in B2C and B2B Systems

International Journal of Information Science and Management, Volume 7, Number 2 July / December, 2009

68

shipments, invoices, and payment processing.

E-commerce began in the 1990's and was largely driven by the invention of the

World Wide Web. The adoption of e-commerce has led to many new business models.

The most important models of e-commerce are business-to-business (B2B), business-to-

consumer (B2C), and consumer-to-consumer (C2C). C2C e-commerce refers to the use

of the Internet by consumers to provide goods and information to other consumers; it

offers an effective way to exchange goods and information between consumers. B2C e-

commerce mostly refers to the use of the Internet by a business to provide goods and

services to customers; it offers consumers a fast and efficient way to access various

products and services from retailers all over the world without leaving home. B2B e-

commerce refers to the use of the Internet between businesses to order products, receive

invoices, and make payments; it reduces production costs, accelerates ordering

processes, and improves inventory management. By exploiting efficiency, economy,

and speed of the Internet, e-commerce simplifies and reduces the cost of processes

involved in business transactions. The parallel processing techniques proposed in this

paper can be easily applied to B2C and B2B e-commerce systems. Our prototype e-

commerce system implemented in this paper maintains the ACID (Atomicity,

Consistency, Isolation, Durability) properties of transactions. The transaction

processing system is a critical component of any e-commerce system that must manage

the transactions between thousands of concurrent clients and back-end systems.

Traditional sequential transaction processing techniques may fail to meet e-commerce

system requirements such as high throughput and high performance.

To overcome the limitations of sequential processing, such as poor performance and

poor throughput, parallel processing techniques could be used to deal with the demands

of e-commerce transactions. In this paper, we focus on using parallel processing

techniques to improve the performance and throughput of e-commerce transaction

processing systems. E-commerce transactions include both on-line analytical processing

(OLAP) and on-line transaction processing (OLTP) transactions. The OLTP of e-

commerce transactions manages data and processes orders. The OLAP of e-commerce

transactions analyzes historical data from OLTP e-commerce systems and provides

reports in support of management decisions. In general, OLTP deals with the atomic

level of data, needs fast responses, and normally follows standard procedures and well-

defined workflows. OLAP focuses on providing analysis capability to management and

typically deals with billions or even trillions of transaction records spanning periods

from several days to decades. Although some parallel implementations of OLAP

transactions (Goil & Choudhary, 1997/1999) and many parallel implementations of

databases have been proposed, to the best of our knowledge, parallel implementations of

OLTP transactions specific to e-commerce are rarely existed (Furtado, 2004; Dewitt &

H. Alipour, M.S. / M. Smaeili, M.S. / K. Sheikhi, M.S.

International Journal of Information Science and Management, Volume 7, Number 2 July / December, 2009

69

Gray, 1992; Raman, Han, & Narang, 2005; Wolf, Turek, Chen, & Ya, 1994).

However, we observe that there are many opportunities to apply parallel processing

techniques to OLTP in an e-commerce system. Hence, in this paper, we focus on

proposing parallel processing techniques for e-commerce OLTP transactions. To

elaborate, typical architecture of an e-commerce system is three-tiered client/server

architecture consisting of the GUI tier, the business logic tier, and the database tier. In

the business logic tier, one could use a single processor server using multithreading or a

multi-processor server to process many transactions concurrently. In the database tier,

the database could be fragmented horizontally and distributed to multiple database

servers or simply replicated over a number of servers. When a user transaction is

processed, the transaction could be processed in parts across multiple database servers

simultaneously. For instance, when a user wants to find a particular product, he/she

could submit the search criteria to the server. The server in the business logic tier could

then transform the search into a query. The query could then be forwarded to different

systems for processing. For each system, the query could be executed against parallel

databases in the database tier. E-commerce systems are complex. A single transaction

may include several logical steps. Some of these steps have dependencies between

them, while others do not. The steps that have no dependencies can be executed

concurrently. As described above, there are opportunities to apply parallel processing

techniques when an e-commerce system processes e-commerce transactions. Identifying

what to parallelize and which parallel techniques to use and incorporating them into a

flexible and scalable design for a parallel e-commerce system is the focus of this paper.

