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Preface

The purpose of this text is to introduce parallel programming techniques. Parallel program-
ming is programming multiple computers, or computers with multiple internal processors,
to solve a problem at a greater computational speed than is possible with a single computer.
It also offers the opportunity to tackle larger problems, that is, problems with more compu-
tational steps or larger memory requirements, the latter because multiple computers and
multiprocessor systems often have more total memory than a single computer. In this text,
we concentrate upon the use of multiple computers that communicate with one another by
sending messages; hence the term message-passing parallel programming. The computers
we use can be different types (PC, SUN, SGI, etc.) but must be interconnected, and a
software environment must be present for message passing between computers. Suitable
computers (either already in a network or capable of being interconnected) are very widely
available as the basic computing platform for students, so that it is usually not necessary to
acquire a specially designed multiprocessor system. Several software tools are available for
message-passing parallel programming, notably several implementations of MPI, which
are all freely available. Such software can also be used on specially designed multiproces-
sor systems should these systems be available for use. So far as practicable, we discuss
techniques and applications in a system-independent fashion.

Second Edition. Since the publication of the first edition of this book, the use of
interconnected computers as a high-performance computing platform has become wide-
spread. The term “cluster computing” has come to be used to describe this type of comput-
ing. Often the computers used in a cluster are “commodity” computers, that is, low-cost
personal computers as used in the home and office. Although the focus of this text, using
multiple computers and processors for high-performance computing, has not been changed,
we have revised our introductory chapter, Chapter 1, to take into account the move towards
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commodity clusters and away from specially designed, self-contained, multiprocessors. In
the first edition, we described both PVM and MPI and provided an appendix for each.
However, only one would normally be used in the classroom. In the second edition, we have
deleted specific details of PVM from the text because MPI is now a widely adopted
standard and provides for much more powerful mechanisms. PVM can still be used if one
wishes, and we still provide support for it on our home page.

Message-passing programming has some disadvantages, notably the need for the
programmer to specify explicitly where and when the message passing should occur in the
program and what to send. Data has to be sent to those computers that require the data
through relatively slow messages. Some have compared this type of programming to
assembly language programming, that is, programming using the internal language of the
computer, a very low-level and tedious way of programming which is not done except
under very specific circumstances. An alternative programming model is the shared
memory model. In the first edition, shared memory programming was covered for
computers with multiple internal processors and a common shared memory. Such shared
memory multiprocessors have now become cost-effective and common, especially dual-
and quad-processor systems. Thread programming was described using Pthreads. Shared
memory programming remains in the second edition and with significant new material
added including performance aspects of shared memory programming and a section on
OpenMP, a thread-based standard for shared memory programming at a higher level than
Pthreads. Any broad-ranging course on practical parallel programming would include
shared memory programming, and having some experience with OpenMP is very desir-
able. A new appendix is added on OpenMP. OpenMP compilers are available at low cost
to educational institutions.

With the focus of using clusters, a major new chapter has been added on shared
memory programming on clusters. The shared memory model can be employed on a cluster
with appropriate distributed shared memory (DSM) software. Distributed shared memory
programming attempts to obtain the advantages of the scalability of clusters and the elegance
of shared memory. Software is freely available to provide the DSM environment, and we
shall also show that students can write their own DSM systems (we have had several done
s0). We should point out that there are performance issues with DSM. The performance of
software DSM cannot be expected to be as good as true shared memory programming on a
shared memory multiprocessor. But a large, scalable shared memory multiprocessor is much
more expensive than a commodity cluster.

Other changes made for the second edition are related to programming on clusters.
New material is added in Chapter 6 on partially synchronous computations, which are par-
ticularly important in clusters where synchronization is expensive in time and should be
avoided. We have revised and added to Chapter 10 on sorting to include other sorting algo-
rithms for clusters. We have added to the analysis of the algorithms in the first part of the
book to include the computation/communication ratio because this is important to message-
passing computing. Extra problems have been added. The appendix on parallel computa-
tional models has been removed to maintain a reasonable page count.

The first edition of the text was described as course text primarily for an undergrad-
uate-level parallel programming course. However, we found that some institutions also
used the text as a graduate-level course textbook. We have also used the material for both
senior undergraduate-level and graduate-level courses, and it is suitable for beginning
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graduate-level courses. For a graduate-level course, more advanced materials, for example,
DSM implementation and fast Fourier transforms, would be covered and more demanding
programming projects chosen.

Structure of Materials. As with the first edition, the text is divided into two
parts. Part I now consists of Chapters 1 to 9, and Part II now consists of Chapters 10 to 13.
In Part I, the basic techniques of parallel programming are developed. In Chapter 1, the
concept of parallel computers is now described with more emphasis on clusters. Chapter 2
describes message-passing routines in general and particular software (MPI). Evaluating
the performance of message-passing programs, both theoretically and in practice, is dis-
cussed. Chapter 3 describes the ideal problem for making parallel the embarrassingly
parallel computation where the problem can be divided into independent parts. In fact,
important applications can be parallelized in this fashion. Chapters 4, 5, 6, and 7 describe
various programming strategies (partitioning and divide and conquer, pipelining, synchro-
nous computations, asynchronous computations, and load balancing). These chapters of
Part I cover all the essential aspects of parallel programming with the emphasis on
message-passing and using simple problems to demonstrate techniques. The techniques
themselves, however, can be applied to a wide range of problems. Sample code is usually
given first as sequential code and then as parallel pseudocode. Often, the underlying
algorithm is already parallel in nature and the sequential version has “unnaturally” serial-
ized it using loops. Of course, some algorithms have to be reformulated for efficient parallel
solution, and this reformulation may not be immediately apparent. Chapter 8 describes
shared memory programming and includes Pthreads, an IEEE standard system that is
widely available, and OpenMP. There is also a significant new section on timing and per-
formance issues. The new chapter on distributed shared memory programming has been
placed after the shared memory chapter to complete Part I, and the subsequent chapters
have been renumbered.

Many parallel computing problems have specially developed algorithms, and in Part IT
problem-specific algorithms are studied in both non-numeric and numeric domains. For
Part II, some mathematical concepts are needed, such as matrices. Topics covered in Part IT
include sorting (Chapter 10), numerical algorithms, matrix multiplication, linear equations,
partial differential equations (Chapter 11), image processing (Chapter 12), and searching
and optimization (Chapter 13). Image processing is particularly suitable for parallelization
and is included as an interesting application with significant potential for projects. The fast
Fourier transform is discussed in the context of image processing. This important transform
is also used in many other areas, including signal processing and voice recognition.

A large selection of “real-life” problems drawn from practical situations is presented
at the end of each chapter. These problems require no specialized mathematical knowledge
and are a unique aspect of this text. They develop skills in the use of parallel programming
techniques rather than simply teaching how to solve specific problems, such as sorting
numbers or multiplying matrices.

Prerequisites. The prerequisite for studying Part I is a knowledge of sequential
programming, as may be learned from using the C language. The parallel pseudocode in
the text uses C-like assignment statements and control flow statements. However, students

with only a knowledge of Java will have no difficulty in understanding the pseudocode,
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because syntax of the statements is similar to that of Java. Part I can be studied immediately
after basic sequential programming has been mastered. Many assignments here can be
attempted without specialized mathematical knowledge. If MPI is used for the assignments,
programs are usually written in C or C++ calling MPI message-passing library routines.
The descriptions of the specific library calls needed are given in Appendix A. It is possible
to use Java, although students with only a knowledge of Java should not have any difficulty
in writing their assignments in C/C++.

In Part II, the sorting chapter assumes that the student has covered sequential sorting
in a data structure or sequential programming course. The numerical algorithms chapter
requires the mathematical background that would be expected of senior computer science
or engineering undergraduates.

Course Structure. The instructor has some flexibility in the presentation of the
materials. Not everything need be covered. In fact, it is usually not possible to cover the
whole book in a single semester. A selection of topics from Part I would be suitable as an
addition to a normal sequential programming class. We have introduced our first-year
students to parallel programming in this way. In that context, the text is a supplement to a
sequential programming course text. All of Part I and selected parts of Part II together are
suitable as a more advanced undergraduate or beginning graduate-level parallel program-
ming/computing course, and we use the text in that manner.

Home Page. A Web site has been developed for this book as an aid to students
and instructors. It can be found at www.cs.uncc.edu/par_prog. Included at this site are
extensive Web pages to help students learn how to compile and run parallel programs.
Sample programs are provided for a simple initial assignment to check the software envi-
ronment. The Web site has been completely redesigned during the preparation of the second
edition to include step-by-step instructions for students using navigation buttons. Details of
DSM programming are also provided. The new Instructor’s Manual is available to instruc-
tors, and gives MPI solutions. The original solutions manual gave PVM solutions and is still
available. The solutions manuals are available electronically from the authors. A very
extensive set of slides is available from the home page.

Acknowledgments. The first edition of this text was the direct outcome of a
National Science Foundation grant awarded to the authors at the University of North
Carolina at Charlotte to introduce parallel programming in the first college year.1 Without
the support of the late Dr. M. Mulder, program director at the National Science Foundation,
we would not have been able to pursue the ideas presented in the text. A number of graduate
students worked on the original project. Mr. Uday Kamath produced the original solutions
manual.

We should like to record our thanks to James Robinson, the departmental system
administrator who established our local workstation cluster, without which we would not
have been able to conduct the work. We should also like to thank the many students at UNC
Charlotte who took our classes and helped us refine the material over many years. This

INational Science Foundation grant “Introducing parallel programming techniques into the freshman cur-
ricula,” ref. DUE 9554975.
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included “teleclasses” in which the materials for the first edition were classroom tested in
a unique setting. The teleclasses were broadcast to several North Carolina universities,
including UNC Asheville, UNC Greensboro, UNC Wilmington, and North Carolina State
University, in addition to UNC Charlotte. Professor Mladen Vouk of North Carolina State
University, apart from presenting an expert guest lecture for us, set up an impressive Web
page that included “real audio” of our lectures and “automatically turning” slides. (These
lectures can be viewed from a link from our home page.) Professor John Board of Duke
University and Professor Jan Prins of UNC Chapel Hill also kindly made guest-expert pre-
sentations to classes. A parallel programming course based upon the material in this text
was also given at the Universidad Nacional de San Luis in Argentina by kind invitation of
Professor Raul Gallard.

The National Science Foundation has continued to support our work on cluster com-
puting, and this helped us develop the second edition. A National Science Foundation grant
was awarded to us to develop distributed shared memory tools and educational materials.”
Chapter 9, on distributed shared memory programming, describes the work. Subsequently,
the National Science Foundation awarded us a grant to conduct a three-day workshop at
UNC Charlotte in July 2001 on teaching cluster computing,3 which enabled us to further
refine our materials for this book. We wish to record our appreciation to Dr. Andrew Bernat,
program director at the National Science Foundation, for his continuing support. He
suggested the cluster computing workshop at Charlotte. This workshop was attended by
18 faculty from around the United States. It led to another three-day workshop on teaching
cluster computing at Gujarat University, Ahmedabad, India, in December 2001, this time
by invitation of the IEEE Task Force on Cluster Computing (TFCC), in association with
the IEEE Computer Society, India. The workshop was attended by about 40 faculty. We
are also deeply in the debt to several people involved in the workshop, and especially to
Mr. Rajkumar Buyya, chairman of the IEEE Computer Society Task Force on Cluster
Computing who suggested it. We are also very grateful to Prentice Hall for providing
copies of our textbook to free of charge to everyone who attended the workshops.

We have continued to test the materials with student audiences at UNC Charlotte and
elsewhere (including the University of Massachusetts, Boston, while on leave of absence).
A number of UNC-Charlotte students worked with us on projects during the development
of the second edition. The new Web page for this edition was developed by Omar Lahbabi
and further refined by Sari Ansari, both undergraduate students. The solutions manual in
MPI was done by Thad Drum and Gabriel Medin, also undergraduate students at UNC-
Charlotte.

We would like to express our continuing appreciation to Petra Recter, senior acquisi-
tions editor at Prentice Hall, who supported us throughout the development of the second
edition. Reviewers provided us with very helpful advice, especially one anonymous
reviewer whose strong views made us revisit many aspects of this book, thereby definitely
improving the material.

Finally, we wish to thank the many people who contacted us about the first edition,
providing us with corrections and suggestions. We maintained an on-line errata list which
was useful as the book went through reprints. All the corrections from the first edition have

National Science Foundation grant “Parallel Programming on Workstation Clusters,” ref. DUE 995030.

3National Science Foundation grant supplement for a cluster computing workshop, ref. DUE 0119508.
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been incorporated into the second edition. An on-line errata list will be maintained again
for the second edition with a link from the home page. We always appreciate being
contacted with comments or corrections. Please send comments and corrections to us at
wilkinson@email.wcu.edu (Barry Wilkinson) or cma@uncc.edu (Michael Allen).

BARRY WILKINSON MICHAEL ALLEN
Western Carolina University University of North Carolina, Charlotte
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Chapter 1

Parallel Computers

In this chapter, we describe the demand for greater computational power from computers
and the concept of using computers with multiple internal processors and multiple intercon-
nected computers. The prospects for increased speed of execution by using multiple
computers or multiple processors and the limitations are discussed, Then, the various ways
that such systems can be constructed are described, in particular by using multiple
computers in a clusier, which has become a very cost-effective computer platform for high-
performance computing.

1.1 THE DEMAND FOR COMPUTATIONAL SPEED

There is a continual demand for greater computational power from compulter systems than
is currently possible. Areas requiring great computational speed include numerical simula-
tion of scientific and engineering problems. Such problems often need huge quantities of
repetitive calculations on large amounts of data to give valid results. Computations must be
completed within a “reasonable” time period. In the manufacturing realm, engineering cal-
culations and simulations must be achieved within seconds or minutes if possible. A simu-
lation that takes two weeks to reach a solution is usually unacceptable in a design
environment, because the time has to be short enough for the designer to work effectively.
As systems become more complex, it takes increasingly more time to simulate them. There
arc some problems that have a specific deadline for the computations, for example weather
forecasting. Taking two days to forecast the local weather accurately for the next day would
make the prediction useless. Some areas, such as modeling large DNA structures and global
weather forecasting, are grand challenge problems. A grand challenge problem is one that
cannot be solved in a reasonable amount of time with today’s computers.



Weather forecasting by computer (numerical weather prediction) 1s a widely quoted
example that requires very powerful computers. The atmosphere is modeled by dividing it
into three-dimensional regions or cells. Rather complex mathematical equations are used to
capture the various atmospheric effects. In essence, conditions in each cell (temperature,
pressure, humidity, wind speed and direction, etc.) are computed at time intervals using
conditions existing in the previous time interval in the cell and nearby cells. The calcula-
tions of each cell are repeated many times to model the passage of time. The key feature
that makes the simulation significant is the number of cells that are necessary. For forecast-
ing over days, the atmosphere is affected by very distant events, and thus a large region is
necessary. Suppose we consider the whole global atmosphere divided into cells of size
1 mile x 1 mile x 1 mile to a height of 10 miles (10 cells high). A rough calculation leads
to about 5 x 10% cells. Suppose each calculation requires 200 floating-point operations (the
type of operation necessary if the numbers have a fractional part or are raised to a power).
In one time step, 10!! floating point operations are necessary. If we were to forecast the
weather over seven days using 1-minute intervals, there would be 10* time steps and 10
floating-point operations in total. A computer capable of 1 Gflops (10° floating-point oper-
ations/sec) with this calculation would take 10° seconds or over 10 days to perform the cal-
culation. To perform the calculation in 5 minutes would require a computer operating at 3.4
Tflops (3.4 x 10'? floating-point operations/sec).

Another problem that requires a huge number of calculations is predicting the motion
of the astronomical bodies in space. Each body is attracted to each other body by gravita-
tional forces. These are long-range forces that can be calculated by a simple formula (see
Chapter 4). The movement of each body can be predicted by calculating the total force
experienced by the body. If there are N bodies, there will be N — 1 forces to calculate for
each body, or approximately N? calculations, in total. After the new positions of the bodies
are determined, the calculations must be repeated. A snapshot of an undergraduate student’s
results for this problem, given as a programming assignment with a few bodies, is shown
in Figure 1.1. However, there could be a huge number of bodies to consider. A galaxy might
have, say, 10'! stars. This suggests that 10°% calculations have to be repeated. Even using
the efficient approximate algorithm described in Chapter 4, which requires Nlog, N calcu-
lations (but more involved calculations), the number of calculations is still enormous
(10" log, 10'"). Tt would require significant time on a single-processor system. Even if each
calculation could be done in 1us ||:1!'ZI‘_"P:l seconds, an extremely optimistic figure, since it
involves several multiplications and divisions), 1t would take 10° years for one iteration
using the N2 algorithm and almost a year for one iteration using the N log, N algorithm. The
N-body problem also appears in modeling chemical and biological systems at the molecular
level and takes enormous computational power.

Global weather forecasting and simulation of a large number of bodies (astronomical
or molecular) are traditional examples of applications that require immense computational
power, but it is human nature to continually envision new applications that exceed the capa-
bilities of present-day computer systems and require more computational speed than avail-
able. Recent applications, such as virtual reality, require considerable computational speed
to achieve results with images and movements that appear real without any jerking. It seems
that whatever the computational speed of current processors, there will be applications that
require still more computational power.
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Sec. 1.1

.k %

b -
-

a ' *

x -
¥ Figure 1.1  Astrophysical N-body
w = i =
simulation by Scott Linssen (undergraduate
1 . px student, University of North Carolina at

Charlotte).

A traditional computer has a single processor for performing the actions specified in
a program. One way of increasing the computational speed, a way that has been considered
for many years, is by using multiple processors within a single computer (multiprocessor)
or alternatively multiple computers, operating together on a single problem. In either case,
the overall problem is split into parts, each of which is performed by a separate processor
in parallel. Writing programs for this form of computation is known as parallel program-
ming. The computing platform, a parallel computer, could be a specially designed
computer system containing multiple processors or several computers interconnected in
some way. The approach should provide a significant increase in performance. The idea is
that p processors/computers could provide up to p times the computational speed of a single
processor/computer, no matter what the current speed of the processor/computer, with the
expectation that the problem would be completed in 1/pth of the time. Of course, this is an
ideal situation that is rarely achieved in practice. Problems often cannot be divided
perfectly into independent parts, and interaction is necessary between the parts, both for
data transfer and synchronization of computations. However, substantial improvement can
be achieved, depending upon the problem and the amount of parallelism in the problem.
What makes parallel computing timeless is that the continual improvements in the
execution speed of processors simply make parallel computers even faster, and there will
always be grand challenge problems that cannot be solved in a reasonable amount of time
on current computers.

Apart from obtaining the potential for increased speed on an existing problem, the use
of multiple computers/processors often allows a larger problem or a more precise solution
of a problem to be solved in a reasonable amount of time. For example, computing many
physical phenomena involves dividing the problem into discrete solution points. As we have
mentioned, forecasting the weather involves dividing the air into a three-dimensional grid
of solution points. Two- and three-dimensional grids of solution points occur in many other
applications. A multiple computer or multiprocessor solution will often allow more solution
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points to be computed in a given time, and hence a more precise solution. A related factor
is that multiple computers very often have more total main memory than a single computer,
enabling problems that require larger amounts of main memory to be tackled.

Even if a problem can be solved in a reasonable time, situations arise when the same
problem has to be evaluated multiple times with different input values. This situation is
especially applicable to parallel computers, since without any alteration to the program,
multiple instances of the same program can be executed on different processors/computers
simultaneously. Simulation exercises often come under this category. The simulation code
is simply executed on separate computers simultaneously but with different input values.

Finally, the emergence of the Internet and the World Wide Web has spawned a new
area for parallel computers. For example, Web servers must often handle thousands of
requests per hour from users. A multiprocessor computer, or more likely nowadays multiple
computers connected together as a “cluster,” are used to service the requests. Individual
requests are serviced by different processors or computers simultaneously. On-line banking
and on-line retailers all use clusters of computers (o service their clients.

The parallel computer is not a new idea; in fact it is a very old idea. For example, Gill
wrote about paralle] programming in 1958 (Gill, 1958). Holland wrote about a “computer
capable of executing an arbitrary number of sub-programs simultaneously” in 1959
(Holland, 1959). Conway described the design of a parallel computer and its programming
in 1963 (Conway, 1963). Notwithstanding the long history, Flynn and Rudd (1996) write
that “the continued drive for higher- and higher-performance systems . . . leads us to one
simple conclusion: the future is parallel.” We concur.

1.2 POTENTIAL FOR INCREASED COMPUTATIONAL SPEED

In the following and in subsequent chapters, the number of processes or processors will be
identified as p. We will use the term “mudiiprocessor” to include all parallel computer

systems that contain more than one processor.

1.2.1 Speedup Factor

Perhaps the first point of interest when developing solutions on a multiprocessor is the
question of how much faster the multiprocessor solves the problem under consideration. In
doing this comparison, one would use the best solution on the single processor, that is, the
best sequential algorithm on the single-processor system to compare against the parallel
algorithm under investigation on the multiprocessor. The speedup factor, S(p),! is a
measure of relative performance, which is defined as: '

Execution time using single processor system (with the best sequential algorithm)
Execution time using a multiprocessor with p processors

S(p) =

We shall use 1, as the execution time of the best sequential algorithm running on a single
processor and 1, as the execution time for solving the same problem on a multiprocessor.

! The speedup factor is normally a function of both p and the number of data items being processed, n, ie.
S(p,n). We will introduce the number of data items later, At this point, the only variable is p.

6 Parallel Computers  Chap. 1



Sec. 1.2

Then:

S(p)= =
P
S(p) gives the increase in speed in using the multiprocessor. Note that the underlying
algorithm for the parallel implementation might not be the same as the algorithm on the
single-processor system (and is usually different).
In a theoretical analysis, the speedup factor can also be cast in terms of computational
steps:
Number of computational steps using One processor
Number of parallel computational steps with p Processors

S(p) =

For sequential computations, it is common to compare different algorithms using time com-
plexity, which we will review in Chapter 2. Time complexity can be extended to parallel
algorithms and applied to the speedup factor, as we shall see. However, considering com-
putational steps alone may not be useful, as parallel implementations may require eXpense
communications between the parallel parts, which is usually much more time-consuming
than computational steps. We shall look at this in Chapter 2.

The maximum speedup possible is usually p with p processors (linear speedup). The
speedup of p would be achieved when the computation can be divided into equal-duration
processes, with one process mapped onto one processor and no additional overhead in the

parallel solution.
o
S(p) = I =p

Superlinear speedup, where S(p) > p, may be seen on occasion, but usually this is due
to using a suboptimal sequential algorithm, a unique feature of the system architecture that
favors the parallel formation, or an indeterminate nature of the algorithm. Generally, if a
purely deterministic parallel algorithm were to achieve better than p times the speedup over
the current sequential algorithm, the paralle]l algorithm could be emulated on a single
processor one parallel part after another, which would suggest that the original sequential
algorithm was not optimal.

One common reason for superlinear speedup is extra memory in the multiprocessor
system. For example, suppose the main memory associated with each processor in the
multiprocessor system is the same as that associated with the processor in a single-
processor system. Then, the total main memory in the multiprocessor system is larger than
that in the single-processor system, and can hold more of the problem data at any instant,

which leads to less disk memory traffic.

Efficiency. It is sometimes useful to know how long processors are being used on
the computation, which can be found from the (system) efficiency. The efficiency, E, 1s
defined as

- Execution time using one processor
Execution time using a multiprocessor x number of processors

‘fs
IPXP
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which leads to

S
E.':%xlﬂﬂ%

when E is given as a percentage. For example, if £ = 50%, the processors are being used
half the time on the actual computation, on average. The efficiency of 100% occurs when
all the processors are being used on the computation at all times and the speedup factor,

S(p), 1s p.

1.2.2 What Is the Maximum Speedup?

Several factors will appear as overhead in the parallel version and limit the speedup, notably

1.  Periods when not all the processors can be performing useful work and are
simply idle.

2.  Extra computations in the parallel version not appearing in the sequential
version; for example, to recompute constants locally.

3.  Communication time between processes.

It is reasonable to expect that some part of a computation cannot be divided into concurrent
processes and must be performed sequentially. Let us assume that during some period,
perhaps an initialization period or the period before concurrent processes are set up, only
one processor is doing useful work, and for the rest of the computation additional proces-
SOrs are operating on processes.

Assuming there will be some parts that are only executed on one processor, the ideal
situation would be for all the available processors to operate simultaneously for the other
times. If the fraction of the computation that cannot be divided into concurrent tasks is f,
and no overhead is incurred when the computation is divided into concurrent parts, the time
to perform the computation with p processors is given by fi, + (1 — f)t/p, as illustrated in
Figure 1.2. Nlustrated is the case with a single serial part at the beginning of the computa-
tion, but the serial part could be distributed throughout the computation. Hence, the

speedup factor is given by

203 - L _ P
_@_S(p} fto+(L=tlp  1+(p-1)f

This equation is known as|Amdahl 's;@jjmmdam, 1967). Figure 1.3 shows S(p) plotted
against number of processors and against f. We see that indeed a speed improvement is indi-
cated. However, the fraction of the computation that is executed by concurrent processes
needs to be a substantial fraction of the overall computation if a significant increase in speed
is to be achieved. Even with an infinite number of processors, the maximum speedup is
limited to 1/f; i.e.,
1
S(p) = -

e f
For example, with only 5% of the computation being serial, the maximum speedup is 20, irre-
spective of the number of processors. Amdahl used this argument to promote single-processor
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systems in the 1960s. Of course, one can counter this by saying that even a speedup of 20
would be impressive.

Orders-of-magnitude improvements are possible in certain circumstances. For
example, superlinear speedup can occur in search algorithms. In search problems
performed by exhaustively looking for the solution, suppose the solution space is divided
among the processors for each one to perform an independent search. In a sequential
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Figure 1.3 (a) Speedup against number of processors. (b) Speedup against serial fraction, f.
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implementation, the different search spaces are attacked one after the other. In parallel
implementation, they can be done simultaneously, and one processor might find the
solution almost immediately. In the sequential version, suppose x sub-spaces are searched
and then the solution is found in time Az in the next sub-space search. The number of pre-
viously searched sub-spaces, say x, is indeterminate and will depend upon the problem.

In the parallel version, the solution is found immediately in time At, as illustrated in
Figure 1.4.
The speedup is then given by

S(p) = (—xi%i“

Start Time

| s

-

/o

-

Sub-space | *‘ —I At i B
search [~ | s

xt,/p

» | Solution found

(a) Searching each sub-space sequentially

Solution found

(b) Searching each sub-space in parallel

Figure 1.4 Superlinear speedup.

Parallel Computers Chap. 1

4

i
i
i
o
3



Sec. 1.2

The worst case for the sequential search is when the solution is found in the last sub-space
search, and the parallel version offers the greatest benefit:

(ﬁ_]jxr;+m
p

S(p) = —> =2 as At tends to zero

Al
The least advantage for the parallel version would be when the solution is found in the first
sub-space search of the sequential search:

At
= — =1
S(p) = o

The actual speedup will depend upon which sub-space holds the solution but could be
extremely large.

Scalability. The performance of a system will depend upon the size of the
system, i.e., the number of processors, and generally the larger the system the better, but
this comes with a cost. Scalability is a rather imprecise term. It is used to indicate a
hardware design that allows the system to be increased in size and in doing so to obtain
increased performance. This could be described as architecture or hardware scalability.
Scalability is also used to indicate that a parallel algorithm can accommodate increased
data items with a low and bounded increase in computational steps. This could be described
as algorithmic scalability.

Of course, we would want all multiprocessor systems to be architecturally scalable
(and manufacturers will market their systems as such), but this will depend heavily upon
the design of the system. Usually, as we add processors to a system, the interconnection
network must be expanded. Greater communication delays and increased contention
results, and the system efficiency, E, reduces. The underlying goal of most multiprocessor
designs is to achieve scalability, and this is reflected in the multitude of interconnection
networks that have been devised.

Combined architecture/algorithmic scalability suggests that increased problem size
can be accommodated with increased system size for a particular architecture and algo-
rithm. Whereas increasing the size of the system clearly means adding processors,
increasing the size of the problem requires clarification. Intuitively, we would think of the
number of data elements being processed in the algorithm as a measure of size. However,
doubling the problem size would not necessarily double the number of computational
steps. It will depend upon the problem. For example, adding two matrices, as discussed in
Chapter 11, has this effect, but multiplying matrices does not. The number of computa-
tional steps for multiplying matrices quadruples. Hence, scaling different problems would
imply different computational requirements. An alternative definition of problem size is
to equate problem size with the number of basic steps in the best sequential algorithm. Of
course, even with this definition, if we increase the number of data points, we will increase
the problem size.

In subsequent chapters, in addition to number of processors, p, we will also use n as
the number of input data elements in a [:lr(:ﬂ:'.-lf:rn.2 These two, p and n, usually can be altered
in an attempt to improve performance. Altering p alters the size of the computer system,
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and altering n alters the size of the problem. Usually, increasing the problem size improves
the relative performance because more parallelism can be achieved.

Gustafson presented an argument based upon scalability concepts to show that
Amdahl’s law was not as significant as first supposed in determining the potential speedup
limits (Gustafson, 1988). Gustafson attributed formulating the idea into an equation to E.
Barsis. Gustafson makes the observation that in practice a larger multiprocessor usually
allows a larger-size problem to be undertaken in a reasonable execution time. Hence in
practice, the problem size selected frequently depends of the number of available proces-
sors. Rather than assume that the problem size is fixed, it is just as valid to assume that the
parallel execution time is fixed. As the system size is increased (p increased), the problem
size is increased to maintain constant parallel-execution time. In increasing the problem
size, Gustafson also makes the case that the serial section of the code is normally fixed and
does not increase with the problem size.

Using the constant parallel-execution time constraint, the resulting speedup factor
will be numerically different from Amdahl’s speedup factor and is called a scaled speedup
factor (i.e, the speedup factor when the problem is scaled). For Gustafson’s scaled speedup
factor, the parallel execution time, 1, is constant rather than the serial execution time, Z;, in
Amdah!’s law. For the derivation of Gustafson’s law, we shall use the same terms as for
deriving Amdahl’s law, but it is necessary to separate out the serial and parallelizable
sections of the sequential execution time, f;, into ft, + (1 — f)t, as the serial section fi, is a
constant. For algebraic convenience, let the parallel execution time, t, = ft; + (1 —f)t/p = 1.
Then, with a little algebraic manipulation, the serial execution time, f;, becomes fi; + (1 —f)
t, = p + (1 — p)fi;. The scaled speedup factor then becomes

_ S+ (A=), p+(1-pif,
fi+(1=-e/p 1

3,(p) = p+(1-pift,

which is called Gustafson's law. There are two assumptions in this equation: the parallel
execution time is constant, and the part that must be executed sequentially, ft,, is also
constant and not a function of p. Gustafson’s observation here is that the scaled speedup
factor is a line of negative slope (1 — p) rather than the rapid reduction previously illustrated
in Figure 1.3(b). For example, suppose we had a serial section of 5% and 20 processors; the
speedup is 0.05 + 0.95(20) = 19.05 according to the formula instead of 10.26 according to
Amdahl’s law. (Note, however, the different assumptions.) Gustafson quotes examples of
speedup factors of 1021, 1020, and 1016 that have been achieved in practice with a 1024-
processor system on numerical and simulation problems.

Apart from constant problem size scaling (Amdahl’s assumption) and time-constrained
scaling (Gustafson's assumption), scaling could be memory-constrained scaling. In
memory-constrained scaling, the problem is scaled to fit in the available memory. As the
number of processors grows, normally the memory grows in proportion. This form can lead -
to significant increases in the execution time (Singh, Hennessy, and Gupta, 1993).

2 For matrices, we consider a % n matrices.
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1.2.3 Message-Passing Computations

The analysis so far does not take account of message-passing, which can be a very signifi-
cant overhead in the computation in message-passing programming. In this form of parallel
programming, messages are sent between processes (o pass data and for synchronization
purposes. Thus, ,

i,=t

p= comm T 1

comp

where .o, is the communication time, and Zoqp,, is the computation time. As we divide the
problem into parallel parts, the computation time of the parallel parts generally decreases
because the parts become smaller, and the communication time between the parts generally
increases (as there are more parts communicating). At some point, the communication time
will dominate the overall execution time and the parallel execution time will actually
increase. It is essential to reduce the communication overhead because of the significant
time taken by interprocessor communication. The communication aspect of the parallel
solution is usually not present in the sequential solution and considered as an overhead.

The ratio

Computation time  _ ‘comp

Communication time

Computation/communication ratio =
comm

can be used as a metric. In subsequent chapters, we will develop equations for the compu-
tation time and the communication time in terms of number of processors (p) and number
of data elements (n) for algorithms and problems under consideration to get a handle on the
potential speedup possible and effect of increasing p and n.

In a practical situation we may not have much control over the value of p, that 1s, the
size of the system we can use (except that we could map more than one process of the
problem onto one processor, although this is not usually beneficial). Suppose, for example,
that for some value of p, a problem requires ¢;n computations and ¢,n° communications.
Clearly, as n increases, the communication time increases faster than the computation time.
This can be seen clearly from the computation/communication ratio, (cy/c,n), which can be
cast in ime-complexity notation to remove constants (see Chapter 2). Usually, we want the
computation/communication ratio to be as high as possible, that is, some highly increasing
function of n so that increasing the problem size lessens the effects of the communication
time. Of course, this is a complex matter with many factors. Finally, one can only verify the
execution speed by executing the program on a real multiprocessor system, and it is
assumed this would then be done. Ways of measuring the actmal execution time are
described in the next chapter.

1.3 TYPES OF PARALLEL COMPUTERS

Having convinced ourselves that there is potential for speedup with the use of multiple
processors or computers, let us explore how a multiprocessor or multicomputer could be
constructed. A parallel computer, as we have mentioned, is either a single computer with
multiple internal processors or multiple computers interconnected to form a coherent
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high-performance computing platform. In this section, we shall look at specially designed
parallel computers, and later in the chapter we will look at using an off-the-shelf “com-
modity” computer configured as a cluster. The term parallel computer is usually reserved
for specially designed components. There are two basic types of parallel computer:

1. Shared memory multiprocessor
2. Distributed-memory multicomputer.

1.3.1 Shared Memory Multiprocessor System

A conventional computer consists of a processor executing a program stored in a (main)
memory, as shown in Figure 1.5. Each main memory location in the memory is located by
a number called its address. Addresses start at 0 and extend to 2° — 1 when there are b bits
(binary digits) in the address.

A natural way to extend the single-processor model is to have multiple processors
connected to multiple memory modules, such that each processor can access any memory
module in a so—called shared memory configuration, as shown in Figure 1.6. The connec-
tion between the processors and memory is through some form of interconnection network.
A shared memory multiprocessor system employs a single address space, which means that
each location in the whole main memory system has a unique address that is used by each
processor to access the location. Although not shown in these “models,” real systems have
high-speed cache memory, which we shall discuss later.

Programming a shared memory multiprocessor involves having executable code
stored in the shared memory for each processor to execute. The data for each program will
also be stored in the shared memory, and thus each program could access all the data if

Main memory

Instructions (to processor) -
Data (to or from processor) v

Processor . .
Figure 1.5 Conventional computer having

a single processor and memory.

Main memory

One
address | |fe——————————
space T Memory modules I
Y Y
Interconnection
network
-~ A
Y ¥
Figure 1.6  Traditional shared memory
Processors multiprocessor model.
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needed. A programmer can create the executable code and shared data for the processors in
different ways, but the final result is to have each processor execute its own program or code
sequences from the shared memory. (Typically, all processors execute the same program.)

One way for the programmer to produce the executable code for each processor is to
use a high-level parallel programming language that has special parallel programming con-
structs and statements for declaring shared variables and parallel code sections. The
compiler is responsible for producing the final executable code from the programmer’s
specification in the program. However, a completely new parallel programming language
would not be popular with programmers. More likely when using a compiler to generate
parallel code from the programmer’s “source code,” a regular sequential programming
language would be used with preprocessor directives to specify the parallelism. An example
of this approach is OpenMP (Chandra et al., 2001), an industry-standard set of compiler
directives and constructs added to C/C++ and Fortran. Alternatively, so-called threads can
be used that contain regular high-level language code sequences for individual processors.
These code sequences can then access shared locations. Another way that has been explored
over the years, and is still finding interest, is to use a regular sequential programming
language and modify the syntax to specify parallelism. A recent example of this approach
is UPC (Unified Parallel C) (see http:/fupc.gwu.edu). More details on exactly how to
program shared memory systems using threads and other ways are given in Chapter 8.

From a programmer’s viewpoint, the shared memory multiprocessor is attractive
hecause of the convenience of sharing data. Small (two-processor and four-processor)
shared memory multiprocessor systems based upon a bus interconnection structure-as
illustrated in Figure 1.7 are common; for example dual-Pentium® and quad-Pentium
systems. Two-processor shared memory systems are particularly cost-effective. However,
it is very difficult to implement the hardware to achieve fast access to all the shared memory
by all the processors with a large number of processors. Hence, most large shared memory
systems have some form of hierarchical or distributed memory structure. Then, processors
can physically access nearby memory locations much faster than more distant memory
Jocations. The term nonuniform memory access (NUMA) is used in these cases, as opposed
to uniform memory access (UMA).

Conventional single processors have fast cache memory to hold copies of recently
referenced memory locations, thus reducing the need to access the main memory on every
memory reference. Often, there are two levels of cache memory between the processor and
the main memory. Cache memory is carried over into shared memory multiprocessors by
providing each processor with its own local cache memory. Fast local cache memory with
each processor can somewhat alleviate the problem of different access times to different
main memories in larger systems, but making sure that copies of the same data in different

Processors Shared memory

Bus

Figure 1.7 Simplistic view of a small shared memory multiprocessor.
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caches are identical becomes a complex issue that must be addressed. One processor
writing to a cached data item often requires all the other copies of the cached item in the
system to be made invalid. Such matters are briefly covered in Chapter 8.

1.3.2 Message-Passing Multicomputer

An alternative form of multiprocessor to a shared memory multiprocessor can be created
by connecting complete computers through an interconnection network, as shown in
Figure 1.8. Each computer consists of a processor and local memory but this memory is
not accessible by other processors. The interconnection network provides for processors
to send messages to other processors. The messages carry data from one processor 1o
another as dictated by the program. Such multiprocessor systems are usually called
message-passing multiprocessors, or simply multicomputers, especially if they consist of
self-contained computers that could operate separately.

Programming a message-passing multicomputer still involves dividing the problem
into parts that are intended to be executed simultaneously to solve the problem. Program-
ming could use a parallel or extended sequential language, but a common approach is to use
message-passing library routines that are inserted into a conventional sequential program
for message passing. Often, we talk in terms of processes. A problem is divided into a
number of concurrent processes that may be executed on a different computer, If there were
six processes and six computers, we might have one process executed on each computer. If
there were more processes than computers, more than one process would be executed on
one computer, in a time-shared fashion. Processes communicate by sending messages; this
will be the only way to distribute data and results between processes.

The message-passing multicomputer will physically scale more easily than a shared
memory multiprocessor. That is, it can more easily be made larger. There have been
examples of specially designed message-passing processors. Message-passing systems can
also employ general-purpose microprocessors.

Networks for Multicomputers. The purpose of the interconnection network
shown in Figure 1.8 is to provide a physical path for messages sent from one computer to
another computer, Key issues in network design are the bandwidth, latency, and cost. Ease
of construction is also important, The bandwidth is the number of bits that can be transmit-
ted in unit time, given as bits/sec. The network latency is the time to make a message
transfer through the network. The communication latency is the total time to send the

Interconnection
network

Messages —____ % A
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Processor-___

Man _ | L |T77777

memory =

_ Figure 1.8 Message-passing multiprocessor
Computers _ model (multicomputer).
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message, including the software overhead and interface delays. Message latency, or startup
time, is the time to send a zero-length message, which is essentially the software and
hardware overhead in sending a message (finding the route, packing, unpacking, etc.) onto
which must be added the actual time to send the data along the interconnection path.

The number of physical links in a path between two nodes is an important consider-
ation because it will be a major factor in determining the delay for a message. The diameter
is the minimum number of links between the two farthest nodes (computers) in the network.
Only the shortest routes are considered. How efficiently a parallel problem can be solved
using a multicomputer with a specific network is extremely important. The diameter of the
network gives the maximum distance that a single message must travel and can be used to
find the communication lower bound of some parallel algorithms.

The bisection width of a network is the minimum number of links (or sometimes
wires) that must be cut to divide the network into two equal parts. The bisection bandwidth
is the collective bandwidth over these links, that is, the maximum number of bits that can
be transmitted from one part of the divided network to the other part in unit time. These
factor can also be important in evaluating parallel algorithms, Parallel algorithms usually
require numbers to be moved about the network. To move numbers across the network from
one side to the other we must use the links between the two halves, and the bisection width
gives us the number of links available.