Thus, the aims of this paper are to:

1. Characterize e-commerce transactions with a view to find those aspects that

would benefit from parallel processing.

2. Evaluate current parallel processing techniques to determine those techniques

that can be applied to e-commerce transactions; and

3. Provide a reliable, flexible, and scalable design of an e-commerce transaction

processing system that uses parallel processing techniques to deal with data intensive

transactions and process those transactions faster.

This paper describes an e-commerce system design that is three-tiered architecture

(the GUI tier, the business logic tier, and the database tier) system using different

parallel processing techniques. The design helps e-commerce systems that deal with

large dataset to get faster response. This paper also describes an implementation of a

prototype e-commerce transaction processing system as a case study that is developed to

demonstrate the feasibility of the design. We compare our implementation with the

implementation of an e-commerce system that uses traditional sequential processing

techniques, and highlight the performance improvement brought by our design.

Parallelism Exploration in B2C and B2B Systems

International Journal of Information Science and Management, Volume 7, Number 2 July / December, 2009

70

Opportunities that Can Apply Parallel Processing Techniques

The three-tiered architecture separates an application into different blocks and

makes the application easier to maintain and upgrade. A three-tiered architecture system

can be easily deployed on a distributed environment, which provides opportunities for

applying parallel processing.

In following sections, we will explore some opportunities where we can apply

parallel processing techniques. Most of these opportunities are in the business logic tier

and the database tier. An e-commerce system contains some typical operations such as

product search, product comparison, payment processing, and order processing. All

these operations can benefit from applying parallel processing techniques. The parallel

processing techniques proposed in this paper can be easily applied to B2C and B2B e-

commerce systems. Figure 1 indicates the various steps involve in B2C transactions and

Figure 2 indicates these steps for B2B.

Parallel search and comparison

The search operation can be divided into several steps. First, in the presentation

service tier, a customer provides some search criteria and then submits the search

criteria to an e-commerce system. The business logic tier receives the search criteria

from the customer and converts the search criteria into database queries, and then

submits the queries to the database tier. The database tier processes the queries and

returns the result to the presentation service tier. Then, the business logic tier may apply

some business logic to the data and returns the result to the customer.

In an e-commerce system, it is quite common to divide a large database into several

partitions and distribute these partitions to different database servers. When the database

is divided and distributed to different database servers, it is possible to perform parallel

search on these partitions. We can perform search in different data partitions

concurrently and merge the search result, and then return the result to customers.

To provide broader selection of products, some e-commerce systems provide

services to let customers search for products from the e-commerce systems of their

partners. In these cases, when an e-commerce system receives a search request, it will

perform a search on its own local database servers. At the same time, the system will

forward the search criteria to its partner systems, and will let partner systems perform

their searches. The search in the local e-commerce system and the searches in the

partner systems can be executed concurrently. When all searches are completed, the e-

commerce system will collect and merge search results from different systems. The

merged search result will then be returned to the customer. Figure shows the activity

view of a parallel search.

A customer sometimes needs the search result in a certain order. The e-commerce

H. Alipour, M.S. / M. Smaeili, M.S. / K. Sheikhi, M.S.

International Journal of Information Science and Management, Volume 7, Number 2 July / December, 2009

71

system needs to compare the search result and return the search result in that specific

order. It is also possible for an e-commerce system to apply parallel processing

techniques for comparison. The parallel comparison is very similar to the parallel

search. The difference is when the system merges search result from different partitions

or from different systems. The parallel comparison must compare the search result from

different partitions or from different systems and return the search result in order.

Parallel payment processing

The payment process consists of processes in at least two different accounts: the

first process withdraws money from the bank account of the customer, and the second

process deposits money to the bank account of the e-commerce system. In some cases,

an e-commerce system may allow a customer to withdraw money from multiple bank

accounts. In those cases, the payment process consists of more than two processes.

Figure 1. Activity view of parallel search.

Parallelism Exploration in B2C and B2B Systems

International Journal of Information Science and Management, Volume 7, Number 2 July / December, 2009

72

The withdrawal process consists of three sub-steps. The bank will first validate the

customer's bank account, then check the available credit of that account, and finally

withdraw money from that account. The deposit process consists of two sub-steps. The

bank will first validate the merchant account, and deposit money to that account.