There are several ways one could interconnect computers to form a multicomputer
system. For a very small system, one might consider connecting every computer to every
other computer with links. With ¢ computers, there are ¢(c — 1)/2 links in all. Such exhaus-
tive interconnections have application only for a very small system. For example, a set of
four computers could reasonably be exhaustively interconnected. However, as the size
increases, the number of interconnections clearly becomes impractical for economic and
engineering reasons. Then we need to look at networks with restricted interconnection and
switched interconnections.

There are two networks with restricted direct interconnections that have seen wide
use — the mesh network and the hypercube network. Not only are these important as inter-
connection networks, the concepts also appear in the formation of parallel algorithms.

Mesh. A two-dimensional mesh can be created by having each node in a two-
dimensional array connect to its four nearest neighbors, as shown in Figure 1.9. The
diameter of a J/p % .Jp mesh s 2( ./p—1), since to reach one corner from the opposite corner
requires a path to made across ( Jp—1) nodes and down (JJp—1) nodes. The free ends of a
mesh might circulate back to the opposite sides. Then the network is called a forus.

The mesh and torus networks are popular because of their ease of layout and expand-
ability. If necessary, the network can be folded; that is, rows are interleaved and columns
are interleaved so that the wraparound connections simply turn back through the network
rather than stretch from one edge to the opposite edge. Three-dimensional meshes can be
formed where each node connects to two nodes in the x-plane, the y-plane, and the z-plane.
Meshes are particularly convenient for many scientific and engineering problems in which
solution points are arranged in two-dimensional or three-dimensional arrays.

There have been several examples of message-passing multicomputer systems using
two-dimensional or three-dimensional mesh networks, including the Intel Touchstone Delta
computer (delivered in 1991, designed with a two-dimensional mesh), and the J-machine, a
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research prototype constructed at MIT in 1991 with a three-dimensional mesh. A more
recent example of a system using a mesh is the ASCI Red supercomputer from the U.S.
Department of Energy’s Accelerated Strategic Computing Initiative, developed in 1995-97.
ASCI Red, sited at Sandia National Laboratories, consists of 9,472 Pentium-IT Xeon pro-
cessors and uses a 38 x 32 x 2 mesh interconnect for message passing. Meshes can also be
used in shared memory systems.

Hypercube Network. In a d-dimensional (binary) hypercube network, each node
connects to one node in each of the dimensions of the network. For example, in a three-
dimensional hypercube, the connections in the x-direction, y-direction, and z-direction form
a cube, as shown in Figure 1.10. Each node in a hypercube is assigned a d-bit binary address
when there are d dimensions. Each bit is associated with one of the dimensions and can be
a0 or a I, for the two nodes in that dimension. Nodes in a three-dimensional hypercube
have a 3-bit address. Node 000 connects to nodes with addresses 001, 010, and 100. Node
111 connects to nodes 110, 101, and 011. Note that each node connects to nodes whose
addresses differ by one bit. This characteristic can be extended for higher-dimension hyper-
cubes. For example, in a five-dimensional hypercube, node 11101 connects to nodes 11100,
11111, 11001, 10101, and 01101.

A notable advantage of the hypercube is that the diameter of the network is given by
log,p for a p-node hypercube, which has a reasonable (low) growth with increasing p. The

I{',jllf'- r? ¢

Figure 1.10  Three-dimensional hypercube.
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number of links emanating from each node also only grows logarithmically. A very conve-
nient aspect of the hypercube is the existence of a minimal distance deadlock-free routing
algorithm. To describe this algorithm, let us route a message from a node X having a nodal
address X = x,,_;X,_2 ... XX to a destination node having a nodal address ¥ = y,, v, 3 ...
y1¥- Bach bit of ¥ that is different from that of X identifies one hypercube dimension that the
route should take and can be found by performing the exclusive-OR function, Z=X @ ¥,
operating on pairs of bits. The dimensions to use in the routing are given by those bits of Z
that are 1. At each node in the path, the exclusive-OR function between the current nodal
address and the destination nodal address is performed. Usually the dimension identified by
the most significant 1 in Z is chosen for the route. For example, the route taken from node
13 (001101) to node 42 (101010) in a six-dimensional hypercube would be node 13
(001101) to node 45 (101101) to node 41 (101001) to node 43 (101011) to node 42
(101010). This hypercube routing algorithm is sometimes called the e-cube routing algo-
rithm, or left-to-right routing.

A d-dimensional hypercube actually consists of two d — 1 dimensional hypercubes with
dih dimension links between them. Figure 1.11 shows a four-dimensional hypercube drawn
as two three-dimensional hypercubes with eight connections between them. Hence, the
bisection width is 8. (The bisection width is p/2 for a p-node hypercube.) A five-dimensional
hypercube consists of two four-dimensional hypercubes with connections between them, and
so forth for larger hypercubes. In a practical system, the network must be laid out in two or
possibly three dimensions.

Hypercubes are a part of a larger family of k-ary d-cubes; however, it is only the
binary hypercube (with k= 2) that is really important as a basis for multicomputer construc-
tion and for parallel algorithms. The hypercube network became popular for constructing
message-passing multicomputers after the pioneering research system called the Cosmic
Cube was constructed at Caltech in the early 1980s (Seitz, 1985). However, interest in
hypercubes has waned since the late 1980s.

As an alternative to direct links between individual computers, switches can be used
in various configurations to route the messages between the computers.

Crossbar switch. The crossbar switch provides exhaustive connections using one
switch for each connection. It is employed in shared memory systems more so than
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Figure 1.11  Four-dimensional hypercube,
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message-passing systems for connecting processor to memories. The layout of the crossbar
switch is shown in Figure 1.12. There are several examples of systems using crossbar
switches at some level with the system, especially very high performance systems. One of
our students built a very early crossbar switch multiple microprocessor system in the 1970s
(Wilkinson and Abachi, 1983).

Tree Networks.  Another switch configuration is to use a binary tree, as shown in
Figure 1.13. Each switch in the tree has two links connecting to two switches below it as the
network fans out from the root. This particular tree is a complete binary tree because every
level is fully occupied. The height of a tree is the number of links from the root to the lowest
leaves. A key aspect of the tree structure is that the height is logarithmic; there are log, p
levels of switches with p processors (at the leaves). The tree network need not be complete
or based upon the base two. In an m-ary tree, each node connects to m nodes beneath it.

Under uniform request patterns, the communication traffic in a tree interconnection
network increases toward the root, which can be a bottleneck. In a fat tree network (Leis-
erson, 1985), the number of the links is progressively increased toward the root. In a binary
Jfat tree, we simply add links in parallel, as required between levels of a binary tree, and
increase the number of links toward the root. Leiserson developed this idea into the
universal fat tree, in which the number of links between nodes grows exponentially toward
the root, thereby allowing increased traffic toward the root and reducing the communica-
tion bottleneck. The most notable example of a computer designed with tree interconnec-
tion networks is the Thinking Machine’s Connection Machine CM5 computer, which uses
a 4-ary fat tree (Hwang, 1993). The fat tree has been used subsequently. For example, the
Quadrics QsNet network (see http://www.quadrics.com) uses a fat tree.

Root

Switch
element

Processors

Figure 1.13  Tree structure,
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Multistage Interconnection Networks. The multistage interconnection network
(MIN) is a classification covering a multitude of configurations with the common charac-
teristic of having a number of levels of switches. Switches in one level are connected to
switches in adjacent levels in various symmetrical ways such that a path can made from one
side of the network to the other side (and back sometimes). An example of a multistage
interconnection network is the Omega network shown in Figure 1.14 (for eight inputs and
outputs). This network has a very simple routing algorithm using the destination address.
Inputs and outputs are given addresses as shown in the figure. Each switching cell requires
one control signal to select either the upper output or the lower output (0 specifying the
upper output and 1 specifying the lower). The most significant bit of the destination address
< used to control the switch in the first stage; if the most significant bit is 0, the upper output
is selected, and if it is 1, the lower output is selected. The next-most significant bit of the
destination address is used to select the output of the switch in the next stage, and so on
until the final output has been selected. The Omega network is highly blocking, though one
path can always be made from any input to any output in a free network.

Multistage interconnection networks have a very long history and were originally
developed for telephone exchanges, and are still sometimes used for interconnecting
computers or groups of computers for really large systems. For example, the ASCI White
supercomputer uses an Omega multistage interconnection network. For more information
on multistage interconnection networks see Duato, Yalamanchili, and Ni (1997).

Communication Methods. The ideal situation in passing a message from a
source node to a destination node occurs when there is a direct link between the source node
and the destination node. In most systems and computations, it is often necessary to route
a message through intermediate nodes from the source node to the destination node. There
are two basic ways that messages can be transferred from a source to a destination: circuit

switching and packet switching.

2 ¥ 2 switch elements
(straight-through or
crossover connections)

000 — 000
001 L 001
010 = 010
011 — 011
Inputs Qutputs
100 — 100
101 — 101
110 =110
111 _— — 111

Figure 1.14 Omega network.
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Circuit switching involves establishing the path and maintaining all the links in the
path for the message to pass, uninterrupted, from the source to the destination. All the links
are reserved for the transfer until the message transfer is complete. A simple telephone
system (not using advanced digital techniques) is an example of a circuit-switched system.
Once a telephone connection is made, the connection is maintained until the completion of
the telephone call. Circuit switching has been used on some early multicomputers (e.g., the
Intel IPSC-2 hypercube system), but it suffers from forcing all the links in the path to be
reserved for the complete transfer. None of the links can be used for other messages until
the transfer is completed.

In packet switching, the message is divided into “packets™ of information, each of
which includes the source and destination addresses for routing the packet through the inter-
connection network, and the data. There 1s a maximum size for the packet, say 1000 data
bytes. If the message is larger than the maximum size, the message is broken up into separate
packets, and each packet is sent through the network separately. Buffers are provided inside
nodes to hold packets before they are transferred onward to the next node. A packet remains
in a buffer if blocked from moving forward to the next node. The mail system is an example
of a packet-switched system. Letters are moved from the mailbox to the post office and
handled at intermediate sites before being delivered to the destination. This form of packet
switching is called store-and-forward packet switching . Store-and-forward packet switching
enables links to be used by other packets once the current packet has been forwarded. Unfor-
tunately, store-and-forward packet switching, as described, incurs a significant latency, since
packets must first be stored in buffers within each node, whether or not an outgoing link is
available. This requirement is eliminated in cut-through, a technique originally developed
for computer networks (Kermani and Kleinrock, 1979). In cut-through, if the outgoing link
is available, the message is immediately passed forward without being stored in the nodal
buffer; that is, it is “cut through.” Thus, if the complete path were available, the message
would pass immediately through to the destination. Note, however, that if the path is
blocked, storage is needed for the complete message/packet being received.

Seitz introduced wormhole routing (Dally and Seitz, 1987) as an alternative to normal
store-and-forward routing to reduce the size of the buffers and decrease the latency. In
store-and-forward packet routing, a message 1s stored in a node and transmitted as a whole
when an outgoing link becomes free. In wormhole routing, the message is divided into
smaller units called flits (flow control digits). A flit is usually one or two bytes (Leighton,
1992). The link between nodes may provide for one wire for each bit in the flit so that the
flit can be transmitted in parallel. Only the head of the message is initially transmitted from
the source node to the next node when the connecting link is available. Subsequent flits of
the message are transmitted when links become available, and the flits can be distributed
through the network. When the head flit moves forward, the next one can move forward,
and so on. A request/acknowledge signaling system is necessary between nodes to “pull”
the flits along. When a flit is ready to move on from its buffer, it makes a request to the next
node. When this node has a flit buffer empty, it calls for the flit from the sending node. It is
necessary to reserve the complete path for the message as the parts of the message (the flits)
are linked. Other packets cannot be interleaved with the flits along the same links.

Wormbhole routing requires less storage at each node and produces a latency that is
independent of the path length. Ni and McKinley (1993) present an analysis to show the
independence of path length on latency in wormhole routing. If the length of a flit is much
less than the total message, the latency of wormhole routing will be appropriately
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constant irrespective of the length of the route. (Circuit switching will produce a similar
characteristic.) In contrast, store-and-forward packet switching produces a latency that is
approximately proportional to the length of the route, as is illustrated in Figure 1.15.

Interconnection networks, as we have seen, have routing algorithms to find a path
between nodes. Some routing algorithms are adaptive in that they choose alternative paths
through the network depending upon certain criteria, notably local traffic conditions. In
general, routing algorithms, unless properly designed, can be prone (o livelock and
deadlock. Livelock can occur particularly in adaptive routing algorithms and describes the
situation in which a packet keeps going around the network without ever finding its desti-
nation. Deadlock occurs when packets cannot be forwarded to the next node because they
are blocked by other packets waiting to be forwarded, and these packets are blocked in a
similar way so that none of the packets can move.

Deadlock can occur in both store-and-forward and wormhole networks. The problem
of deadlock appears in communication networks using store-and-forward routing and has
been studied extensively in that context. The mathematical conditions and solutions for
deadlock-free routing in any network can be found in Dally and Seitz (1987). A general
solution to deadlock is to provide virtual channels, each with separate buffers, for classes
of messages. The physical links or channels are the actual hardware links between nodes.
Multiple virtual channels are associated with a physical channel and time-multiplexed onto
the physical channel, as shown in Figure 1.16. Dally and Seitz developed the use of separate
virtual channels to avoid deadlock for wormhole networks.

Packet switching

Network
latency

Wormhole routing
Circuit switching

| I I I [ I

Distance
{number of nodes belween source and destination)

Figure 1.15 Network delay characteristics.

Virtual channel
buifer T Node MNode

-~ Route e

I Physical link i

Figure 1,16 Multiple virtual channels mapped onto a single physical channel.
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1.3.3 Distributed Shared Memory

The message-passing paradigm is often not as attractive for programmers as the shared
memory paradigm. It usually requires the programmers to use explicit message-passing
calls in their code, which is very error prone and makes programs difficult to debug.
Message-passing programming has been compared to low-level assembly language pro-
gramming (programming using the internal language of a processor). Data cannot be
shared; it must be copied. This may be problematic in applications that require multiple
operations across large amounts of data. However, the message-passing paradigm has the
advantage that special synchronization mechanisms are not necessary for controlling
simultaneous access to data. These synchronization mechanisms can significantly increase
the execution time of a parallel program.

Recognizing that the shared memory paradigm is desirable from a programming
point of view, several researchers have pursued the concept of a distributed shared memory
system. As the name suggests, in a distributed shared memory system the memory is phys-
ically distributed with each processor, but each processor has access to the whole memory
using a single memory address space. For a processor to access a location not in its local
memory, message passing occurs to pass data between the processor and the memory
location but in some automated way that hides the fact that the memory is distributed. Of
course, accesses to remote locations will incur a greater delay, and usually a significantly
greater delay, than for local accesses.

Multiprocessor systems can be designed in which the memory is physically distrib-
uted but operates as shared memory and appears from the programmer’s perspective as
shared memory. A number of projects have been undertaken to achieve this goal using
specially designed hardware, and there have been commercial systems based upon this
idea. Perhaps the most appealing approach is to use networked computers. One way to
achieve distributed shared memory on a group of networked computers is to use the existing
virtual memory management system of the individual computers which is already provided
on almost all systems to manage its local memory hierarchy. The virtual memory manage-
ment system can be extended to gives the illusion of global shared memory even when it is
distributed in different computers. This idea is called shared virtual memory. One of the first
to develop shared virtual memory was Li (1986). There are other ways to achieve distrib-
uted shared memory that do not require the use of the virtual memory management system
or special hardware. In any event, physically the system is as given for message-passing
multicomputers in Figure 1.8, except that now the local memory becomes part of the shared
memory and is accessible from all processors, as illustrated in Figure 1.17.

Implementing and programming a distributed shared memory system is considered
in detail in Chapter 9 after the fundamental concepts of shared memory programming in
Chapter 8. Shared memory and message passing should be viewed as programming
paradigms in that either could be the programming model for any type of multiprocessor,
although specific systems may be designed for one or the other.

It should be mentioned that DSM implemented on top of a message-passing system
usnally will not have the performance of a true shared memory system, nor will using
message-passing directly on a message system.
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1.3.4 MIMD and SIMD Classifications

In a single-processor computer, a single stream of instructions is generated by the program
execution. The instructions operate upon data items. Flynn (1966) created a classification
for computers and called this single-processor computer a single instruction stream-single
data stream (SISD) computer. In a general-purpose multiprocessor system, each processor
has a separate program, and one instruction stream is generated from each program for each
processor. Each instruction operates upon different data. Flynn classified this type of
computer as a multiple instruction stream-multiple data stream (MIMD) computer. The
shared memory and message-passing multiprocessors so far described are both in the
MIMD classification. The term MIMD has stood the test of time and is still widely used for
a computer system operating in this mode.

Apart from the two extremes, SISD and MIMD, for certain applications there can be
significant performance advantages in designing a computer in which a single instruction
stream is from a single program but multiple data streams exist. The instructions from the
program are broadcast to more than one processor. Each processor is essentially an arith-
metic processor without a (program) control unit. A single control unit is responsible for
fetching the instructions from memory and issuing the instructions to the processors. Each
processor executes the same instruction in synchronism, but using different data. For flex-
ibility, individual processors can be inhibited from participating in the instruction. The data
items form an array, and an instruction acts upon the complete array in one instruction
cycle. Flynn classified this type of computer as a single instruction stream-multiple data
stream (SIMD) computer. The SIMD type of computer was developed because there are a
number of important applications that mostly operate upon arrays of data. For example,
most computer simulations of physical systems (from molecular systems to weather fore-
casting) start with large arrays of data points that must be manipulated. Another important
application area is low-level image processing, in which the picture elements (pixels) of the
image are stored and manipulated, as described in Chapter 12. Having a system that will
perform similar operations on data points at the same time will be both efficient in hardware
and relatively simple to program. The program simply consists of a single sequence of
instructions operating on the array of data points together with normal control instructions
executed by the separate control unit. We will not consider SIMD computers in this text as
they are specially designed computers, often for specific applications. Computers today can
have SIMD instructions for multimedia and graphics applications. For example, the
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Pentium family, starting with the Pentium II, now has such SIMD instructions added to
speed up multimedia and other applications that require the same operation to be performed
on different data, the so-called MMX (MultiMedia eXtension) instructions.

The fourth combination of Flynn’s classification, multiple instruction stream-single
data stream (MISD) computer, does not exist unless one specifically classifies pipelined
architectures in this group, or possibly some fault tolerant systems.

Within the MIMD classification, which we are concerned with, each processor has its
own program to execute. This could be described as multiple program multiple data
(MPMD) structure, as illustrated in Figure 1.18. Of course, all of the programs to be
executed could be different, but typically only two source programs are written, one for a
designated master processor and one for the remaining processors, which are called slave
processors, A programming structure we may use, or may have to use, is the single program
multiple data (SPMD) structure. In this structure, a single source program is written and
each processor will execute its personal copy of this program, although independently and
not in synchronism. The source program can be constructed so that parts of the program are
executed by certain computers and not others depending upon the identity of the computer.
For a master-slave structure, the program would have parts for the master and parts for the
slaves.

1.4 CLUSTER COMPUTING

26

1.4.1 Interconnected Computers as a Computing Platform

So far, we have described specially designed parallel computers containing multiple pro-
cessors or multiple computers as the computing platform for parallel computing. There
have been numerous university research projects over the years designing such multipro-
cessor systems, often with radically different architectural arrangements and different
software solutions, each project searching for the best performance. For large systems, the
direct links have been replaced with switches and multiple levels of switches (multistage
interconnection networks). Computer system manufacturers have come up with numerous
designs. The major problem that most manufacturers have faced is the unending progress
towards faster and faster processors. Each new generation of processors is faster and able
to perform more simultancous operations internally to boost performance. The most
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obvious improvement noticed by the computer purchaser is the increase in the clock rate of
personal computers. The basic clock rate continues to increase unabated. Imagine purchas-
ing a Pentium (or any other) computer one year and a year later being able to purchase the
same system but with twice the clock frequency. And in addition to clock rate, other factors
make the system operate even faster. For example, newer designs may employ more
internal parallelism within the processor and other ways to achieve faster operation. They
often use memory configurations with higher bandwidth. The way around the problem of
unending progress of faster processors for “supercomputer” manufacturers has been to use
a huge number of available processors. For example, suppose a multiprocessor is designed
with state-of-the-art processors in 2004, say 3GHz processors. Using 500 of these proces-
sors together should still overtake the performance of any single processor system for some
years, but at an enormous cost.

In the late 1980s and early 1990s, another more cost-effective approach was tried by
some universities—using workstations and personal computers connected together to form
a powerful computing platform. A number of projects explored forming groups of
computers from various perspectives. Some early projects explored using workstations as
found in laboratories to form a cluster of workstations (COWSs) or network of workstations
(NOWSs), such as the NOW project at Berkeley (Anderson, Culler, and Patterson, 1995).
Some explored using the free time of existing workstations when they were not being used
for other purposes, as oftentimes workstations, especially those in offices, are not used con-
tinuously or do not require 100% of the processor time even when they are being used.

Initially, using a network of workstations for parallel computing became interesting
to many people because networks of workstations already existed for general-purpose com-
puting. Workstations, as the name suggests, were already used for various programming
and computer-related activities. It was quickly recognized that a network of workstations,
offered a very attractive alternative to expensive supercomputers and parallel computer
systems for high-performance computing. Using a network of workstations has a number
of significant and well-enumerated advantages over specially designed multiprocessor
systems. Key advantages are:

1. Very high performance workstations and PCs are readily available at low cost.

2. The latest processors can easily be incorporated into the system as they become
available and the system can be expanded incrementally by adding additional com-
puters, disks, and other resources.

3. Existing application software can be used or modified.

Software was needed to be able to use the workstations collectively, and fortuitously,
at around the same time, message-passing tools were developed to make the concept usable.
The most important message-passing project to provide parallel programming software
tools for these workstations was Parallel Virtual Machine (PVM), started in the late 1980s.
PVM was a key enabling technology and led to the success of using networks of worksta-
tions for parallel programming. Subsequently, the standard message-passing library,
Message-Passing Interface (MPI), was defined.

The concept of using multiple interconnected personal computers (PCs) as a parallel
computing platform matured in the 1990s as PCs became very inexpensive and powerful.
Workstations, that is, computers particularly targeted towards laboratories, were being
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replaced in part by regular PCs, and the distinction between workstations and PCs in
general-purpose laboratories disappeared. The term “network of workstations™ has given
way to simply a “cluster” of computers, and using the computers in a cluster collectively
on a single problem by the term cluster computing.”

Ethernet Connections. The communication method for networked computers
has commonly been an Ethernet type, which originally consisted of a single wire to which
all the computers attach, as shown in Figure 1.19. Shown here is a file server that holds all
the files of the users and the system utilities. The use of a single wire was regarded as a cost
and layout advantage of the Ethemnet design. Nowadays, a single wire has been replaced
with various switches and hubs while maintaining the Ethernet protocol. A switch, as the
name suggests, provides direct switched connections between the computers to allow
multiple simultaneous connections, as illustrated in Figure 1.20, whereas a hub is simply a
point where all the computers are connected. The switch automatically routes the packets
to their destinations and allows multiple simultaneous connections between separate pairs
of computers. Switches are interconnected in various configurations to route messages
between the computers in the network.

In the Ethernet type of connection, all transfers between a source and a destination
are carried in packets serially (one bit after another on one wire). The packet carries the
source address, the destination address, and the data. The basic Ethernet format is shown in

Ethernet
Workstation/ Workstations Figure 1.19  Original Ethernel-type single
file server wire network,

Connections to other computers
and switches in network

N

Ethernet Switch | Any-to-any simultaneous |
connections

Computers figure 1.20 Ethernet switch.

* Although the term “cluster computing” is now the accepted term, it has been applied to networks of work-
stations/PCs being used collectively to solve problems since the early 1990s. For example, there were workshops
called Cluster Computing at the Supercomputing Computations Research Institute at Florida State University in

1992 and 1993,
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Frame check Source |Destination
sequence D.atgl {E}F address | address P;Tg?b!“
(32 bits) (variable) (16 bits) (48 bits) | (48 bits) (64 bits)
—_—
Direction

Figure 1.21 - Ethernet frame format.

Figure 1.21. The preamble shown in Figure 1.21 is for synchronization. There is a
maximum size for the data (1.5 K bytes), and if the data to be sent is larger than that, it is
divided in separate packets, each with its source and destination address.® Packets could
take different paths from the source to the destination and would often do so on a large
network or the Internet and have to be reconstituted in the correct order at the destination.

As mentioned, the original Ethernet protocol was designed to use a single wire con-
necting multiple computers. Since cach workstation is operating completely independently
and could send messages at any time, the Ethernet line may be needed by one compuler
while it is already being used to carry packets sent by other another computer. Packets are
not sent if it can be detected that information is already being transmitted on the network.
It may be that at the time a packet is to be sent, no other information is passing along the
Ethernet line at the point where this computer is attached and hence it will launch its packet.
However, more than one packet could be launched by different workstations at nearly the
same instant, If more than one packet is submitted 10 the network, the information from
them will be corrupted. This is detected at the source by simply comparing the information
being sent to that actually on the Ethernet line. If not the same, the individual packets are
resubmitted after intervals, all according to the Ethemet protocol (IEEE standard 802.3).

The original speed for Ethernet was 10 Mbits/sec, which has been improved to 100
Mbits/sec and 1000 Mbits/sec (the latter called Gigabit Ethernet). The interconnects can be
twisted-pair wire (copper), coax wire, or optical fiber, the latter for higher speed and longer
distances. We should mention that the message latency is very significant with Ethernet,
especially with the additional overhead caused by some message-passing software.

Network Addressing. TCP/IP (Transmission Control Protocol/Internet Protocol)
is a standard that establishes the rules for networked computers to communicate and pass data.
On the Internet, each “host” computer is given an address for identification purposes. TCP/IP
defines the format of addresses as a 32-bit number divided into four 8-bit numbers (for IPv4,
Internet Protocol version 4). With certain constraints, each number is in the range 0-255.The
notation for the complete address is to separate each number by a period. For example, a
computer might be given the IP address:

129.49.82.1

In binary, this address would be:
10000001.00110001.01010010.00000001

* It is possible to increase the packet size. Alteron Networks has a propriety technique called jumbo frames
to increase the packet size from 1,500 bytes to 9,000 bytes.
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The address is divided into fields to select a network, a possible sub-network, and computer
(“host™) within the sub-network or network. There are several formats identified by the first
one, two, three, or four bits of the address. The layout of the IPv4 formats are shown in
Figure 1.22. This information is relevant for setting up a cluster.

Class A format is identified with a leading 0 in the address and uses the next seven
bits as the network identification. The remaining 24 bits identify the sub-network and
“host” (computer). This provides for 16,777,216 (2°*) hosts within a network, but only 128
networks are available. The hosts can be arranged in various sub-network configurations.
Class A would be used for very large networks.

Class B is for medium-sized networks and identified by the first two bits being 10.
The network is identified by the next 14 bits. The remaining 16 bits are used for the sub-
network and host. This provides for 65,536 (21'5} hosts within a network, and 16,384 (214
networks are available. Again the hosts can be arranged in various sub-network configura-
tions, but a simple configuration would be to have 256 sub-networks and 256 hosts in each
sub-network; that is, the first eight-bits of the sub-network/host part to identify the sub-
network and the remaining eight bits to identify the host within the sub-network.

Class C is for small networks and identified by the first three bits being 110. The
network is identified by the next 21 bits. The remaining eight bits are used for the host. This
provides for 256 (2%) hosts within a network, and 2,097,152 (22!) networks are available.

3l 24 23 0

0 Network Sub-network and Host
) S (NN N TN Y N N N N Y Y O (O O N N CPO Y N T ot s O I (O (Y O |

Class A Range: 1.0.0.0 - 127.255.255.255

3 16 15 0

10 Network Sub-network and Host
i I A O (O N S S L) (O (S N O N (S A ) R (e e O A O (OO IO

Class B Range: 218.0.0.0 - 191.255.255.255

31 8 7 0

1111(0 Network Host
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Class C Range: 192.0.0.0 - 223.255.255.255

31 0
Multicast address
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Class D Range: 224,0,0.0 - 239.255.255.255
A 0
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31 D

1.1111|0 0000
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Loopback 127.0.0.0

Figure 1.22 IPv4 formats.
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The hosts can be arranged in various sub-network configurations, but a simple configura-
tion would not to have a sub-network.

Class D is used to broadcast a message to multiple destinations simultancously; that
is, the transmission is picked up by multiple computers (called multicast). The loopback
format is used to send a message back to oneself for testing. Certain addresses are reserved,
as indicated in Figure 1.22, and some network addresses within classes A, B, and C are
reserved for private networks (10.0.0.0 to 10.255.255.255, 172.16.0.0 to 172.32.255.255,
and 192.168.0.0 to 192.168.255.255). Private network addresses can be used on dedicated
clusters, as will be discussed later.

[Pv4 with its 32-bit addresses provides for about 4 billion hosts (232 = 4,294,967,296,
less those not used for specific host addresses). The Internet has grown tremendously, to
over 100,000,000 hosts by 2001 by most estimates (Knuckles, 2001), and soon more 1P
addresses will be needed. Not only are TP addresses used for computers connected to the
Internet permanently, as in computer laboratories; IP addresses are also used by Internet
Service Providers for dial-up and other connections to customers. IPv6 (Internet Protocol
version 6) has been developed to extend the addressability of IPv4 by using 128 bits divided
into eight 16-bit sections. This gives 2128 possible hosts (a big number!). IPv6 also has a
number of other enhancements for message transfers. Network software can be designed to
handle both TPv4 and IPv6. For the following, we will assume IPv4 addresses.

The IP addressing information is important to setting up a cluster because IP address-
ing is usually used to communicate between computers within the cluster and between the
cluster and users outside the cluster. Network addresses are assigned to the organization by
the Internet Assigned Number Authority. The sub-network and host assignments are chosen
by the organization (i.e., its system administrator for the sub-network/host). Masks are set
up in the communication software to select the network, sub-network, and host field. The
masks are 32-bit numbers with 1’s defining the network/sub-network part of the address.
For example, the mask for a class B address with bits 8 to 15 (in Figure 1.22) used for the
sub-network would be:

255.255.255.0

or in binary:
11111111.11111111.11111111.00000000

which is used to separate the host address from the network/sub-network address. Note that
the division of sub-network and host field need net be on 8-bit boundaries and is decided
by the local system administrator, but the network address (A, B, or C) is allocated to the
organization.

Computers connect to an Ethernet cable via a Ethernet network interface card (NIC).
The source and destination addresses in the Ethernet format shown in Figure 1.21 are not
IP addresses; they are the addresses of network interface cards. These addresses are 48 bits
and called MAC (Media Access Controller) addresses. Each network interface card has a
predefined and unique 48-bit MAC address that is set up during manufacture of the chip or
card. (Allocation of addresses is controlled by the IEEE Registration Authority.) While the
IP address of a computer is selected by software, the MAC address of each NIC is unalter-
able. A translation is necessary between the two to establish a communication path. The
higher-level software will use IP addresses, and the lower-level network interface software
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will use MAC addresses. Actually, both MAC and 1P address are contained in the Ethernet
packet, the IP addresses are within the data part of the packet in Figure 1.21.

There is a level above IP addressing whereby IP addresses are converted into names
for ease of user interaction. For example, sol.cs.weu.edy, is the name of one of Western
Carolina University’s servers within the Department of Mathematics and Computer
Science; its [P address is 152.30.5.10, The relationship between name and IP address is
established using the Domain Naming Service, a distributed name database.’

1.4.2 Cluster Configurations

There are several ways a cluster can be formed.

Existing Networked Computers. One of the first ways to form a cluster was
to use existing networked workstations in a laboratory, as illustrated in Figure 1.23(a).
These workstations were already provided with IP addresses for network communication.
Messaging software provided the means of communication. Indeed, the first way tried by
the authors for teaching cluster computing in the early 1990s was to use existing networked
computers. Using a network of existing computers is very attractive for educational institu-
tions because it can be done without additional resources. However, it can present signifi-
cant problems in the usage of the computers. Cluster computing involves using multiple
computers simultaneously. Clearly, it is possible with modern operating systems to arrange
for the computers to run the cluster computing programs in the background while other

[
Networked computers : L?i il
g = | Lol L i __J L1 — —t
Ethernet T T T | ]

(Usually a switched connected)
(a) Using an existing network of computers

User
Dedicated Cluster ﬁ
i e e E R S e
) e,

3 s T | Iir |
l | — | jI — | L : '

] ] | [
! Switch s o R
\ J

(b) Dedicated cluster taken from laboratory computers

Figure 1.23  Early ways to form a cluster.

3 In UNIX systems, the relationship between host name and IP address is held in a file called hosts, which
can be inspected (e.g., cat fetc/hosts). A look-up table is maintained holding the relationship between the name/IP
address and Ethernet MAC address of hosts. This table can be inspected with the address resolution protocol

command arp -a.
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users are directly working at the computer. Moreover, the structure of the message-passing
software then used (PVM) made this easy. In practice, situations arise that make it unwork-
able. Users at the computer can cause the computer to stop while the cluster computing
work is in progress (they can simply turn the computer off!). Conversely, cluster computing
activities by students can cause the computers to get into difficulties. It also requires the
ability for remote access to the computers, with possible security issues if not done
properly. At the time, the common way for remote access (in UNIX) was through *“r"
commands (rlegin, reh) which were used by the message-passing software to start
processes remotely. Since these commands are insecure, students would be able to remotely
access other computers and cause havoc. (Passwords were transmitted unencrypted.) More
recently, of course, remote access has been made secure with the use of ssh.

Moving to a Dedicated Computer Cluster. We quickly found it very cost-
effective (free!) and less trouble simply to move computers from a laboratory into a
dedicated cluster when the computers were upgraded in the laboratory. Every time the lab-
oratory was upgraded, so was the cluster, but with last year’s models that were being
replaced in the laboratory. The computers forming a cluster need not have displays or
keyboards and are linked with the same communication medium as used in the laboratories.
Simply moving computers into a dedicated group could be done without any changes to IP
addresses. The computers could still belong to the sub-network as before except that each
computer would never have local users sitting at its console. All access is done remotely. A
user would login to a computer outside the cluster group and enroll the cluster compulers
together with its own computer to form a cluster, as illustrated in Figure 1.23(b). Note that
the computers in the cluster would be the type that were originally selected for the computer
laboratory. For example, our cluster formed that way originally consisted of eight SUN IPC
computers in the early 1990s, which were upgraded to eight SUN Ultra computers later
when these computers were being replaced in the general-purpose laboratories.

Beowulf Clusters. A small but very influential cluster-computing project was
started at the NASA Goddard Space Flight Center in 1993, concentrating upon forming a
cost-effective computer cluster by the use of readily available low-cost components.
Standard off-the-shelf microprocessors were chosen with a readily available operafing
system (Linux) and connected together with low-cost interconnects (Ethernet). Whereas
other projects were also concerned with constructing clusters, they often used some special-
ized components and software in their design to obtain the best performance. In contrast,
the NASA project started with the premise that only widely available low-cost components
should be used, chosen on a cost/performance basis. It was entitled the Beowulf project
(Sterling, 2002a and 2002b). This name has stuck for describing any cluster of low-cost
computers using commodity interconnects and readily available software for the purpose
of obtaining a cost-effective computing platform. Originally, Intel processors (486's) were
used and the free Linux operating system, and Linux is a still common operating system for
Beowulf clusters with Intel processors. Other types of processors can be employed in a
Beowulf cluster.

The key attribute for attaching the name Beowulf to a cluster is the use of widely
available components to obtain the best cost/performance ratio. The term commodity
computer is used to highlight the fact that the cost of personal computers is now so low that -
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computers can be bought and replaced at frequent intervals. The mass market for personal
computers has made their manufacture much less expensive. And this applies to all the com-
ponents around the processor, such as memory and network interfaces. We now have
commodity Ethernet network interfaces cards (NICs) at minimal cost. Such interconnects
can be used to connect the commaodity computers to form a cluster of commodity computers.

Beyond Beowulf. Clearly, one would use higher-performance components if
that made economic sense, and really high-performance clusters would use the highest-
performance components available.

Interconnects. Beowulf clusters commonly use fast Ethernet in low-cost clusters.
Gigabit Ethernet is an easy upgrade path; this was the choice made at UNC-Charlotte.
However, there are more specialized and higher-performance interconnects, such as
Myrinet, a 2.4 Gbits/sec interconnect. There are other interconnects that could be used,
including cLan, SCI (Scalable Coherent Interface), QsNet, and Infiniband; see Sterling
(2002a) for more details.

Clusters with Multiple Interconnects. The Beowulf project and other projects
explored using multiple parallel interconnections to reduce the communication overhead.
Clusters can be set up with multiple Ethernet cards or network cards of different types. The
original Beowulf project used two regular Ethernet connections per computer and a
“channel bonding” technique. Channel bonding associates several physical interfaces with
a single virtual channel. Software is available to achieve this effect (e.g., see http://
cesdis.gsfc.nasa.gov/beowulf/software). In the context of Beowulf, the resulting structure
had to be cost-effective. It did show significant improvement in performance (see Sterling,
2002 for more details). Some recent clusters have used slower Ethernet connections for
set-up and faster interconnects such as Myrinet for communication during program
execution.

We have worked on the concept of using multiple Ethernet lines configured as shown
in Figure 1.24(a), (b), and (c). There are numerous ways that switches can be used. The con-
figurations shown are in the general classification of overlapping connectivity networks
(Hoganson, Wilkinson, and Carlisle, 1997; Wilkinson, 1990, 1991, 1992a, 1992b). Over-
lapping connectivity networks have the characteristic that regions of connectivity are
provided and the regions overlap. In the case of overlapping connectivity Ethernets, this is
achieved by having Ethernet segments such as shown in the figure, but there are several
other ways overlapping connectivity can be achieved; see, for example, Wilkinson and
Farmer (1994). It should be mentioned that the structures of Figure 1.24 Significantly
reduce collisions but the latency and data transmission times remain,

Symmetrical Multiprocessors (SMP) Cluster. Small shared memory multiproces-
sors based around a bus, as described in Section 1.2.1, have a symmetry between their pro-
cessors and memory modules and are called symmetric or symmetrical (shared memory)
multiprocessors. Small shared memory multiprocessor systems based upon Pentium pro-
cessors are very cost-effective, especially two-processor systems. Hence, it is also reason-
able to form clusters of “symmetrical multiprocessor” (SMP) systems, as illustrated in
Figure 1.25. This leads to some interesting possibilities for programming such a cluster.
Between SMPs, message passing could be used, and within the SMPs, threads or other
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Figure 1.25  Cluster of shared memory computers,

shared memory methods could be used. Often, however, for convenience, message passing
is done uniformly. When a message is to pass between processors within a SMP computer,
the implementation might use shared memory locations to hold the messages, and commu-
nication would be much faster.

Web Clusters.  Since the arrival of the Internet and the World Wide Web, computers
in different locations and even countries are interconnected. The emergence of the Web
has led to the possibility of using computers attached to the Web at various sites for
parallel programming. Projects have investigated using the “web” of computers to form a
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parallel computing platform. The idea was originally called metacomputing and is now
called grid computing. Projects involved in this type of large-scale cluster computing
include Globus, Legion, and WebFlow. More details of these three systems can be found

in Baker and Fox (1999).

1.4.3 Setting Up a Dedicated “Beowulf Style” Cluster

“Beowulf style” implies commodity components. These are generally PCs that can be
bought from well-known suppliers. These suppliers have now embraced cluster computing
and offer pre-packaged cluster computing systems, although they may be targeted towards
very high performance using multiple dual/quad processor servers. In any event, the setup
procedures have been substantially simplified with the introduction of software packages
such as Oscar, which automates the procedure of loading the operating system and other
procedures. We shall briefly outline Oscar later in this section.

Hardware Configuration. A common hardware configuration is to have one
computer operating as a master node with the other computers in the cluster operating as
compute nodes within a private network. The master node is traditionally known as the
frontend and acts as a file server with significant memory and storage capacity. Generally,
it is convenient for all the compute nodes to have disk drives, although diskless compute
nodes are possible. Connection between the compute nodes and the master node can be by
Fast or Gigabit Ethernet (or possibly a more specialized interconnect, such as Myrinet), as
illustrated in Figure 1.26. The master node needs a second Ethernet interface to connect to
the outside world and would have a globally accessible IP address. The compute nodes
would be given private IP addresses; that is, these computers can only communicate within
the cluster network and are not directly accessible from outside the cluster.

This model can be enhanced in several ways. Another computer acting as an admin-
istrative or management node can be added. This node would be used by the system
administrator for monitoring the cluster and testing. The sole purpose of the compute
nodes is to perform computations, so they do not need a keyboard or display. However, it
may be convenient to be able to access each compute node through its normal console
input. Hence, the serial connections of these nodes could be brought back to the master
though a serial concentrator switch or, if present, the administrative node. There are
various possible connections. Figure 1.27 shows one arrangement whereby a single
display and keyboard are present that can be switched between the master node and the

administrative node, ' :
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Figure 1.26  Dedicated cluster with a master node.
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Figure 1.27  Dedicated cluster with a master and administrative nodes and serial connections.

Software Configuration. Normally every computer in the cluster will have a
copy of the operating system (traditionally Linux, but Windows clusters can also be
formed). The master node will normally also contain all the application files for the cluster
and be configured as a file server using a network file system, which allows the compute
nodes to see and have direct access to files stored remotely. The most commonly used
network file system is NFS. Note that the cluster compute nodes are separated from the
outside network and all user access is through the master node via a separate Ethernet
interface and IP address. Mounted on the master node will be the message-passing software
(MPI and PVM, which will be discussed in Chapter 2), cluster-management tools, and
parallel applications. The message-passing software is between the operating system and
the user, and is the middleware.

Once all the software is established, the user can log onto the master node and enroll
compute nodes using the message-passing software, again as will be described in Chapter 2.
The challenge here is to set up the cluster in the first place, which involves fairly detailed
operating system and networking knowledge (i.e., Linux commands and how to use them).
There are books and Web sites dedicated to this task (and even workshops). Fortunately, as
mentioned, the task of setting up the software for a cluster has been substantially simplified
with the introduction of cluster setup packages, including Oscar (Open Source Cluster
Application Resources), which is menu driven and freely available. Before starting with
Oscar, the operating system (RedHat Linux) has to be mounted on the master mode. Then,
in a number of menu-driven steps, Oscar mounts the required software and configures the
cluster. Briefly, NFS and network protocols are set up on the master node. The cluster is
defined in a database. The private cluster network is defined with [P addresses selected by
the user. The Ethernet interface MAC addresses of the compute nodes are collected. They
are obtained by each compute node making a Boot Protocol (BOOTP/DHCP) request to
the master node. IP addresses are returned for the compute nodes. Also returned is the
name of the “boot” file specifying which kernel (the central part of operating system) to
boot, The kernel is then downloaded and booted, and the compute node file system created.
The operating system on the compute nodes is installed through the network using the
Linux installation utility LUL Finally, the cluster is configured and middleware installed
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and configured. Test programs are run. The cluster is then ready. Workload management
tools are provided for batch queues, scheduling, and job monitoring. Such tools are very
desirable for a cluster. More details of Oscar can be found at http://www.csm.ornl.gov/oscar.

1.5 SUMMARY

38

This chapter introduced the following concepts:

* Parallel computers and programming

* Speedup and other factors

* Extension of a single processor system into a shared memory multiprocessor
* The message-passing multiprocessor (multicomputer)

* Interconnection networks suitable for message-passing multicomputers

* Networked workstations as a parallel programming platform

* Cluster computing

FURTHER READING

Further information on the internal design of multiprocessor systems can be found in
computer architecture texts such as Culler and Singh (1999), Hennessy and Patterson
(2003), and Wilkinson (1996). A great deal has been published on interconnection
networks. Further information on interconnection networks can be found in a significant
textbook by Duato, Yalamanchili, and Ni (1997) devoted solely to interconnection
networks. An early reference to the Ethernet is Metcalfe and Boggs (1976).

Anderson, Culler, and Patterson (1995) make a case for using a network of worksta-
tions collectively as a multiple computer system. Web-based material on workstation
cluster projects includes http://cesdis.gsfc.nasa,gov/beowulf. An example of using shared
memory on networked workstations can be found in Amza et al. (1996).

Recognizing the performance limitation of using commodity interfaces in worksta-
tion clusters has led several researchers to design higher-performance network interface
cards (NICs). Examples of work in this area includes Blumrich et al. (1995), Boden et al.
(1995), Gillett and Kaufmann (1997), and Minnich, Burns, and Hady (1995). Martin et al.
(1997) have also made a detailed study of the effects of communication latency, overhead,
and bandwidth in clustered architecture. One point they make is that it may be better to
improve the communication performance of the communication system rather than invest
in doubling the machine performance.

The two-volume set edited by Buyya (1999a and 1999b) provides a wealth of infor-
mation on clusters. Williams (2001) wrote an excellent text on computer system architec-
ture with an emphasis on networking. Details about building a cluster can be found in
Sterling (2002a and 2002b).
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PROBLEMS

What is the performance of the system as measured in Gflops when 10% of the code is sequen-
i~ tial and 90% is parallelizable?
~— (1.2 Is it possible to have a system efficiency (E) of greater than 100%?7 Discuss.
" " 1-3. Combine the equation for Amdahl’s law with the superlinear speedup analysis in Section 1.2.1
to obtain an equation for speedup given that some of a search has to be done sequentially.
1-4. Tdentify the host names, IP addresses, and MAC addresses on your system. Determine the IPv4
or IPvH format used for the network.
1-5. Identify the class of each of the following IPv4 addresses:
(i) 152.66.2.3
(i) 1234
(iii) 192.192.192.192
(iv) 247.250.0.255
given only that class A starts with a 0, class B starts with the pattern 10, class C starts with the
pattern 110, and class D starts with the pattern 1110 (i.e., without reference to Figure 1.22).
1-6. Suppose the assigned (IPv4) network address is 153.78.0.0 and it is required to have 6 sub-

networks each having 250 hosts. Identify the class of the network address and division of the

_—addresses for the sub-network and hosts. Two addresses must be set aside for the server node.

— 4{ 1-7. JA cluster of 32 computers is being set up. The server node has two Ethernet connections, one

_~/\__“ to the Internet and one to the cluster. The Internet IP address is 216.123.0.0. Devise an IP
address assignment for the cluster using C class format.

1-8. A company is proposing an IPv8 format using 512 bits. Do you think this is justified? Explain.

1-9. Tt is possible to construct a system physically that is a hybrid of a message-passing multicom-

puter and a shared memory multiprocessor. Write a report on how this might be achieved and

its relative advantages over a pure message-passing system and a pure shared memory system.

1-10. (Research project) Write a report on the prospects for a truly incrementally scalable cluster

computer system which can accept faster and faster processors without discarding older ones.

The concept is to start with a system with a few state-of-the art processors and add a few newer

processors each year. Each subsequent year, the processors available naturally get better. At

some point the oldest are discarded, but one keeps adding processors. Hence, the system never

gets obsolete, and the older processors left still provide useful service. The key issue is how to
design the system architecture to accept faster processors and faster interconnects. Another

issue is when to discard older processors. Perform @n analysis on the best time to discard pro-
cessors and interconnects,

}6 lﬂ;\ multiprocessor consists of 100 processors, each capable of a peak execution rate of 2 Gflops.
e
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Chapter 2

Message-Passing Computing

In this chapter, we outline the basic concepts of message-passing computing. The structure
of message-passing programs is introduced and how to specify message-passing between
processes. We discuss these first in general, and then outline one specific system, MPI
(message-passing interface).! Finally, we discuss how to evaluate message-passing parallel
programs, both theoretically and in practice.

2.1 BASICS OF MESSAGE-PASSING PROGRAMMING

2.1.1 Programming Options
Programming a message-passing multicomputer can be achieved by

1. Designing a special parallel programming language

2, Extending the syntax/reserved words of an existing sequential high-level language to
handle message-passing

3. Using an existing sequential high-level language and providing a library of external
procedures for message-passing

There are examples of all three approaches. Perhaps the only common example of a special

message-passing parallel programming language is the language called occam, which was
designed to be used with the unique message-passing processor called the rransputer

"Web-based materials for this book include support for two systems, MPLand PYM.
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Sec. 2.1

(Inmos, 1984). There are several examples of language extensions for parallel program-
ming, although most, such as High Performance Fortran (HPF), are more geared toward
shared memory systems (see Chapter 8). One example of a language extension with explicit
message-passing facilities is Fortran M (Foster, 1995).

It is also possible to use a special parallelizing compiler to convert a program written
in a sequential programming language, such as Fortran, into executable parallel code. This
option was proposed many years ago but is not usually practical for message-passing
because traditional sequential programming languages alone do not have the concept of
message-passing. Parallelizing compilers are considered briefly in Chapter 8 in the context
of shared memory programming.

Here we will concentrate upon the option of programming by using a normal high-
level language such as C. augmented with message-passing library calls that perform
direct process-to-process message-passing. In this method, it is necessary to say explicitly
whalt processes are to be executed, when to pass messages between concurrent processes,
and what to pass in the messages. In this form of programming a message-passing system,
we need:

1. A method of creating separate processes for execution on different computers
2, A method of sending and receiving messages

2.1.2 Process Creation

Before continuing, let us reiterate the concept of a process. In Chapter 1, the term process
was introduced for constructing parallel programs. In some instances, especially when
testing a program, more than one process may be mapped onto a single processor. Usually,
this will not produce the fastest execution speed, as the processor must then time-share
between the processes given to it, but it allows a program to be verified before executing
the program on a multiple-processor system. There is one situation in which it may be
desirable to construct a program to have more than one process on one processor: in order
to hide network latencies (this will be discussed in Section 2.3.1). Nevertheless, we will
assume that one process is mapped onto each processor and use the term process rather than
processor unless it is necessary to highlight the operation of the processor. First, it is
necessary Lo create processes and begin their execution.
Two methods of creating processes are:

= Static process creation
* Dynamic process creation

In static process creation, all the processes are specified before execution and the system
will execute a fixed number of processes. The programmer usually explicitly identifies the
processes or programs prior o execution by command-line actions. In dynamic process
creation, processes can be created and their execution initiated during the execution of
other processes. Process creation constructs or library/system calls are used to create pro-
cesses. Processes can also be destroyed. Process creation and destruction may be done con-
ditionally, and the number of processes may vary during execution. Clearly, dynamic
process creation Is a more powerful technigue than static process creation, but it does incur
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very significant overhead when the processes are created. The term process creation is
somewhat misleading because in all cases the code for the processes has to be written and
compiled prior to the execution of any process.

In most applications, the processes are neither all the same nor all different; usually
there is one controlling process. a “master process,” and the remainder are “slaves,” or “work-
ers.” which are identical in form, only differentiated by their process identification (ID). The
process ID can be used to modify the actions of the process or compute different destinations
for messages. The processes are defined by programs written by the programmer.

The most general programming model is the multiple-program, multiple-data
(MPMD) model, in which a completely separate and different program is written for each
processor, as shown in Figure 2.1, However, as we have mentioned, normally it is sufficient
to have just two different programs, a master program and a slave program. One processor
executes the master program, and multiple processors execute identical slave programs.
Usually, even though the slave programs are identical, process IDs may be used o
customize the execution—for example, to specify the destination of generated messages.

For static process creation especially. the so-called single-program, multiple-data
(SPMD) model is convenient. In the SPMD model. the different programs are merged into
one program. Within the program are control statements that will select different parts for
each process. After the source program is constructed with the required control statements
to separate the actions of each processor, the program is compiled into executable code for
each processor. as illustrated in Figure 2.2. Each processor will load a copy of this code into
its local memory for execution, and all processors can start executing their code together.
If the processors are of different types, the source code has to be compiled into executable
code for each processor type, and the correct type must be loaded for execution by each pro-
cessor. We will describe the SPMD programming in more detail later (Section 2.2.2), as 1
is the main approach for one of the mosl common message-passing systems, MPL

e %
Source Source
file lile
S S
Compile to suit
i processor 4
Executables| |- ————=—=—-- e o S
Figore 2.1  Multiple-program,
Processor () Processar p=1  multiple-data (MPMD) model,
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file
ﬁumpile to EUN
processor
Fxecutahles | 2 f=—————————————————
Figure 2.2 Single-program,
Processor 0 Processor p—1 multiple-data (SPMD) maodel.

For dynamic process creation, two distinct programs may be written, a master
program and a slave program separately compiled and ready for execution. An example of
a library call for dynamic process creation might be of the form

spawn (name_of process);

which immediately starts another prncessz, and both the calling process and the called
process proceed together, as shown in Figure 2.3. The process being “spawned™ is simply
a previously compiled and executable program.

Process 1

|
|
i Start execulion

spawn () ;- of process 2 p i

\

H]

Time

Y
. — Figure 2.3 Spawning a process.

* Courier typeface is used to highlight code, either pseudocode or using a specific language or system.
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2.1.3 Wessage-Passing Routines

Basic Send and Receive Routines. Send and receive message-passing
library calls often have the form

send (parameter_list)
recviparameter_list)

where send () is placed in the source process originating the message, and recv() is placed
in the destination process to collect the messages being sent. The actual parameters will
depend upon the software and in some cases can be complex. The simplest set of parame-
ters would be the destination 1D and message in send () and the source ID and the name of
the location for the receiving message in recv (). For the C language, we might have the call

send (&, destination_id);

in the source process, and the call
recv &y, source_id);

in the destination process, to send the data x in the source process to v in the destination
process. as shown in Figure 2.4, The order of parameters depends upon the system. We will
show the process identification after the data and use an & with a single data clement, as the
specification usually calls for a pointer here. In this example. = must have been preloaded
with the data to be sent, and x and v must be of the same type and size. Often, we want to
send more complex messages than simply one data element, and then a more powerful
message formation is needed. The precise details and variations of the parameters of real
message-passing calls will be described in Section 2.2, but first we will develop the basic
mechanisms. Various mechanisms are provided for send/receive routines for efficient code
and flexibility.

Synchronous Message-Passing. The term synchronous is used for routines that
return when the message transfer has been completed. A synchronous send routine will
wait until the complete message that it has sent has been accepted by the receiving
process before returning. A synchronous receive routine will wait until the message it is
expecting arrives and the message is stored before returning. A pair of processes, one with
a synchronous send operation and one with a matching synchronous receive operation,
will be synchronized, with neither the source process nor the destination process able 1o

Process 1 Process 2

i

}

Movement
send(&x. 2):[\ of data

recv(&ky, 1);

) Figure 24 Passing a messaze between
! processes using send () and recv ()
M library calls.
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proceed until the message has been passed from the source process to the destination
process. Hence, synchronous routines intrinsically perform two actions: They transfer
data, and they synchronize processes. The term rendezvous is used to describe the meeting
and synchronization of two processes through synchronous send/receive operations.

Synchronous send and receive operations do not need message buffer storage. They
suggest some form of signaling, such as a three-way protocol in which the source first sends
a “request to send”’ message 1o the destination. When the destination is ready to accept the
message. it returns an acknowledgment. Upon receiving this acknowledgment, the source
sends the actual message. Synchronous message-passing is shown in Figure 2.5 using the
three-way protocol. In Figure 2.5(a), process | reaches its send() before process 2 has
reached the corresponding recv(). Process 1 must be suspended in some manner until
process 2 reaches its recv (). At that time, process 2 must awaken process | with some form
of “signal,” and then both can participate in the message transfer. Note that in Figure 2.5(a),
the message is kept in the source process until it can be sent. In Figure 2.5(b), process 2
reaches its recv() before process | has reached its send(). Now, process 2 must be
suspended until both can participate in the message transfer. The exact mechanism for sus-
pending and awakening processes is system dependent.

Blocking and Nonblocking Message-Passing. The term blocking was formerly
also used to describe routines that do not allow the process to continue until the transfer is
completed. The routines are “blocked” from continuing. In that sense, the terms synchro-
nous and blocking were synonymous. The term nenblocking was used to describe routines

Process 1 Process 2

J

Time Request to send

sendl() -
Suspend { Acknowledgment :
process - —recy ();
Both processes : Message -
vy continue w \ ' /
(a) When send () occurs before recv ()
Process | Process 2
) O )
" |
: 1
l !
Time - recv(): :
' Request tosend | } Suspend
gend () Al _'_ process
Both processes : Message \ 1'
Y continue ; Acknowledgment ;

(b) When recwv() occurs before send ()

Figure 2.5 Synchronous send () and recv () library calls using a three-way protocol.
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that return whether or not the message had been received. However, the terms blocking and
nonblocking have been redefined in systems such as MPL. We will look into the precise MPI
specification later, but for now, let us mention how a send message-passing routine can
return before the message transfer has been completed. Generally. a message buffer is
needed between the source and destination to hold messages, as shown in Figure 2.6. Here,
the message buffer is used to hold messages being sent prior to being accepted by recv ().
For a receive routine, the message has to have been received if we want the message. If
recv() is reached before send (), the message buffer will be empty and recv () waits for the
message. But for a send routine, once the local actions have been completed and the
message is safely on its way, the process can continue with subsequent work. In this way.
using such send routines can decrease the overall execution time. In practice. buffers can
only be of finite length, and a point could be reached when a send routine is held up because
all the available buffer space has been exhausted. It may be necessary to know at some point
if the message has actually been received, which will require additional message-passing.

We shall conform to MPI's definitions of terms: Routines that return after their local
actions complete, even though the message transfer may not have been completed, are
blocking or, more accurately, locally blocking. Those that return immediately are nonblock-
ing. In MPL, nonblocking routines assume that the data storage used for the transfer is not
modified by the subsequent statements prior to the data storage being used for the transfer,
and it is left to the programmer to ensure this. The term svnchronous will be used to
describe the situation in which the send and receive routines do not return until both occur
and the message has been transmitted from the source to the destination. For the most part,
(locallv) blocking and synchronous are sufficient for the code in this text.

Message Selection. So far, we have described messages being sent to a
specified destination process from a specified source process, where the destination ID is
given as 4 parameter in the send routine and the source 1D is given as a parameter in the
receive routine. The recv() in the destination process will only accept messages from a
source process specified as a parameter in recv() and will ignore other messages. A special
symbol or number may be provided as a wild card in place of the source ID to allow the
destination to accept messages from any source. For example, the number —1 might be used
as a source 1D wild card.

To provide greater flexibility. messages can be selected by a message tag attached to
the message. The message tag nsgtag is typically a user-chosen positive integer (including

Process 1 Process 2

_]

Message buffer
Time

Fi
”
o
n

Continue
'E‘IT'{]EL‘HS

Read
message buffer

. f"’ - ——

:

Figure 2.6  Using a message buffer,
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zero) that can be used to differentiate between different types of messages being sent. Then
specific receive routines can be made to accept only messages with a specific message tag
and ignore other messages. A message tag will be an additional parameter in send() and
recv (), usually immediately following the source/destination identification. For example,
to send a message, =, with message tag 5 from a source process, 1,10 a destination process,
2, and assign 10 y, we might have

send(&x, 2, 5);

in the source process and
recv{&y, 1, 5):

in the destination process. The message tag is carried within the message. If special type
matching is not required, a wild card can be used in place of a message tag. so that the
recy () will match with any send().

The use of message tags is very common. However, it require the programmer to
keep track of the message tag numbers used in the program and in any included programs
written by others or in library routines that are called. A more powerful message-
selection mechanism is needed to differentiate between messages sent within included
programs or library routines and those in the user processes. This mechanism will be
described later.

Broadcast, Gather, and Scatter. There are usually many other message-
passing and related routines that provide desirable features. A process is frequently required
to send the same message to more than one destination process. The term broadcast is used
to deseribe sending the same message 1o all the processes concerned with the problem. The
term multicast is used to describe sending the same message to a defined group of pro-
cesses. However, this differentiation will not be used here, so it will simply be called
broadcast in either case.

Broadcast is illustrated in Figure 2.7. The processes that are to participate in the
broadcast must be identified, typically by first forming a named group of processes to be
used as a parameter in the broadcast routines. In Figure 2.7, process () is identified as the

A | |
beast () becast () : becast|);
Code

N .. L)

Figure 2.7 Broadcast operation.

Process () Process 1 Process p—1
{ data \ { data \ {data \
:"“"—'—H‘\ :I
Aclion
I
]
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root process within the broadcast parameters. The root process could be any process in the
group. In this example, the root process holds the data to be broadcast in but. Figure 2.7
shows each process executing the same beast () routine, which is very convenient for the
SPMD model, in which all the processes have the same program. Figure 2.7 also shows the
root receiving the data, which 1s the arrangement used in MPI but it depends upon the
message-passing system. For the MPMD model, an alternative arrangement is for the
source 1o execute a broadeast routine and destination processes Lo execute regular message-
passing receive routines. In this event, the root process would not receive the data, which is
nol necessary anyway since the root process already has the data.

As described, the broadcast action does not occur until all the processes have
executed their broadcast routine. The broadcast operation will have the effect of synchro-
nizing the processes. The actual implementation of the broadcast will depend upon the
software and the underlying architecture. We will look at the implementation later in this
chapter and in subsequent chapters. It is important to have an efficient implementation,
given the widespread use of broadcast in programs.

The term scatter is used to describe sending each element of an array of data in the
root to a separate process. The contents of the ith location of the array are sent to the ith
process. Whereas broadcast sends the same data to a group of processes, scatter distributes
different data elements to processes. Both are common requirements at the start of a
program to send data to slave processes. Scatter is illustrated in Figure 2.8. As with broad-
cast, a group of processes needs to be identified as well as the root process. In this example,
the root process also receives a data element. Figure 2.8 shows each process executing the
same scatter() routine. which again is convenient for the SPMD model.

The term garher is used to describe having one process collect individual values from
a set of processes. Gather is normally used after some computation has been done by these
processes. Gather is essentially the opposite of scatter. The data from the ith process is
received by the root process and placed in the ith location of the array set aside to receive
the data. Gather is illustrated in Figure 2.9. Process 0 in this example is the root process for
the gather. In this example, data in the root is also gathered into the array.

Sometimes the gather operation can be combined with a specified arithmetic or
logical operation, For example, the values could be gathered and then added together by the

Process () Process | Process p—1
data data
4 —»] ! ]
.—--'"-_'_'_-'_
Acltion
buf
I I |
l (] L] ]
scatter(); scattar(); scatter();
Code ' ' !
1 i I
[ I |

' \ ; / \ . / \ . /

Figure 2.8  Scatter operation,
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Action i
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e

gather(); gather(); gather();
Code

Figure 2.9 Gather operation,

Process () Process | Process p—1
f data b data data
Action /
| | :
reducel) ; reduce () ; reduce ()} ;
Code i 1

Figure 2.10  Reduce operation (addition).

root, as illustrated in Figure 2.10. Another arithmetic/logical operation could be performed
by the root. All such operations are sometimes called reduce operations. Most message-
passing systems provide for these operations and other related operations. The actual way
that the reduce operation is implemented depends upon the implementation, A centralized
operation in the root is not the only solution. Partial operations could be distributed among
the processes. Whatever the implementation, the idea is to have common collective opera-
tions implemented as efficiently as possible.

2.2 USING A CLUSTER OF COMPUTERS

2.2.1 Software Tools

Now let us relate the basic message-passing ideas to a cluster of computers (cluster com-
puting). There have been several software packages for cluster computing, originally
described as for networks of workstations. Perhaps the first widely adopted software for
using a network of workstations as a multicomputer platform was PVM (parallel virtual
machine) developed by Oak Ridge National Laboratories in the late 1980s and used
widely in the 1990s. PVM provides a software environment for message-passing between
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homogeneous or heterogeneous computers and has a collection of library routines that the
user can employ with C or Fortran programs. PVYM became widely used. partly because it
was made readily available at no charge (from http://www.netlib.org/pvm3). Windows
implementations are now available. PVM used dynamic process creation from the start.
Apart from PVM, there have also been proprietary message-passing libraries from IBM
and others for specific systems. However, it was PYM which made using a network of
workstations for parallel programming really practical for most people in the early 1990s.

2.2.2 MPI

To foster more widespread use and portability, a group of academics and industrial partners
came together to develop what they hoped would be a “standard” for message-passing
systems. They called it MPI (Message-Passing Interface). MPI provides library routines for
message-passing and associated operations. A fundamental aspect of MPI is that it defines
a standard but not the implementation, just as programming languages are defined but not
how the compilers for the languages are implemented. MPI has a large number of routines
(over 120 and growing), although we will discuss only a subset of them. An important
factor in developing MPI is the desire to make message-passing portable and easy to use.
Some changes were also made to correct technical deficiencies in earlier message-passing
systems such as PVM. The first version of MPL, version 1.0, was finalized in May 1994 after
two years of meetings and discussions. Version | purposely omitted some advances that
were added to subsequent versions, There have been enhancements to version 1.0 in
versionl.2. Version 2.0 (MPI-2) was introduced in 1997 and included dynamic process
creation, one-sided operations, and parallel [/O.

The large number of functions, even in version 1, is due to the desire to incorporate
features that applications programmers can use to write efficient code. However, programs
can be written using a very small subset of the available functions. It has been suggested by
Gropp, Lusk, and Skjellum (1999a) that successful programs could be written with only six
of the 120+ functions. We will mention a few more than just these six “fundamental” func-
tions. Function calls are available for both C and Fortran. We will only consider the C
versions. All MPI routines start with the prefix mpz_ and the next letter is capitalized. Gen-
erally, routines return information indicating the success or lailure of the call, Such detail
is omitted here and can be found in Snir et al. (1998).

Several free implementations of the MPI standard exist, including MPICH from
Argonne National Laboratories and Mississippi State University, and LAM from the Ohio
Supercomputing Center (now supported by the University of Notre Dame). There are also
numerous vender implementations, from Hewlett-Packard, IBM, SGI, SUN, and others.
Implementation for Windows clusters exist. A list of MPI implementations and their
sources can be found at hup:/f'www.osc.edu/mpi/ and hup://www.erc.msstate.edu/misc/
mpi/implementations.html. A key factor in choosing an implementation is continuing
support, because a few early implementations are now not supported at all. A good indicator
of support is whether the implementation includes features of the most recent version of the
MPI standard (currently MPI-2). The features of available implementations can be found at
http://www.erc.msstate.edu/misc/mpifimplementations.html (24 implementations listed
here at the time of writing). Most, if not all. implementations do not include every feature
of MPI-2. For example, at the time of writing, MPICH did not support MPI one-sided
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communication at all. The extended collective operations of MP1-2 are only supported in
two implementations (commercial implementations from Hitachi and NEC Corporation).
Not having full support can be problematic for writing state-of-the art programs, especially
one-sided communication, which is a useful feature.

Process Creation and Execution. As with parallel programming in general,
parallel computations are decomposed into concurrent processes. Creating and starting
MPI processes is purposely not defined in the MPI standard and will depend upon the
implementation, Only static process creation was supported in MPI version 1. This means
that all the processes must be defined prior to execution and started together. MPI version
2 introduced dynamic process creation as an advanced feature and has a spawn routine,
MPT_Comm_spawn (). Even so, one may choose not to use it because of the overhead of
dynamic process creation.

Using the SPMD model of computation, one program is written and executed by
multiple processors. The way that different programs are started is left to the implemen-
tation. Typically, an executable MPT program will be started on the command line. For
example, the same exccutable might be started on four separate processors simulta-
neously by

mpirun progl -np 4
or
progl -mp 4

These commands say nothing about where the copies of pregl will be executed. Again,
mapping processes onto processors is not defined in the MPI standard. Specific mapping
may be available on the command line or by the use of a file holding the names of the exe-
cutables and the specific processors to run each executable. MPI has support for defining
topologies (meshes, etc.), and hence it has the potential for automatic mapping.

Before any MPI function call, the code must be initialized with me1_1init (). and after
all MPI function calls, the code must be terminated with M2I_Finalize(). Command-line
arguments are passed 10 ¥PI_Init () to allow MPI setup actions 1o take place. For example,

main (int arge, char *argv(])
(
MPI_Init(&argc, &argv): /* initialize MPI */

MPI_Finalize(): /* cerminate MPI */
|

(As in sequential C programs, argc, argument count, provides the number of arguments,
and gargv. argument vector, is a pointer (o an array of character strings.)

Tnitially, all processes are enrolled in a “universe™ called wpT_comi_WORLD, and each
process is given a unique rank, a number from 0 to p — 1, where there are p processes. In
MPI terminology, MP1_COMM_WORLD is a communicator that defines the scope of a commu-
nication operation, and processes have ranks associated with the communicator. Other
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communicators can be established for groups of processes. For a simple program, the
default communicator, ue1_comq worrp, is sufficient. However, the concept allows
programs, and especially libraries, to be constructed with separate scopes for messages.

Using the SPMD Computational Model. The SPMD model is ideal where
each process will actually execute the same code. Normally, though, one or more proces-
sors in all applications need to execute different code. To facilitate this within a single
program, statements need to be inserted to select which portions of the code will be
executed by each processor. Hence, the SPMD model does not preclude a master-slave
approach, but both the master code and the slave code must be in the same program. The
following MPI code segment illustrates how this could be achieved:

main {(int argc, char *argv(])
{
MPI_Init (&argc, &argv);

MPI_Comm_rank (MPI_CCOMM_WORLD, &myrank); /* find process rank */
if (myrank == ()

master();
glse

slave();

MPI_Finalizel();

where master () and slave() are procedures to be executed by the master process and slave
process, respectively. The approach could be used for more than two code sequences. The
SPMD model would be inefficient in memory requirements if each processor were to
execute completely different code. but fortunately this is unlikely to be required. One
advantage of the SPMD model is that command-line arguments can be passed to each
process.

Given the SPMD model, any global declarations of variables will be duplicated in
each process. Variables that are not to be duplicated could be declared locally; that is,
declared within code executed only by that process. For example,

MPI_Comm_rank (MPI_COMM_WORLD, &myrank);/* find process rank =/

if (myrank == 0} { /* process 0 actions/local variablas */
int %, ¥:

} else if {myrank == 1) { /* process 1 actions/local variables */
int x, ¥

1

Here, x and y in process 0 are different local variables from xand v in process 1. However
such declarations are not favored in C because the scope of a variable in C is from its
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declaration to the end of the program or function rather than from the declaration to the
end of the current block, which one would want to achieve by declaring the variables
within a block. In most instances, one would declare all the variables at the top of the
program, and these are then duplicated for each process and essentially are local
variables to each process.

Message-Passing Routines. Message-passing communications can be a
source of erroneous operation. An intent of MPI is to provide a safe communication envi-
ronment. An example of unsafe communication is shown in Figure 2.11. In this figure,
process () wishes to send a message to process 1. but there is also message-passing between
library routines, as shown. Even though each send/recv pair has matching source and des-
lination, incorrect message-passing occurs. The use of wild cards makes incorrect operation
or deadlock even more likely. Suppose that in one process a nonblocking receive has wild
cards in both the tag and source fields. A pair of other processes call library routines that
require message-passing. The first send in this library routine may match with the non-
blocking receive that is using wild cards, causing erroneous aclions.

Communicators are used in MPI for all point-to-point and collective MP] message-
passing communications. A communicator is a communication domain that defines a set of

Process () Process 1

Destination I
{ Y I [ b
{I |

send (.., 1,..)g

LN

1ib{} |{ send ., Lli.);
1. 1ib()
|
| |
| [}
I \recvt...ﬂ. -
S - \!—t’/
(a) Intended behavior
Process Process |
|
' I \
gend{...1l..)g

i ™~ :

I

libl} send(..,1,..): :

‘. 1ib()
|
| |
I 1]
' rrecy (., 0,.)

{b) Possible behavior

Figure 2.11  Unsafe message-passing with libranies.
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processes that are allowed to communicate with one another. In this way, the communica-
tion domain of the library can be separated from that of a user program, Each process has
a rank within the communicator, an integer from 0 to p — |, where there are p processes.
Two types of communicators are available, an intracommunicator for communicating
within a group, and an infercommunicator for communication between groups. A group is
used to define a collection of processes for these purposes. A process has a unique rank in
a group (an integer from 0 to m— 1, where there are m processes in the group), and a process
could be a member of more than one group. For simple programs, only intracommunicators
are used, and the additional concept of a group is unnecessary.

A default intracommunicator, ¥PT_cow_WORLD, exists as the first communicator for all
the processes in the application. In simple applications, it is not necessary to introduce new
communicators, MPT_comy_worLD can be used for all point-to-point and collective opera-
tions. New communicators are created based upon existing communicators, A set of MPI
routines exists for forming communicators from existing communicators (and groups from
existing groups); see Appendix A.

Point-to-Point Communication. Message-passing is done by the familiar send and
receive calls, Message tags are present, and wild cards can be used in place of the tag
(up1_any_Tac) and in place of the source ID in receive routines (MPI_ANY_SOURCE).

The datatype of the message is defined in the send/receive parameters. The datatype
can be taken from a list of standard MPI datatypes (MPT_INT, MPI_FLOAT, MPI_CHAR, elc.) or
can be user created. User-defined datatypes are derived from existing datatypes. In this way,
a data structure can be created to form a message of any complexily. For example, a
structure could be created consisting of two integers and one float if that is to be sent in one
message. Apart from eliminating the need for packing/unpacking routines, as found in the
carlier PVM message-passing system, declared datatypes have the advantage that the
datatype can be reused. Also, explicit send and receive buffers are not required. This is very
useful in reducing the storage requirements of large messages; messages are not copied
from the source location to an explicit send buffer. Copying to an explicit send buffer would

incur twice the storage space as well as time penalties. (MPI does provide routines for
explicit buffers if required.)

Completion. There are several versions of send and receive. The concepts of being
locally complete and globally complete are used in describing the variations. A routine is
locally complete if it has completed all of its part in the operation. A routine is globally
complete if all those involved in the operation have completed their parts of the operation
and the operation has taken place in its entirety.

Blocking Routines. In MPI, blocking send or receive routines return when they are
locally complete. The local completion condition for a blocking send routine is that the
location used to hold the message can be used again or altered without affecting the
message being sent. A blocking send will send the message and return, This does not mean
that the message has been received. just that the process is free to move on without
adversely affecting the message. Essentially the source process is blocked for the minimum
time that is required to access the data. A blocking receive routine will also return when it
is locally complete, which in this case means that the message has been received into the
destination location and the destination location can be read.
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The general format of parameters of the blocking send is

MPT_Send(buf, count, datatype, dast, tag, comm)

/ | \
Address of Datatype of | Message lag H‘aﬁ

send buffer cach item | h,x

Mumber of items Rank of destination  Communicator
to send process

The general format of parameters of the blocking receive is

MPI Recv(buf, count, datatype, src, tag, comm, Status)

' '\'
/
Fy
| NN \ _
Address of Datatype of Message tag \ Status after operation
receive buffer cach item \
Maximum number Rank of source Communicator
of items to receive process

Note that a maximum message size is specified in Me1_gecv (). If a message is received that
is larger than the maximum size, an overflow error occurs. If the message is less than the
maximum size, the message is stored at the front of the buffer and the remaining locations
are untouched. Usually, though, we would expect to send messages of a known size.

Example

To send an integer v from process () Lo process 1,

int *®;
MPI_Comm_rank (MPI_COMM_WORLD, &myrank): /* find process rank */
if (myrank == 0) {
MPI Sendi&x, 1, MPI_INT, 1, msgtag, MPI_COMM WORLD);
} else if (myrank == 1} [
MPI Recvi&x, 1, MPI_INT, 0, msgtag, MPI_COMM_WORLD, status);

Nonblocking Routines. A nonblocking routine returns immediately; that is, allows
the next statement to execute, whether or not the routine is locally complete. The nonblock-
ing send, MPT_Tsend(), where 1 refers to the word immediate, will return even before the
source location is safe to be altered. The nonblocking receive, MPT_Trecyv (), will return even
if there is no message to accept. The formats are

MPI_Tsend(buf, count, datatype, dest, tag, comm, request)
MPI_Irecvibuf, count, datatype, source, tay, comm, request)

Completion can be detected by separate routines, MPI_Wait () and MPI_Test (). MPI_Wait.()
waits until the operation has actually completed and will return then. MPT_Test () returns

immediately with a flag set indicating whether the operation has completed at that time.
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These routines need to be associated with a particular operation, which is achieved by using
the same request parameter. The nonblocking receive routine provides the ability for a
process to continue with other activities while waiting for the message to arrive.

Example

To send an integer x from process 0 to process 1 and allow process 0 to continue,

int x;
MPI_Comm_rank (MPI_COMM WORLD, &myrank); f* find process rank */
if (myrank == 0] [
MPI_Isend(&x, 1, MPI_INT, 1, msgtag, MPI_COMM WORLD, reqgl);
compute () ;
MPI Wait(regl, status):
} else if (myrank == 1) |
MPI_Recvi&x, 0, MPI_INT, 1, msgtag, MPI_COMM_WORLD, status);

Send Communication Modes. MPI send routines can have one of four com-
munication modes that define the send/receive protocol. The modes are standard, buffered,
synchronous, and ready.

In the standard mode send. it is not assumed that the corresponding receive routine
has started. The amount of buffering, if any, is implementation dependent and not defined
by MPIL If buffering is provided, the send could complete before the receive is reached, (If
nonblocking, completion occurs when the matching ¥PI_wait () Or MPI_Test () returns.)

In the buffered mode, send may start and return before a matching receive. It is
necessary to provide specific buffer space in the application for this mode. Buffer space is
supplied to the system via the MPI routine MpI_puffer attach() and removed with
MPI_Buffer_detach().

In the synchronous mode, send and receive can start before each other but can only
complete together.

In the ready mode, a send can only start if the matching receive has already been
reached, otherwise an error will occur, The ready mode must be used with care to avoid
Srroncous operation.

Each of the four modes can be applied to both blocking and nonblocking send
routines. The three nonstandard modes are identified by a letter in the mnemonics (buffered
—b; synchronous - s, and ready — r). For example, Mp1_1ssend() is a nonblocking synchro-
nous send routine. This i1s an unusual combination but has significant uses. The send will
return immediately and hence will not directly synchronize the process with the one that
has the corresponding receive. The message transfer will presumably complete at some
point, which can be determined, as with all immediate mode routines, through the use of
MPI_Wait () or MPI_Test (). This would allow for example to time how long it would take to
synchronize processes or to determine whether there is a problem, such as lack of buffer
storage. There are some disallowed combinations. Only the standard mode is available for
the blocking and nonblocking receive routines, and it is not assumed that the corresponding
send has started. Any type of send routine can be used with any type of receive routine.
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Collective Communication. Collective communication, such as broadcast,
involves a set of processes, as opposed to point-to-point communication involving one
source process and one destination process. The processes are those defined by an intrac-
ommunicator. Message tags are not present.

Broadcast, Gather, and Scatter Routines. MPI provides a broadcast routine and a
range of gather and scatter routines. The communicator defines the collection of processes
that will participate in the collection operation. The principal collective operations
operating upon data are

MPI_Bcast(] - Broadcasts from root to all other processes
MPI_CGather () - Cathers values for group of processes
MBT_Scatter() - Scatters buffer in parts to group of processes
MPT_Alltoalll) - Sends data from all processes to all processes
MPT_Reducea() - Combines wvalues on all processes Lo single value
MPI_Reduce_scatter() - Combines values and scatter results

MPT_Scan() - Computes prefix reductions of data on processes

The processes involved are those in the same communicator. There are several variations of
the routines. Details of the parameters can be found in Appendix A.
Example

To gather items from the group of processes into process (0. using dynamically allocated
memory in the root process, we might use

int data[lC]; /*dara to be gathered from processes®/
MPT Comm_rank (MPI_COMM_WORLD, &myrank); /* find rank */
if (myrank == 0} {
MPT Comm_size (MPI_COMM WORLD, &grp_size): /*find group size*/
uE = (inc *1malloc{grp size*1l0*sizeof (int)); f*allocate memory® /S

}
MPT_Gather(data,10,MPI_INT, buf,grp_size*10,MPI_INT,0, MPI _COMM WORLD) ;

Note that MPT_Gather () gathers from all processes, including the root.

Barrier.  As in all message-passing systems, MPI provides a means of synchroniz-
ing processes by stopping each one until they all have reached a specific “barrier” call. We
will look at barriers in detail in Chapter 6 when considering synchronized computations.

Sample MPI Program.  Figure 2.12 shows a simple MPI program. The purpose
of this program to add a group of numbers together. These numbers are randomly generated
and held in a file. The program can be found at http://www.cs.uncc.edu/par_prog and can
be used to become familiar with the software environment.

Sec.2.2 Using a Cluster of Computers 59




60

#i
#i
#i

nclude “mpi.h”
nclude <stdio.h>
nclude <math.h>

#define MAXSIZE 1000

vo
{

'jk

Ij'l.