Because the withdrawal and the deposit processes can be operated in different accounts

or different banks, it is possible for us to apply parallel processing techniques in the

business logic tier. When the e-commerce system receives the customer payment

information, the system initiates two threads. The first thread deposits money to the

bank account of the e-commerce system, and the second thread withdraws money from

the bank account of the customer. These two threads are executed concurrently.

In the context of parallel processing, it is important to keep the ACID properties of

a transaction. If one thread fails in one of its sub-steps, all threads should roll back their

changes. If all threads are executed successfully, all their changes should be committed.

In either payment processing, if one of the sub-steps fails in the withdrawal thread or the

deposit thread, both threads should roll back their changes. Only when both threads are

executed successfully, all their changes will be committed. Figure 2 shows an activity

view of the process of parallel payment. If the e-commerce system allows a customer to

pay from multiple accounts, multiple withdrawal threads should be created.

Figure 2. Activity view of parallel payment.

H. Alipour, M.S. / M. Smaeili, M.S. / K. Sheikhi, M.S.

International Journal of Information Science and Management, Volume 7, Number 2 July / December, 2009

73

Parallel order processing

The order processing is the core service of an e-commerce system. The order

process consists of several processes: the inventory check process, the payment process,

and shipping process. For an e-commerce system, there are many concurrent users and

the inventory is updated dynamically. For each order, the system should perform an

inventory check against each product in the order (the inventory check process). The

payment process was described before. The shipping process consists of shipping

information confirmation and the shipping arrangement. For these different processes,

we can apply parallel processing techniques. We can initialize three different threads for

these processes. The first thread checks and updates the inventory. The second thread

processes the payment. The third thread processes the shipping. These threads are then

executed concurrently. If any of the threads fails in any of its sub-steps, all the threads

should roll back their changes, and an error message will be generated and returned to

the customer. If all the threads are executed successfully, all the threads will commit

their changes. Finally, the system will record the detailed order information, and will

return an invoice to the customer for future reference. Figure 3 shows an activity view

of order process in parallel.

Figure 3. Activity view of parallel order process.

Parallelism Exploration in B2C and B2B Systems

International Journal of Information Science and Management, Volume 7, Number 2 July / December, 2009

74

Prototype Implementation & Case study

This Section describes the implementation of our prototype e-commerce transaction

processing system.

To discuss how to apply parallel processing techniques in a more specific context,

we implemented a prototype e-commerce system in this paper, which is a subset of an

online bookstore. In the system, a user may log in as a customer, search for favorite

books, add books to cart, check out books, and make payment.

Figure 4. System flowchart.

Figure 4 shows the flowchart of the prototype e-commerce system implemented for

this paper. As shown in Figure 4, a user must log in to the system as a customer to buy

books from the online bookstore. If the customer's login is successful, the customer

could specify the search criteria to find books. If the customer wants the result in a

User login

Login as

Customer

Define search

criteria

Perform parallel

search or

comparison in

local database

Perform parallel

search or

comparison in

partner site

Combine search

or comparison

result

Add search

result to cart

View

cart

Provide several

different payments

information

Check and

update

inventory

Check bank

information and

withdraw money

Deposit money

 to merchant

account

Record order

detail

information

If all processes

success

Rollback all the

changes

Display an error

message

Return an order

ID for customer

refrence

Commit all the

changes

yes no

Logout

H. Alipour, M.S. / M. Smaeili, M.S. / K. Sheikhi, M.S.

International Journal of Information Science and Management, Volume 7, Number 2 July / December, 2009

75

certain order, he or she could further specify the ordering criteria. Then, the customer

could press the search button to perform a search operation. In the search operation, the

system initializes several threads to perform concurrent searches in several different

sites. One of the threads performs a parallel search in databases of a local system, and

other threads perform parallel searches in databases of partner e-commerce systems.