'J"l-

In

id main(int argc, char **argv)

int myid, numprocs;

int data[MAXSIZE], i, x, low, high, myresult, result;
char fn[255];

char *fp;

MPI_Init (&arge, &argv);
MPI_Comm_size (MPI_COMM_WORLD, fnumprocs) ;
MPI_Comm_rank (MPI_COMM_WORLD, &myid) ;

if (myid == 0} { {* Open input file and initialize data */
strepy (fn, getenv ("HOME") ) ;
strcat (fn, */MPI/rand_data.txt"};
if ((fp = fopeni{fn,"r")}) == NULL) {
printf("Can’'t open the input file: %s\n\n*, In);
exit(l):
}
forli = 0; 1 < MA¥SIZE; i++) fscanf(fp,"%d", &datali]};
1

broadcast data */
MPI_Bract (data, MAXSIZE, MPI_INT, 0, MPI_COMM_WORLD) ;

Add my portion Of data */
X = MAXSIZE/numprocs; /* must be an integer */
low = myid * x;
high = low + x;
myresult = 0;
for(i = low; 1 < high; i++)
myresult += data[i];
printf(*I got %d from %d\n*, myresult, myid);

Compute global sum */
MPI_Reduce (&myresult, &result, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD) ;
if (myid == 0) printf{"The sum is %d.\n", result);

MPI_Finalize():;

Figure 2.12  Sample MPI program,

2.2.3 Pseudocode Constructs

the preceding sections, we saw specific MPI routines for implementing basic

message-passing. Additional code is required for the sometimes numerous parameters,
and often many other detailed aspects are involved. For example, error detection code

may need to be incorporated. In C, almost all MPI routines return an integer error code

in

the event of an error;’ in C++ exception is thrown and error handlers provided. In any

7"The notable MPI routine that does not have an error code is MPI_Wtime () which returns the elapsed

time as a double. Presumably this routine cannot cause an error,
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event, the code can be identified from a list of error classes and the appropriate action
taken. Such additions, although necessary for structurally sound programs, substantially
detract from readability. Rather than use real code, we will use a pseudocode for describ-
ing algorithms. Our pseudocode will omit the clutter of parameters that are secondary 1o
understanding the code.

The process identification is placed last in the list (as in MPI). To send a message
consisting of an integer x and a float y, from the process called master to the process called
slave, assigning to a and b, we simply write in the master process

send (&x, &Y, Pajavel’
and in the slave process

Tecy (ka, &ba ?ﬁﬂgtnr:li'

where x and a are declared as integers and v and b are declared as floats. The integer x= will
be copied to a. and the float y copied to b. (Note that we have allowed ourselves the flexi-
bility of specifying more than one data item of different types; in actual code, separate
routines may be necessary, or data types created.) We have retained the & symbol to indicate
that the data parameters are pointers (as they must be for recv() at least, and for sending
arrays). Where appropriate, the ith process will be given the notation e, and a tag may be
present that would follow the source or destination name. Thus

send(&x, P-, data_tag);

sends x to process 2, with the message lag data_rag. The corresponding receive will have
the same tag (or a wide card tag). Sometimes more complex data structures need to be
defined, and additional specification is also needed in collective communication routines.
The most common form of basic message-passing routine needed in our pseudo-
code is the locally blocking sena() and recv (), which will be written as given:
send (&datal, Pgastinatian)? /* Locally blecking send */

recv(&datal, P. . .cali /* Locally blocking receive */

In many instances, the locally blocking versions are sufficient. Other forms will be differ-
entiated with prefixes:

ssend (&datal, Pagerinarion) i /* Synchronous send */

Virtually all of the code segments given. apart from the message-passing routines, are
in the regular C language, although not necessarily in the most optimized or concise
manner. For example, for clarity we have refrained from using compressed assignments
(e.g., x += vy;), except for loop counters. Some artistic license has been taken. Exponentia-
tion is wrilten in the normal mathematical way. Generally, nitialization of variables is not
shown. However, translation of pseudocode to actual message-passing code in MP1 or any
other message-passing “language” is straightforward.
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2.3 EVALUATING PARALLEL PROGRAMS
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In subsequent chapters, we will describe various methods of achieving parallelism, and we

will need to evaluate these methods. As a prelude to this, let us give a brief overview of the
key aspecls.

2.3.1 Equations for Parallel Execution Time

Our first concern is how fast the parallel implementation is likely to be. We might begin by
estimating the execution time on a single computer, 7,. by counting the computational steps
of the best sequential algorithm. For a parallel algorithm, in addition to determining the
number of computational steps, we need to estimate the communication overhead. In a
message-passing system. the time to send messages must be considered in the overall
execution time of a problem. The parallel execution time, f,,, is composed of two parts: a
computation part, say Ieamp: and a communication part, say f.ymm. 1hus we have

!;:- = !Cﬂmp + leomm

Computational Time. The computation time can be estimated in much the same
way as for a sequential algorithm, by counting the number of computational steps, When
more than one process is being executed simultaneously. we only need Lo count the compu-
tational steps of the most complex process. Often, all the processes are performing the same
operation, so we simply count the number of computation steps of one process. In other sit-
uations. we would find the greatest number of computation steps of the concurrent pro-
cesses. Generally, the number of computational steps will be a function of n and p. Thus

!E'U'I'I'IFI :-lﬂ;” ¥ P}

The time units of ¢, are those of a computational step. For convenience, we will often break

down the computation time into parts separated by message-passing, and then determine
the computation time of each part. Then

feomp = feompl ¥ feomp? + loomp3 T +-»

where feompis feomp2r feomp3 -+ 4r€ the computation times of each part.

Analysis of the computation time usually assumes that all the processors are the same
and operating at the same speed. This may be true for a specially designed multicomputer/
multiprocessor but may not be true for a cluster. One of the powerful features of clusters is
that the computers need not be the same. Taking into account a heterogeneous system
would be difficult in a mathematical analysis, so our analysis will assume identical comput-
ers. Different types of computers will be taken into account by choosing implementation

methods that balance the computational load across the available computers (load balanc-
ing), as described in Chapter 7.

Communication Time. The communication time will depend upon the number
of messages, the size of each message. the underlying interconnection structure, and the
mode of transfer. The communication time of each message will depend upon many factors,
including network structure and network contention. For a first approximation, we will use

feomm1 = lstartup + Widata
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for the communication time of a message 1, Where fyyp is the startup time, sometimes called
the message latency. The startup time is essentially the time needed to send a message with
no data. (It could be measured by simply doing that.) It includes the time to pack the message
at the source and unpack the message at the destination. The term larency is also used to
describe a complete communication delay, as in Chapter 1. so we will use the term startup
time here. The startup time is assumed to be constant. The term fy,, is the transmission time
to send one data word, also assumed to be constant, and there are w data words, The transmis-
sion rate is usually measured in bits/second and would be b/ry,,, bits/second when there are b
bits in the data word. The equation is illustrated in Figure 2.13. Of course, we do not get such
a perfect linear relationship in a real system. Many factors can affect the communication time,
including contention on the communication medium. The equation ignores the fact that the
source and destination may not be directly linked in a real system so that the message must
pass through intermediate nodes. It also assumes that the overhead incurred by including
information other than data in the packet is constant and can be part of Iy p-

The final communication time, ., Will be the summation of the communication
times of all the sequential messages from a process. Thus

leomm = feomm! + feomm2 + feomm3z + -+

where foommis feomm2s feomm3 -+~ are the communication times of the messages. (Typically,
the communication patterns of all the processes are the same and assumed to take place
together, so that only one process need be considered.)

Since the startup and data transmission Hmes, Iy pyp ad Iy, are both measured in
units of one computational step, we can add f.omy, and £y, together to obtain the parallel
execution time, 1,,.

Benchmark Factors. Once we have the sequential execution time f,, the com-
putational time . and the communication time foqyp,, We can establish the speedup
factor and computation/communication ratio described in Chapter 1 for any given
algorithm/implementation, namely:

i ,
Speedup factor = = = -
'r_n ‘fcump = 'ruumm
x H * : "EﬂmE
Computation/communication ratio =
comim

Time

Startup time

Figure 2.13  ldealized communication
Number of data items (1) time.
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Both factors will be functions of the number of processors, p. and the number of data
elements, n, and will give an indication of the scalability of the parallel solution with
increasing number of processors and increasing problem size. The computation/communi-
cation ratio in particular will highlight the effect of communication with increasing
problem size and system size.

Important Notes on Interpretation of Equations. There are many assump-
tions in the analysis given in subsequent chapters, and the analysis is only intended to give
a starting point to how an algorithm might perform in practice. The parallel execution time,
1, will be normalized to be measured in units of an arithmetic operation, which of course
will depend upon the computer system. For ease of analysis, it will be assumed that the
system is a homogeneous system. Every processor is identical and operating at the same
speed. Also, all arithmetic operations are considered to require the same time: for example
division requires the same time as addition. Although this is very unlikely in practice, it is
a common assumption for analysis. Any additional operations necessary in the formation
of the program, such as counting iterations, are not considered.

We will not differentiate between sending an integer and sending a real number, or
other formats, All are assumed to require the same time. (This is also not true in practice —
in most practical implementations, an 8-bit character will require less time to send than a
64-bit float.) However in many problems, the data type of the data been sent is often the
same throughout. The actual startup and rransmission times are also dependent upon the
computer system and can vary widely between systems. Often the startup time is at least
one or two orders of magnitude greater than the transmission time, which is also much
greater than the arithmetic operation time. In practice, it is the startup fime that will
dominate the communication time in many cases. We cannot ignore this term unless n is
quite large. (It would. however, be ignored when the equations are converted to order
notation; see Section 2.3.2.)

Example

Suppose a computer can operate at a maximum of | GFLOPs ( 1607 floating point operations per
second) and the startup time is 1 ps. The computer could execute 1000 floating point operations
in the time taken in the message startup.

Latency Hiding. In the preceding example, one would need 1000 floating point
operations between each message just to spend as much time in computing as in message
startup. This effect is often cited by shared memory supporters as the Achilles™ heel of
message-passing multicomputers. One way to ameliorate the situation is to overlap the
communication with subsequent computations: that is, by keeping the processor busy with
useful work while waiting for the communication to be completed, which is known as
latency hiding. The nonblocking send routines are provided particularly to enable latency
hiding, but even the (locally) blocking send routines allow for subsequent computations to
take place while waiting for the destination to receive the message and perhaps return a
message. Problem 2-8 explores latency hiding empirically using this approach.

Latency hiding can also be achieved by mapping multiple processes on a processor
and using a time-sharing facility that switches from one process (o another when the first
process is stalled because of incomplete message-passing or for some other reason.
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Sometimes the processes are called virrual processors. An m-process algorithm imple-
mented on an p-processor machine is said to have a parallel slackness of m/p for that
machine, where p < m. Using parallel slackness to hide latency relies upon an efficient
method of switching from one process to another. Threads offer an efficient mechanism.
See Chapter 8 for further details.

2.3.2 Time Complexity

As with sequential computations, a parallel algorithm can be evaluated through the use of
time complexity (notably the O notation — “order of magnitude,” “big-oh”) (Knuth, 1976).
This notation should be familiar from sequential programming and is used to capture char-
acteristics of an algorithm as some variable, usually the data size, tends to infinity. This is
especially useful in comparing the execution time of algorithms (time complexity) but can
also be applied (o other computational aspects, such as memory requirements (space com-
plexity) as well as speed-up and efficiency in parallel algorithms. Let us first review time
complexity as applied to sequential algorithms.

When using the notations for execution time, we start with an estimate of the number
of computational steps, considering all the arithmetic and logical operations to be equal and
ignoring other aspects of the computation, such as computational tests. An expression of the
number of computational steps is derived, often in terms of the number of data 1temr. being
handled by the algorithm. For example, suppose an algorithm, Al, requires 47 + 2+ 12
computational steps for x data items. As we increase the number ot data items, the total
number of operations will depend more and more upon the term 4x°. This term will “dom-
inate™ the other terms, and eventually the other terms will be insignificant. The growth of
the function in this example is polynomial. Another algorithm, A2, for the same problem
might require 5 log.x + 200 computational 5t¢p5.4 For small x, this has more steps than the
first function, A, but as we increase x, a point will be reached whereby the second function,
A2, requires fewer computational steps and will be preferred. In the function 5 log.x + 200,
the first term, 5 log x, will eventually dominate the second term, 200, and the second term
can be ignored because we only need to compare the dominating terms. The growth of
function log x is legarithmic. For a sufficiently large x, logarithmic growth will be less than
polynomial growth. We can capture growth patterns in the O notation (big-oh). Algorithm
A1 has a big-oh of O(x”). Algorithm A2 has a big-oh of O(log x).

Formal Definitions.
O notation. Formally. the O notation can be defined as follows:

flx)=0(g(x)) if and only if there exist positive constants, ¢ and xp, such that
0= fix) = cglx) forall x 2 xy

where f{x) and g(x) are functions of x. For example, if f(x) = 4% + 2x + 12, the cnnstam
c=0 wuuld work with the formal definition to establish that f(x) = O(x?), since
O<4x®+2x+12<6x forx = 3.

*Throu ghout the text, logarithms are assumed to have the base 2 unless otherwise stated, although the base
here does not matler.
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Unfortunately, the formal definition also leads to alternative functions for g(x) that
will also satisfy the definition. For example, g(x)= v also satisfies the definition
4x? 4 2x + 12 €27 for x 2 3. Normally, we would use the function that grows the least for
g(x). In fact, in many cases we have a “tight bound” in that the function flx) equals g(x) to
within a constant factor. This can be captured in the © notation.

O notation. Formally, the © notation can be defined as follows:

f(x)=©O(g(x)) if and only if there exist positive constants cj, ¢y, and xg such that
0 < eg(x) < f(x)  cog(x) for all x 2 xp.

If f(x) = ©(g(x)), it is clear that j]’.r) = O(g(x)) is also true. One way of satisfying the condi-
tions for the function f(x) =47+ 20+ 12 is i]]u:.tmled in Figure 2. 14 We can actually
satisfy the conditions 1 in many ways with g(x) = %, but can see that ¢} = 2, ¢ = 6, and x =
will work; that is, 2x° < flx) < 617, Thuq we can say that f'[r}—-flr"+ 2y + 12 = (),
which is more precise than using O(x%). We should really use the big-oh notation if and only
if the upper bound on growth can be satisfied. However, it is common practice to use big-
oh 1n any event.

Q notation. The lower bound on growth can be described by the £ notation, which

is formally defined as

f(x) = Q(g(x)) if and only if there exist positive constants ¢ and X, such that
0 < eg(x) < fix) for all x = xy.

cagx) = 6"
160 —

140 — fix) = Al 4+ 2x+ 12
120 —

100} —
80 —

60— crglx) = 20

Tk — —— —— o —

o
Figure 2.14  Growth of function fix) = 4 4 20+ 12,
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It follows from this definition that f{x) = 4x> + 2x + 12 = Q(x?) (see Figure 2.14). We can
read O() as “grows at most as fast as™ and €2() as “grows at least as fast as.” The function
f(x) = ©(g(x)) is true if and only if f(x) = Q(g(x)) and f{x) = O(g(x)).

The £ notation can be used to indicate the best-case situation. For example. the
execution time of a sorting algorithm often depends upon the original order of thc numbers
to be sorted. It may be that it requires at least n log n steps, but could require n steps for n
numbers depending upon the order of the numbers, This would be indicated by a time com-
plexity of Q(n log n) and O(n).

In this text, we often deal with functions of two variables, p and n. In such cases, the
time complexity is also a function of the two variables,

Time Complexity of a Parallel Algorithm. 1If we use time complexity
analysis, which hides lower terms. f,,,,, Will have a time complexity of O(n). The time com-
plexity of f, will be the sum of the complexity of the computation and the communication.

Example

Suppose we were to add # numbers on two computers, where each computer adds n/2 numbers
together, and the numbers are initially all held by the first computer. The second computer
submits its result to the first computer for adding the two partial sums together. This problem
has several phases:

1 Computer | sends n/2 numbers to computer 2.

2. Both computers add #/2 numbers simultaneously.

3 Computer 2 sends its partial result back to computer 1.

4.  Computer | adds the partial sums to produce the final result.

As in most parallel algorithms, there is computation and communication, which we will generally
consider separately:

Computation (for steps 2 and 4):

I} =nf2 + 1

comp

Communicarion (for steps 1 and 3):

teomm = {‘Slanup + ﬂfﬂfﬂam} + “5!:irll|p+ fdata) = 2"'\[5]““'1 +(nf2 + ”"«Iuln

The computational complexity is O(n). The communication complexity is O(n). The overall
time complexity is O(n).

Computation/Communication Ratio. Normally. communication is very costly. If
both the computation and communication have the same time complexity, increasing n is
unlikely to improve the performance. Ideally. the time complexity of the computation
should be greater than that of the communication, for in that case increasing # will improve
the performance. For example, Suppose the communication time complexity is O(n) and the
computation time complexity is O(n®). B y increasing n, eventually an n can be found that
will cause the computation time to dominate the overall execution time. There are notable
examples where this can be true. For example, the N-body problem mentioned in Chapter
1, and discussed in Chapter 4, has a communication time complexity of O(N) and a com-
putation time complexity of O(N?) (using a direct parallel algorithm). This is one of the few
problems where the size can be really large.
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Cost and Cost-Optimal Algorithms. The processor-time product or cost (or
wark) of a computation can be defined as

Cost = (execution time) X (total number of processors used)

The cost of a sequential computation is simply its execution time, f.. The cost of a parallel
computation is Iy X . A cost-optimal parallel algorithm is one in which the cost to solve a
problem is proportional to the execution time on a single processor system (using the fastest
known sequential algorithm). Thus,

Cost=1,xp=kxI,

where k is a constant. Using time complexity analysis, we can say that a parallel algorithm
is cost-optimal algorithm if

Parallel time complexity X number of processors = sequential time complexity

Example

Suppose the best-known sequential algorithm for a problem with # numbers has time complex-
ity of O(nlogn). A parallel algorithm for the same problem that uses p processors and has a

. . I . i b 3
time complexity of (}(llngnJ is cost-optimal, whereas a parallel algorithm that uses p~ pro-
Iy

R
2 ; n-y . :
cessors and has time complexity of {)(___) is not cost-optimal.
P

2.3.3 Comments on Asymptotic Analysis

Whereas time complexity is widely used for sequential program analysis and for theoreti-
cal analysis of parallel programs, the time complexity notation is much less useful for eval-
uating the potential performance of parallel programs. The big-oh and other complexity
notations use asymptotic methods (allowing the variable under consideration to tend to
infinity), which may not be completely relevant. The conclusions reached from the
analyses are based upon the variable under consideration, usually either the data size or the
number of processors growing toward infinity. However. often the number of processors is
constrained and we are therefore unable to expand the number of processors toward
infinity. Similarly, we are interested in finite and manageable data sizes. In addition, the
analysis ignores lower terms that could be very significant. For example, the communica-
tion time equation

Teomm = Tstartup + Wdata

has a time complexity of O(w), but for reasonable values of w, the startup time would com-
pletely dominate the overall communication time. Finally. the analysis also ignores other
factors that appear in real computers, such as communication contention.

Shared Memory Programs. Much of our discussion is centered on message-
passing programs. For shared memory programs, the communication aspect, of course,
does not exist and the time complexity is simply that of the computation, as in a sequential
program. In that respect, time complexity might be more relevant. However, an additional
aspect of a shared memory program is that the shared data must be accessed in a controlled
fashion, causing additional delays. This aspect is considered in Chapter 8.
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2.3.4 Communication Time of Broadcast/Gather

Notwithstanding our comments about theoretical analysis. let us look at broadcast/gather
operations and their complexity. Almost all problems require data to be broadcast to
processes and data to be gathered from processes. Most software environments provide for
broadcast and gather. The actual algorithm used will depend upon the underlying architec-
ture of the multicomputer, In the past, the programmer might have been given some
knowledge of the interconnection architecture (mesh, etc.) and been able to take advantage
of it, but nowadays this is usually hidden from the programmer.

In this text, we concentrate upon using clusters. Again the actual interconnection
structure will be hidden from the user, although it is much more likely to provide full simul-
tancous connections between pairs of computers using switches. In the distant past.
Ethernet used a single wire connecting all computers. Broadeast on a single Ethernet con-
nection could be done using a single message that was read by all the destinations on the
network simultaneously, (Ethernet protocols provide for this form of communication.)
Hence, broadcast could be very efficient and just require a single message:

feamm = Fstartup + Wdara

with an O(1) time complexity for one data item; for w data items it was O(w).

Of course, most clustered computers will use a variety of network structures, and the
convenient broadcast medium available in a single Ethernet will not generally be applica-
ble. Typically messages are sent from the originating computer to multiple destinations,
which themselves send the message on to multiple destinations. Once a message arrives al
a destination it is converted into a 1-to-V fan-out broadcast call, where the same message
15 sent to each of the destinations in turn, as shown in Figure 2.15. The same construction
will be necessary for gather, except that the messages pass in the opposite direction. In
either case, the limiting factor will be whether the messages sent or received are sequential,
leading to:

! = N1

COmmm "'-IH.I'[IJ"I + H'Id-'!.[ﬂr]

an O(N) communication time complexity for one source connecting to N destinations. We
are assuming that the messages at each level occur at the same time (which of course would
not happen in practice).

The 1-to-N fan-out broadcast applied to a tree structure is shown in Figure 2.16.
The complexity here will depend upon the number of nodes at each level and the number

Source

Sequential

N destinations Figure 2,15  1-1o-NV fan-out broadeast,
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Source

Sequential message issue

O Figure 2.16  1-to-N tan-out broadcast on o
Destinations tree structure,

of levels. For a binary tree N = 2 and log p levels if there are p final destinations. This
leads to
leomm = 2(log p)(1 startup + Widat)

assuming again that the messages at each level occur at the same time. (It is left as an
exercise to determine the communication time if this assumption is not made.)

One disadvantage of a binary tree implementation of broadcast is that if a node fails
in the tree, all the nodes below it will not receive the message. In addition, a binary tree
would be difficult to implement in a library call. The programmer can, of course, achieve it
with explicit coding in the processes.

2.4 DEBUGGING AND EVALUATING PARALLEL PROGRAMS EMPIRICALLY

70

In writing a parallel program. we first want to get it to execute correctly. Then we will
become interested in how fast the program executes. Finally, we would like to see whether
it can be made to execute faster.

2.4.1 Low-Level Debugging

Getting a parallel program to work properly can be a significant intellectual challenge. It is
useful to write a sequential version first, based upon the ultimate parallel algorithm. Having
said that, the parallel code still has to be made to work. Errors in sequential programs are
found by debugging. A common way is to instrument the code; that is, to insert code that
outputs intermediate calculated values as the program executes. Print statements are used
to output the intermediate values. Similar techniques could be used in parallel programs,
but this approach has some very significant consequences. First and foremost, instrument-
ing a sequential program makes it execute slower, but it still functions deterministically and
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produces the same answer. Instrumenting a parallel program by inserting code in the
different processes will certainly slow down the computations. It also may cause the
instructions to be executed in a different interleaved order, as generally each process will
be affected differently. It is possible for a nonworking program to start working after the
instrumentation code is inserted — which would certainly indicate that the problem lies
within interprocess timing.

We should also mention that since processes might be executing on a remote
computer, output from print statements may need to be redirected to a file in order to be
seen at the local computer. Message-passing software often has facilities to redirect output.

The lowest level of debugging (in desperation) is to use a debugger. Primitive sequen-
tial-program debugging tools, such as dox, exist (but are rarely used) to examine registers
and perhaps set “breakpoinis™ to stop the execution. Applying these techniques to parallel
programs would be of little value because of such factors as not knowing the precise inter-
leaved order of events in different processes. One scenario would be to run the debugger on
individual processors and watch the output in separate display windows. A parallel compu-
tation could have many simultaneous processes, which would make this approach
unwieldy. In the case of dynamic process creation, system facilities may be needed to start
spawned processes through a debugger.

Parallel computations have characteristics that are not captured by a regular sequen-
tial debugger, such as timing of events. Events may be recognized when certain conditions
occur. In addition to what might appear in a sequential program, such as access to a memory
location, an event in this context may be a message being sent or received. Parallel
debuggers are available (McDowell and Helmbold, 1989).

2.4.2 Visualization Tools

Parallel computations lend themselves to visual indication of their actions, and message-
passing software often provides visualization tools as part of the overall parallel program-
ming environment. Programs can be watched as they are executed in a space-time diagram
(or process-time diagram). A hypothetical example is shown in Figure 2.17. Each waiting
period indicates a process being idle, often waiting for a message to be received. Such visual
presentations may help spot erroneous actions. The events that created the space-time
diagram can be captured and saved so that the presentation can be replayed without having
to reexecute the program. Also of interest is a urilizarion-time diagram, which shows the
amount of time spent by each process on communication, waiting, and message-passing
library routines. Apart from its help in debugging, the utilization-time diagram also indicates
the efficiency of the computation. Finally, animation may be useful where processes are
shown in a two-dimensional display and changes of state are shown in a movie form,

Implementations of visualization tools are available for MPIL. An example is the
Upshot program visualization system (Herrarte and Luske, 1991). All forms of visualiza-
tion imply software “probes™ into the execution, which may alter the characteristics of the
computation. It certainly makes the computation proceed much slower. (Hardware perfor-
mance monitors are possible that do not usually affect the performance. For example, there
are some that simply monitor the system bus, but these are not widely deployed.)
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Figure 2.17 Space-time dingram of a parallel program.

2.4.3 Debugging Strategies

Geist et al. (1994a) suggest a three-step approach to debugging message-passing programs:

1. If possible. run the program as a single process and debug as a normal sequential
program.

2. Execute the program using two to four multitasked processes on a single computer.
Now examine actions, such as checking that messages are indeed being sent to the
correct places. Very often mistakes are made with message tags and messages are sent
to the wrong places.

3. Execute the program using the same two to four processes bul now across several
computers. This step helps find problems that are caused by network delays related
to synchronization and timing.

Placing error-checking code in the program is always important as good program-
ming practice, but is particularly important in parallel programs to ensure that faulty con-
ditions can be handled and not cause deadlock. Many message-passing routines return an
error code if an error is detected. Though not necessary for these routines to execute, error
codes should be recognized if they occur. They are also useful in debugging. MPI also can
be made to return error codes, but the default situation is for the program to abort when an
error is encountered.

2.4.4 Evaluating Programs

Measuring Execution Time. Time-complexity analysis might give an insight
into the potential of a parallel algorithm and is useful in comparing different algorithms,
However, given our comments in Section 2.3.4 about time-complexity analysis. only when
the algorithm is coded and executed on a multiprocessor system will it be truly known how
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well the algorithm actually performs. As with low-level debugging (Section 2.4), programs
can be instrumented with additional code. To measure the execution time of a program or
the elapsed time between two points in the code in seconds, we could use regular system
calls, such as clock(), time(), Or gettimeofday (). Thus, to measure the execution time
between point 1.1 and point 1.2 in the code, we might have a construction such as

Ll: time(&tl); {* start timer */

L2: tims(&t2):; /* stop timer */

elapsed time = difftime(t2, tl): /* elapsed time = £2 - £1 */
printf("Elapsed time = %5.2f seconds®, elapsed _time);

Elapsed time will include the time waiting for messages, and it is assumed that the
processor is not executing any other program at the same time.

Often the message-passing software itself includes facilities for timing: for example,
by providing library calls that return the time or by displaying time on space-time diagrams
(as described in Section 2.4). MPI provides the routine ¥pT_wrime () for returning time in
seconds. In general, each processor will be using its own clock, and the time returned will
not necessarily be synchronized with the clocks of other processors unless clock synchro-
nization is available. Clock synchronization is defined in MPI as an environment attribute

but may not be implemented in a system because it usually incurs a very significant system
overhead.

Communication Time by the Ping-Pong Method. Point-to-point commu-
nication time of a specific system can be found using the ping-pong method as follows. One
process, say Py, is made to send a message to another process, say P|. Immediately upon
receiving the message, P, sends the g back to Py. The time involved in this message com-

munication is recorded at Py. This time is divided by two to obtain an estimate of the time
of one-way communication:

Process Py

Ll: time (&tl);
send(fx, Py};
recvi&x, Pq);
L2: ctime(&tl);
elapsad_time = 0.5 * difttima(t2, tl}:
printf{*Elapsed time = %5.2f seconds", elapsed_time):

-

Debugging and Evaluating Parallel Programs Empirically 73



74

Process P,

-

recv(&x, Fy);
send (&x, By);

-

Problem 2-5 explores measuring communication times.

Profiling. A profile of a program is a histogram or graph showing the time spent
on different parts of the program. A profile can show the number of times certain source
statements are executed, as illustrated in Figure 2.18. The profiler actually producing the
results must capture the information from the executing program and in doing so will affect
the execution time. To count the appearance of each instruction would probably be too
invasive. Instead, the executing code is usually probed or sampled at intervals to give sta-
tistical results. Probing in any form will affect the execution characteristics. This is espe-
cially important in parallel programs that have interrelationships between concurrent
Processes.

Profiling can be used to identify “hot spot” places in a program visited many times
during the program execution. These places should be optimized first. a technique that is
applicable to both sequential and parallel programs.

2.4.5 Comments on Optimizing Parallel Code

Once the performance has been measured, structural changes may need to be made to the
program to improve its performance. Apart from optimizations that apply to regular single-
processor programs, such as moving constant calculations to the outside of loops, several
parallel optimizations are possible. These usually relate to the architecture of the multipro-
cessor system, The number of processes can be changed to alter the process granularity. The
amount of data in the messages can be increased to lessen the effects of startup times. It
may often be better to recompute values locally than to send computed values in additional
messages from one process to other processes needing these values. Communication and
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compulation can be overlapped (latency hiding, Section 2.3.1). One can perform a eritical
path analysis on the program: that is, determine the various concurrent parts of the program
and find the longest path that dominates the overall execution time.

A much less obvious factor than those just mentioned is the effect of the memory
hierarchy. Processors usually have high-speed cache memory, A processor first accesses its
cache memory, and only afterward accesses the main memory if the information is not
already in the cache. The information is brought into the cache from the main memory by
a previous reference to it, but only a limited amount of data can be held in the cache. The
best performance will result if as much of the data as possible resides in the cache when
needed. This can sometimes be achieved by a specific strategy for parallelization and
sometimes by simply reordering the memory requests in the program. In Chapter 11, some
numerical algorithms are presented. Simply performing the sequence of arithmetic opera-
tions in a different order can result in more of the data being in the cache when subsequent
references to the data occur.

2.5 SUMMARY

Chap. 2

This chapter introduced the following concepts:

* Basic message-passing techniques

* Send, receive, and collective operations

= Software tools for harnessing a network of workstations
* Modeling communication

« Communication latency and latency hiding

* Time complexity of parallel algorithms

* Debugging and evaluating parallel programs

FURTHER READING

We have concentrated upon message-passing routines in general and on one system in par-
ticular, MPL. Another system that is widely used is PVM (Parallel Virtual Machine). One of
the earliest articles on PVM is Sunderam (1990). More details on PYM can be found in
Geist et al. (1994a and 1994b). Further details on MPI can be found in Gropp, Lusk, and
Skjellum (1999) and Snir et al. (1998). MPI-2 can be found specifically in Gropp et al
(1998). and Gropp. Lusk, and Thakur (1999). The home page for the MPI forum, http:/
www.mpi-forum.org, provides many official documents and information about MPI. Other
sources include Dongarra et al. (1996), which gives references to several earlier message-
passing systems in addition to PVM. Programming in PVM and MPI is described in several
chapters of Sterling (2002a and b). Papers on scattering and gathering messages include
Bhatt et al. (1993).

Fundamental design and analysis of sequential algorithms can be found in the classic
text by Knuth (1973). Other texts include Aho, Hoperoft, and Ullman (1974). There have
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been many others since. A modern, comprehensive, and very well written text on this
subject is Cormen. Leiserson, and Rivest (1990), which contains over 1000 pages. Design
and analysis of parallel algorithms can be found in several texts, including Akl (1989) and
JaJd (1992). A rather unique book that integrates sequential and parallel algorithms is
Berman and Paul (1997).

Details of parallel debugging can be found in McDowell and Helmbold (1989) and
Simmons et al, (1996). Other papers include Kraemer and Stasko (1993) and Sistare et al.
(1994). A special issue of the [EEE Computer on parallel and distributed processing tools
(November. 1995) contained several useful articles on performance-evaluation tools for
parallel systems.
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PROBLEMS

2-1. Develop an equation for message communication time, .y, that incorporates a delay
through multiple links as would oceur in a static interconnection network. Develop the
equation for a mesh assuming that all message destinations are randomly chosen.

2-2. Pointers are used in the send and receive used in book and in MPL, but they can be avoided by
passing the arguments by value. For example, pointers can be eliminated in the receive routing
by having the routing return the message data, which then can be assigned to a variable, i.e., x
= recv(sourceiD). Write new routines to “wrap” around regular MPI send and receive
routines to avoid pointers and demonstrate their use.

2-3. To send a message from a specific source process 1o a specific destination process, it 1s
necessary for the source process to know the destination TID (task identification) or rank and
for the destination to know the source TID or rank. Explain how each process can obtain the
TID or rank of the other process in MPL Give a program example.

2-4. (A suitable first assignment) Compile and run the MPI program to add numbers, as given in
Figures 2.14 and 2.16 (or as found in http://www.cs.uncc.edu/par_prog as the “sample
program” in the compiling instructions) and execute on your system. Modify the program so
that the maximum number is found and output as well as the sum.
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2.5. Measure the time 1o send a message in a parallel programming system by using code segments
of the form

Master

Ll: time(&tl);
send{kx, Piiavel:

L2: time(&E2);
tmaster = difftima{t2, El):
recviktslave, Pgiauel!
printf("Master Time = %d", tmaster);
printf({*Slave Time = %d", tslave);

Slave

Ll: time(&tl);
recv(&x, Ppagrer):

LZ: time(&L2);
tslave = difftime(t2, tl1);
send{&tslave, Ppyseer)i

Repeat with the ping-pong method described in Section 2.4.4. Experiment with sending
groups of multiple messages and messages of different sizes to obtain a good estimate for the
time of message transfers. Plot the time for sending a message against the size of the message,
and fit a line to the results. Estimate the startup time, tg,qyp (latency), and the time to send one
data item, I,

2-6. Repeat Problem 2-5 for broadeast and other collective routines as available on your system.

2-7. Compare the use of broadcast and gather routines using individual send and receive routines
empirically.

2-8. Experiment with latency hiding on your system Lo determine how much computation is
possible between sending messages. Investigate using both nonblocking and locally blocking
send routines.

2-9. Develop an equation for communication time and time complexity for the binary tree
broadeast described in Section 2.3.4 assuming the messages at each level do not occur at the
same time (as would happen in practice). Extend for an m-ary tree broadcast (each node having
m destinations).

2-10. If you have both PVM and MPI available (or any two systems), make a comparative study of
the communication times on the systems by passing messages between processes that have
been instrumented to measure the communication times.
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Chapter 3

Embarrassingly Parallel
Computations

In this chapter, we will consider the “ideal”™ computation from a parallel computing stand-
point — a computation that can be divided into a number of completely independent parts,
each of which can be executed by a separate processor. This is known as an embarrassingly
parallel computation. We will look at sample embarrassingly parallel computations before
moving on in other chapters to computations that do not decompose as well. The material
in this chapter can form the basis of one’s first parallel program.

3.1 IDEAL PARALLEL COMPUTATION

Paralle]l programming involves dividing a problem into parts in which separate processors
perform the computation of the parts. An ideal parallel computation is one that can be
immediately divided into completely independent parts that can be executed simulta-
neously. This is picturesquely called embarrassingly parallel (a term coined by Geoflrey
Fox: Wilson, 1995) or perhaps more aptly called naturally parallel. Parallelizing these
problems should be obvious and requires no special techniques or algorithms to obtain a
working solution. Ideally, there would be no communication between the separate pro-
cesses: that is, a completely disconnected computational graph. as shown in Figure 3.1
Each process requires different (or the same) data and produces results from its input data
without any need for results from other processes. This situation will give the maximum
possible speedup if all the available processors can be assigned processes for the total
duration of the computation. The only constructs required here are simply to distribute the
data and to start the processes. Interesting, there are many significant real applications that
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Input data

Prnccmcsd) ¢ <> _______
Y Figure 3.1 Disconnected computational

Results graph (embarrassingly parallel problem).

are embarrassingly parallel, or at least nearly so. Often the independent parts are identical
computations and the SPMD (single-program multiple-data) model is appropriate, as
suggested in Figure 3.1. The data is not shared, and hence distributed memory multiproces-
sors or message-passing multicomputers are appropriate. If the same data is required, the
data must be copied to each process. The key characteristic is that there is no interaction
between the processes.

In a practical embarrassingly parallel computation, data has to be distributed to the
processes and results collected and combined in some way. This suggests that initially, and
finally, a single process must be operating alone. A common approach is the master-slave
organization. If dynamic process creation is used, first, a master process will be started that
will spawn (start) identical slave processes. The resulting structure is shown in Figure 3.2.
(The master process could take on a computation after spawning, although often this is not
done when the master is needed for the results as soon as they arrive.) As noted in Section
2.2.3, the master-slave approach can be used with static process creation. There, we simply
put both the master and the slave in the same program and use IF statements to select either
the master code or the slave code based upon the process identification, 1D (the master ID
or a slave 1D). The actual details of master and slave startup are omitted from the example
pseudocode sequences given later.

In this chapter, we consider applications where there is minimal interaction between
slave processes. Even if the slave processes are all identical, it may be that statically
assigning processes to processors will not provide the optimum solution. This holds espe-
cially when the processors are different, as is often the case with networked workstations,
and then load-balancing techniques offer improved execution speed. We will introduce load
balancing in this chapter, bur only for cases in which there is no interaction between slave
processes. When there is interaction between processes, load balancing requires a signifi-
cantly different treatment, and this is addressed in Chapter 7,

spawn () Send initial data
send ()

recvi)

Master
send()

recv() :
Collect results

Figure 3.2 Practical embarrassingly paralle] computational graph with dynamic process
ereation and the master-sluve approach.
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3.2 EMBARRASSINGLY PARALLEL EXAMPLES

3.2.1 Geometrical Transformations of Images

Images are often stored within a computer so that they can be altered in some way.
Displayed images originate in two ways. Images are obtained from external sources such
as video cameras and may need to be altered in some way (image processing). Displayed
images may also be artificially created, an approach that is usually associated with the term
computer graphics. In any event, a number of graphical operations can be performed upon
the stored image. For example, we might want to move the image to a different place in the
display space. decrease or increase its size, or rotate it in two or three dimensions. Such
graphical transformations must be done at high speed to be acceptable to the viewer. Fre-
quently, other image-processing operations, such as smoothing and edge detection, are also
done on images, especially externally originated images that are “noisy.” and are often
embarrassingly parallel. Chapter 11 considers these image-processing operations. Here, we
shall consider simple graphical transformations.

The most basic way to store a two-dimensional image is a pixmap, in which each
pixel (picture element) is stored as a binary number in a two-dimensional array. For purely
black-and-white images, a single binary bit is sufficient for each pixel, a | if the pixel is
white and a 0 if the pixel is black; this is a bitmap. Grayscale images require more bits,
typically using 8 bits to represent 2356 different monochrome intensities. Color requires
more specification. Usually, the three primary colors, red, green, and blue (RGB), as used
in a monitor, are stored as separate 8-bit numbers. Three bytes could be used for each pixel,
one byte for red, one for green, and one for blue, 24 bits in all. A standard image file format
using this representation is the “tiff” format.

The storage requirements for color images can be reduced by using a look-up table
to hold the RGB representation of the specific colors that happen to be used in the image.
For example, suppose only 256 different colors are present. A table of 256 24-bit entries
could hold the representation of the colors used. Then each pixel in the image would only
need to be 8 bits to select the specific color from the look-up table. This method can be used
for external image files, in which case the look-up table is held in the file together with the
image. The method can also be used for internally generated images to reduce the size of
the video memory, though this is becoming less attractive as video memory becomes less
expensive. For this section, let us assume a simple grayscale image. (Color images can be
reduced to grayscale images, and this is often done for image processing: see Chapter 11.)
The terms bitmap and bit-mapped are used very loosely for images stored in binary as an
array of pixels.

Geometrical transformations require mathematical operations to be performed on the
coordinates of each pixel to move the position of the pixel without affecting its value. Since
the transformation on each pixel is totally independent from the transformations on other
pixels, we have a truly embarrassingly parallel computation. The result of a transformation
is simply an updated bitmap. A sample of some common geometrical transformations is
given here (Wilkinson and Horrocks, 1987):

(a) Shifting
The coordinates of a two-dimensional object shifted by Ax in the x-dimension and Ay
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in the y-dimension are given by
x=x+Ax
¥ =y+ Ay

where x and y are the original and x” and y” are the new coordinates.

(b) Scaling

The coordinates of an object scaled by a factor S, in the x-direction and 3, in the
y-direction are given by

X' =x§

&
*
V' =y5,

The object is enlarged in size when §, and S, are greater than | and reduced in size
when S, and S, are between 0 and 1. Note that the magnification or reduction does
not need to be the same in both x- and y-directions.