After all threads finished their searches, the e-commerce system combines the search

results from different systems and returns the combined result to the customer. The

customer could then choose books from the combined search result and add the books to

a shopping cart. The customer could add more books to the shopping cart, or remove

books from the shopping cart. If the customer wants to check out, he or she should first

provide the payment information. The payment information may include more than one

bank account information. After the payment information is provided, the customer

could then press the checkout button to check out. The checkout process uses a two-

phase commit mechanism. The two-phase commit splits a commit operation into two

parts: the prepare phase and the commit phase. In the prepare phase of this system, the

system initializes several threads to perform several different jobs. One thread checks

and updates the inventory. Several threads check bank accounts of the customer and

withdraw money from those accounts. One thread deposits money to the bank account

of the e-commerce system.

One thread records the order and detailed order information. All these threads

perform their operations concurrently without committing their changes in the prepare

phase. In the commit phase, the system first checks if operations of all threads have

been successful. If any error occurs in any of the threads, the e-commerce system will

roll back changes made by all those threads and will display an error message. If

operations of all threads are successful, the e-commerce system will commit all the

changes and give the customer an invoice for future reference. Finally, the customer

could log out by pressing the logout button.

Metrics Used to Evaluate Performance

Metrics such as run-time, speedup, and scale-up are often used to gauge the

performance of a parallel implementation. We used these three metrics to analyze the

performance of the parallel implementation in this paper.

• Run-time: Run-time is the most primitive metric to gauge the performance of a

parallel application. We compare the best sequential algorithm run-time ts with the

parallel run-time tp.

• Speedup: Speedup is a metric that captures the relative benefit of solving a

problem in parallel over using a single processor system for the same problem.

Speedup is defined as:

Parallelism Exploration in B2C and B2B Systems

International Journal of Information Science and Management, Volume 7, Number 2 July / December, 2009

76

S(P) = T1/TP

Where T1 is the time required by the algorithm on one processor, and Tp is the time

required on P processors.

• Scale-up: Scale-up is the ability of an application to retain response time as the

job size or the transaction volume increases by adding additional resources.

The Performance Analysis Environment

The BookStore database contains 6 million records (approximately 380 MB in size).

Each of the Bank1, Bank2, Bank3, SaveBank databases contains 1 million records

(approximately 306MB in size). The performance test was based on three kinds of

frequently used e-commerce transactions: the search, comparison, and order processing

(Because payment processing was included in the order processing of the prototype

system, there was no performance test made for payment processing.) For each kind of

transactions, the speedup and the scale-up analyses were performed. For the speedup

test, the BookStore database was partitioned using a range partitioning algorithm on the

BookNo field and evenly distributed to each node. Table 1 shows how data in the

BookStore database were partitioned and distributed.

Table 1

BookStore Database for the Speedup & Transaction Volume Scaleup Tests

Test name Nodes

involved

Records in each

node

Data size

in each

node

Total

records

Total data

size

Test1 1 6M 380MB 6M 380MB

Test2 2 3M 190 MB 6M 380MB

Test3 3 2M 126.7MB 6M 380MB

Test4 4 1.5M 95MB 6M 380MB

Test5 5 1.2M 76MB 6M 380MB

Test6 6 1M 63.3MB 6M 380MB

For the scale-up test, two different tests were performed: (1) the transaction volume

test and (2) the response time test. The transaction volume test measured how many

transactions the system could process per minute when the number of processor nodes

increased while the amount of data in the database remained constant. The BookStore

database used in the transaction volume scale-up test is shown in Table 1.

The response time test measured the response time for a transaction when the

number of processor nodes increased in proportion to the amount of data in the

database. The BookStore database used in the response time scale-up test is shown in

Table 2.

H. Alipour, M.S. / M. Smaeili, M.S. / K. Sheikhi, M.S.

International Journal of Information Science and Management, Volume 7, Number 2 July / December, 2009

77

Table 2

BookStore Database for the Response Time Scaleup Test

Test name
Nodes

involved

Records in

each node

Data size in

each node

Total

records

Total data

size

Test1 1 1M 63.3MB 1M 63.3MB

Test2 2 1M 63.3MB 2M 126.7MB

Test3 3 1M 63.3MB 3M 190MB

Test4 4 1M 63.3MB 4M 253.3MB

Test5 5 1M 63.3MB 5M 316.7MB

Test6 6 1M 63.3MB 6M 380MB

These two scale-up tests are related. Because the transaction volume could be

computed using transaction volume = one minute / response time per transaction, the

transaction volume test could be considered as the response time test when the number

of processor nodes increased while the amount of data in the database remained

constant.

Test Results on Searches and Comparisons

The search and comparison transactions are similar. Comparison transactions first

perform a search operation, compare the result from the search operation, and then

return the reordered result to the client. For both search and comparison transactions,

different numbers of database servers and different criteria are used for the speedup and

the scale-up tests.

Searches based on one criterion

Table shows the search criterion and result set size of Search1 and Comapre1 for

the speedup and the scale-up tests.

Figure 5. shows the run-time for different queries in the speedup test for Search1.

Table 3

Search and Compare Criterion for Search1 and Compare1

Query Name Criteria Result set size
Ordering field

(for compare only)

Search1-a

Compare1-a
Title contains "java" 19 Title

Search1-b

Compare1-b

Author contains

"Chris"
4 Title

Search1-c

Compare1-c

Publisher =

"Microsoft"
6 Title

Search1-d

Compare1-d
Price>10 60 Title

Parallelism Exploration in B2C and B2B Systems

International Journal of Information Science and Management, Volume 7, Number 2 July / December, 2009

78

Figure 5.Run time chart for searchl speedup test

Figure 6. Relative speedup chart for the search1

speedup test

Figure 7. Scaleup chart for the search

scaleup test

Figure 8. Response time chart for the searchl

scaleup test

The run-time of a sequential search transaction (i.e., when the number of nodes = 1)

can be computed using:

Tseq-search = tss

where Tseq-search stands for the run-time of the sequential search, and tss stands for the

time that used for the sequential search. Similarly, the run-time of a parallel search

transaction (i.e., when the number of nodes > 1) can be computed using:

Tpar-search = tstart + tps+ tcomm

where Tpar-search stands for the run-time of the parallel search, tstart stands for the time

used for initializing the parallel search in different nodes, tps stands for the time used for

the parallel search, and tcomm refers to the communication time between nodes (e.g., the

time for each node to send result to the originating node). As the search time in each

node may be different, tps is the longest time among all the nodes performing the

searches.

Figure 6 shows the relative speedup for different queries in the speedup test for

Search1; it shows that linear speedups (i.e., the time taken for searching transactions

decreased in proportion to the increase in the number of processor nodes) were achieved

H. Alipour, M.S. / M. Smaeili, M.S. / K. Sheikhi, M.S.

International Journal of Information Science and Management, Volume 7, Number 2 July / December, 2009

79

for all searches using one criterion. In our test, since the data for search was large and

the result set of the search was small, the communication overhead was small. So,

pscommpsstartpar-search t t t t T ≈++=
.

Moreover, the number of records in each node was 1/n of the original data (where n

= the number of nodes involved in the test). Therefore, the scan time of a parallel search

was 1/n of a sequential search (i.e
ntt ssps /≈

). Hence,

n Tt t t t T seq-searchpscommpsstartpar-search /≈≈++=

and
.1 n /TT Speedup par-searchseq-searchsearch ≈=

This explains why linear speedup was achieved (when result set was small and the

data for the search was large). However, when the result set is large, the communication

cost tcomm will increase, which will then cause a sub-linear speedup.

The transaction volume of a sequential search and a parallel search can be

computed, respectively, using:

Voltran-seq =1 / Tseq-search

and

Voltran-par =1/ Tpar-search

So, the scale-up can be computed using

 n T T Vol Vol Scaleup par-searchseq-searchtran-seqtran-parsearch ≈== //

This explains why in Figure 7 linear scale-ups (i.e., the transaction volume was

increased in proportion to the number of processor nodes was increased) were achieved

for all searches using different one-criterion queries in various tests for Search1.

Figure 8 shows the response times for the response time scale-up test. In the

response time scale-up test, because the number of records in each node was constant,

the scan time of parallel search was almost the same as the sequential search in one

node (psss t t ≈
) . So,

search-parsearch-seq t t ≈

This explains why linear scale-ups (i.e., search times were sustained when the

number of processor nodes was increased in proportion to the amount of data in the

database) were achieved for all searches using different one-criterion queries in various

tests for Search1.