(¢) Rotation

The coordinates of an object rotated through an angle 8 about the origin of the coor-
dinate system are given by

X' =xcosb + ysin®
v =—xsin® + ycosO

(d) Clipping
This transformation applies defined rectangular boundaries to a figure and deletes
from the displayed picture those points outside the defined area, This may be useful
after rotation, shifting, and scaling have been applied to eliminate coordinates outside
the field of view of the display. If the lowest values of x, v in the area to be displayed
are x,, v, and the highest values of x, y are x;, vy, then

it .5

yVis Y <y

need to be true for the point (x’, ) to be displayed: otherwise the point (", ') is not
displayed.

The input data is the bitmap that is typically held in a file and copied into an array.
The contents of this array can easily be manipulated without any special programming tech-
niques. The main parallel programming concern is the division of the bitmap into groups of
pixels for each processor because there are usnally many more pixels than processes/pro-
cessors. There are two general methods of grouping: by square/rectangular regions and by
columns/rows. We can simply assign one process(or) to one area of the display. For
example, with a 640 x 480 image and 48 processes, we could divide the display area into
48 80 x 80 rectangular areas and assign one process for each 80 x 80 rectangular area.
Alternatively, we might divide the area into 48 rows of 640 x 10 pixels for each process.
The concept of dividing an area into either rectangular/square areas of rows (or columns),
as shown in Figure 3.3, appears in many applications involving processing two-dimensional
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information. We explore the trade-offs between dividing a region into square blocks or
rows (or columns) in Chapter 6. For the case where there is no communication between
adjacent areas, as here, it does not matter which partitioning we use, except perhaps for
gase of programming.

Suppose we use a master process and 48 slave processes and partition in groups of 10
rows. Each slave process processes one 640 x 10 area, returning the new coordinates to the
master for displaying. If the transformation is shifting, as described in (a) previously, a
master-slave approach could start with the master sending the first row number of the 10
rows to be processed by each process. Upon receiving its row number, each process steps
through each pixel coordinate in its group of rows, transforming the coordinates and
sending the old and new coordinates back to the master. For simplicity, this could be done
with individual messages rather than a single message. The master then updates the bitmap.

Let the original bitmap be held in the array map[] [1. A temporary bitmap is declared,
temp_map(] (1. Usually, the coordinate system of the display has its origin at the top left
corner, as shown in Figure 3.3. It is simple matter to transform an image with its origin at

X
Process
=0
v o 640 - /O
P
301 | l "Map
1 - .
480
! | |
(a) Square region for each process
Process
105 =~ i .
i =] MHP
|
|
!
I
I
1
480 ||
|
|
|
|
|
]
1r " | —

(b} Row region for each process

Figure 3.3  Partitioning into regions for individual processes.
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the lower-left corner to the display coordinate system. Such details are omitted. Note that
in the C programming language, elements are stored row by row. with the first index being
the row and the second index being the column, The pseudocode to perform an image shift
might look like this:

Master

for (i = 0, row = 0; i < 48; i++, row = row + 10) /* for each process*/
send({row, Pil; /* send row no.%/

for (L = 0; i < 480: i++) f* initialize temp ™/
for (j = 0; j < 640;: j++)
temp_mapi] (] = 0;

for (1 = 0; i < (B840 * 4B0); 1i++) { /* for each pixel */
recv{oldrow, oldcel, newrow, newcol, Pyl /* accept new cooxds */
if !{(newrow < 0) || (newrow >= 480) || (newcol < 0) || (newcol »>= 640})

temp_map [newrow] [newcol ] =map [oldrow] [oldool] ;
}
for (i = 0; i < 48B0; i++) /* update bitmap */
for (J = 0; J < 640; j++)
map[i] [i] = temp_map(i] [3);

Slave
recv (row, Proaetar)? /* receive row no. */
for (oldrow = row; oldrow < (row + 10); oldrows+)
for (oldcol = 0; oldcol < 640; oldcol++) | /* transform coords =/
newrow = oldrow + delta x; /* ghift in x direction */
newcol = oldcol + delta v /* shift in v direction */
send (oldrow, oldcol, newrow, newcol, Poiucee) i /* coords to master */

In the master’s receive section, we show a wildcard, ¢, indicating that data may be
accepted from any slave and in any order. It also may be possible for images to be shifted
past the edges of the display area. Wherever the new image does not appear in the display
area, the bitmap is set to 0 (black).

In this example, the master sends the starting row numbers to the slaves. However.
since the starting numbers are related to the process ID, each slave can determine its starting
row itself. The results are returned one at a time rather than as one group, which would have
reduced the message overhead time. No code is shown for terminating the slaves, and all
results must be generated or the master will wait forever. Slaves here can terminate them-
selves after they have completed their fixed number of tasks: in other cases, they might be
terminated by the master sending them a message to do so. The code is not completely sat-
isfactory because the size of the display area, number of rows for each process, and number
of processes are permanently coded for ease of discussion. For complete generality, these
factors should be made easily alterable.
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Analysis. Suppose each pixel requires two computational steps and there are n X n
pixels. If the transformations are done sequentially, there would be n X n steps so that

¥
I, =2n

and a sequential time complexity of O(n?).

The parallel time complexity is composed of two parts. communication and compu-
tation, as are all message-passing parallel computations. Throughout the text, we will deal
with communication and computation separately and sum the components of each to form
the overall parallel time complexity.

Communication. To recall our basis for communication analysis, as given in

Teomm = Tstaruup + "data

where fgap 18 the (constant) time to form the message and initiate the transfer, f4,,, 1s the
(constant) time to send one data item, and there are m data items. The parallel time com-
plexity of the communication time, as given by .4mm. is O0n). However, in practice, we
usually cannot ignore the communication startup time, fg,y,,. because the startup time is
significant unless m was really large.

Let the number of processes be p. Before the computation, the starting row number
must be sent to each process. In our pseudocode, we send the row numbers sequentially;
that is, p send()s, each with one data item. The individual processes have to send back the
transformed coordinates of their group of pixels, shown here with individual send()s. There
are 4n” data items returned to the master, which it will have to accept sequentially. Hence,
the communication time is

2 = 2
teomm = PUstarup + fdata) + 1 (Ustartup + Hgara) = Olp + 1)

Computation. The parallel implementation (using groups of rows or columns or
square/rectangular regions) divides the image into groups of nzfp pixels. Each pixel
requires two additions (see slave pseudocode on page 84). Hence, the parallel computation
time is given by

4

_ Al | _ 2
"mmp = 2[-{—)) = Q(n=/p)

Overall execution time. The overall execution time is given by
Ip = Teomp + lcomm
. s 2
For a fixed number of processors, this is O(n~).

Speedup factor. The speedup factor is

.
t 2
Speedup factor = ;1‘. = 2n

2
P i -
E[FJ +P“smnup + "-:iat:i:I +n UHIHJ'IUF * 41‘1‘““)
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Computation/communication ratio.  As introduced in Chapter 1, the ratio of the
computation and communication times:

Computation time  _ L comp

Computation/communication ratio = —_
Communication time 1

comm

enables one to see the effects of the communication overhead, especially for increasing
problem size. In the problem under consideration, the ratio is
2(n*/p)

Computation/communication ratio = -
P |‘-'r:u;n.rtul:!l + ?'rdam] + 4”Hll"r:a.l.'lrr.t:lp +1 d::m‘J

- 0( n*/p J
p+n’
which is constant as the problem size grows with a fixed number of processors. This is not
good for a computation/communication ratio! The ideal time complexity of sequential
algorithms is one of smallest order (least growth). Conversely, the ideal computation/com-
munication ratio is one of largest order, as then increasing the problem size reduces the
effect of the communication, which is usually very significant. (One could use the commu-
nication/computation ratio and then the most desirable ratio will be of smallest order as
sequential time complexity.)

In fact, the constant hidden in the communication part far exceeds the constants in the
computation in most practical situations. Here, we have 4n° + p startup times in tecmims LIS
code will perform badly. It is very important to reduce the number of messages. We could
broadcast the set of row numbers to all processes to reduce the effects of the startup time.
Also, we could send the results back in groups. Even then, the communication dominates
the overall execution time since the computation is minimal. This application is probably
best suited for a shared memory multiprocessor in which the bitmap would be stored in the
shared memory, which would be immediately available to all processors.

3.2.2 Mandelbrot Set

Displaying the Mandelbrot set is another example of processing a bit-mapped image.
However, now the image must be computed, and this involves significant computation. A
Mandelbrot set is a set of points in a complex plane that are quasi-stable (will increase and
decrease, but not exceed some limit) when computed by iterating a function, usually the
function

T

ufge] = Ak + [
where z;, is the (k + 1)th iteration of the complex number z = a + bi (where i = ./-1), z; is
the kth iteration of z, and ¢ is a complex number giving the position of the point in the
complex plane. The initial value for z is zero. The iterations are continued until the

magnitude of z is greater than 2 (which indicates that z will eventually become infinite) or
the number of iterations reaches some arbitrary limit. The magnitude of z is the length of

the vector given by
Ly a2
Zength = NG +b
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Computing the complex function, ;. = ;kz + ¢, is simplified by recognizing that
r 2 2
2 = a* + 2abi + bi® = a* - b* + 2abi

or a real part that is a® — b and an imaginary part that is 2ab. Hence, if zy is the real
part of z, and Zimag is the imaginary part of z, the next iteration values can be produced
by computing:

)

2
Zreal = Zreal” ~ Simag T Creal

Zimag = 2Ere:ﬂ-i"-imﬂ.g * Cimag

where ¢qy is the real part of ¢, and ¢, is the imaginary part of c.

Sequential Code. For coding, a structure can be used holding both the real and
imaginary parts of z:

structure complex {
float real;
float imag;

Y:

A routine for computing the value of one point and returning the number of iterations could
be of the form

int cal_pixel (complex c)
{
int count, max_iter;
complex z;
float temp, lengthsg;
max_iter = 256;
z.real = 0;
z.imag = 0;
count = 0; /* number of iterations */
do {

temp = z.real * z.real - z.imag * z.imag + c.real;

z.imag = 2 * z.real * z.imag + c.imag;

£.real = temp;

lengthsg = z.real * z.real + z.imag * z.imag;

count++;
} while ((lengthsg < 4.0) && (count < max_iter));
return count;

)

The square of the length, lengthsq, is compared against 4, rather than the length against 2,
to avoid a square root operation. Given the termination conditions, all the Mandelbrot
points must be within a circle with its center at the origin and of radius 2.

The code for computing and displaying the points requires some scaling of the coor-
dinate system to match the coordinate system of the display area. The actual viewing area
will usually be a rectangular window of any size and sited anywhere of interest in the
complex plane. The resolution is expanded at will to obtain fascinating images. Suppose
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the display height is disp_height, the display width is disp_width, and the point in this
display area is (x, v). If this window is to display the complex plane with minimum values
of (real_min, imag_min)and maximum values of (real_max, imag max), each (=, v) point
needs to be scaled by the factors

c.real = real_min + X * (real_max - real_min)/disp_width;
c.imag = imag_min + ¥ * (imag max - imag min)/disp_height;

to obtain the actual complex plane coordinates. For computational efficiency, let

scale _real = (real_max - real_min)/disp width;
grale imag = [(imag_max - imag _min) /disp height;

Including scaling, the code could be of the form

for (x = 0; x < disp_width; x++) /* screen coordinates x and vy */
for (v = 0; vy < disp height; y++) {
c.real = real min + ((float) x * scale_real);
c.imag = imag min + ((float) y * =cale_imag);
color = cal_pixel (c};
display(x, ¥y, colar};
1

where display() 15 a routine suitably written to display the pixel (x, y) at the computed
color (taking into account the position of origin in the display window, if necessary).
Typical results are shown in Figure 3.4, A sequential version of the program to generate
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Figure 3.4 Mandelbrot set.
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the Mandelbrot set using Xlib calls for the graphics is available at http://www.cs.uncc.edu/
par_prog and could be the basis of a simple parallel program (Problem 3-7).

The Mandelbrot set is a widely used test in parallel computer systems (and, for that
matter, sequential computers) because it is computationally intensive. It can take several
minutes to compute the complete image, depending upon the speed of the computer and the
required resolution of the image. Also, it has interesting graphical results. A selected area
can be magnified by repeating the computation over that area and scaling the results for the
display routine.

Parallelizing the Mandelbrot Set Computation. The Mandelbrot set is par-
ticularly convenient to parallelize for a message-passing system because each pixel can be
computed without any information about the surrounding pixels. The computation of each
pixel itself is less amenable to parallelization. In the previous example of transforming an
image, we assigned a fixed area of the display to each process. This is known as static
assignment. Here, we will consider both static assignment and dynamic assignment when
the areas compuied by a process vary.

Static Task Assignment. Grouping by square/rectangular regions or by
columns/rows, as shown in Figure 3.3, is suitable. Each process needs to execute the pro-
cedure, cal_pixel(), after being given the coordinates of the pixels to compute. Suppose
the display area is 640 x 480 and we were to compute 10 rows in a process (i.e., a grouping
of 10 x 640 pixels and 48 processes). The pseudocode might look like the following:

Master

for (1 = 0, row = 0; i < 48; i++, row = row + 10)/* for each process*/

send(&row, PFi): /* send row no.*/

for (1 = 0; i < (480 * 640); i++) { /* from processes; any order */
racvi&c, Ecolor, Pprgy): /* receive coordinates/colors */
display(c, color); /* display pixel on screen */

Slave (process i)

recv{&row, Pra.cterli /* receive row no. */
for (x = 0; x < disp_width; xX++) /* sereen coordinates X and y */
for (v = row; ¥ < (row + 10); y++) {
c.real = min real + ({float) x * scale_real);
c.imag = min_imag + ((float) ¥y * scale_imag);
color = cal_pixel(c):
send(&c, &eolor., Ppacrec!! /* send coords, color to master */

We expect all 640 x 480 pixels to be sent, but this may occur in any order dependent upon
the number of iterations to compute the pixel value and the speed of the computer. The
implementation has the same serious disadvantage as that for transformations in Section
3.2.1: it sends results back one at a time rather than in groups. Sending the data in groups
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reduces the number of communication startup times (one for each message). It is a simple
matter 10 save results in an array and then send the whole array to the master in one
message. Note that the master uses a wild card to accept messages from slaves in any order
(the notation p,y, indicates a source wild card).

Dynamic Task Assignment—Work Pool/Processor Farms. The Mandel-
brot set requires significant iterative computation for each pixel. The number of iterations
will generally be different for each pixel. In addition, the computers may be of different
types or operate at different speeds. Thus, some processors may complete their assignments
before others. Ideally, we want all processors to complete together, achieving a system effi-
ciency of 100 percent, which can be addressed using load balancing. This 1s a complex and
extremely important concept in all parallel computations and not just the one we are con-
sidering here. Ideally, each processor needs to be given sufficient work to keep it busy for
the duration of the overall computation. Regions of different sizes could be assigned to
different processors, but this would not be very satisfactory for two reasons: We may not
know a priori each processor’s computational speed, and we would have to know the exact
time it takes for each processor to compute each pixel. The latter depends upon the number
of iterations, which differs from one pixel to the next. Some problems may be more uniform
in their computational time, but, in any event, a more system-efficient approach will involve
some form of dynamic load balancing.

Dynamic load balancing can be achieved using a work-poaol approach, in which indi-
vidual processors are supplied with work when they become idle. Sometimes the term
processor farm is used to describe this approach, especially when all the processors are of
the same type. The work pool holds a collection, or pool, of tasks to be performed. In some
work-pool problems, processes can generate new tasks; we shall look at the implications of
this in Chapter 7.

In our problem, the set of pixels (or, more accurately, their coordinates) forms the
tasks. The number of tasks is fixed in that the number of pixels to compute is known prior
to the start of the computation. Individual processors request a pair of pixel coordinates
from the work pool. When a processor has computed the color for the pixel, it returns the
color and requests a further pair of pixel coordinates from the work pool. When all the pixel
coordinates have been taken, we then need to wait for all the processors to complete their
tasks and report in for more pixel coordinates,

Sending pairs of coordinates of individual pixels will result in excessive communica-
tion. Normally, rather than a single coordinate comprising a task, a group of coordinates
representing several pixels will form the task to be taken from the work pool in order to
reduce the communication overhead. At the start, the slaves are told the size of the group of
pixels (assumed to be a fixed size). Then only the first pair of coordinates of the group need
be sent to the slaves as a task. This approach reduces the communication to an acceptable
level. The overall arrangement is depicted in Figure 3.5.

When the Mandelbrot-set calculation is coded for a work-pool solution, we will find
that the pixels will not be generated together. Some will appear before others. (Actually,
this will also happen in our example code for the static assignment because some pixels
will require more time than others and the order in which messages are received is not
constrained.)
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Figure 3.5  Work-pool approach.

Suppose the number of processes is given by num_proc, and processes compute one
row at a time. In this case, the work pool holds row numbers rather than individual pixel
coordinates. Coding for a work pool could be of the form

Master
count = 0; /* counter for termination*/
row = 0; /* row being sent */
for (k = 0; k < num_proc; k++) { /* assuming num_proc<disp height */
send(&row, Py, data_tag); /* send initial row to process */
count++; /* count rows sent */
TOWH+; /* next row */
}
do {
recy (&slave, &r, color, Puyy, result_tag);
count--; /* reduce count as rows received */
if (row < disp_height) {
send (&row, Pgja..es data_tag); /* gsend next row */
TOW++; /* next row */
count+-+;
1 else
send (&row, Pgiaye. Cerminator_tag): /* terminate */
display (r, color); /* display row ™/

} while (count > 0);

Slave

recv(y, Pnaster. ANYTAG, source_tag); /* raceive lst row to compute */
while (source tag == data_tag] {
c.imag = imag_min + ((float) y * scale_imag);
for (x = 0; x < disp_width; x++) ( /* compute row colors */
c.real = real min + ((float) x * scale_real);
color(x] = cal_pixel(c):
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send(&x, &y, color, Po..ieps result_tag); /* row colors to master */

recv (&Y, Ppasreys SOUrce_tagl; /Y receive next row */

In this code, each slave is first given one row to compute and, from then on, gets
another row when it returns a result, until there are no more rows to compute. The master
sends a terminator message when all the rows have been taken. To differentiate between
different messages, tags are used with the message data_tag for rows being sent to the
slaves, terminator_tag for the terminator message, and result_tag for the computed results
from the slaves. It is then necessary to have a mechanism to recognize different tags being
received, Here we simply show a source_tag parameter. Note that the master receives and
sends messages before displaying results, which can allow the slaves to restart as soon as
possible. Locally blocking sends are used. Note also that in order to terminate, the number
of rows outstanding in the slaves is counted (count), as illustrated in Figure 3.6. It is also
possible simply to count the number of rows returned. There are, of course, other ways to
code this problem. Termination is considered further in Chapter 7.

Analysis. Exact analysis of the Mandelbrot computation is complicated by not
knowing how many iterations are needed for each pixel. Suppose there are n pixels. The
number of iterations for each pixel is some function of ¢ but cannot exceed max_iter. There-
fore, the sequential time 1s

[, Smax_iter XN
or a sequential time complexity of O(n).
For the parallel version, let us just consider the static assignment. The total number

of processors is given by p, and there are p — | slave processors. The parallel program has
essentially three phases: communication, computation, and communication,

Phase 1; Communication. First, the row number is sent to each slave, one data
item to each of p — 1 slaves:

feomm1 = (P — I}(rﬁlﬂﬂup + tdata)

Separate messages are sent to each slave, causing duplicated startup times. It would be
possible to use a scatter routine, which should reduce this effect (Problem 3-6).

Phase 2: Computation. Then the slaves perform their Mandelbrot computation in
parallel:

y max_iter X A

comp Bl
Rows outstanding in slaves (count)
Row sent

0 —— = disp_height

I Increment = |

I I
Torminate Row returned

Decrement Figure 3.6 Counter iermination.
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assuming the pixels are evenly divided across all the processors. At least some of the pixels
will require the maximum number of iterations, and these will dominate the overall time.

Phase 3: Communication. Tn the final phase, the results are passed back to the
master, one row of pixel colors at a time. Suppose each slave handles i rows and there are
v pixels on a row. Then:

fcomm2 = III“.--.m.rturn + Vlgaea)

The startup time overhead could be reduced by collecting results into fewer messages. For
static assignment, both the value for v (pixels on a row) and value for « (number of rows)
would be fixed (unless the resolution of the image was changed). Let us assume that
teomm2 = k. @ constant,

Overall Execution Time. Overall, the parallel time is given by

max_iter X n
Ip S T +(p-1 }{Iﬁtﬂﬂllp + rdnm] +k

Speedup Factor. The speedup factor 1s

{
Speedup factor = = :
t, w.b (P = D) Ugryp * faua) + K

P —_
The potential speedup approaches p if max_iter is large.

max_iter X N

1l

Computation/communication Ratio. The computation/communication ratio

(max_iter X n)
(p—1)((p-1 }Uslarlup * 'rdnlu} + k)

Computation/communication ratio =

= O(n) with a fixed number of processors

The preceding analysis is only intended to give an indication of whether parallelism is
worthwhile. It appears worthwhile.

3.2.3 Monte Carlo Methods

The basis of Monte Carlo methods is the use of random selections in calculations that lead
to the solution to numerical and physical problems. Each calculation will be independent
of the others and therefore amenable to embarrassingly parallel methods. The name Monte
Carlo comes from the similarity of statistical simulation methods to the randomness of
games of chance; Monte Carlo, the capital of Monaco, is a center for gambling. (The name
is attributed to Metropolis on the Manhattan Project during World War I1.)

An example that has reappeared in the literature many times (Fox etal., 1988; Gropp,
Lusk, and Skjellum, 1999; Kalos and Whitlock, 1986) is to calculate 7 as follows. A circle
is formed within a square, as shown in Figure 3.7. The circle has unit radius, so that the
square has sides 2 x 2. The ratio of the area of the circle to the square is given by

Areaof circle _ m(1)? _ =
Areaof square 2x2 4
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Total area = 4

4

[h% ]

Arca=qw

I Figure 3.7 Computing 7 by a Monte Carlo
method.

b |

(The same result is obtained for a circle of any dimensions so long as the circle fits exactly
inside the square.) Points within the square are chosen randomly and a score is kept of how
many points happen to lie within the circle. The fraction of points within the circle will be
/4, given a sufficient number of randomly selected samples.

The area of any shape within a known bound area could be computed by the preced-
ing method, or any area under a curve; that is, an integral. One quadrant of the construction
in Figure 3.7 as a function is illustrated in Figure 3.8, which can be described by the integral

_[]nn Ry =%
0 3

(positive square roots). A random pair of numbers, (x,.y,), would be generated, each
between 0 and 1, and then counted as in the circle if y, <, /1 —x2: thatis, y2 +x?< 1.

The method could be used to compute any definite integral. Unfortunately, it 1s very
inefficient and also requires the maximum and minimum values of the function within the
region of interest. An alternative probabilistic method for finding an integral is to use the
random values of x to compute f(x) and sum the values of f(x):

N
“aryde = him & =
Area = .rrf{:r}rh = NlinmNziﬁx’sz X)
=

1 flx)

_f E
y=v1-2

X Fipure 3.8 Function being integrated in computing
| 1t by a Monte Carlo method.
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where v, are randomly generated values of x between x; and .v,, This method could also be
considered a Monte Carlo method, though some would limit Monte Carlo methods to those
that select random values not in the solution as well as those in the solution. The substantial
mathematical underpinning to Monte Carlo methods can be found in texts such as Kalos
and Whitlock (1986). Monte Carlo methods would not be used in practice for one-dimen-
sional integrals, for which quadrature methods (Section 4.2.2) are better. However, they
would be very useful for integrals with a large number of variables and become practical in
these circumstances.

Let us briefly look at how a Monte Carlo method could be implemented using
Jox)= x* — 3x as a concrete example; that is, computing the integral

X .
I=] (x —-3x)dx

Xy

Sequential Code. The sequential code might be of the form

sum = 0;

for (L = 0; 1 < N; i++) { /* N random samples */
¥r = rand_wvixl, x2); /* generate next random value */
SUmM = Sum + X * xr - 3 * x¥; /* compute £{xr) */

]
area = (sum / N} * (22 - x1):

The routine rand_vixl, x2) returns a pseudorandom number between =1 and x2. A
fixed number of samples have been taken: in reality, the integral should be computed to
some prescribed precision, which requires a statistical analysis to determine the number of
samples required. Texts on Monte Carlo methods, such as Kalos and Whitlock (1986),
explore statistical factors in great detail.

Parallel Code. The problem is embarrassingly parallel. since the iterations are
independent of each other. The main concern is how 1o produce the random numbers in
such a way that each computation uses a different random number and there is no correla-
tion between the numbers. Standard library pseudorandom-number generators such as
rand (), could be used (but see later). One approach, as used in Gropp, Lusk, and Skjellum
(1999), is to have a separate process responsible for issuing the next random number. This
structure is illustrated in Figure 3.9. First, the master process starts the slaves, which request
a random number from the random-number process for each of their computations. The
slaves form their partial sums, which are returned to the master for final accumulation, If
each slave is asked to perform the same number of iterations and the system is homoge-
neous (identical processors), the slaves should complete more or less together.

The random-number process can only service one slave at a time, and this approach
has the significant communication cost of sending individual random numbers to the slaves.
Groups of random numbers could be sent to reduce the effects of the startup times. The
random-number generator could also be incorporated into the master process, since this
process is not otherwise active throughout the computation. All this leads to parallel
pseudocode of the following form:
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Master

Partial sum

Slaves

Random
numbhber

Random-number
process Figure 3.9 Parallel Monte Carlo integration,

Master

for(i = 0; 1 < N/n; i++) (

for (j = 0; 4 < n;: j++) /*n=number of random numbers for slave */
®xr(j] = rand(); /* load numbers to be sent */
recv(Puyy, red tag, Pogypcels /* wait for a slave to make request */

send(xr, &n, P__..c.. Compute tag);

}

for{i = 0; i < num_slaves; i++) ( /* terminate computation */
recv(P;, req tag);
send(F;, stop_tag);

]

sum = 0;

reduce_add (&sum, Pumup] &

Slave

sum = D;
send(Pyagrers red_tag);
recv(xr, &n, Pyierayr SOUrce tag);
while (source_tag == compute_tag) {
for (1 =0; 1 €< n; i++)
sum = sum + xxr[i] * ax(i] = 3 = xr[i];
send (P crar, TeQ _tagh:
recvixr, &n, Po....r. Source_tag);
Y
reduce_add(&sum, Poeoypli

In this code, the master waits for any slave to respond using a source wild card (p.y,). The
rank of the actual slave responding can be obtained [rom a status call or parameter. We
simply show the source within the message envelope. The type of handshaking is reliable
but does have more communication than simply sending data without a request; as we have
seen, reducing the communication overhead is perhaps the most important aspect for
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obtaining high execution speed. It is left as an exercise to eliminate the handshaking. The
routine reduce_add() is our notation to show a reduce routine that collectively performs
addition. The notation to specify a group of processes is £, ...

Parallel Random-Number Generation. For successful Monte Carlo simula-
tions, the random numbers must be independent of each other. The most popular way of
creating a pseudorandom-number sequence, X, X3, X3. ., Xj_ps Xjo Xjgps ooes Xy s Xy 15 DY
evaluating x;,, from a carefully chosen function of x;. The key is to find a function that will
create a very large sequence with the correct statistical properties. The function used is
often of the form

Xip1 = (ax; + ¢) mod m

where a. ¢, and m are constants chosen 1o create a sequence that has similar properties to
truly random sequences. A generator using this form of equation is known as a linear con-
gruential generator. There are many possible values of @, ¢, and m, and much has been
published on the statistical properties of these generators. (See Knuth, 1981, the standard
reference, and Anderson, 1990.) A “good” generator is with a = 16807, m = Bl (@ prime
number), and ¢ = () (Park and Miller, 1988). This generator creates a repeating sequence of
231 _ 2 different numbers (i.e., the maximum for these generators, m — 1), A disadvantage
of such generators for Monte Carlo simulation is that they are relatively slow.

Even though the pseudorandom-number computation appears to be sequential in
nature, each number is calculated from the preceding number and a parallel formulation is
possible to increase the speed of generating the sequence. It turns out that

Xip1 = (ax;+¢) mod m
X =(Ax; + C) mod m

where A = ¢* mod m. C= c(@™ + &2 + ... + a' +d") mod m. and k is a selected “jump”
constant. Some care is needed to compute and use A and C because of the large numbers
involved, but they need be computed only once. (C would not be needed for the good
generator described carlier.) Given m processors, the first m numbers of the sequence are
senerated sequentially. Then each of these numbers can be used to create the next m
numbers in parallel, as shown in Figure 3.10, and so on, for the next m numbers.

The computation can be simplified if m is a power of 2, because then the mod
operation simply returns the lower m digits, Unfortunately, generators of this type often use
a prime number for m to obtain good pseudorandom-number characteristics. Fox, Williams,
and Messina (1994) describe a different type of random-number generator using the
formula x; = (x;_g3+x;_127)mod 23! which naturally generates numbers from distant
preceding numbers,

Figure 3.10  Parallel computation of a sequence.
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There are several types of pseudorandom-number generators, each using different
mathematical formulas. In general, the formula uses previously generated numbers in
computing the next number in the sequence, and thus all are deterministic and repeatable.
Being repeatable can be advantageous for testing programs, but the formula must produce
statistically good random-number sequences. The area of testing random-number genera-
tors has a very long history and is beyond the scope of this text. However, one needs to
take great care in the choice and use of random-number generators. Some early random-
number generators turned out (o be quite bad when tested against statistical figures of
merit, Even if a random-number generator appears to create a series of random numbers
from statistical tests, we cannot assume that different subsequences or samplings of
numbers from the sequences are not correlated. This makes using random-number gene-
rators in parallel programs fraught with difficulties, because simple naive methods of using
them in parallel programs might not produce random sequences and the programmer
might not realize this.

In parallel programs in general, one might try to rely on a centralized linear congru-
ential pseudorandom-number generator to send out numbers to slaves processes when they
request numbers, as we have described. Apart from incurring a communication overhead
and a bottleneck in the centralized communication point, there is a big question mark over
whether the subsequence that each slave obtains is truly a random sequence and the
sequences themselves are not correlated in some fashion. (One could do statistical tests to
confirm this.) Also, all random-number generators repeat their sequences at some point, and
using a single random number-generator will make it more likely that the sequence repeats.
Alternatively, one might consider a separate pseudorandom-number generator within each
slave. However, if the same formula is used even starting at a different number, parts of the
same sequence might appear in multiple processors, and even if this does not happen, one
cannot immediately assume there is no correlation between sequences. One can see that it
is challenging problem to come up with good pseudorandom-sequences for parallel
Programs.

Because of the importance of pseudorandom-number generators in parallel Monte
Carlo computations, effort has gone into finding solid parallel versions of pseudorandom-
number generators. SPRNG (Scalable Pseudorandom Number Generator) is a library spe-
cifically for parallel Monte Carlo computations and generates random-number streams for
parallel processes. This library has several different generators and features for minimiza-
tion of interprocess correlation and an interface for MPL

For embarrassingly parallel Monte Carlo simulations where there is absolutely no
interaction between concurrent processes, it may be satisfactory to use subsequences which
may be correlated if the full sequence is random and the computation is exactly the same
as if it were done sequentially. It is left as an exercise to explore this further (Problem 3-14).

3.3 SUMMARY

98

This chapter introduced the following concepis:

= An (ideal) embarrassingly parallel computation
» Embarrassingly parallel problems and analyses
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+ Partitioning a two-dimensional data set

* Work-pool approach to achieve load balancing
« Counter termination algorithm

« Monte Carlo methods

+ Parallel random-number generation

FURTHER READING

Fox, Williams, and Messina (1994) provide substantial research details on embarrassingly
parallel applications (independent parallelism). Extensive details of graphics can be found
in Foley et al. (1990). Image processing can be found in Haralick and Shapiro (1992), and
we also pursue that topic in Chapter 11. Dewdney (1985) wrote a series of articles on writing
programs for computing the Mandelbrot set. Details of Monte Carlo simulations can be
found in Halton (1970), Kalos and Whitlock (1986), McCracken (1955), and Smith (1993).
Parallel implementations are discussed in Fox et al. (1988) and Gropp, Lusk, and Skjellum
(1999). Discussion of parallel random-number generators can be found in Bowan and
Robinson (1987), Foster (1995), Fox. Williams. and Messina (1994), Hortensius, McLeod,
and Card (1989), and Wilson (1995). Random-number generators must be very carefully
used even in sequential programs. A study of different random number generators in this
application can be found in Wilkinson (1989). Masuda and Zimmermann (1996) describe a
library of random-number generators specifically for parallel computing. Examples are
given using MPI. Details of SPRNG can be found at hitp://sprng.cs.fsu.edu/main.html.
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PROBLEMS

Scientific/Numerical

3-1. Write a parallel program that reads an image file in a suitable uncompressed format (e.g., the
PPM format) and generates a file of the image shifted N pixels right, where N is an input
parameter.

3-2. Implement the image transformations described in this chapter.

3-3. Rewrite the pseudocode described in Section 3.2.1 to operate on 80 x 80 square regions rather
than groups of rows.

3-4. The windowing transformation involves selecting a rectangular region of interest in an undis-
played picture and transplanting the view obtained onto the display in a specific position.
Consider that a rectangular area is selected measuring AX by AY, with the lower left-hand
corner having the coordinates (X, ¥) in the undisplayed picture coordinate system. The points
within this rectangle, (x, ), are transformed into a rectangle measuring AX" by AY” by the trans-
formation

X = (AXTAX)(x - X) + X
V= (AYIAY) -+ Y
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3-6.

3-7.

3-11.

3-12.

3-13.

Scaling is involved if AX" is not equal to AX and AY is not equal o AY. Performing the
windowing transformation before other transformations, where possible, may reduce the
amount of computation on the subsequent transformations. Write a program to perform the
windowing transformation.
A three-dimensional drawing, represented with coordinates of the form (x, v, z), can be
projected onto a two-dimensional surface by a perspective transformation. While doing this,
hidden lines need to be removed. Beforechand, three-dimensional shifting, scaling, and rotation
transformations can be performed. Rotating a three-dimensional object 8 degrees about the x-
axis requires the transformation
X=x

y'=ycosB+zsinb
d=zcosB—ysinb
Similar wansformations give rotation about the y- and z-axes. Write a parallel program to
perform three-dimensional transformations.

Rewrite parallel pseudocode for the Mandelbrot computation in Section 3.2.2 using a scatter
routine in place of the individual sends for passing the starting rows to each slave. Use a single
message in each slave to return its collected results. Analyze your code.

Download the sequential Mandelbrot program from hup/www.cs.uncc.edu/par_prog/ and
follow the instructions to compile and run it. (This program uses Xlib calls for the graphics. It
is necessary Lo link the appropriate libraries.) Modify the program to operate a parallel program
using static load balancing (i.e., simply divide the image into fixed areas). Instrument the code
to obtain the parallel execution lime when executing on your system.

Same as Problem 3-7, only use dynamic load balancing instead.

Continue Problems 3-7 and 3-8 by experimenting with different starting values for z in the
Mandelbrot computation.

Write a sequential program and a parallel program that compute the fractal (“fractional dimen-
sion™) image based upon the function

Gl =3 +C
and based upon the function (Briunl, 1993)
I = z;-3 +(c— 1)z —c

where z; = 0 and ¢ provide the coordinates of a point of the image as a complex number.

Compare the two Monte Carlo ways of computing an integral described in Section 3.2.3 empir-
ically. Use the integral

L;-J |

which computes m/4.

Rewrite the code for Monte Carlo integration given in Section 3.2.3, eliminating the master
process having to request for data explicitly. Analyze your solution.

Read the paper by Hortensius, McLeod, and Card (1989) and develop code for a parallel
random-number generator based upon the method it describes.

Investigate the effects of using potentially correlated subsequences taken from a random-
number generator in embarrassingly parallel Monte Carol simulations. Make a literature search
on this subject and write a report.

Problems i01



102

3-15. The collapse of a set of integers is defined as the sum of the integers in the set. Similarly, the

collapse of a single integer is defined as the integer that is the sum of its digits. For example,
the collapse of the integer 134957 is 29. This can clearly be carried out recursively, until a
single digil results: the collapse of 29 is 11, and its collapse is the single digit 2. The ultimate
collapse of a set of integers is just their collapse followed by the result being collapsed recur-
sively until only a single digit {0, 1, ..., 9} remains. Your task is (o wril¢ a program that will
find the ultimate collapse of a one-dimensional array of N integers. Alternative approaches are
as follows:

1. Use K computers in parallel, each adding up approximately N/K of the integers and
passing its local sum to the master, which then totals the partial sums and forms the
ultimate collapse of that integer.

2. Use K computers in parallel, each doing a collapse of its local set of N/K integers and
passing the partial result to a master, which then forms the ultimate collapse of the
partial collapses.

3. Use K computers in parallel, each doing an ultimate collapse on each one of its local set
of N/K integers individually, then adding the local collapsed integers and collapsing the
result recursively to obtain a single digit. Each of the K then sends its digit on to the
master for final summing and ultimate collapse.

4, Use one computer to process all N integers according to any of the first three approaches.

5 Extra credit: Prove that the first three approaches are equivalent in that they produce the
same digit for the ultimate collapse of the set of N integers.

Real Life

3-16.

3-17.

As Kim knew from her English courses, palindromes are phrases that read the same way right-
to-left as they do left-to-right, when disregarding capitalization. The problem title, she recalled.
was attributed to Napoleon, who was exiled and died on the island of Elba. Being the mathe-
matically minded type, Kim likened that to her hobby of looking for palindromes on her
vehicle odometer: 245542 (her old car), or 002200 (her new car).

Now, in her first job after completing her undergraduate program in computer science,
Kim is once again working with palindromes. As part of her work, she is exploring alternative
security-encoding algorithms based on the premise that the encoding strings are not palin-
dromes. Her first task is to examine a large set of strings to identify those that are palindromes,
so they may be deleted from the list of potential encoding strings.

The strings consist of letters, (a ... 2. A ... Z), and numbers, (0 ... 9). Kim has a one-
dimensional array of pointers, mylist[1, in which each element points to the start of a string.
As with all character strings. the sequence of chars terminates with the null character, 0.
Kim’s program is to examine each string and print out all string numbers (the subscripts of
mylist (] identifying the strings) that correspond to palindromes.

Andy, Tom, Bill, and Fred have spent most of their freshman year playing a simple card
game. They deal out a deck of 52 regular playing cards, 13 to each person. The rules are
similar to bridge or spades: teams of two players, seated so that each player has a member
of the other team to his left and right. All 52 cards are dealt one at a time in a clockwise
manner. The dealer leads first; players take turns playing in a clockwise manner, and must
follow suit if possible: the highest card played of the suit led wins the four-card trick unless
a trump is played, in which case the highest trump wins. Dealer passes (o the left after each
hand of 13 tricks has been played. The object is to win the most tricks for your team. Trump
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is determined by the player who bids the most tricks: that is, who calls out the highest
number of tricks he thinks his team can win. Bidding starts with the dealer and moves
clockwise until four consecutive players have announced “no further bid.” Each successive
bid must be at least one higher than its predecessor. If no one makes a bid, the dealer is stuck
with a minimum bid of seven.

Lately. however, one of the group has taken a renewed interest in studying. The result is
that fewer than four players are available to play some evenings. Tom decided to write a small
game-playing program to fill in for the missing player. Fred wants to make it a parallel
computing implementation to allow for the possibility that more than one may be missing. Your
job is to assist Fred.

3-18. A small company is having difficulty keeping up with the demand for its services: retrieval
of data from a huge database. The company used to just hand a clerk the list of items to be
retrieved, and he or she would manually look through the files to find them. The company
has progressed far beyond that; now it hands a program a list of items, and the program looks
through the database and finds them. Lately the list of items has grown so large, and the
retrieval process has become so time-consuming, that customers have begun to complain,
The company has offered you the job of reimplementing its retrieval process by using
multiple machines in parallel and dividing up the list of items to be retrieved among the

machines.

Part 1:  ldentify all the pitfalls or roadblocks facing you in moving the retrieval process to a
parallel processing implementation that are not present in the existing serial/single
processor one.

Part 2; Identify one or more solutions to each item identified in Part 1.

Part 3:  Simulate a composite solution, retrieving (from a large database) all the items on a
list, using multiple processors working in parallel.

3-19, Over the past 35 years a series of unmanned radar-mapping missions have produced a very
detailed topographic map of the moon’s surface. This information has been digitized and is
available in a gridlike format known as a Mercator projection. The topographical data for the
next unmanned landing area is contained in a 100 100 array of grid points denoting the height
above (or below) the average moon surface level for that 10 km > 10 km region. This particular
landing region was chosen for its gradually changing topography: you may assume that linearly
interpolating between any two adjacent grid-points will accurately describe the landscape
between the grid points.

Upon the rocket landing somewhere within the designated 10 kmx 10 km region, it will
discharge a number of autonomous robots. They will conduct a detailed exploration of the
region and report their results back to the rocket via a line-of-sight lightwave communications
link (flashes of light emitted by the robots and detected by the rocket). Once its exploration is
complete, it is essential that a robot be able to find quickly the nearest location from which line-
of-sight communication can occur, since it will have only a short battery life.

The rocket designers have assured us that their receiving antenna will be 20 m above
the site of the landing: the transmitting antenna on the robot will be 1 m above its site,
wherever that may be in the region. Thus, given only the 100 x 100 array and the grid-point
locations of the rocket and a robot, your job is to determine the grid point nearest the robot
that will permit line-of-sight communication with the rocket. You may assume that the topo-
graphical data array contains only heights in integer values between +100 m and -100 m,
and that both the rocket and the robots will be located on grid points when accessing your
program.
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3-20.

3-21.

You are given a array of 100 % 10000 floating point values representing data collected in a
series of bake-offs making up the final exam at the Nella School for the Culinary Arts. As with
all grading systems, this data must be massaged (normalized) prior to actually assigning
grades. For each of the 100 students (whose data is in a row of 10,000 values), the following
operations must be performed:

INS (initial normalized score)
The average of the squares of all data values in a given row that are greater than zero but
less than 100.

FNS (final normalized score)

The value computed for this student’s INS, compared to all other students’ INS scores.
The students whose INS scores are in the top 10 percent overall get an FNS of 4.0; those
in the next 20 percent get an NS of 3.0; those in the next 30 percent get an FNS of 2.0;
those in the next 20 percent get an FNS of 1.0: the rest get an FNS of 0.0 and have to
enter the bake-off again next year as a result,

Your program is to print out the FNS scores two ways:

E: A list of FNS scores, by student (row number, FNS) for all students
% A list of students, by FNS (FNS, list of all rows [students] with this FNS) for all FNS
values

Recently, there has been somewhat of a public health scare related to the presence of a bacte-
rium, cryptosporidium, in the water supply system of several municipalities. It has come to our
attention that a band of literary terrorists is spreading the bacterium by cleverly and secretly
embedding it in novels. You have been hired by a major publishing company to scarch a new
novel for the presence of the word ervptosporidivm. Itis known that the terrorists have resorted
to insertion of punctuation, capitalization, and spacing (o disguise the presence of cryptospo-
ridiuny; finding instances of the word requires more than doing a simple word search of the text.
For example. in a highly publicized case, one page ended with the sentence

“Leaving his faithful companion, Ospor, to guard the hallway, Tom crept slowly down
the stairs and entered the darkened crypt”

while the next page began with

“Ospor, I dium, HELP!" cried Tom, as the giant bats he had disturbed flew around his head.
Disaster was narrowly averted when a clerk luckily caught what he thought was a typo and
changed “T dium™ to “I'm dying” just as the book went to press. Since this publisher handles
many books, it is essential that each one be scanned as quickly as possible. To accomplish this
you have proposed to use many computers in parallel to divide the task into smaller chunks;
each computer would search only a portion of a text. If successful, you stand to make a sizeable
commission from the sale of networked computers to the publisher.

Alternative approaches are as follows:

l. Divide the text into sections of equal size and assign each section to a single processor.
Each processor checks its section and passes information (about whether it found
cryplosporidium in its section, portions of the bacterium as the first or last characters of
its section. or no evidence of the bacterium at all) back to a master, which examines what
was passed back to it and reports on the book as a whole.
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2 Divide the text into many more small sections than there are processors and use a work-
pool approach, in which faster processors effectively do more of the total work, but in
essentially the same manner as described in the preceding approach.

3-22, Nanotechnology is the latest hot field. One of its objectives is to utilize massive numbers of
tiny devices operating in parallel to solve problems ranging from environmental decontamina-
tion (e.g., cleaning up oil spills), to battlefield cleanup, (removing unexploded ordnance or
mines), to exploration and analysis of the Martian surface.

As an expert in parallelism, choose one of these application areas of nanotechnology and

discuss the requirements for interdevice communications if it is to ensure that fewer than X

percent of whatever it is looking for will be missed.
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Chapter 4

Partitioning and Divide-and-Conquer
Strategies

In this chapter, we explore two of the most fundamental techniques in parallel program-
ming, partitioning and divide and conquer. The techniques are related. In partitioning, the
problem is divided into separate parts and each part is computed separately. Divide and
conquer usually applies partitioning in a recursive manner by continually dividing the
problem into smaller and smaller parts before solving the smaller parts and combining the
results. First, we will review the technique of partitioning. Then we discuss recursive
divide-and-conquer methods. Next we outline some typical problems that can be solved
with these approaches. As usual, there is a selection of scientific/numerical and real-life
problems at the end of the chapter.

4.1 PARTITIONING

106

4.1.1 Partitioning Strategies

Partitioning divides the problem into parts, It is the basis of all parallel programming, in
one form or another. The embarrassingly parallel problems in the last chapter used parti-
tioning without any interaction between the parts. Most partitioning formulations,
however, require the results of the parts to be combined to obtain the desired result. Parti-
tioning can be applied to the program data (i.e., to dividing the data and operating upon the
divided data concurrently). This is called data partitioning or domain decomposition. Par-
titioning can also be applied to the functions of a program (i.e., dividing it into independent
functions and executing them concurrently). This is functional decomposition. The idea of
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performing a task by dividing it into a number of smaller tasks that when completed will
complete the overall task is, of course, well known and can be applied in many situations,
whether the smaller tasks operate upon parts of the data or are separate concurrent func-
tions. It is much less common to find concurrent functions in a problem, but data partition-
ing is a main strategy for parallel programming.

To take a really simple data-partitioning example, suppose a sequence of numbers, xp

.. X,,_1. are to be added. This is a problem recurring in the text to demonstrate a concept;
unless there were a huge sequence of numbers, a parallel solution would not be worthwhile.
However, the approach can be used for more realistic applications involving complex cal-
culations on large databases.

We might consider dividing the sequence into p parts of n/p numbers each, (xg ...
Xuipy-1)s Cntp =+ X@nipy=1)s ==+ K(p—tynip --- Xu-1)» &t Which point p processors (or pro-
cesses) can each add one sequence independently to create partial sums, The p partial sums
need to be added together to form the final sum. Figure 4.1 shows the arrangement in which
a single processor adds the p partial sums. (The final addition could be parallelized using a
tree construction, but that will not be done here.) Note that each processor requires access
to the numbers it has to accumulate. In a message-passing system, the numbers would need
to be passed to the processors individually. (In a shared memory system, each processor
could access the numbers it wanted from the shared memory, and in this respect, a shared
memory system would clearly be more convenient for this and similar problems.)

The parallel code for this example is straightforward. For a simple master-slave
approach, the numbers are sent from the master processor to the slave processors. They add
their numbers, operating independently and concurrently, and send the partial sums to the
masler processor. The master processor adds the partial sums to form the result. Often, we
talk of processes rather than processors for code sequences, where one process is best
mapped onto one processor.

[t is a moot point whether broadeasting the whole list of numbers to every slave or
only sending the specific numbers to each slave is best, since in both cases all numbers must
be sent from the master. The specifics of the broadcast mechanism would need to be known
in order to decide on the relative merits of the mechanism. A broadcast will have a single
startup time rather than separate startup times when using multiple send routines and may
be preferable.

Xpj ven ‘rfﬂ-'rPP I '\'-HI.'}'I HE I””.l;ﬂ...] PR K= v oe Xp=1

N 5

Partial sums

Sum

Fipure 4.1 Partitioning a sequence of numbers into parts and adding them.
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First, we will send the specific numbers to each slave using individual send ()s. Given
s numbers divided into p groups, where n/p is an integer and one group is assigned to one
slave process. there would be p slaves. The code using separate send () and recv()s might

look like the following:

Master

s = n/p;

Ji‘l'

number of numbers for slaves*/

for (1 =0, x=0; L <p; i+, X=X+ s)

send (anumbers(x], s, Pi);

sum = 0;

for (i = 07 1 < p; i++) |
recv (&part_sum, Puyv)i
sum = Sum + part_sum;

Slave

recv(numbers, S, Ppasrer!i
part_sum = 0;
for (i = 0; i < 8; i++)
part_sum = part_sum + numbers[i];
gend(spart_sum, FPpaererl?

}Iii-

f®

i

llf*

Ilfi

lllf*

send s numbers to slave */

wait for results from slaves */

accumulate partial sums */

raceive s mumbers [rom master */

add numbers */

send sum to master */

If a broadcast or multicast routine is used to send the complete list to every slave,
code is needed in each slave to select the part of the sequence to be used by the slave, adding
additional computation steps within the slaves, as in

Master

5 = n/p;
beast (numbers, S, Psjave_group!’
gum = 0;
for (i = 0; 1 < p; i++) |
recv(&part_sum, Payyli
sum = sum + part_sum;

Slave

beast (numbers, s, Puasrer)i

start = slave number * =5;

end = start + 5;

part_sum = 0;

for (i = start; 1 < end; i++)
part_sum = parC_sum + nuners[i];

send (&part_sum, Ppaorer!!

Parlitioning and Divide-and-Conquer Strategies

lI.l'-!-
Ifl

I‘fi

,-"*

P

-lf'l

JII"H'

llf*

number of numbers for slaves */
send all numbers to slaves */

wait for results from slaves */

acrcumulate partial sums */

receive all numbers from master*/
slave number obtained earlier */

add numbers */
send sum to master */
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Slaves are identified by a process ID, which can usually be obtained by calling a library
routine. Most often, a group of processes will first be formed and the slave number is an
instance or rank within the group. The instance or rank is an integer from 0 to m — 1, where
there are m processes in the group. MPI requires communicators to be established, and
processes have rank within a communicator, as described in Chapter 2. Groups can be asso-
ciated within communicators, and processes have a rank within groups.

If scatter and reduce routines are available, as in MPI, the code could be

Master

5 = n/p; /* number of numbers */
seatter (nunbars, &5, Py, qup, FOOL=master) ; /* send mumbers to slaves */
reduce_add (&sum, &5, Pypoup, FOOL=master) ; /* results from slaves */
Slave

scatter (numbers, &s, Pgr o, root=master) ; /* receive s mumbers */

. /* add numbers */
reduc;e_add[J‘.part_sum,&S,Fgmup.roui;-.-mastar]: f* gend sum to master */

Remember, a simple pseudocode is used throughout. Scatter and reduce (and gather when
used) have many additional parameters in practice that include both source and destination
1Ds. Normally, the operation of a reduce routine will be specified as a parameter and not as
part of the routine name as here. Using a parameter does allow different operations to be
selected easily. Code will also be needed to establish the group of processes participating
in the broadcast, scatter, and reduce.

Although we are adding numbers, many other operations could be performed instead.
For example, the maximum number of the group could be found and passed back to the
master in order for the master to find the maximum number of all those passed back to it.
Similarly, the number of occurrences of a number (or character, or string of characters) can
be found in groups and passed back to the master.

Analysis. The sequential computation requires n — 1 additions with a time com-
plexity of O(n). In the parallel implementation, there are p slaves. For the analysis of the
parallel implementation, we shall assume that the operations of the master process are
included in one of the slaves in a SPMD model as this is probably done in a real implemen-
tation. (Remember that in MPI, data in the root is used in collective operations.) Thus. the
number of processors is p. Our analyses throughout separate communication and computa-
tion. It is easier to visualize if we also separate the actions into distinct phases. As with
many problems, there is a communication phase followed by a computation phase, and
these phases are repeated.

Phase 1 — Communication. First, we need to consider the communication aspect
of the p slave processes reading their n/p numbers. Using individual send and receive
routines requires a communication time of

teomm! = PUstariup + (n/pMyar)
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where f;,4yp 15 the constant time portion of the transmission, and 7,4, is the time o transmit
one data word. Using scatter might reduce the number of startup times. Thus,

Teomm1 = Tsgartup + Mdaw

depending upon the implementation of scatter. In any event, the time complexity is still O(n).
Phase 2 — Compuration. Next, we need to estimate the number of computational
steps. The slave processes each add n/p numbers together. requiring n/p — 1 additions. Since

all p slave processes are operaling together, we can consider all the partial sums obtained
in the n/p — 1 steps. Hence, the parallel computation time of this phase 1s

feomp1 = 1ip — 1

Phase 3 — Communication. Returning partial results using individual send and
receive routines has a communication time of
eomm2 = PUstartup + Ldata)
Using gather and reduce has:
feomm?2 = Tstartup + Pldata
Phase 4 — Computation.  For the final accumulation, the master has to add the p
partial sums, which requires p — 1 steps:

[

comp2 =P — |

Overall Execution Time. The overall execution time for the problem (with send
and receive) is

N 'ri:l.}rnp?.}

= (Feomm1 + feomma2) + “trump
= Pllseartup + (WPMdara +P(tiarup + tdar) + (Wp =1 4+ p=1)
= 2lgyrup + (1 + Plgaa + p + 0lp =2
or
t,=0(n)
for a fixed number of processors. We see that the parallel time complexity is the same as the
sequential time complexity of O(n). Of course, if we consider only the compulation aspect,
the parallel formulation is better than the sequential formulation.

Speedup Factor. The speedup factor is

t n—1

Speedup factor = = =
' 2pi +(n+p)tptn/p=2

startup
which suggests little speedup for a fixed number of processors.

Computation/communication ratio. 'The computation/communication ratio is
given by

'E(:urnj - p+n.r”p-2

Teomm 2p 'Fsmrrup +t(ntp }Idam

Computation/communication ratio =

Partitioning and Divide-and-Conquer Strategies Chap. 4



Sec. 4.1

which again, for a fixed number of processors, does not suggest significant opportunity for
improvement.
Ienoring the communication aspect, the speedup factor is given by

b n—1
4, n/p +p-12

Speedup factor =

The speedup tends to p for large n. However, for smaller n, the speedup will be quite low
and worsen for an increasing number of slaves, because the p — 1 slaves are idle during the
fourth phase, forming the final result if one is used for that.

Ideally, we want all the processes to be active all of the time, which cannot be
achieved with this formulation of the problem. However, another formulation is helpful and
is applicable to a very wide range of problems — namely, the divide-and-conquer approach.

4.1.2 Divide and Conquer

The divide-and-conquer approach is characterized by dividing a problem into subproblems
that are of the same form as the larger problem. Further divisions into still smaller sub-
problems are usually done by recursion, a method well known to sequential programmers.
The recursive method will continually divide a problem until the tasks cannot be broken
down into smaller parts. Then the very simple tasks are performed and results combined,
with the combining continued with larger and larger tasks. JaJd (1992) differentiates
between when the main work is in dividing the problem and when it is in combining the
results. He categorizes the method as divide and conquer when the main work is combining
the results, and as partitioning when the main work is dividing the problem. We will not
make this distinction but will use the term divide and conguer anytime the partitioning is
continued on smaller and smaller problems.

A sequential recursive definition for adding a list of numbers is!

int add{int *s) /* add list of numbers, s */
{
if (number (s} <= 2) return (nl + n2); /* see explanation */
else |
Divide (s, sl, s2); /* divide s into two parts, sl and s2 */
part_suml = add(sl); /*recursive calls to add sub lists */

part_sumZ = add(s2);
return (part_suml + part_sum2);

As in all recursive definitions, a method must be present to terminate the recursion when
the division can go no further. In the code, nuniber (s) returns the number of numbers in the
list pointed to by . If there are two numbers in the list, they are called n1 and nz. If there is
one number in the list, it is called n1, and n2 is zero. If there are no numbers, both n1 and n2

! As in all of our pseudocode, implementation details are omitted. For example, the length of a list may
need Lo be passed as an argument,
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are zero, Separate i f statements could be used for each of the cases: 0. 1. or 2 numbers in
the list. Each would cause termination of the recursive call,

This method can be used for other global operations on a list, such as finding the
maximum number. It can also be used for sorting a list by dividing it into smaller and
smaller lists to sort. Mergesort and quicksort sorting algorithms are usually described by
such recursive definitions; see Cormen. Leiserson, and Rivest (1990). One would never
actually use recursion to add a list of numbers when a simple iterative solution exists, but
the following is applicable to any problem that is formulated by a recursive divide-and-
conquer method.

When each division creates two parts, a recursive divide-and-conquer formulation
forms a binary tree. The tree is traversed downward as calls are made and upward when the
calls return (a preorder traversal given the recursive definition). A binary tree construction
showing the “divide” part of divide and conquer is shown in Figure 4.2, with the final tasks
at the bottom and the root at the top. The root process divides the problem into two parts.
These two parts are each divided into two parts, and so on until the leaves are reached.
There the basic operations of the problem are performed. This construction can be used in
the preceding problem to divide the list of numbers first into two parts. then into four parts,
and so on, until each process has one equal part of the whole. After adding palrﬁ at the
bottom of the tree, the accumulation occurs in a reverse tree construction.

Figure 4.2 shows a complete binary tree: that is, a perfectly balanced tree with all
bottom nodes at the same level. This occurs if the task can be divided into a number of parts
that is a power of 2. If not a power of 2, one or more bottom nodes will be at one level higher
than the others. For convenience, we will assume that the task can be divided into a number
of parts that is a power of 2, unless otherwise stated.

Parallel Implementation. In a sequential implementation. only one node of the
tree can be visited at a time. A parallel solution offers the prospect of traversing several
parts of the tree simultaneously. Once a division is made into two parts, both parts can be
processed simultaneously. Though a recursive parallel solution could be formulated, 1t 1s
easier to visualize it without recursion. The key is realizing that the construction 1s a tree.

Initial problem

Divide
problem

Final tasks

Fipure 4.2 Tree construction.
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One could simply assign one processor to each node in the tree. That would ultimately
require 2+l _ | processors to divide the tasks into 2" parts. Each processor would only be
active at one level in the tree. leading to a very inefficient solution. (Problem 4-5 explores
this method.)

A more efficient solution is to reuse processors at each level of the tree, as illustrated
in Figure 4.3, which uses eight processors. The division stops when the total number of pro-
cessors is committed. Until then, at each stage each processor keeps half of the list and
passes on the other half. First, Py communicates with Py, passing half of the list to £y, Then
Py and P pass half of the list they hold to P; and Py, respectively. Finally, Py, Py, P4, and
Py pass half of the list they hold to Py, P, Ps, and P, respectively. Each list at the final
stage will have n/8 numbers, or n/p in the general case of p processors. There are log p levels
in the tree.

The “combining” act of summation of the partial sums can be done as shown in
Figure 4.4. Once the partial sums have been formed, each odd-numbered processor passes
its partial sum to the adjacent even-numbered processor; that is, P| passes its sum to Py, P3
to Py, Ps to Py, and so on. The even-numbered processors then add the partial sum with its
own partial sum and pass the result onward, as shown. This continues until P has the final
resull,

We can see that these constructions are the same as the binary hypercube broadcast
and gather algorithms described in Chapter 2, Section 2.3.3. The constructions would map
onto a hypercube perfectly but are also applicable to other systems. As with the hypercube
broadeast/gather algorithms, processors that are o communicate with other processors can
be found from their binary addresses. Processors communicate with processors whose
addresses differ in one bit, starting with the most significant bit for the division phase and
with the least significant bit for the combining phase (see Chapter 2, Section 2.3.3).

Suppose we statically create eight processors (or processes) 10 add a list of numbers.
The parallel code for process Py might take the form

Original list

Figure 4.3  Dividing a list into parts.
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Xp

An-1

Final sum

Figure 4.4 Partial summation.

Process Py

divide(sl, 51, s2);

send(s2, Pyl:

divide(sl, sl, s82);

send(s2, Ps);

divide(sl, sl, s2);

send(s2, P);

part_sum = *s1;

recv(&part_suml, Py);

part_sum = part_sum + part_suml;
recv(&part_suml, Py);

part_sum = part_sum + part_suml;
recv(&part_suml, Py);

part_sum = part_sum + part_suml;

The code for process P, might take the form
Process Py

recv(sl, Pyl;

divide(sl, sl, s2);

send(s2, Pg):

divide(sl, sl, s2);

send{s2, Psl:

part_sum = *s1;

recv (&part_suml, Pc);

part_sum = part_sum + part_suml;
recv &part_suml, Pg);:

part_sum = part_sum + part_suml;
send (kpart_sum, Pgl;

/* division phase */

f* divide s1 into two, sl and s2 */
/* send one part to another process */

/* combining phase */

/* division phase */

/* conbining phase */

Partitioning and Divide-and-Conquer Strategies
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Similar sequences are required for the other processes. Clearly, another associative
operator, such as multiplication, logical OR, logical AND, minimum, maximum, or string
concatenation, can replace the addition operation in the preceding example. The basic idea
can also be applied to evaluating arithmetic expressions where operands are connected with
an arithmetic operator. The tree construction can also be used for such operations as search-
ing. In this case, the information passed upward is a Boolean flag indicating whether or not
the specific item or condition has been found. The operation performed at each node is an
OR operation, as shown in Figure 4.5.

Analysis. We shall assume that n is a power of 2. The communication setup time,
Isrartups 18 not included in the following for simplicity. It is left as an exercise to include the
startup time.

The division phase essentially consists only of communication if we assume that
dividing the list into two parts requires minimal computation. The combining phase requires
both computation and communication to add the partial sums received and pass on the result.

Communication. There is a logarithmic number of steps in the division phase: that
is, log p steps with p processes. The communication time for this phase is given by

o n n n _np-1)
II!Ii.‘ilrl'lm.l - i'rdum + Erdﬂlit > g"d:'.[:i F oot Etdatu = P

where f,4,,, is the transmission time for one data word. The time 74,1 18 marginally better
than a simple broadcast. The combining phase is similar, except that only one data item is
sent in each message (the partial sum); that is,

'rrl.'lln

'ri:mmlﬂ = “ng}fd“m
for a total communication time of

_ hp-1)

t comm + j:1':::|r:|m':2 -

comm — ! fgara + (10BP) o

or a time complexity of O(n) for a fixed number of processors.

Computation. At the end of the divide phase, the n/p numbers are added together.
Then one addition oceurs at each stage during the combining phase, leading to

_n
'rmmp = .; +logp

Found/ @

Not found ™.

Fipure 4.5 Part of a search tree.
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again a time complexity of O(n) for a fixed number of processors. For large n and variable
p. we get O(n/p).

Overall Execution Time. The total parallel execution time becomes
_ (nlp=1) n
t, = (—;}L + ]ngp)rdm + 5 + logp

Speedup Factor. The speedup factor 1s

L. =
Speedup factor = = = b
L ((n/p)(p—1)+logp)ty,.,+n/p+logp
The very best speedup we could expect with this method is, of course, p when all p proces-
sors are computing their partial sums. The actual speedup will be less than this due to the
division and combining phases.

Computation/fcommunication Ratio. The computation/communication ratio is
given by

Leomp " n/p +log

Computation/communication ratio =
b ((n/pip-1)+ Ir}gp}.'dmu

4.1.3 M-ary Divide and Conquer

Divide and conquer can also be applied where a task is divided into more than two parts at
each stage. For example, if the task is broken into four parts, the sequential recursive defi-
nition would be

int add(int *s) /% add list of numbers, s */
{
if (number{s) =< 4) return(nl + n2 + nd + nd);

else |
Divide (=,81,82,83,84); f* divide s inte sl,82,53,84%/
part_suml = add(sl); /*recursive calls to add sublists =/
part_sumZ = add(s2);

part_sum3l = add(s3);
part_sumd = add(sd);
return (part_suml + part_sum? + part _sum3d + part_sumd};

A tree in which each node has four children, as shown in Figure 4.6, is called a
guadtree. A quadtree has particular applications in decomposing two-dimensional regions
into four subregions. For example, a digitized image could be divided into four quadrants,
and then each of the four quadrants divided into four subquadrants, and so on, as shown in
Figure 4.7. An octtree is a tree in which each node has eight children and has application
for dividing a three-dimensional space recursively. An m-ary tree would be formed if the
division is into m parts (i.e., a tree with m links trom each node), which suggests that greater
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Figure 4.6 Quadtree.
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Figure 4.7 Dividing an image.

parallelism is available as m is increased because there are more parts that could be consid-
ered simultaneously. Tt is left as an exercise to develop the equations for computation time
and communication time (Problem 4-7).

4.2 PARTITIONING AND DIVIDE-AND-CONQUER EXAMPLES

4.2.1 Sorting Using Bucket Sort

Suppose the problem is not simply to add together numbers in a list, but to sort them into
numerical order. There are many practical situations that require numbers to be sorted, and
in consequence, sequential programming classes spend a great deal of time developing the
various ways that numbers can be sorted. Most of the sequential sorting algorithms are
hased upon the compare and exchange of pairs of numbers, and we will look at parallelizing
such classical sequential sorting algorithms in Chapter 10. Let us look here at the sorting
algorithm called bucker sort. Bucket sort is not based upon compare and exchange, but is
naturally a partitioning method. However, bucket sort only works well if the original
numbers are uniformly distributed across a known interval, say 0 to a — 1. This interval 1s
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divided into m equal regions, 0 to a/m = 1, a/m 1o 2a/m = 1, 2a/m 10 3a/m — 1, ... and one
“bucket” is assigned to hold numbers that fall within each region. There will be m buckets.
The numbers are simply placed into the appropriate buckets. The algorithm could be used
with one bucket for each number (i.e., m = n). Alternatively, the algorithm could be
developed into a divide-and-conquer method by continually dividing the buckets into
smaller buckets. If the process is continued in this fashion until each bucket can only
contain one number, the method is similar to quicksort, except that in quicksort the regions
are divided into regions defined by “pivots™ (see Chapter 10). Here we will use a limited
number of buckets. The numbers in each bucket will be sorted using a sequential sorting
algorithm, as shown in Figure 4.8.

Sequential Algorithm. To place a number into a specific bucket it is necessary
to identify the region in which the number lies. One way to do this would be to compare the
number with the start of regions; i.e., a/m, 2a/m, 3a/m, ... . This could require as many as
m — 1 steps for each number on a sequential computer. A more effective way is to divide
the number by m/a and use the result to identify the buckets from 0 to m — 1, one computa-
tional step for each number (although division can be rather expensive in time). If m/a is a
power of 2, one can simply look at the upper bits of the number in binary. For example, if
mla=23 (eight), and the number is 1100101 in binary, it falls into region 110 (six), by con-
sidering the most significant three bits, In any event, let us assume that placing a number
into a bucket requires one step, and that placing all the numbers requires n steps. If the
numbers are uniformly distributed, there should be n/m numbers in each bucket.

Next, each bucket must be sorted. Sequential sorting algorithms, such as quicksort or
mergesort, have a time complexity of O(nlog n) 1o sort n numbers (average time complexity
for quicksort). The lower bound on any compare and exchange sorting algorithm is about
n log n comparisons (Aho, Hoperoft, and Ullman, 1974). Let us assume that the sequential
sorting algorithm actually requires i log n comparisons, one comparison being regarded as
one computational step. Thus, it will take (n/m)log(n/m) steps to sort the n/m numbers in
each bucket using these sequential sorting algorithms. The sorted numbers must be concat-
enated into the final sorted list. Let us assume that this concatenation requires no additional
steps. Combining all the actions, the sequential time becomes

t,=n+m((n/m)log(n/m)) = n + nlog(n/m) = O(n log(n/m))

Unsorted numbers

Buckeis

Sort
contlents
of bhuckets

Merge lists

Sorted numbers

Figure 4.8 Bucket sort,

Partitioning and Divide-and-Conquer Strategies  Chap. 4



Sec. 4.2

If n = km, where k is a constant, we get a time complexity of O(n). Note that this is much
better than the lower bound for sequential compare and exchange sorting algorithms.
However, it only applies when the numbers are uniformly distributed.

Parallel Algorithm. Clearly, bucket sort can be parallelized by assigning one
processor for each bucket, which reduces the second term in the preceding equation to
(n/p)log (n/p) for p processors (where p = m). This implementation is illustrated in Figure 4.9.
In this version, each processor examines each of the numbers, so that a great deal of
wasted effort takes place. The implementation could be improved by having the processors
actually remove numbers from the list into their buckets so that they are not reconsidered
by other processors.

We can further parallelize the algorithm by partitioning the sequence into m regions,
one region for each processor. Each processor maintains p “small” buckets and separates
the numbers in its region into its own small buckets. These small buckets are then “emptied”
into the p final buckets for sorting, which requires each processor to send one small bucket
to each of the other processors (bucket i to processor i). The overall algorithm is shown in
Figure 4.10. Note that this method is a simple partitioning method in which there is minimal
work to create the partitions.

The following phases are needed:

1. Partition numbers.

2. Sort into small buckets.
3. Send to large buckets.
4. Sort large buckets.

Unsorted numbers

P processors et A o A o i g

Bucksts L 5 N0 U e e o e i

Sort
contents
of buckets

Mergelists | | | = | -m—==—=————- i e [
Sorted numbers

Figure 4.9 One parallel version of bucket sort.
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contents
of buckets
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Figure 4.10 Parallel version of bucket sorL

Phase 1 — Computation and Communication. The first step is to send groups of
numbers to each processor. Marking a group of numbers into partitions can be done in
constant time. This time will be ignored in the overall compassion time. Rather than make
the partitions and then send a partition to each processor, a more efficient solution is to
simply broadcast all the numbers to each processor and let each processor make its parti-
tion. (One must ensure that each partition so created is disjoint but the partitions together
include all the numbers.) Using a broadeast or scatier routine, the communication time is:

feomml = F,&Lurl.up + Mgan

including the communication startup tme.

Phase 2 — Computation. To separate each partition of n/p numbers into p small
buckets requires the time

leomp2 = nlp

Phase 3 — Communication. Nexl, the small buckets are distributed. (There is no
computation in Phase 3.) Each small bucket will have about n/p> numbers (assuming
uniform distribution). Each process must send the contents of p — 1 small buckets to other
processes (one bucket being held for its own large bucket). Since each process of the p
processes must make this communication, we have

teomm3 = P(P = Dfgtarup + [”fpl}rdamj

if these communications cannot be overlapped in time and individual sena()s are used. This
is the upper bound on this phase of communication. The lower bound would occur if all the
communications could overlap, leading to

3 :
Teomm3 = (P — ”“sl:trtup + (P~ Mgaa)
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In essence, each processor must communicate with every other processor, and an “all-to-
all” mechanism would be appropriate. An all-to-all routine sends data from each process
to every other process, as illustrated in Figure 4.11. This type of routine is available in
MPI (MP1_alltoall()), which we assume would be implemented more efficiently than
using individual send ()s and reev () 5. The all-to-all routine will actually transfer the rows
of an array to columns, as illustrated in Figure 4.12 (and hence transpose a matrix; see
Section 10.2.3).

Phase 4 — Computation. In the [inal phase, the large buckets are sorted simulta-
neously. Each large bucket contains about n#/p numbers. Thus

leompa = (nip)log(nip)
Overall Execution Time. The overall run time, including communication, is
Ip = feomm1 + fcomp2 + feomm3 + feompd
tp = tartup T Maaa + 1P + (P = Dlgiaep + (m";:z}fdm] + (nip)log(nlp)
= (nip)(1 + log(nlp)) + plyarup + (1 + (P — DY) s
Speedup Factor. The speedup factor, when compared (o sequential bucket sort, is

n+nlog(n/m)

!
Speedup factor = = = :
p (n/p)1+log(n/p)) +Pltarup * (n+(p-=1)n/p Myaa

—

Speedup factor is actually defined where 1 is the time for the best sequential algorithm for
the problem. The lower bound for a sequential sorting algorithm using compare and
exchange operations and no requirement upon the distribution or special features of the
sequence is n log n steps. However, bucket sort is better than this and is used for 7, but it
has the assumption of uniformly distributed numbers.

Process 0 Process p — 1

Send Receive
buffer buffer

Send
buffer

Process 1 Processp — 1 Process 0 Processp — 2
First clements Last elements

Figure 4.11  All-to-all broadcast.
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“All-to-all”

Py | Ago Ao 2| Ao Ano Arp|Azo|Aso

A | A | Az [ Asa

Py |Asg|Asy Aga|Aya|Axa|As2

Py | Azn|Aza Apa|Aps|Azz|Ass

Figure 4.12  Effect of all-to-all on an array.

Computation/communication Ratio. The computation/communication ratio is
given by

fcomp _ (n/p)(1 + log(n/p))

Icomm Plogrup + (n+(p=1)n/p My

Computation/communication ratio =

It is assumed that the numbers are uniformly distributed to obtain these formulas. If the
numbers are not uniformly distributed, some buckets would have more numbers than
others, and sorting them would dominate the overall computation time. The worst-case
scenario would occur when all the numbers fell into one bucket!

4.2.2 Numerical Integration

Previously, we divided a problem and solved each subproblem. The problem was assumed
to be divided into equal parts, and partitioning was employed. Sometimes such simple
partitioning will not give the optimum solution, especially il the amount of work in each
part is difficult to estimate. Bucket sort, for example, is only effective when each region
has approximately the same number of numbers. (Bucket sort can be modified to equalize
the work.)

A general divide-and-conquer technique divides the region continually into parts and
lets an optimization function decide when certain regions are sufficiently divided. Let us
take a different example, numerical integration:

h
I= Lﬁxm

To integrate this function (i.e., to compute the “area under the curve™), we can divide the
area into separate parts, each of which can be calculated by a separate process. Each region
could be calculated using an approximation given by rectangles, as shown in Figure 4.13,
where f(p) and f(q) are the heights of the two edges of a rectangular region, and o is the
width (the interval). The complete integral can be approximated by the summation of the
rectangular regions from a to b. A better approximation can be obtained by aligning the
rectangles so that the upper midpoint of each rectangle intersects with the function, as
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fix)

fip) fla)

a i h -\ Figure 413  Numerical integration
p ® 3 using rectangles.

shown in Figure 4.14. This construction has the advantage that the errors on each side of
the midpoint end tend to cancel. Another more obvious construction is to use the actual
intersections of the vertical lines with the function to create trapezoidal regions, as shown
in Figure 4.15. Each region is now calculated as 1/2(f(p) + f(g))5. Such approximate
numerical methods for computing a definite integral using a linear combination of values
are called guadrature methods.

Static Assignment. Let us consider the trapezoidal method. Prior to the start of
the computation. one process is statically assigned to be responsible for computing each
region. By making the interval smaller, we come closer to attaining the exact solution.

Since each calculation is of the same form, the SPMD (single-program multiple-data)
model is appropriate. Suppose we were to sum the area from x = a to x = b using p processes
numbered 0 to p — 1. The size of the region for each process is (b — a)/p. To calculate the
area in the described manner, a section of SPMD pseudocode could be

Process P;

if {i == master) { /* read number of intervals required */
printf (“Enter number of intervals "};
scanf (%d",&n) ;

fix) 4 T
o]
—
fio| 1 |f@
i - - b 'h'r Figure 4.14 More accurate numerical
p ° q integration using rectangles,

Partitioning and Divide-and-Conquer Examples 123



124

fip) flq)
a —— = h hfr Figure 4.15 Numerical integration

P8 q using the trapezoidal method.
beast (&n, Pgroupli /* breadcast interval to all processes */
region = (b - a)/p; /* length of region for sach process */
start = a + region * i; /* starting x coordinate for process */
end = start + region; /* ending x coordinate for process */
d= (b - a)fn; /* gsize of interval */

area = 0.0;
for (¥ = start; x < end; % = x + d)
area = area + 0.5 * (fix) + £ix+d)) = 4;
reduce_add(&integral, &area, Pgroup): /* form sum of areas */

A reduce operation is used to add the areas computed by the individual processes. For com-
putational efficiency, computing each area is better if written as

area = 0.0;

for (x = start; x < end; x = x + d)
area = area + fix) + f£(x+d);

area = 0.5 % area * d;

We assume that the variable area does not exceed the allowable maximum value (a possible
disadvantage of this variation). For further efficiency, we can simplify the calculation
somewhat by algebraic manipulation, as follows:

B a(ﬁa]+é{{a+6];: 4+ 8fla+d) ;—ﬂa+25]]m+ﬁ{_ﬁa+(u u2{}5}+ﬂb}}

- 8(’% +fla+8)+fla+28)...+fla+(n- |}5}+1@J

given n intervals each of width 8. One implementation would be to use this formula for the
region handled by each process:

area = 0.5 * (f({start) + f({end));

for (x = start + d; x < end; x = % + )
area = area + £(x);

area = area * d;
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Adaptive Quadrature. The methods used so far are fine if we know before-
hand the size of the interval & that will give a sufficiently close solution. We also
assumed that a fixed interval is used across the whole region. If a suitable interval 1s not
known, some form of iteration is necessary to converge on the solution. For example,
we could start with one interval and reduce it until a sufficiently close approximation is
obtained. This implies that the area is recomputed with different intervals, so we cannot
simply divide the total region into a fixed number of subregions, as in the summation
example.

One approach is for each process to double the number of intervals successively until
two successive approximations are sufficiently close. The tree construction could be used
for dividing regions. The depth of the tree will be limited by the number of available
processes/processors. In our example, it may be possible to allow the tree to grow in an
unbalanced fashion as regions are computed to a sufficient accuracy. The phrase sufficiently
close will depend upon the accuracy of the arithmetic and the application.

Another way to terminate is use three areas, A, B, and C, as shown in Figure 4.16. The
computation is terminated when the area computed for the largest of the A and B regions is
sufficiently close to the sum of the areas computed for the other two regions. For example.
if region B is the largest, terminate when the area of B is sufficiently close to the area of A
plus the area of C. Alternatively, we could simply terminate when C is sufficiently small.
Such methods are known as adaptive quadrature because the solution adapts to the shape
of the curve. (Simplified formulas can be derived for adaptive quadrature methods; see
Freeman and Phillips, 1992.)

Computations of areas under slowly varying parts of the curve stop earlier than com-
putations of areas under more rapidly varying parts. The spacing, 6, will vary across the
interval. The consequence of this is that a fixed process assignment will not lead to the
most efficient use of processors. The load-balancing techniques described in Chapter 3,
Section 3.2.2, and in more detail in Chapter 7 are more appropriate. We should point out
that some care might be needed in choosing when to terminate. For example, the function
shown in Figure 4.17 might cause us to terminate early. as two large regions are the same
(i.e., C=0).

Figure 4.16  Adaptive quadrature
X construction.
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4.2.3 N-Body Problem

. Figured.17 Adaptive quadrature with false
X termination.

Another problem that can take advantage of divide and conquer is the N-body problem. The
N-body problem is concerned with determining the effects of forces between bodies such
as astronomical bodies attracted to each other through gravitational forces. The N-body
problem also appears in other areas, including molecular dynamics and fluid dynamics. Let
us examine the problem in terms of astronomical systems, although the techniques apply to
other applications. We provide the basic equations to enable the application to be coded as
a programming exercise that could use the same graphic routines as the Mandelbrot
problem of Chapter 3 for interesting graphical output.

Gravitational N-Body Problem. The objective is to find the positions and
movements of bodies in space (e.g., planets) that are subject to gravitational forces from
other bodies using Newtonian laws of physics. The gravitational force between two bodies
of masses m, and my, is given by

Gm
F=-—27

n!f:

r =

i

where G is the gravitational constant and r is the distance between the bodies. We see that
gravilational forces are described by an inverse square law. That is, the force between a pair
of bodies is proportional to 1/r2, where r is the distance between the bodies. Each body will
feel the influence of each of the other bodies according to the inverse square law, and the
forces will sum together (taking into account the direction of each force). Subject to forces,
a body will accelerate according to Newton's second law:

F=ma

where m is the mass of the body, F is the force it experiences, and a is the resultant ac-
celeration. All the bodies will move to new positions due to these forces and have new
velocities. For a precise numeric description, differential equations would be used (i.e.,
F = mdvidt and v = dx/dt, where v is the velocity). However, an exact “closed” solution
to the N-body problem is not known for systems with more than three bodies.

For a computer simulation, we use values at particular times, fy, 1, >, and so on, the
time intervals being as short as possible to achieve the most accurate solution. Let the time
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interval be Ar. Then, for a particular body of mass m, the force is given by

r+1 !
miv  =v)
O i

At
and a new velocity

r+1 ! !

1 _ ot FA

m

where v is the velocity of the body attime 7+ 1, and v is the velocity of the body at time
t. If a body is moving at a velocity v over the time interval Az, its position changes by

A = v
where " is its position at time 7. Once bodies move to new positions, the forces change and
the computation has to be repeated.
The velocity is not actually constant over the time interval, Az, so only an approximate
answer is obtained. Tt can help to use a “leap-frog” computation in which velocity and
position are computed alternately:

(41,2 t=1,2
- miv —-¥ )
At
and
IR ! f+1/2
X —X = At

where the positions are computed for times 1, t + 1, 1 + 2, and so on, and the velocities are
computed for times £+ 1/2, ¢ + 3/2, t + 5/2, and s0 on.