For the scale-up tests, linear scale-ups were achieved when result set was small and

the data for search was large. However, when the result set was large, the

Parallelism Exploration in B2C and B2B Systems

International Journal of Information Science and Management, Volume 7, Number 2 July / December, 2009

80

communication cost tcomm increased. The increased communication cost then caused a

sub-linear scale-up.

Comparisons based on one criterion

The run-time for comparing transaction can be computed based on the run-time for

searching transaction. The run-time for handling sequential comparison transactions

(i.e., when the number of nodes =1) can be computed using:

Tseq-compare =Tseq-search + tcompare =tss + tcompare

where Tseq-compare stands for the sequential compare transaction run-time, and tcompare

refers to the time used to compare and order the searched result. Similarly, the run-time

for handling parallel comparison transactions (i.e., when the number of nodes> 1) can

be computed using:

Tpar-compare = Tpar-search + tcompare = (tstart + tps+ t comm) + tcompare

where the Tpar-compare stands for the parallel compare transaction run-time, and

tcompare refers to the time used to compare and order the searched result.

Here, the data for search was large, and the result set of the search was small.

Therefore, the time used to initialize the search, the time used to communicate, and the

time used to compare and order the result set were all short. Hence,

sscomparesscompareseq-searcheseq-compar t t t t T T ≈+=+=

and

pscomparecommstart start comparepar-searchepar-compar t t) t t(t t TT ≈+++=+=

The number of records in each node was 1/n of the original data (where n stands for

the number of node involved in the speedup test), and the runtime was 1/n of the

sequential search (i.e.,
ntt ssps /≈

) Hence,

n Tn t t T eseq-comparsspsrepar- compa // ≈≈≈

and

n.TT SpeedUp epar-comparcompareseqcompare ≈=
−

/

This explains why linear speedup was achieved (when the result set was small and

the data for the search was large). However, when the result set was large, the

communication cost tcomm increased, and the time used to compare and reorder the

search result tcompare increased. These two increased-costs then caused a sub-linear

speedup.

Test Results on Order Processing

For the order transactions, two sets of order tests were performed. In the first set,

H. Alipour, M.S. / M. Smaeili, M.S. / K. Sheikhi, M.S.

International Journal of Information Science and Management, Volume 7, Number 2 July / December, 2009

81

each transaction includes small number of distinct books; in the second set, each

transaction includes large number of distinct books. For each set of order transaction,

we recorded the run-time, and computed relative speedups and scale-ups.

Small orders

For small orders, we used three different transaction queries with one deposit bank

(i.e., one bank for customers to deposit money) and varying number of withdrawal

banks (i.e., banks for customers to withdraw money). Query Smallorder-a uses one

withdrawal bank for the e-commerce system, query Smallorder-b uses two withdrawal

banks, and query Smallorder-c uses three withdrawal banks. Table shows distinct banks

involved in each transaction. In each transaction in the test, 60 different books are

ordered. All distinct books are evenly distributed into different partitions in different

nodes.

Table 4

Banks Involved in Different Queries in Smallorder

Query Withdraw bank No. Deposit bank No

Smallorder-a 1 1

Smallorder-b 2 1

Smallorder-c 3 1

The run-time of a sequential order transaction can be computed using:

T seq =Tseq-update + Tb1+ ...+Tbn + Torder

where Tseq stands for the run-time of a sequential order transaction, Tseq-update stands

for the time used for inventory check and update, Tb1 ...Tbn stands for the time used for

communicating with different banks, and Torder stands for the time used for recording

the order and detailed order information. The run-time of a parallel order transaction can

be computed using:

T par =Max (Tpar-update, Tb1, ..., T bn, Torder)

where T par stands for the run-time of a parallel order transaction, Tpar-update stands

for the time used for performing inventory check in different data nodes, Tb1....Tbn; and

Torder are same as above. Since all the operations (inventory update, different bank

processing, and order generation) in parallel order transaction are concurrently

performed, the processing time Tpar is the longest processing time of all operations.

Figure 9 shows the run-time for different queries in a speedup test for Smallorder.

Parallelism Exploration in B2C and B2B Systems

International Journal of Information Science and Management, Volume 7, Number 2 July / December, 2009

82

Figure 9. Run-time chart for the smallorder

speedup test

Figure 10. Relative speedup chart for the

smallorder speedup test

Figure 11. Response time chart for the

smallorder scaleup test

Figure 12. Scaleup chart for the smallorder

scaleup test

Because the number of records in one node was 1/n of original data, the update time

was 1/n of original data. Therefore,

Tpar-update =Tseq-update/ n + Tcomm+ Tstartup

where Tstartup stands for the time that the originating node to start up the update

operation in different nodes, and Tcomm stands for the time that the originating node

sends the ordered books information to other nodes for the update operation.

Hence, the run-time of a parallel order transaction can be computed using:

Tpar = Max(Tseq-update / n + Tcomm+ Tstartup, Tb1, ...Tbn, Torder)

For the test for small orders (shown in Figure 10), when the involving nodes

increased, the communication cost increased and Tseq-update / n decreased. Since Tseq-update

was very small, the increase in the communication cost was more than the decrease in

Tseq-update / n. Therefore, Tpar-update increased. Moreover, the speedup test was performed

using a local network, the Tbl, ... Tbn; were very small, and can be ignored. Thus, when

the order was small, Tpar-update took longer than Tseq-update when node increased. This

means that the performance of parallel order processing was worse than sequential order

processing. However, in reality, the communication cost with banks Tb1....Tbn; was high,

and was much greater than Tpar-update or Tseq-update for small orders. So,

bnborderbnbupdateseqseq TTTTTTT ++≈++++=
−

LK 11)(

H. Alipour, M.S. / M. Smaeili, M.S. / K. Sheikhi, M.S.

International Journal of Information Science and Management, Volume 7, Number 2 July / December, 2009

83

and

), ... T Max(T) , T T, , T Max(T T bnborderbnbpar-updatepar 11 , ≈= L

Comparing to the sequential order transaction, the parallel order transaction took

less time (Tpar<Tseq because Max(Tbl, ..., Tbn) < (Tbl+ ... +Tbn,). However, using more

nodes did not lead to high speedup for small orders, because using more nodes did not

affect the communication cost with banks.

Figure 11 shows the response times for different queries in the Smallorder's

response time scaleup test.

Figure 12 shows that sub-linear scaleups were achieved for orders have small

number of distinct books.

When the involving nodes increased, the communication cost increased. Hence,

Tpar-update increased as well. Because we used a local network, Tb1,...,Tbn; were very

small, and were ignored. Moreover, when the order was small, Tpar-update took longer

than Tseq-update. (i.e., not lead to high scaleup). Figure 12 shows such a result. However,

in reality, the communication with banks Tb1,...,Tbn; was long, and was much greater

than Tpar-update or Tseq-update for small orders. So,

bnborderbnbupdateseqseq TTTTTTT ++≈++++=
−

LK 11)(

and

), ... T Max(T) , T T, , T Max(T T bnborderbnbpar-updatepar 11 , ≈= L

Compared to the sequential processed order, the parallel processed order used less

time. However, the scaleup was not high because using more nodes did not affect the

processing time. Thus, the number of transactions processed per minute did not increase

when the involving nodes increased.

Large orders

Similar to the queries used for small orders, we also used three transaction queries

with one deposit bank and varied number of withdrawal banks (where Queries

Largeorder-a, -b, & -c uses one, two, & three withdrawal banks respectively) for large

orders. Table 5 shows different banks involved in each transaction. In each transaction

in the test, 6060 distinct books were ordered.

Table 5

Banks Involved in Different Queries in Largeorder

Query Withdrow bank No. Deposit bank No

Largeorder-a 1 1

Largeorder-b 2 1

Largeorder-c 3 1

Parallelism Exploration in B2C and B2B Systems

International Journal of Information Science and Management, Volume 7, Number 2 July / December, 2009

84

Figure 13 shows the run-time for different queries in the speedup test for

Largeorder.