Three-Dimensional Space.  Since the bodies are in a three-dimensional space, all
values are vectors and have to be resolved into three directions. x, y, and z. In a three-
dimensional space having a coordinate system (x, ¥, 2), the distance between the bodies at
(X0 Ve 2o) @and (xp, ¥p Zp) 18 given by

2 2 2
I= J[I.’J _xﬁ} + U'h_-?"u] + {zh _In]

The forces are resolved in the three directions, using, for example,

w i .

_ Gmgmy[x,-Xx,
e 7

r v r ¥,

{ N

Fo= Gm,my( V=Yg
g 2

r v ¥ /

(o o=

F = Gm"mh b “a
" 2

r U A

where the particles are of mass m, and my, and have the coordinates (x,, v, 2,) and
(Xp. ¥j,» 25). Finally, the new position and velocity are computed. The velocity can also be
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resolved in three directions. For a simple computer solution, we usually assume a three-
dimensional space with fixed boundaries. Actually. the universe is continually expanding
and does not have fixed boundaries!

Other Applications.  Although we describe the problem in terms of astronomical
bodies, the concept can be applied to other situations. For example, charged particles are
also influenced by each other, in this case according to Coulomb’s electrostatic law (also an
inverse square law of distance); particles of opposite charge are attracted and those of like
charge are repelled. A subtle difference between the problem and astronomical bodies is
that charged particles may move away from each other, whereas astronomical bodies are
only attracted and thus will tend to cluster.

Sequential Code. The overall gravitational N-body computation can be described
by the algorithm

for (£ = 0; € < tmax; t++) { f* for each time period */

for (1 = 0: 1 < N; i++) { /* for each body */
F = Force_routine(i); f* compute force on ith body */
viilgge = vIi] + F * dt / m; /* compute new velocity and
X[1lpme = X[1] + w[ilge, * dt; /* new position (leap-frog) */

}

for (1 = 0: 1 = N: 1++} { /* for each body */
x[1] = %3] o /* update velocity and position®/

VIE] = vIE) ey

Parallel Code. Parallelizing the sequential algorithm code can use simple parti-
tioning whereby groups of bodies are the responsibility of each processor, and each force
is “carried” in distinct messages between processors. However, a large number of messages
could result. The algorithm is an O(N?) algorithm (for one iteration) as each of the N bodies
is influenced by each of the other N — 1 bodies. It is not feasible to use this direct algorithm
for most interesting N-body problems where N is very large.

The time complexity can be reduced using the observation that a cluster of distant
bodies can be approximated as a single distant body of the total mass of the cluster sited at
the center of mass of the cluster, as illustrated in Figure 4.18. This clustering idea can be
applied recursively.

Barnes-Hut Algorithm. A clever divide-and-conquer formation to the problem
using this clustering idea starts with the whole space in which one cube contains the bodies
(or particles). First, this cube is divided into eight subcubes. If a subcube contains no par-
ticles, it is deleted from further consideration. If a subcube contains more than one body, it
is recursively divided until every subcube contains one body. This process creates an
octtree; that is, a tree with up to eight edges from each node. The leaves represent cells each
containing one body. (We assumed the original space is a cube so that cubes result at each
level of recursion, but other assumptions are possible.)

For a two-dimensional problem, each recursive subdivision will create four subareas
and a quadtree (a tree with up to four edges from each edge; see Section 4.1.3). In general,
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ff_-- ~ Center of mass

Distant cluster of hodies

Figure 4.18 Clustering distant bodies.

the tree will be very unbalanced. Figure 4.19 illustrates the decomposition for a two-
dimensional space (which is easier to draw) and the resultant quadtree. The three-
dimensional case follows the same construction except that it has up to eight edges from
each node.

In the Barnes-Hut algorithm (Barnes and Hut, 1986), after the tree has been con-
structed, the total mass and center of mass of the subcube is stored at each node. The force
on each body can then be obtained by traversing the tree, starting at the root, stopping at a
node when the clustering approximation can be used for the particular body, and otherwise
continuing to traverse the tree downward. In astronomical N-body simulations, a simple
criterion for when the approximation can be made is as follows. Suppose the cluster is
enclosed in a cubic volume given by the dimensions % d x d, and the distance to the center
of mass is r. Use the clustering approximation when

e

o=

Subdivision

h\ﬁ‘ direction

articles Partial quadtree

Figure 4.19 Recursive division of two-dimensional space.

Sec.4.2 Partitioning and Divide-and-Conquer Examples 129



130

where 8 is a constant typically 1.0 or less (0 is called the opening angle). This approach can
substantially reduce the computational effort.

Once all the bodies have been given new positions and velocities, the process is
repeated for each time period. This means that the whole octtree must be reconstructed for
each time period (because the bodies have moved). Constructing the tree requires a time of
O(nlogn). and so does computing all the forces, so that the overall time complexity of the
method is O(nlogn) (Barnes and Hut, 1986).

The algorithm can be described by the following:

for (£ = 0; t < tmax; te++) { /* for each time pericd */
Build Octtresl): /* construct Octtrese (or Quadtree) */
Tot_Mass _Center(); /* compute total mass & center /*
Comp_Force(); /* traverse tree/computing forces */
Update(); /* update position/velocity */

The Build Octtree() routine can be constructed from the positions of the bodies,
considering each body in turn. The Tot_Mass_Center() routine must traverse the tree,
computing the total mass and center of mass at each node. This could be done recursively.
The total mass, M. is given by the simple sum of the total masses of the children:

-
M= z m;
i=0

where m; is the total mass of the ith child. The center of mass, C, is given by

. 1
C= ?{E (m;*c;)

where the positions of the centers of mass have three components, in the x, y, and z direc-
tions. The comp_rorce() routine must visit nodes ascertaining whether the clustering
approximation can be applied to compute the force of all the bodies in that cell. If the clus-
tering approximation cannot be applied, the children of the node must be visited.

The octiree will, in general, be very unbalanced. and its shape changes during the
simulation. Hence, a simple static partitioning strategy will not be very effective in load bal-
ancing. A better way of dividing the bodies into groups is called orthogonal recursive
bisection (Salmon, 1990). Let us describe this method in terms of a two-dimensional square
area. First, a vertical line is found that divides the area into two areas, each with an equal
number of bodies. For each area, a horizontal line is found that divides it into two areas,
each with an equal number of bodies. This is repeated until there are as many areas as pro-
cessors, and then one processor is assigned to each area. An example of the division is illus-
trated in Figure 4.20).
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L Figure4.20  Orthogonal recursive bisection
method.

4.3 SUMMARY

Chap. 4

This chapter introduced the following concepts:

» Partitioning and divide-and-conquer as the basis for parallel computing techniques
* Tree constructions

« Examples of partitioning and divide-and-conquer problems — namely, bucket sort,
numerical integration, and the N-body problem

FURTHER READING

The divide-and-conquer technique is described in many data structure and algorithms texts
(e.g.. Cormen Leiserson and Rivest, 1990). As we have seen, this technique results in a tree
structure. It is possible to construct a multiprocessor with a tree network that would then be
amenable to divide-and-conquer problems. One or two tree network machines have been
constructed with the thought that most applications can be formulated as divide and
conquer. However, as we have seen in Chapter 1, trees can be embedded into meshes and
hypercubes so that it is not necessary to have tree network. Mapping divide-and-conguer
algorithms onto different architectures is the subject of research papers like the one by Lo
and Rajopadhye (1990).

Once a problem is partitioned, a scheduling algorithm is appropriate in some contexts
for allocating processors to partitions or processes. One text dedicated to partitioning and
scheduling is Sarkar (1989). Mapping (static scheduling) is not considered in this text.
However, dynamic load balancing, in which tasks are assigned to processors during the
execution of the program, is considered in Chapter 7.

Bucket sort is described in texts on sorting algorithms (see Chapter 9) and can be
found specifically in Lindstrom (1985) and Wagner and Han (1986). Numerical evaluation
of integrals in the context of parallel programs can be found in Freeman and Phillips (1992),
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Gropp, Lusk, and Skjellum (1999), and Smith (1993) and 1s often used as a simple applica-
tion of parallel programs. The original source for the Barnes-Hut algorithm is Barnes and
Hut (1986). Other papers include Bhatt et al. (1992) and Warren and Salmon (1992). Liu
and Wu (1997) consider programming the algorithm in C++. Apart from the Barnes-Hutt
divide-and-conquer algorithm, another approach is the fast multipole method (Greengard
and Rokhlin, 1987). Hybrid methods exist.
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PROBLEMS
Scientific/Numerical

4-1. Write a program that will prove that the maximum speedup of adding a series of numbers using
a simple partition described in Section 4.1.1 is p/2. where there are p processes.

4-2. Using the equations developed in Section 4.1.1 for partitioning a list of numbers into m parti-
tions that are added separately, show that the optimum value form to give the minimum parallel
I'.'KC.CUﬁﬂn time is when m= N."p/ (1 +..rhm“upj , where there are p processors. (Clue: Differ-
entiate the parallel execution time equation.)

4-3, Section 4.1.1 gives three implementations of adding numbers, using separate send()s and
recv()s, using a broadcast routine with separate recv (s 0 return partial results, and using
scatter and reduce routines. Write parallel programs for all three implementations, instrument-
ing the programs to extract liming information (Chapter 2, Section 2.3.4), and compare the

resulis.

4-4. Suppose the structure of a computation consists of a binary tree with n leaves (final tasks) and
logn levels. Each node in the tree consists of one computational step. What is the lower bound
of the execution time if the number of processors is less than n?

4-5. Analyze the divide-and-conguer method of assigning one processor to each node in a tree for
adding numbers (Section 4.1.2) in terms of communication, computation, overall parallel

execution time, speedup, and efficiency.

4-6. Complete the parallel pseudocode given in Section 4.1.2 for the (binary) divide-and-conquer

method for all eight processes.

-

4-7

Develop the equations for computation and communication times for m-ary divide and

conquer, following the approach used in Section 4.1.2.

4-8. Develop a divide-and-conquer algorithm that finds the smallest value in a set of n values in
O(logn) steps using n/2 processors. What is the time complexity if there are fewer than n/2
processors?

4-9. Write a parallel program with a time complexity of O(logn) to compute the polynomial

2 -
f=ap® +ap! +aat + ... +a,_ ¥

to any degree, n, where the a’s, x, and n are input.

4-10. Write a parallel program that uses a divide-and-conquer approach to find the first zero in a list
of integers stored in an array. Use 16 processes and 256 numbers.

4-11. Write parallel programs to compute the summation of n integers in each of the following ways
and assess thew performance. Assume that n1s a power of 2,

(a)  Partition the n integers into 72/2 pairs. Use n/2 processes to add together each pair of

integers resulling in #/2 integers. Repeat the method on the #/2 integers to obtain n/4

integers and continue until the final result is obtained. (This is a binary tree algorithm.)
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4-12.

4-13.

4-14.

4-15.
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Binary Tree

Result

Figure .21  Process diagram for Problem 4-12(h).

(b)  Divide the n integers into nflog n groups of log n numbers each. Use n/log n processes.
cach adding the numbers in one group sequentially. Then add the n/log n results using
method (a), This algorithm is shown in Figure 4.21.

Write parallel programs to compute n! in each of the following ways and assess their perfor-

mance. The number, n, may be odd or even but is a positive constant.

(a)  Compute n! using two concurrent processes, cach computing approximately half of the
complete sequence. A masler process then combines the two partial results.

(b)  Compute n! using a producer process and a consumer process connected together. The
producer produces the numbers 1, 2, 3, ... n in sequence. The consumer accepts the
sequence of numbers from the producer and accumulates the result; e, 1x2x3 ...

Write a divide-and-conquer parallel program thai determines whether the number of I's in a
binary file is even or odd (i.e., create a parity checker). Modify the program so that a bit is
attached to the contents of the file, and set toa 0 or a 1 to make the number of 1’s even (a parity
generator).

Bucket sort and its parallel implementations suffer for poor performance if the numbers are not
uniformly distributed, because more numbers will fall into the same bucket for subsequent
sorting. Modify the algorithm so that the regions that each bucket collects are altered. This
could be done as the algorithm is executed or before in a preprocessing step. Implement your
algorithm.

One way to compute 7 is to compute the area under the curve flx) = 4/(1 + ) between 0 and
I, which is numerically equal to 7. Write a parallel program to calculate 7 this way using 10
processes. Another way (o compute T is to compute the area of a circle of radius r =1 (ie.,
nr® = ). Determine the appropriate equation for a circle, and write a parallel program to
compute 7 this way. Comment on the two ways of computing 7.
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4-16. Derive a formula to evaluate numerically an integral using the adaptive quadrature method
described in Section 4.2.2. Use the approach given for the trapezoidal method.

4-17. Using any method, write a parallel program that will compute the integral

=]t (x+sin(£))dx
0.01 X

4-18. Write a static assignment parallel program to compute ® using the formula

J:}ﬁ.l'l —xlde =T

4

using each of the following ways:

117 Rectangular decomposition, as illustrated in Figure 4.13
2. Rectangular decomposition, as illustrated in Figure 4.14
3. Trapezoidal decomposition, as illustrated in Figure 4.15

Evaluate each method in terms of speed and accuracy.

4-19. Find the zero crossing of a function by a bisection method. In this method, two points on the
function are computed, say fla) and f(b), where f(a) is positive and f(b) is negative. The
function must cross somewhere between a and b, as illustrated in Figure 4.22. By

f {.tj___’ria )
\ b
a X

f(b) Figure 4.22  Bisection method for finding
the zero crossing location of a function,

successively dividing the interval, the exact location of the zero crossing can be found. Write
a divide-and-conquer program that will find the zero crossing locations of the function
fla)= 4% — 3x + 2. (This function has two zero crossing locations, x =l and x = 2,)

4-20. Write a parallel program to integrate a function using Simpson’s rule, which is given as
follows:

— s e —
Fis Lfi:t]lrh =

g[j(a} +4fla+8)+2fla+28)+4fla+38)+2fla+48) + .. 4fla+ (n=1)0) + fib)]

where & is fixed [8 = (b — a@)/n and n must be even]. Choose a suitable function (or arrange it
so that the function can be input).

4-21. Write a sequential program and a parallel program to simulate an astronomical N-body system,
but in two dimensions. The bodies are initially at rest, Their initial positions and masses are to
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4-22.

4-23.

be selected randomly (using a random-number generator), Display the movement of the bodies
using the graphical routines used for the Mandelbrot program found in hup://
www.cs.unce.edu/par_prog, or otherwise, showing each bady in a color and size to indicate
I[S mass.

Develop the N-body equations for a system of charged particles (e.g., free electrons and
positrons) that are governed by Coulumb’s law. Write a sequential and a parallel program to
model this system, assuming that the particles lie in a two-dimensional space. Produce
eraphical output showing the movement of the particles. Provide your own initial distribution
and movement of particles and solution space.

(Research problem) Given a set of n points in a plane. develop an algorithm and parallel
program 1o find the points that are on the perimeter of the smallest region containing all of the
points, and join the points, as illustrated in Figure 4.23. This problem is known as the planar
convex hull problem and can be solved by a recursive divide-and-conquer approach very
similar to quicksort, by recursively splitting regions into two parts using “pivot” points. There
are several sources for information on the planar convex hull problem, including Blelloch
(1996), Preparata and Shamos (1985). and Miller and Stout (1996).

Figure 4.23 Convex hull (Problem 4-23).

Real Life

4-24.

4-25.
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Write a sequential and a parallel program to model the planets around the sun (or another as-
tronomical system). Produce graphical output showing the movement of the planets. Provide
your own initial distribution and movement of planets. (Use real data if available.)

A major bank in your state processes an average of 30 million checks a day for its 2 million
customer accounts. One time-consuming problem is that of sorting the checks into individual
customer-aceount bundles so they can be returned with the monthly statements. (Yes, the bank
handles check sorting for several client banks in addition to its own,) The bank has been using
a very fast mainframe-based check sorter and the quicksort method. However, you have told
the bank that you know of a way to use N smaller computers in parallel; each will sort 1/Nth of
the 30 million checks, and then the partial sorts will be merged into a single sorted result.
Before investing in the new technology, the bank hires you as a consultant to simulate the
process using message-passing parallel programming. Under the following assumptions,
simulate this new approach for the bank.

Assumplions:

l. Each check has three identification numbers: a nine-digit bank-identification number, a
nine-digit account-identification number, and a three-digit check number (leading zeros
are not printed or shown).
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2. All checks with the same bank-identification number are to be sorted by customer
account for transmittal o the client bank.

Estimate the speedup it ¥V is 10 and if & is 1000, Estimate the percentage of tme spent in com-

munications versus time spent in processing.

4-26. Sue, 21 vears old, comes from a very financially astute family. She has been watching her
parents save and invest for several vears now, reads the Wall Street Journal daily in the univer-
sity library (for free!), and has concluded that she will not be able to rely on social security
when she retires in 49 years. For graduation from college, her parents got her a CD-ROM con-
taining historical daily closing prices covering every exchange-listed security, from January 1,
1900 to the end of last month.

For simplicity you may think of the data on the CD-ROM as organized into date/symbol/
closing price records for each of the 358,000 securities that have been listed since 1900. (Only
a fraction are listed at any given date; firms go out of business and new ones start daily.) Sim-
ilarly, you may assume that the format of a record is given by

dale Last three digits of the year, followed by the “Julian date™ (where January 15
is Julian 15, February 1 is Julian 32, etc.)

symbol Up to 10 characters, such as PCAL, KAUFX, or IBM.AZ, representing a
NASDAQ stock (PCA International), a mutual fund (Kaufman Aggressive
Growth), and an option to buy IBM stock at a certain price for a certain length
of time, respectively.

closing price  Three integers, X (representing a whole number of dollars per unit), Y
(representing the numerator of a fractional dollar per unit), and Z (representing
the denominator of a fractional dollar per unit).

For example, “996033/PCAI10/3/4” indicates that on February 2, 1996, PCA International
stock closed at 510.75 per share. Sue wants to know how many of the stocks that were listed
as of last month’s end have had 50 or more consecutive trading days in which they closed either
unchanged from the previous day or at a higher price, anytime in the CD-ROM’s recorded
history.

4-27. The more Samantha recalled her grandfather’s stories about the tme he won the 1963 World
Championship Dominos Match, the more she wanted to improve her skills at the game. She
had a basic problem, though; she had no playing pariners left, having already improved to the
point where she consistently won every game against the few friends who still remained!

Samantha knew that computerized versions of go, chess, bridge, poker, and checkers
had been developed, and saw no reason someone skilled in the science of computers could not
do the same for dominos. One of her computer science professors at the second campus of the
University of Canada, U-Can-2, had told her she could do anything she wanted (within theo-
retical limits, of course), and she really wanted to win that next world championship!

Pulling out her slow, nearly ancient 2-cubed Itanium (2 GHz, 2GB RAM, 2 TB hard
disk), she quickly developed a straightforward single-processor simulator that she could
practice against. The basic outline of her approach was to have the program compare every one
of its pieces to the pieces already played in order to determine the computer’s best move. This
appeared to involve so many computations, including rotations and trial placements of pieces
that Samantha found herself waiting for the program to produce the computer's next move, and
becoming as bored with its game performance as with that of her old friends. Thus, she is
seeking your assistance in developing a parallel-processor version.

)i QOutline her single-processor algorithm.
2. Outline your parallel-processor algorithm.
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4-238.

4-29.

4-30.

4-31.

P

Estimate the speedup that could be obtained if you were to network 50 old computers
like hers. Then make a recommendation to her about either going ahead with the task or
spending $800 to buy the latest processor, reputed to be at least 50 times faster than her
old Itanium for these types of simulations: the new 14GHz dual processor Octium with
its standard 1024-bit front-side data bus and 2-way simultancous access to its 16TB of
(1.53ns main memory.
Area, Inc., provides a numerical integration service for several small engineering firms in the
region. When any of these firms has a continuous function defined over a domain and is unable
lo integrate it, Areg, Inc., gets the call. You have just been hired to help Area, Inc., improve its
slow delivery of computed integration results. Area, Inc. has lost money each year of its
existence and is so “nonprofit” that payment of next week’s payroll is in question. Given your
desire to continue eating (and for that Area, Inc., has to pay you). you have considerable
incentive to help Area, Inc.

Given also that you have a considerable background in parallel computing, you
recognize the problem immediately: Area, Inc., has been using a single processor (o implement
a standard numerical integration algorithm.

Step 1: Divide the independent axis into N even intervals.

Step 2: Approximate the area under the function in any interval (its integral over the interval),
by the product of the interval width times the function value when it is evaluated at the
left edge of the interval.

Step 3: Add up all N approximations to get the total area.
Step 4: Divide the interval width in half.

Step 5: Repeat steps 1 —4 until the total from the ith repetition differs from the (i = Lih
repetition by less than 0.001 percent of the magnitude of the ith total.

Since your manager is skeptical about newfangled parallel computing approaches, she wants
you to simulate two different machine configurations: two processors in the first, and eight pro-
cessors in the second. She has told you that a successful demonstration is key to being able to
buy more processors and to your getting paid next week.

The Search for Extra-Terrestrial Intelligence (SETI) project employs millions of computers to
analyze radio-telescope signals from the Arecibo Observatory in Puerto Rico. Each is given a
time- and frequency-limited portion of the signals recorded by the world’s largest radio
telescope and asked to perform a computationally intense analysis 1o determine the likelihood
of that portion containing intelligent communications from another life form. This is clearly an
example of a divide-and-conquer approach,

Discuss how this approach could be applied to the more local problem of analysis of
radio-frequency communications in the world’s anti-terrorism struggle.

Rafic loves to solve crossword puzzles. Lately, he has begun to create them when he cannot
find a suitably challenging one on which to work. This process has two parts: laying out the
pattern of open squares into which individual letters will go, and blackened squares that form
breaks between words or phrases, He has a word and phrase dictionary containing over 100,000
words and phrases ranging from ancient Greek and Roman references to such modern things
as the Ttanium-111 and pico-technology. Rafic needs your help.

Develop a sequential algorithm that will produce a crossword puzzle of size N x N, and
then convert the algorithm to its parallel counterpart.

On occasion, beginning computer science students are tempted to copy work done by others
and submit it as their own, a practice, known as plagiarism, that typically results in severe
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4-32.
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academic penalties when detected. Sometimes the more creative students will make small
changes to the work before submitting it; changing variable names, changing indentation, and
sometimes even changing looping structures (substituting a “while” for a “for™). For a typical
first-year course with 400 students, this requires approximately 80,000 program comparisons
per programming assignment. As a result, total checking is rarely done.

(Easy) Develop a parallel approach using N computers that can exhaustively check for
exact duplicates among the 400 submissions on a typical programming assignment.

(Harder) Pre-process each program to tokenize the variable names, thereby converting
each program to a standard set of variable names. Then apply the approach from the “easy™
part.

(Hardest) Pre-process each program to put all loops into the same structure: a “for™.

Then implement both of the earlier parts.
Sarah, a friend of Tom’s has puzzle-creation as her hobby. On her home CAD system tied to
the computer-controlled milling machine in her workshop she designed three elementary
shapes and fabricated thousands of each. The first is a right triangle whose shortest sides are
1 unit in length. The second is a square whose edges are 1 unit in length. The third is a com-
bination of a rectangle 4 units by 13 units attached to a right triangle whose shortest sides
are 4 units. Given an arbitrary combination of pieces (F of type first, § of type second, and
T of type third), Sarah needs you to develop and implement an algorithm that will determine
the area of the largest right triangle that can be formed by placing some or all of these F + §
+ T pieces together ... initially as a sequential algorithm and then as a parallel algorithm with
N compulers working on the solution. Sample combinations of these pieces are shown in
Figure 4.24 1o get you started.

]

(a) Single triangle. (b) Pair of triangles plus one square. (c) Four instances of (b), cach area is 0.5

s¢) units area is 2 sq units rotated 90
degrees to form a square whose sides are
each 2V 2 in length, area is 8 sq units.

Figure 4.24 Triangles (Problem 4-32).
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Chapter 5

Pipelined Computations

In this chapter, we present a parallel processing technique called pipelining, which is
applicable to a wide range of problems that are partially sequential in nature; that is, a
sequence of steps must be undertaken. Hence, pipelining can be used to parallelize
sequential code. Certain requirements are necessary for improved performance, as will be
outlined.

5.1 PIPELINE TECHNIQUE

140

In the pipeline technique, the problem is divided into a series of tasks that have to be
completed one after the other. In fact, this is the basis of sequential programming. In pipe-
lining, each task is executed by a separate process or processor, as shown in Figure 5.1.
We sometimes refer to each pipeline process as a pipeline stage. Each stage contributes to
the overall problem and passes on information that is needed for subsequent stages. This
parallelism can be viewed as a form of functional decomposition. The problem is divided
into separate functions that must be performed. but in this case, the functions are
performed in succession. As we shall see, the input data is often broken up and processed
separately.

Figure 5.1 Pipelined processes,



As an example of a sequential program that can be formulated as a pipeline, consider
a simple loop:

for {i = 07 I=sn; d+%)
sum = sum + al[il;

which adds all the elements of array a to an accumulating sum. The loop could be
“unrolled” to yield

sum = sum + al0];
sum = sum + a[l]l;
sum = sum + al2];
sum = sum + al[3];
sum = sum + af[d4];

One pipeline solution would have a separate stage for each statement, as shown in
Figure 5.2. Each stage accepts the accumulating sum on its inpu, s;,, and one element of
a[] on its input, @, and produces the new accumulating sum on its output, soy. Therefore,
stage i performs

Sout = Sin + alil;

Instead of simple statements, a series of functions can be performed in a pipeline
fashion. A frequency filter is a more realistic example in which the problem is divided into
a series of functions (functional decomposition). The objective here is to remove specific
frequencies (say the frequencies fy, f1, f>. f3, etc.) from a (digitized) signal, f(r). The signal
could enter the pipeline from the left, as shown in Figure 5.3. Each stage is responsible for
removing one of the frequencies.

al0] all] al2] ald] al4d]
[} i a ] o
aum —=| 55 Sow | Sin  Sout | Sin Yo = Sin Som > %n Som—>—————-

Figure 5.2 Pipeline for an unrolled loop.

Signal without Signal without Signal without Signal without
frequency f  frequency fi  frequency f»  frequency fi

[k fi | fa | iZ ‘ fi Filtered signal
f{'} — .ﬁn fum - JFm .Illzlul .fln ftlﬂll J]rllI Jﬂ'“f - -ﬁ“ f""“ |- s

| | [ b

Figure 3.3 Pipeline for a frequency filter.

Y

¥

Pipeline Technique 141




142

A similar application is to recognize certain frequencies in a signal. In home and pro-
fessional sound systems, for example, there often is a display showing the specific frequen-
cies in the audio output. Each stage of a pipeline could recognize one frequency and
display its amplitude as part of a frequency-amplitude histogram. Problem 5-13 explores
this application.

Given that the problem can be divided into a series of sequential tasks, the pipelined
approach can provide increased speed under the following three types of computations:

1.  If more than one instance of the complete problem is to be executed

2. Ifaseries of data items must be processed, each requiring multiple operations

3 If information to start the next process can be passed forward before the process
has completed all its internal operations.

We will identify these three solutions as Type 1, Type 2, and Type 3.

The Type | arrangement is utilized widely in the internal hardware design of comput-
ers. It also appears in simulation exercises where many simulation runs must be completed
with different parameters to obtain the comparative results, A Type | pipeline is illustrated in
the space-time diagram shown in Figure 5.4. In this diagram, each process is assumed to have
been given the same time to complete its task. Each time period is one pipeline cycle. Each
instance of the problem requires six sequential processes, Py, Py, P5. P1., Py, and Ps. Note the
staircase effect at the beginning. After the staircase effect, one instance of the problem is
completed in each pipeline cycle. The same information shown in Figure 5.4 is shown in an
alternative space-time diagram in Figure 5.5, where the instances are listed along the vertical
axis. This form of diagram is sometimes useful if it is necessary to show information passing
from one task instance to another (as would occur in processor pipelines).

With p processes constituting the pipeline and m instances of the problem to execute.
the number of pipeline cycles to execute all m instances is given by m + p — 1 cycles. The
average number of cycles is (m + p — 1)/m cycles, which tends to one cycle per problem
instance for large m. In any event, one instance of the problem will be completed in each
pipeline cycle after the first p — 1 cycles (the pipeline latency). The formulam + p — 1 for a
p-stage pipeline computing m instances of a problem will be used in our analyses later.

p—1 m
-4 -
Instance|Instance|Instance|Instance|Instance
Ps 1 | 2 | 3 | 4 | 5
Instance|Instance|Instance|Instance | Instance| Instance
P 1 2 | 3 | 4 | 5 | 6
[nstance|Instance| Instance|Instance|Instance|Instance|Instance
Py 1 2 3 4 5 6 7
P InstancelInstance|Instance|Instance|Instance| Instance|Instance
e 1 2 3 4 5 (5] 7
[nstance linstance [Instance [Instance [Instance [Instance lnstance
P, il 2 |'s [ 4 s & | 4
Instance|Instance|Instance|Instance{Instance|Instance|Instance
Pol 1 2 |'s | 4 |5 | & | 1
-
Time

Figure 5.4 Space-time diagram of a pipeline.
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Instance (1
Instance 1
Instance 2
Instance 3

Instance 4

PII

Py Py Py Py Py Py

P{J PI F‘} P3 P-I

Ps

—_—
Time

Figure 5.5  Alternative space-lime diagram.

The Type 2 arrangement, in which a series of data items must be processed in a
sequence, appears in arithmetic calculations, such as multiplying elements of an array
where individual elements enter the pipeline as a sequential series of numbers. The arrange-
ment is shown in Figure 5.6, where in this case ten processes form the pipeline and ten

Input sequence
dodsddgdsd ydrdydydg —>| FPo pe{ P1 p=| Pa || P3 +’T4}> Ps bo| Py | Py pef Py -l Py
{a) Pipeline structure
p—1 o " "
dy | dy | dy | ds | dy | ds | dg | dy | g | dy
dy | oy | ds | ds | dy | ds | dg | dy | dg | dy
dy | dy | ey | dy | ds | ds | dg | dy|ds|ds
dy | dy |z | ds | dy | ds | ds|dr|ds|ds
dy | dy | dy | ds | dy | ds|ds|dy|ds|ds
dy | ey | dz | ds | dy | ds | ds dr | dg | dy
dy | dy | da | ds | ds | ds | ds | dr| ds| iy
dy | dy | dy | ds | ds | ds | dg | dr|dg|dy
dy | dy | do | da| ey |ds|ds|dy|ds)|dy
dy | dy |y | dy | dy | ds | ds | dy | ds|do
—_—
Time
(b) Timing diagram
Figure 5.6 Pipeline processing ten data elements.
Pipeline Technigue 143




P, |
3 P
Information P
L]
transfer
sufficient 1o P
2
slart next
roCess
P P
— 1 Information passed
- i ]
Py Lo next stage Py
—_— —
Time Time
{a) Processes with the same (b) Processes not with the
execution time same execulion time

Figure 5.7 Pipeline processing where information passes to next stage before end of process,

Processor 0 Processor | Processor 2

P,

P,}o—ﬁ-ﬁ-ﬁ- Py Ps =

Pu}" P Py = Py = Pia P=| Py

Figure 5.8 Partitioning processes onto processors.,

elements, dy, d|, d, ds, dy, ds, dg, d4, dg, and dy, are being processed. With p processes and
n data items, the overall execution time is again given by (p — 1) + n pipeline cycles.
assuming these are all equal.

It is often the third arrangement, Type 3, that is utilized in parallel programs where
there is only one instance of the problem to execute, but each process can pass on informa-
tion to the next process before it has completed. Figure 5.7 shows space-time diagrams
when information can pass from one process to another before the end of the execution of
a process.

If the number of stages is larger than the number of processors in any pipeline, a
aroup of stages can be assigned o each processor, as shown in Figure 5.8. Of course, now
the pipeline stages within one processor are executed sequentially.

5.2 COMPUTING PLATFORM FOR PIPELINED APPLICATIONS

144

A key requirement for pipelining is the ability to send messages between adjacent processes
in the pipeline. This suggests direct communication links between the processors onto
which adjacent processes are mapped. An ideal interconnection structure is a line or ring
structure, such as a line of processors connected to a host system. as shown in Figure 5.9.
Lines and rings can be embedded into meshes and hypercubes, thereby making them
suitable platforms. The seemingly inflexible line configuration is, in fact, very convenient
for many applications, yet at very low cost. To use pipelining with networked computers
and computer clusters efficiently requires an interconnection structure that can provide
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Figure 5.9  Multiprocessor system with a line configuration.

simultaneous transfers between adjacent processes or processors. Most computer clusters
employ a switched interconnection structure that allows such transfers. A single shared
Ethernet connection would not provide such simultaneous transfers. A little flexibility can
be achieved on this matter by using (locally) blocking send()s (the send()s that are
normally used). Then a process can continue with the next operation without waiting for
the destination to be ready.

5.3 PIPELINE PROGRAM EXAMPLES

Sec. 5.3

In this section we will examine sample problems that can be pipelined and classify the
solutions as Type 1, Type 2, or Type 3.

5.3.1 Adding Numbers

For our first example, consider the problem of adding a list of numbers. (The problem could
use any associative operation on a sequence of numbers.) A pipeline selution could have
each process in the pipeline add one number to an accumulating sum, as shown in Figure
5.10, when one number is held in each process ( p = n). The partial sum is passed from one
process to the next, each process adding its number to the accumulating sum.

The basic code for process P; is simply

recv(&kaccumilation, B{_;);
accumilation = acoumilation + number;

gend (kacowmlation, Pi.q):

except for the first process, Py, which is

send (&number, Py);

Sali ali] Safi

1

Figure 5,10 Pipelined addition.
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and the last process. P,_

1 Which is
recv (Enumber, P._s);

accumilation = accumalation + rumber;

Thus. an SPMD program could have the form

if (process = 0) {
recvi{kaccumuilation, Py_i);:
accumulation = accumulation + number;
H
if (process < p-1) send{kaccumulation, Pj.q):

The final result is in the last process. Instead of addition, other arithmetic operations could
be done. For example, a single number, x, could be raised to a power by multiplying the
input number by x and passing on the result. Hence, a five-stage pipeline could be used to
obtain x°. Problem 5-1 explores the advantages of this approach compared to using a
divide-and-conquer tree structure for the same computation.

In our general description of pipelines, we show the data being entered into the first
process rather than already in the appropriate processes. If the input data is entered into the
first process, it would be natural to return the result through the last process, as shown in
Figure 5.11. This would be particularly appropriate if the processors were connected in a
ring architecture.

For a master-slave organization, the organization shown in Figure 5.12 would also be
appropriate. The numbers of one problem are entered into each process when they are
needed by the processes. The first process gets its number before the others. The second
process gets its number one cycle later, and so on. As we will see in Chapter 11, this form
of message-passing appears in several numeric problems. In Chapter 11, we will also see
pipelines where the information is entered from both ends simultaneously and two-dimen-
sional pipeline structures.

Coming back to our problem of adding numbers, it does not make sense to have one
process for each number because then to add, say, 1000 numbers, 1000 slave processes
would be needed. Generally, a group of numbers would be added together in each process
and the result passed onward. Such data partitioning is used in most numeric applications
to reduce the communication overhead and is assumed in all our examples.

Analysis. Our first pipeline example is Type 1: it is efficient only if we have more
than one instance of the problem to solve (i.c., more than one set of numbers to add
together).

Mmter pmccﬁ Slaves
{ oo el ..:.*1 ) "h—p ______
1"\

- Sum .

\‘-'-_._,-

Figure 5.11  Pipelined addition numbers with a master process and ring configuration.

Pipelined Computations ~ Chap. 5



Master process
T T
- b3 T
£ % |
,’ Numbersy_._

)

———

v Sum %
S p=n

Figure 5.12  Pipelined addition of numbers with direct access to slave processes.

For analyses of pipelines, it may not be appropriate to consider all the processes as
having simultaneous communication and computation phases, as in previous chapters,
because each instance of a problem starts at a different time and ends at a different time.
Instead, we will assume that each process performs similar actions in each pipeline cycle.
Then we will work out the computation and communication required in a pipeline cycle.
The total execution time, fy. is then obtained by using our pipeline formula for the
number of cycles multiplied by the time of one cyele; that is,

lotal = (time for one pipeline cycle)(number of cycles)

fotal = gomp + feomm)(m +p—1)

where there are m instances of the problem and p pipeline stages (processes). The compu-
tation and communication times are given by f.oy, and foompy. respectively. The average
time for a computation is given by

'rl.ulzﬂ

., = —=

a
m
Let us assume that the structure shown in Figure 5.11 is used, and there are n numbers.

Single Instance of Problem. Let us first consider a single number being added in
each stage; that is, n is equal to p. The period of one pipeline cycle will be dictated by the
time of one addition and two communications, one communication from the left and one
communication to the right,

leomp = I
leomm = 2(1 startup T Tdata)
and each pipeline cycle, fcje, requires at least feomp + Ieomm:

Teyele = zll-'!'ritnrn.q:- + ) + 1

The term 14,,, is the usual time 1o transfer one data word, and 7y 18 the communication
startup time. The last process only has one communication, but this may not help because
all the processes are allocated the same time period.
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If we were o have only one set of numbers (m = 1), the total execution time, fyypq).
would be given by
fotal = (20gragup + Tdara) + 1)1

(i.e.. n pipeline cycles, because each process must wait for the preceding process 1o
complete its computation and pass on its results). The time complexity is O(n).

Multiple Instances of Problem. 1f, however, we have m groups of n numbers to
add, each group resulting in a separate answer, the time of one pipeline cycle remains the
same, but now we have m + n — | cycles, leading to

lotal = tz{rﬁiuﬂﬂp + tgara) + Dim+n—1)

For large m, the average execution time, . is approximately

t
_ ‘total _ Ay
fa = ";;" - Zuﬁi:tl'lup + fgaa) + 1

that is, one pipeline cycle.

Data Partitioning with Multiple Instances of Problem. Now let us consider data
partitioning with each stage processing a group of d numbers. The number of processes is
aiven by p = n/d. Each communication will still transfer one result, but the computation will
also now require d numbers to be accumulated (d — 1 steps) plus the incoming number, so
that the following applies:

feomp = d
leomm = E{Iritur{up + Tgata)

hotal = {zu.ﬂmlup + Id:llzl;lII +d)(m + n/d - 1)

Obviously, as we increase d, the data partition. the impact of the communication on the
overall time diminishes. But increasing the data partition decreases the parallelism and
often increases the execution time. It is left as an exercise to explore the trade-offs of these
effects (Problem 5-5).

5.3.2 Sorting Numbers

The objective of sorting numbers is to reorder a set of numbers in increasing (or decreas-
ing) numeric order (strictly, nondecreasing/nonincreasing order if there are duplicate
numbers). A pipeline solution for sorting is to have the first process. Py, accept the series
of numbers one at a time, store the largest number so far received, and pass onward all
numbers smaller than the stored number. If a number received is larger than the currently
stored number, it replaces the currently stored number and the original stored number is
passed onward. Each subsequent process performs the same algorithm, storing the largesl
number so far received. When no more numbers are to be processed, Py will have the
largest number, P the next-largest number, P, the next-largest number, and so on. This
algorithm is a parallel version of insertion sort. The sequential version is akin to placing
playing cards in order by moving cards over to insert a card in position (see Cormen, Leis-
erson, and Rivest, 1990). (The sequential insertion sort algorithm is only efficient for
sorting a small quantity of numbers. )
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Figure 5.13 shows the actions in sorting five numbers. The basic algorithm for
process P;is

racv (knumber, Pi_4};
if (number > x) {
sendbin, Piads
* = mumber:
} else send{&mumber, Pi.q):

With n numbers, how many the ith process is to accept is known; it is given by n —i. How
many to pass onward is also known; it is given by nn — i — 1, since one of the numbers
received is not passed onward. Hence. a simple loop could be used:

right proclum = n - 1 - 1; /* number of processes to the right */
recv(&x, Pyj_q);
for (1 = 0; j < right_procNum; J++) {
recv (&number, P;_4);
if (snumber = x) |
send (&%, Pi.q):
*® = number;
} else send(&number, Py..):

| 5150—~0~O~O—0
4,3, 1,2 @—"O—"O—*O—"O
| @0~0—~0~0
w f| OHOAO~0-0
=) OEO-0-0
| O-@*-0-0
| O~O-0=0-O
| O-@-0-0*0
RO ONOSONO

‘jgure 5,13  Steps in insertion sort with five numbers.
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Figure 5.14  Pipeline for sorting using insertion sort,

The pipeline is illustrated in Figure 5.14. A message-passing program using an
SPMD or a master-slave approach is straightforward, especially since each pipeline process
executes essentially the same code. We see from the code that there is virtually no oppor-
tunity for a process to continue with useful work in one pipeline cycle after passing on a
number (Type 3). However, a series of operations is performed on a series of data items
(Type 2), and this leads to a significant speedup even on one instance of the problem.