For large order, the communication cost with banks can be ignored. Hence,

orderupdateorderbnbupdateSeq TTTTTTT +≈++++=
−− sec1sec)(L

and

),(),,,,(1 orderupdateparorderbnbupdateparPar TTMaxTTTTMaxT
−−

≈= L

Because in our implementation, the order table was not partitioned and distributed,

Torder remained the same and no communication was involved. Moreover, in most cases,

Tpar-update> Torder So,

updateparorderupdateparorderbnbupdateparpar TTTMaxTTTTMaxT
−−−

≈≈=),(),,,,(1 L

In the large-order speedup test, when the number of nodes increased, Tcomm

increased and Tseq-update / n decreased. Since the decrease in Tseq-update / n was more than

the increase in Tcomm, a sub-linear speedup was achieved (as shown in Figure 14) for

orders having large number of distinct books.

Figure 15 shows the response times for different queries in the Largeorder's

response time scaleup test.

Figure 13. Run-time chart for the

Largeorder speedup test

Figure 14. Relative speedup chart for the

Largeorder speedup test

Figure 15. Response time chart for the

Largeorder scaleup test

Figure 16. Scaleup chart for the Largeorder

scaleup test

H. Alipour, M.S. / M. Smaeili, M.S. / K. Sheikhi, M.S.

International Journal of Information Science and Management, Volume 7, Number 2 July / December, 2009

85

Figure 16 shows the scaleup for different queries in the scaleup test for Largeorder.

We can see that sub-linear scaleup has been achieved for orders have large number

of distinct books. Here, when the number of nodes increased, Tcomm increased and Tseq-

update / n decreased. Since the decrease in Tseq-update / n was more than the increase in

Tcomm, the number of order transactions processed per minute increased. As shown in

Figure 16, a sub-linear speedup was achieved.

Conclusions

The wide acceptance and use of the World Wide Web has significantly expanded

the horizons of commerce, and has changed the face of commercial transactions we

used to know to a new form of transactions (namely, e-commerce transactions). An e-

commerce transaction processing system, which processes e-commerce transactions,

requires high throughput and high performance. Traditional sequential transaction

processing techniques fails to meet these e-commerce system requirements. However,

parallel processing techniques could be used to deal with the demands of e-commerce

system. In this paper, our goal was to (a) investigate typical e-commerce transactions,

(b) identify the aspects in those transactions that could benefit from parallel processing

(c) apply parallel processing techniques suitable for those transactions to e-commerce

system, and (d) provide a reliable, flexible, and scalable e-commerce transaction system

design.

We analyzed some typical e-commerce transactions such as the search, compare,

payment, and order transactions. Each of these transactions can be benefited by

applying parallel processing techniques in their implementations. Each of the

transactions was analyzed using the UML activity diagram to isolate opportunities that

are amenable to parallel processing techniques.

Finally, we implemented a prototype e-commerce system that applies parallel

processing techniques designed in this paper. Performance test results of the prototype

e-commerce system showed that applying parallel processing techniques results in

better performance and higher throughput than using the sequential processing

techniques.

References

DeWitt, D. L. & Gray, J. (1992). Parallel database systems: The future of high

performance database systems. Communications of the ACM, 35(6), 85-98.

Furtado, P. (2004). Workload-based placement and join processing in node-partitioned

data warehouses. In Proceedings of the 6th DaWaK Conference, 38-47.

Goi1, S. & Choudhary, N. (1997). High performance OLAP and data mining on parallel

computers. Data Mining and Knowledge Discovery. 1(4), 391-417.

Parallelism Exploration in B2C and B2B Systems

International Journal of Information Science and Management, Volume 7, Number 2 July / December, 2009

86

Goi1, S. & Choudhary, A. N. (1999). A Parallel scalable infrastructure for OLAP and

data mining. In Proceedings of International Database Engineering and

Applications Symposium, 178-186.

Raman, V., Han, W., & Narang, I. (2005). Parallel querying with non-dedicated

computers. In Proceedings of the 31st VLDB Conference, 61-72.

Whitten, J. L. & Bentley, L. D. (1997). Systems analysis and design methods. (4th ed.).

Columbus: OH.

Wolf, J. L. Turek, J., Chen, M., & Yu, P. S. (1994). Scheduling multiple queries on a

parallel machine. In Proceedings of the 1994 ACM SIGMETRICS Conference on

Measurement and Modeling of Computer Systems, 45-55.