Results of the sorting algorithm can be extracted from the pipeline using either the
ring configuration of Figure 3.11 or the bidirectional line configuration of Figure 5.15. The
latter 1s advantageous because a process can return its result as soon as the last number is
passed through it. The process does not have to wait for all the numbers to be sorted.
Leighton (1992) describes this and three other ways that the results could be collected, but
concludes that the way described here is best.

Incorporating results being returned, process i could have the form

right procMlum = n - i - 1: /* number of processes to the right */
recv(&x, Py 4);
for (§j = 0; j < right prochum; j++) |
recv{&number, P;_q1);
if (number = =) {
send(&x, Py q);
¥ = number;
} else send(&number, Pi;,q1):
}
send(&x, Pj_q); /* send number held ¥/
for (4 = 0; 7 < right procMum; j++)} { /% pass on other numbers */
recy (&number, P 4);
send (&number, P; 4);

Master process

- S

- g “\\
£
food ndidy, —  v— e e
I =1 140 1
\Sorted sequence | o-o-o S _.1
™ ’
- -~

%
-

Figure 5.15  Insertion sort with results returned o the master process using a bidirectional line configuration,
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Now more numbers pass through a process as processes get nearer the master process.
Great care is needed in programming to ensure that the correct number of send()s and
recv()s are present in each process. Process n— 1 has no recv()s and one send() (to
process n — 2). Process n—2 has one recv() (from process n— 1) and two send()s (fo
process n — 3), and so on. It would be very easy to mismatch send () s and recv (18, in which
case a deadlock situation would occur.

Analysis. Assuming that the compare-and-exchange operation is regarded as one
computational step, a sequential implementation of the algorithm requires
to=m-1)+n-2)+.. +2+1 = fi—{ﬂ;J

-

as it takes n — 1 steps to find the largest number, n — 2 steps to find the next-largest number
using the remaining numbers, and so on. The approximate number of steps is nf2,
obviously a very poor sequential sorting algorithm and unsuitable except for very small 7.

The parallel implementation has n +n— 1 =2n— 1 pipeline cycles during the sorting
if there are n pipeline processes and n numbers to sort. Each cycle has one compare and
exchange operation. Communication consists of one recv() and one send (), excepl for the
last process, which only has a recv (); this minor difference can be ignored. Therefore, each
pipeline cycle requires at least

r::nmp

t 2

comm = “Ustartup [data)

The total execution me, fy, is given by
Total = “cnmp +1 ::nmn'l}{?'” = d)= (1 2("'st'.u-{:.q:l % Id:ﬂa)]m" - D

If the results are returned by communication to the left through to the master, a timing
diagram is obtained, as shown in Figure 5.16, leading to 3n — | pipeline cycles (Leighton,
1992). Of course, a real parallel program does not operate completely in synchronism, as
suggested in these diagrams, because of the delays in the communication media and other

variations.
Sorting phase Returning sorted numbers
= | -
n-=1 f
P, Shown [orn =35
Py
P,
Py
. =
Time

Figure 5.16 Insertion sort with results returned.
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5.3.3 Prime Number Generation

A classical method of extracting prime numbers is the sieve of Eratosthenes, described by
Eratosthenes of Cyrene more than two thousand years ago (Bokhari, 1987). In this method,
a series of all integers is generated from 2. The first number, 2, is prime and kept. All
multiples of this number are deleted because they cannot be prime. The process is repeated
with each remaining number. The algorithm removes nonprimes, leaving only primes.

For example. suppose we want the prime numbers from 2 to 20. We start with all the
numbers:

2,3,4,5,6,7,8,9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20

After considering 2, we gel
2,3.4.5, 6,7, %89, 10, 11,12, 13, 14, 15, 16, 17. 18, 19, 20

where the numbers with / are marked as not prime and not to be considered further. After
considering 3, we get

2,3,.4,5,6,7,8.9,10, 11, 12, 13, 14, 13, 16, 17, 18, 19, 20

Subsequent numbers are considered in a similar lashion. However, to find the primes up to
n, it is only necessary to start al numbers up (o Jn. All multiples of numbers greater than
«/n will have been removed because they are also a multiple of some number equal to or
less than ./n. For example, if n = 256, (/n = 16). it is not necessary to consider multiples
of the number 17 because 17 x 2 will have been removed as 2 x 17, 17 x 3 will have been
removed as 3 X 17, and so on for other numbers beyond 16. Therefore in our example we
have all the primes up to 20 by using 2 and 3.

We should mention in passing that the basic method as described is not suitable for
finding very large primes (which are of most interest) sequentially because the sequential
time complexity is significant and is dominated by the early passes through the list. A
simple way to improve the performance is to consider odd numbers only (a way which is
left as an exercise).

Sequential Code. A sequential program for this problem usually employs an
array with elements initialized to 1 (TruE) and set to 0 (Farse) when the index of the element

Is not a prime number. Letting the square root of n be sqrt_n, we might have

for (i = 2; 1 <= n; i++)

prime[i] = 1; /* Initialize array */
for (1 = 2; 1 <= sgrt_n;: i++) /* for each number */
if (prima[i] == 1) /* identified as prime */
for (§ =1+ i J<=n;y 1 =13 + 1) /* strike out all multiples */
prime(jl = 0; /* includes already done */

The elements in the array still set to | identify the primes (given by the array indices). Then,
the primes are found by examining the array for 1s.

The number of iterations striking out multiples of primes will depend upon the prime.
There are [n/2 — 1] multiples of 2, [n/3 — 1] multiples of 3, and so on. Hence, the total
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sequential time is given by

rﬁ.=[g_1J+E_ Hg_ J++[T;J

assuming the computation in each iteration equates to one computational step. The sequen-
tial time complexity is O(n?).

This implementation is very inefficient in that the inner loop will strike out numbers
that may have already been deleted by a previous number. In fact, each sweep necd only
start at i~ rather than 2i. where i is the prime number. For example, considering multiples
of 5, the sweep can start at 25 (i.e., 5x5)as 5% 2, 5% 3. and 5 % 4 will have been considered
with previous prime numbers. The analysis of this version of the sieve of Eratosthenes can
be found in Quinn (1994).

Parallel Code. Note that the early terms in the preceding expression will
dominate the overall time. (There are more multiples of 2 than 3, more multiples of 3 than
4, and so on.) A parallel implementation based upon partitioning, where each process
strikes out multiples of one number, will not be very effective. In fact, Quinn (1994) shows
that the maximum speedup using this method is limited to about 2.83 irrespective of the
number of processors (using certain assumptions). Bohkari (1987) also finds that this
method can only use a limited number of processors in a practical situation. There are other
ways this problem can be tackled. For example, each process could be assigned a range of
numbers and strike out multiples in that range (see Problem 3-11).

A pipelined implementation can be quite effective. First, a series of consecutive
numbers is generated that feeds into the first pipeline stage. This stage extracts all multiples
of 2 and passes the remaining numbers onto the second stage. The second stage extracts all
multiples of 3 and passes the remaining numbers onto the next stage, and so on. The imple-
mentation is illustrated in Figure 5.17. There have to be as many stages in the pipeline as
prime numbers (unless a “block™ partition is used, in which each process handles a group
of numbers in the list). The pipeline implementation does not have the disadvantage of
reconsidering numbers already identified as prime, as does the simple sequential version.

The code for a process, P;, could be based upon

recvibx, Pj_q):

/* repeat following for each number =/
recv (knumber, P 1)

if ((number % x} != 0) send(&number, Pi,;);

Not multiples of
Ist prime number

Series of numbers

Xpp2e X L W ™ J/ '_\1.
C 'nmpnre: 15t prime 2nd prime 3rd prime
multiples number number number

Figure 5.17 Pipeline for sieve of Eratosthenes.
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A simple for loop is not sufficient for repeating the actions because each process will not
receive the same amount of numbers and the amount is not known beforehand. A general
technique for dealing with this situation in pipelines is to use a “terminator” message,
which is sent at the end of the sequence. Then each process could be

recviéx, Pi_q):
for (1 = 0; 1 < n; i++) {
recy(&number, Py i}
if (number == terminator) break:
if (number % x) != 0) send(énumber, P;,,);

Note. The use of the mod operator, %, to detect whether a number is a multiple of
another number is expensive (in execution time). We intentionally avoided its use in the
sequential code. Avoiding its use in the parallel code is left as an exercise (Problem 5-7).

Analysis. As with the sorting example, the pipeline implementation is a Type 2.
Analysis of the algorithm is similar to the sorting algorithm except that each process in the
pipeline will complete fewer steps than the preceding process because it will not receive all
the numbers that the preceding process receives.

5.3.4 Solving a System of Linear Equations — Special Case

The final example is Type 3, in which the process can continue with useful work after
passing on information. The objective here is to solve a system of linear equations of the
so-called upper-triangular form:

A1 0X0 + Oy 1 X + Ay 2852 + @y et Xt = by
az 0¥ + a1 X + dp 2% =b,
ﬂl_ﬂxn'i'ﬂlJI] :le
ap,0%0 = by

where the a's and b's are constants and the x's are unknowns to be found. The method used
to solve for the unknowns x, xy, x5, ..., x,_; is a simple repeated “back” substitution. First.
the unknown xj is found from the last equation:

The value obtained for x; is substituted into the next equation to obtain x:

by =ty nx
%) = 1~ 491,0%
.1

Pipelined Computations ~ Chap. 5




The values obtained for x; and x; are substituted into the next equation to obtain x;:

by —ay gXg— a3 1%

X5 =

32

and so on until all the unknowns are found.
Clearly, this algorithm can be implemented as a pipeline. The first pipeline stage
computes 1y and passes xg onto the second stage, which computes x; from xg and passes
both xp and x; onto the next stage, which computes x, from xq and x;, and so on, as shown
in Figure 5.18. Each stage is implemented with one process. There are n processes for n
equations (i.e., p = n). The ith process (0 <i<p) receives the values xg, Xj. Xa, ..., X;.1 and
computes x; from the equation
i-1
b, -

EIUIJ-

g, = . J=0
o

()

Sequential Code. Given the constants a; ; and by, stored in arrays a[] {1 and b(],
respectively, and the values for unknowns to be stored in an array, x[ 1, the sequential code

could be
x[0] = b[0]/al0]1[0]; /* %[0] computed separately */
for (i = 1; i < m; i++) { /% for remaining unknowns */
sum = 0;
for (1 = 0; 3 = i; 3++)
gum = sum + a[i](j]1=x[3]:
%[i] = (b[i] - sum)/alilli];
}

Parallel Code. The pseudocode of process P; (1 <i<p) of one pipelined version
could be

for (§ = 0; 3 < iy d++) {
recviex(il, PFi_q):
send (&x[J], Pij+1li
}
sum = O;
for (4 = 0; 3 < 1; j++)
sum = sum + a[i] (F]*=(i]l;
x[i] = (b[i] - sum)/alilli];
send (&x[i], Pigl7

Py Py Py &
. X0 s Xq
: Xy . ¢ = Xy
Compule x; Compute X, 1 Compule x; ‘ompute x; ot

— X3

Figure 5,18 Solving an upper triangular set of linear equation using a pipeline.
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P, simply computes x, and passes xg on. Now we have additional computations to do
after receiving and resending values. This leads to a timing characteristic, as shown in
Figure 5.19.!

The code for P; can be writlen as

sum = 0;
for (4§ = 0; 3 < i7 j++) {
recv(&x[j], Pi_q1);
send(&x[J], Bisli
sum = sum + ali] [F1*x{]];
)
%x[i] = (b[i] - sum)/ali][i];
send(fax[i], Pj.q):

Analysis. For this pipeline, we cannot assume that the computational effort is the
same at each pipeline stage (see Figure 5.19). The first process. Py, performs one divide and
one send (). The ith process (0 < i< p— 1) performs i recv()s, i send()s. i multiply/add, one
divide/subtract, and a final send (), a total of 2i + | communication times and 2i + 2 com-
putational steps, assuming that multiply, add, divide, and subtract are each one step. The
last process, P,_j, performs p — 1 recv()s. p — 1 multiply/add, and one divide/subtract, a
total of p — 1 communication times and 2p — 1 computational steps. Figure 5.20 shows the
operations in which the communication time and combined multiply/add or divide/subtract
are the same. In that case. we get a perfect synchronization of the send()s and recv()s, and
the parallel execution time will be given by the final process plus the p — 1 send()s plus one
divide (to compute xp).

In essence, the parallel implementation has an O(n) time complexity as p = n. The
sequential version has a time complexity of O(n*). The actual speedup is not n, however. It
would depend heavily on the actual system parameters. We would expect a computational
step, even division, to be much faster than the time of a communication step. To reduce the
overhead of communication, we have applied nonblocking send routines to allow the
source process to continue as soon as possible with the next computation. The processors
will, in general, be constrained by the blocking receives.

Final computed value

Processes

A
w| [

L "
P, =~ First value passed onward

= Figure 5.19 Pipeline processing using back
Time substitution.

! There is another pipeline solution of implementing back substitution; see Chapter 10,
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Py
divide

send(x,) =
end

Time

Final Comments on Solution to Linear Equations.
to parallelize the solution of a set of linear equations having upper triangular form (which
obviously also applies to a set of linear equations having lower triangular form). Such
equations do occur in practice; for example, Quinn (1994) describes an upper triangular set
of equations for solving for the currents in an electrical circuit consisting of resistors and
voltage sources. More important, however, back substitution is an essential component of
solving a general set of linear equations when using Gaussian elimination. We describe the
solution of linear equations using Gaussian elimination in Chapter 10. Gaussian elimina-
tion converts a set of linear equations into triangular form, after which back substitution is

Py

recv(xg)
send(xp) =»
multiply/add
divide/subtract
send(x) =
end

used to solve the equations.

5.4 SUMMARY

This chapter introduced the following:

recvixp)
send(xg) =
multiply/add
recv{xy)
send(x) =
multiply/add
divide/subtract
send(ys) =
end

 The pipeline concept and its application areas

= Analysis of pipelines

P;

recvixy)
send(x;) =
multiply/add
reevix;)
send(x;) =
multiply/add
recvixs:)
send{x;) =
multiply/add
divide/subtract
send(xs) =
end

Figure 5.20 Operations in back substitution pipeline.

« Examples illustrating the potential of pipelining, including

Insertion sort

Prime number generation
Solving an upper triangular system of linear equations

Sec.5.4 Summary

Py

recviag)
send(x,) =
multiply/add
recvix )
send(x;) =
multiply/add
recv(x,)
send(xv,) =
multiply/add
recvix;)
send(x;) =
multiply/add
divide/subtract
send(xy) =
end

We have studied how
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FURTHER READING

Pipeline processing most often is seen in specialized very large scale integration (VLSI)
components designed to implement arithmetic algorithms. Apart from the simple one-
dimensional pipelines with data entered at one side only, more complex pipelines or linear
arrays can be devised in which the data is entered from the left and right simultaneously
and information moves in both directions. Also, two-dimensional arrays can be devised,
especially for implementation in VLSL. We will consider such arrays in Chapter 10 for
operating on vectors and matrices. The arrays in that chapter come under the classification
of systolic arrays. Pipelines can also be designed to operate upon bits of numbers to achieve
various arithmetic operations. Leighton (1992) explores this use of pipelines.

The sieve of Eratosthenes is the fundamental way of finding prime numbers and has
been used many times as a programming example in sequential programming texis.
Bokhari (known for his early work on the multiprocessor mapping problem) describes the
results of using the sieve of Eratosthenes as a benchmark program for a shared memory
multiprocessor (Bokhari, 1987). Lansdowne, Cousins, and Wilkinson (1987) continue on
this topic and demonstrate a way to program the sieve that improves its performance.
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PROBLEMS

Scientific/Numerical

5-1. Write a parallel program to compute Pl using a pipeline approach. Repeat by applying a
divide-and-conquer approach. Compare the two methods analytically and experimentally.

5-2. Develop a pipeline solution to compute sinfl according to

. _ g @5 @7 @°
Mnﬂ—ﬂ-a—f+3-!--ﬂ+-§-!----,,.

A series of values are input, 6, 8;, 04, 05, ... .
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5-3.
5-4.

5-5.

5-6.

5-7.

5-8.

5-9.

5-10.

Madify the program in Problem 5-2 to compute cos6 and tan®.
Write a parallel program using pipelining to compute the polynomial

2 g
) i a{}xﬂ + it I.i'l + a3+ g X !

to any degree, n, where the a's, x, and n are input. Compare the pipelined approach with the
divide-and-conquer approach (Problem 4-8 in Chapter 4).

Explore the trade-offs of increasing the data partition in the pipeline addition described in
Section 5.3.1. Write parallel programs to find the optimum data partition for your system.

Compare insertion sort (Section 5.3.2) implemented sequentially and implemented as a
pipeline, in terms of speedup and time complexity.

Rework the parallel code for finding prime numbers in Section 5.3.3 to avoid the use of the mod
operator to make the algorithm more efficient.

Radix sort is similar to the bucket sort described in Chapter 4, Section 4.2.1, but specifically
uses the bits of the number to identify the bucket into which each number is placed. First the
most significant bit is used to place each number into one of two buckets. Then the next-most
significant bit is used to place each number in each bucket into one of two buckets, and so on
until the least significant bit is reached. Reformulate the algorithm to become a pipeline where
all the numbers are passed reordered from stage to stage until finally sorted. Write a parallel
program for this method and analyze the method.

A pipeline consists of four stages, as shown in Figure 5.21. Each stage performs the operation
Yout = ¥in @ XX

Determine the overall computation performed,

Xy .TI'_- X3 Xy
x X X X
Yavava¥y ==l vin  Youl—™1 ¥ Vot v Your = Vin Vo[ Output
f 4 [ [t
€y iz iy 1K}

Figure 5.21  Pipeline for Problem 5-9.

The outer product of two vectors (one-dimensional arrays), A and B, produces a matrix (a two-
dimensional array), C, as given by

A BT C

ay agby e aghy,

a n—lhrr- I

= qDp ceve @
Formulate pipeline implementation for this calculation given that the elements of A (ag, @y«
a,,_1) enter together from the left of the pipeline and one element of B is stored in one pipeline
stage (P stores by, Py stores by, ete.). Write a parallel program for this problem.
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5-11. Compare implementing the sieve of Eratosthenes by each of the following ways:
(i) By the pipeline approach as described in Section 5.3.3
(1) By having each process strike multiples of a single number

(iii) By dividing the range of numbers into m regions and assigning one region to each
process to strike out multiples of prime numbers, Use a master process to broadeast each
prime number as found to processes

Perform an analysis of each method.

5-12. (For those with knowledge of computer architecture.) Write a parallel program to model a five-
stage RISC processor (reduced instruction set computer), as described in Hennessy and
Patterson (2003). The program is to accept a list of machine instructions and shows the flow of
instructions through the pipeline, including any pipeline stalls due to dependencies/resource
conflicts. Use a single valid bit associated with each register to control access to registers, as
described in Wilkinson (1996).

Real Life

5-13. As mentioned in Section 5.1, pipelining could be used to implement an audio frequency-
amplitude histogram display in a sound system, as shown in Figure 5.22(a). This application
could also be implemented by an embarrassingly parallel, functional decomposition, where
each process accepts the audio input directly. as shown in Figure 5.22(b). For each method,
write a parallel program to produce a frequency-amplitude histogram display using an audio
file as input. Analyze both methods. (Some research may be necessary to develop how to
recognize frequencies in a digitized signal.)

5-14. Due to an unprecedented rise in both automobiles and state-mandated auto inspection require-
ments, the citizens of the state of New Caroltucky have been complaining that it takes too long
to complete the inspection process. Typically, the 35-point inspection checks for brakes (six

Display Display

HFH 1

1] nl]
Audio input | ‘{-}’ ’
(digitized)

Pipeline

Audio input_|
{digitized)

(a) Pipeline solution (b) Direct decomposition

Figure 522 Audio histogram display.
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checks there alone: each wheel is pulled and brake lining/pad thickness measured, the master
cylinder integrity and performance are checked, and general brakeline leaks and cracks are
looked for), along with 29 other time-consuming checks. Once a vehicle begins the inspection
process, it typically takes a full hour: some claim they have had to wait in a queue just to get
to the inspection bay. Legislators have been told of 72-hour queue delays in extreme cases.

The legislature of New Caroltucky is trying to decide whether the state-run inspection
stations need a revamping of their operations. Since the legislature has heard that you are taking
a course that includes both sequential and parallel programming concepts. it has decided to hire
you to do a simulation of both the present inspection system and a proposed system. You are
expected to determine the reduction in total time (queue waiting times plus inspection times)
if the state revises the inspection process to implement pipelining instead of the present purely
sequential approach.

The present inspection process begins with a driver entering a queue at the inspection
station. When an inspector is free, the vehicle at the head of the queue is driven into the inspec-
tion bay by the inspector. The inspector then carries out each of the 35 inspections, one at a
time. Assuming the vehicle passes, the inspector drives the vehicle out and puts an inspection
sticker on it an hour after it was driven into the bay.

The two proposed inspection processes begin the same way, with vehicles entering a
single queue. In the proposed new modified-sequential system, there will be three inspectors
working in three separate bays doing inspections on three vehicles simultaneously. Each draws
a vehicle from the head of the queue when ready to begin a new inspection, but sticks with that
vehicle until the inspection is complete. Due to space constraints (there are only three bays), it
is not possible to add more inspectors to handle more vehicles simultaneously.

In the proposed new pipelined system, the state will add some automation to the process
so that a vehicle is moved automatically through the inspection bays: entering bay no. 1.
moving out of it into bay no. 2 as a new vehicle is moved into bay no. 1, and moving out of it
and into bay no. 3 as the second vehicle moves into bay no. 2 and a third vehicle moves into
bay no. 1. Under this approach there is plenty of room to add additional inspectors in each bay
to speed up the inspection steps handled in that bay. For example, if it would help, inspectors
could be added for each wheel (each pulls one wheel, measures the pads/shoes, checks for
wheel cylinder leaks, replaces that wheel, etc.) plus a fifth who looks for leaks in the lines, Nat-
urally, the state is concerned about cost and efficiency: only the minimum number of inspectors
required to achieve the greatest throughput are to be hired. Extra inspectors just standing
around will not be tolerated unless eliminating one would cause an increase in the total inspec-
tion time once a vehicle enters the first bay.

A table of the tasks assigned to each bay, together with the times each task requires
follows. In addition. the loaded labor rate for each inspector (taking into account basic salary,
fringe benefits, office and paperwork costs) is given.

Your task is to simulate both new inspection systems to determine several results:

(i)  What is the minimum number of inspectors needed under the proposed new pipelined
system to achieve the maximum inspection throughput?

(ii)  What are the labor costs per inspection performed under each proposed system?
(iii) By how much is the expected inspection delay reduced under each proposed system?

(iv) Without conducting any further simulations (analyzing only what you have obtained
from this first part), give an argument for the state investing in additional facilities to
expand the number of bays under both systems in order to reduce further the average
inspection time. (Naturally, the tasks assigned to each bay under the pipelined approach
would have to be changed, but it is assumed that the state inspectors are retrainable.)
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Task table

l. Pull left front wheel 1 minute
2 Pull left rear wheel 1 minute
3. Measure the pads/shoes (per wheel) I minute
i Replace left front wheel | minute
i- Check wheel alignment 5 minutes
k. Check exhaust system for leaks I minute
L Check engine emissions at idle 4 minutes
m.  Check engine emissions under load 3 minutes
z Remove old sticker and replace with new one 2 minutes
Total: 60 minutes

Loaded labor rate table

L Line inspectors (the “worker bees™) 540,000/
2. Managers (the “drone bees™) $60,000/yr
3. Senior managers (the “chairman bees™) $80.000/yr

Note 1: One manager is needed for every five (or fraction thereof) line inspectors, as
well as a senior manager for every four (or fraction thereof) managers beyond the first two. For
example, if there are 13 line inspectors, there would be three managers required plus one senior
mangager.

Note 2: This is an open-ended problem and requires the student to make some assump-
tions about arrival rates, randomness of arrival times, and so on, and is probably more suited
to a final project in a course than simply being one of several assigned during a term.

Recall films or news reporting video in which a human chain is passing items from a stockpile
area to where they are needed. (Examples include passing filled sandbags hand-to-hand up to
the riverbank to build a dike to prevent the river from overflowing its banks, and a bucker-
brigade in which buckets of water are being passed hand-to-hand from the water supply to the
fire scene.) Given the following data, simulate an N-person chain and compare it to N persons
working independently, each moving an item from the stockpile area to where it is needed. The
objective is to determine the speedup. that is, the increase in the rate of delivery of the needed
items, attainable through the pipelining solution versus that obtainable through the indepen-
dently operating individuals’ solution. Given that there are 1 million items to be moved,
determine the speedup for cases in which the number of available people is 150, 300, and 3000.

Data: It is 300 meters from the stockpile to where the items are needed: a human
working individually can carry one item at a time and travel at a speed of | meter per second
carrying that item and 1.5 meters per second when traveling without an item (the return trip).
Working cooperatively, the humans stand | meter apart and hand the item from hand-to-hand:
it takes 1.25 seconds to grab an item from the person behind you, turn, and hand it to the person
in front of you. Obviously, if there are only a few humans, the chain, or pipelining, approach
is not practical. Similarly, if there are multiples of 300 people, multiple chains can operate in
parallel.
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Chapter 6

Synchronous Computations

In this chapter, we consider problems solved by a group of separate computations that
must at times wait for each other before proceeding, thereby becoming synchronized. A
very important class of such applications is called fully synchronous applications. In a
fully synchronous application, all the processes are synchronized at regular points. Gen-
erally, the same computation or operation is applied to a set of data points. All the opera-
tions start at the same time in a lock-step manner analogous to SIMD computations.
Seventy percent of the first set of applications studied by Fox and colleagues in the
sround-breaking Caltech project were classified as synchronous applications (Fox,
Williams, and Messina, 1994). First, synchronizing processes are considered and then
fully synchronous applications. Finally, we describe how to reduce the amount of synchro-
nization needed in order to increase the computational speed, which we call partially syn-
chronous methods. Partially synchronous methods are very important to obtain high
computational speed.

6.1 SYNCHRONIZATION

6.1.1 Barrier

Imagine a number of processes computing values. Eventually, each process must wait until
all the processes have reached a particular reference point in their computations. This
commonly arises when processes need to exchange data and then continue from a known
state together. A mechanism is needed that prevents any process from continuing past a
specified point until all the processes are ready. The basic mechanism for regulating this
situation is called a barrier. A barrier is inserted at the point in each process where it must
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wait. The processes can continue from this point when they have all reached it (or, in some
implementations, when a stated number of processes have reached it.) The concept is illus-
trated in Figure 6.1. In this example, process P, is the last to reach the barrier. Therefore,
all the other processes must wait and are placed in an inactive state until process P, reaches
its barrier, Then the inactive processes are awakened (restarted) and all the processes
proceed from that point.

Barriers apply to both shared memory and message-passing systems. We will
discuss barriers in shared memory systems in Chapters 8 and 9. In message-passing
systems, barriers are often provided with library routines. For example, MPI has the
barrier routine, eI _Barrier(), with a named communicator as the only parameter.
MBI Barrier() is called by each process in the group, blocking until every member of the
group has reached the barrier call and only returning then. Although not in MPI, barners
can be defined where the number of processes that must reach the barrier to release the
processes is specified and can be less than the total number of processes in the group, but
using this feature would be rare. Barriers are naturally synchronous, and message tags are
not used.

Figure 6.2 illustrates the library call approach for a barrier. Since a single barrier call
is reused for every situation in which a barrier is required, it is essential for barriers to match
with the correct barrier in other processes. This characteristic has to be ensured by the
implementation. The way that the barrier call is implemented will depend upon the
implementer, who in turn will be influenced by the underlying architecture. Certain
underlying architectures will suggest specific efficient implementations. As usual, MPI
does not specify internal implementation. However, we need to know something about the
implementation to assess the complexity of the barrier. Let us review some of the common
implementations of a barrier.
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wait. The processes can continue from this point when they have all reached it (or, in some
implementations, when a stated number of processes have reached it.) The concept is illus-
trated in Figure 6.1. In this example. process P5 is the last to reach the barrier. Therefore,
all the other processes must wail and are placed in an inactive state until process reaches
its barrier. Then the inactive processes are awakened (restarted) and all the processes
proceed from that point.

Barriers apply to both shared memory and message-passing systems. We will
discuss barriers in shared memory systems in Chapters 8 and 9. In message-passing
systems, barriers are often provided with library routines. For example, MPI has the
barrier routine, MPT Barrier(), with a named communicator as the only parameter.
MpI_parrier() is called by each process in the group, blocking until every member of the
group has reached the barrier call and only returning then. Although not in MPI, barriers
can be defined where the number of processes that must reach the barrier to release the
processes is specified and can be less than the total number of processes in the group, but
using this feature would be rare. Barriers are naturally synchronous, and message tags are
not used.

Figure 6.2 illustrates the library call approach for a barrier. Since a single barrier call
is reused for every situation in which a barrier is required. it is essential for barriers to match
with the correct barrier in other processes. This characteristic has to be ensured by the
implementation. The way that the barrier call is implemented will depend upon the
implementer, who in turn will be influenced by the underlying architecture. Certain
underlying architectures will suggest specilic efficient implementations. As usual, MPI
does not specify internal implementation. However, we need to know something about the
implementation to assess the complexity of the barrier. Let us review some of the common
implementations of a barrier.
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Processes

P

Barrier():

Barrier():

Processes wail until
all reach their
barrier call

Barrier|();

Figure 6.2 Library call barmers.

6.1.2 Counter Implementation

Figure 6.1 suggesits one implementation of a barrier, a centralized counter implementation
(sometimes called a linear barrier), as shown in Figure 6.3. A single counter is used to
count the number of processes reaching the barrier. Before any process reaches its barrier,
the counter is first initialized to zero. Then each process calling a barrier will increment the
counter and check whether the correct number has been reached, say p. If the counter has

Processes

Py Py Py

Counter,

Increment

— i :
and check lor p Barrier(}:

Barrier(}: | | =% To=jz-m-m=---

Barrierl();

Figure 6.3 Barrier using a centralized counter.
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not reached p, the process is stalled or placed in an inactive or “idle” state. If the counter
has reached p, the process and all other processes waiting for the counter are released. A
mechanism must be in place to release idle processes.

Counter-based barriers often have two phases, an arrival phase (or trapping) and a
departure (or release) phase. A process enters the arrival phase and does not leave it until
all processes have arrived in this phase. Then processes move to the departure phase and
are released. Good implementations of a barrier must take into account that a barrier
might be used more than once in a process. A process may enter the barrier for a second
time before previous processes have left it for the first time. The two-phase design handles
this scenario.

Suppose the master process maintains the barrier counter. The master process counts
the messages received from “slave” processes when they reach their barrier during the
arrival phase and releases slave processes in the departure phase. The code using (locally)
blocking send()s and recv()$ and counting using for loops could be of the form

for (i = 0; 1 < p; 1+4) /* count slaves as they reach their barrier */
recv (Pynyl i

for (1 = 0; 4 < p; i++) /* release slaves */
send(P; ) ;

The variable i is the barrier counter. The barrier code for the slave processes is simply

send(Puagrar) i
recy (Praster) 7

The complete arrangement is illustrated in Figure 6.4, Messages can be received from slave
processes in any order and are accepted as received. but messages are sent to slave
processes in numeric order in this code. Our implementation allows the barrier to be called
repeatedly in a process because we have a clearly defined arrival phase that all processes
must reach before continuing on to a clearly defined departure phase. However, note that
locally blocking send (15 do not stop the process. The slave processes will move directly to

Master Slave processes

] Barrier:
Arrival 4 — send (Pyter)
phase Y recV (Pany!) : recVv{Peaster) F | e e
Departure i for (i=0;i<p;i++) = Barrier
hase send(P;) ; "~f--L__ y
phase T | SERO R T e send (Puapeer)

=== =120V | Paasrar/ i

Figure 6.4 Barrier implementalion in 4 message-passing system.

166 Synchronous Computations ~ Chap. 6



Sec. 6.1

their recv()s after the message has been constructed for sending but before it has been
received, The recv()s are blocking in that the processes will not move out of their
departure phase until they receive their messages. The arrival phase could also be imple-
mented with a gather routine, and the departure phase with a broadcast routine. The
send () s and recv () s in Figure 6.4 do not have specific data in the message. A simple NULL
message could be sent.

6.1.3 Tree Implementation

Barriers implemented with a counter have a time complexity of O(p) with p processes (both
the computational complexity of the master process and the communication complexity.,
i.e., number of messages). A more efficient barrier can be implemented using the decentral-
ized tree construction introduced in Chapter 2 (Section 2.3.4). Suppose there are eight pro-
cesses, Py, Py, Py, P3. Py, Ps, Pg, and P4. Essentially, the algorithm performs as follows:

First stage: P, sends message to Py (when Py reaches its barrier)
P5 sends message to P> (when P; reaches its barrier)
Ps sends message to Py (when Ps reaches its barrier)
P+ sends message (o Py, (when P5 reaches its barrier)

Second stage: P, sends message to Py (P; and P5 have reached their barrier)
P, sends message to Py (Pg, and P4 have reached their barrier)

Third stage: P, sends message to Py (Py, Ps, Pg, and P have reached their barrier)
Py terminates arrival phase (when P, reaches barrier and has received
message from Py)

The processes now must be released from the barrier. which can be done with a
reverse tree construction. The complete barrier construction is shown in Figure 6.5. In this
case, the algorithm only involves sending and receiving messages without explicit compu-
tations. An eight-process algorithm with the arrival phase and departure phase both imple-
mented with trees requires 2log8 steps, or, in general, 2logp steps, a communication time
complexity of O(logp).

6.1.4 Butterfly Barrier
The tree construction can be developed into a so-called butterfly, in which pairs of

processes synchronize at each stage in the following manner (assuming eight processes as
an example):

First stage Poe> P\ P, &3 Py Py P5s Pge> Pq
SECﬂﬂdE[ﬂgE 'P[]'HP:,PlHPH.P*lHPfLPﬁ{_}F?
Thil’dﬁ[ﬂg& PUHP;;_PlHPiPzHP&P;HPT

as shown in Figure 6.6 with two “links™ between synchronizing processes, which implies
two pairs of send()/recv(). This would be used if data were exchanged between the
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Figure 6.6 Butterfly construction.

processes (as in other applications of the butterfly). For a barrier, each synchronization
requires only a single pair of send()/recv(). After all the synchronizing stages, each
process will have been synchronized with each other process, and all processes can
continue,
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Al stage s, process i synchronizes with process i + 2 if pisa power of 2. If p is not
a power of 2, the communication is between process i and process (i +2°") mod p. With
p processes, the butterfly has log p steps (p being a power of 2). half the number of steps of
the tree implementation, but the same communication time complexity of O(log p).

6.1.5 Local Synchronization

Some problems can be formulated so that processes need only be synchronized with a few
other processes, and not the complete set of processes working on the problem. This often
comes about in algorithms where processes are organized as a mesh or a pipeline, and a
process needs only to be synchronized to its neighbors. The message-passing technique
used in Section 6.1.2 can be reduced to sending messages between individual processes that
need to be synchronized. For example, suppose a process P; needs to be synchronized and
to exchange data with process P;_; and process P;,| before continuing. The code for this
could be

Process P;_, Process P; Process Py,

recv(P;); <———send(P;_4); recv(Py);

send(P;); q\_\isend[Fivll: send (P;) ;
recv(Pi 1) 7

recv | ?i""l | IH

Note that this is not a perfect three-process barrier because process P;_; will only synchro-
nize with P; and continue as soon as P; allows. Similarly, process P;,, only synchronizes
with P;. However, in many applications this synchronization will be sufficient.

6.1.6 Deadlock

The tree, butterfly, and local synchronization algorithms described here employ synchro-
nous routines to obtain the synchronization between the processes. When a pair of
processes send and receive from each other, deadlock may occur. Deadlock will oceur using
synchronous routines (or blocking routines without sufficient buffering) if both processes
perform the send first. This is because neither will return; they will wait for matching
receives that are never reached. Clearly, a solution 1o this problem is to arrange for one
process to receive first and then send and the other process to send first and then receive. In
situations where even-numbered processes only communicate with odd-numbered pro-
cesses, and vice versa, as in a linear pipeline, deadlock can be avoided by arranging for the
even-numbered processes to perform their sends first and the odd-numbered processes to
perform their receives first.

Since bidirectional data transfers are very common, a combined blocking sendrecv()
routine can be provided in which the internal implementation details avoid deadlock. A
sendrecv () routine sends a message o a destination process and receives a message from a
source process. For flexibility, the source and destination may be different or may be the
samec process. MPI provides this type of routine wpT_sendrecv(). It also provides
MPI_sendrecv_replace(}, which uses a single buffer for the sending and receiving message,
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replacing the send message with receive message. These routines should be implemented
so that deadlock cannot occur. Applying sendrecv() to the preceding example would
simply be

Process P;_) Process P; Process P;

sendrecv(P;); == sendrecv(Pj_1);
sendrecv(P;,q1); === sendrecv(P);

As a matter of detail and to give credence to those who object to the sometimes over-
whelming MPI parameter list, the vp1_sendrecv () routine has 12 parameters:

MPI_Sendrecv(sendbuf, sendcount, sendtype, dest, sendtag, recvbuf,
recvcount, recvtype, source, recvtag, comm, status)

These parameters are essentially a concatenation of the parameter lists of ¥PI_Send () and
MPI_Recv ().

6.2 SYNCHRONIZED COMPUTATIONS

170

6.2.1 Data Paraliel Computations

A form of computation that implicitly has synchronization requirements is the data parallel
computation. In a data parallel computation, the same operation is performed on different
data elements simultancously; that is, in parallel. Data parallel programming is very
convenient for two reasons. The first is ils ease of programming (essentially only one
program). The second is that it can scale easily to larger problems. Many numeric and some
non-numeric problems can be cast in a data parallel form. SIMD (single instruction stream
multiple data stream) computers, briefly mentioned in Chapter 1, Section 1.3.4, operate as
data parallel computers by having the same instruction executed by different processors but
on different data, all in synchronism. In an SIMD computer, the synchronism is built into
the hardware; the processors operate in lock-step fashion.

A simple example of a computation that can be formed into a data parallel computa-
tion is to add the same constant to each element of an array:

for (i = 0; 1 <mn; 1i++)
ali] = ali]l + k;

The statement a[i] = ali] + kcould be executed simultaneously by multiple processors,
each using a different index i (0 < i < n), as illustrated in Figure 6.7. On an SIMD
computer the same instruction, equivalent to all = all + k would be sent to each
processor simultaneously.

A special “parallel” construct exists in parallel programming languages to specity
data parallel operations — namely, the forall statement. The forall statement
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Instruction
al] = al[l + k;:

|

Processors ain-1]l=a[n-1]+k;

afl] afn-1)

Figure 6.7 Data parallel computation,

forall (i =0; 1 < n; i++) |

states that n instances of the statements of the body can be executed simultaneously, One
value of the loop variable i is valid in each instance of the body; the first instance has 1 = 0,
the next i = 1, and so on. The loop variable can be used within the body to “personalize™
each copy (e.g., to access different elements of an array). To illustrate this, we can add k to
each element of an array, &, by writing

forall (i = 0; 1 < n; i++]
ali]l = afi] + k;

In all cases, each instance of the body must be independent of the other instances.
(We explore how this can be established mathematically in Chapter 8.) The term forall is
unfortunate, since there is no iteration here: the notation simply states that there are n copies
of the body, each assigned a different value of i.

Although we do not consider programs for SIMD computers, the data parallel
technique can be applied to multiprocessors and multicomputers. On such parallel comput-
ers, instances of the body can be executed on different processors, but the whole construct
will not be completed until all instances of the body have been executed. Hence, a form of
barrier is implicit within the forall construct. On a message-passing computer using
library routines, the forall construct is not generally available and an explicit barrier is
needed. For example, to add k to the elements of an array in the SPMD (single-program
multiple-data) style of programming, we might write

i = myrank;
ali] = a[i] + k; /* body */
barrier (mygroup) ;

where myrank is a process rank between () and n — 1. It is assumed that each process has
access to the required element of the array. Normally, having such a small body would not
be efficient because of the barrier overhead.
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We can construct much more complex SIMD computations than adding a constant to
the elements of an array. Hillis and Steele (1986) describe several data parallel algorithms,
including those for summing numbers, sorting, and operating on linked lists. Some SIMD
computers and data parallel algorithms operate on bit patterns rather than complete
numbers. Many of the image-processing algorithms described in Chapter 12 are data
parallel algorithms operating upon bit patterns.

Prefix Sum Problem. An example of a data parallel algorithm is the prefix sum
problem. In the prefix sum problem, given a list of numbers, x, ..., x,,_. all the partial sum-
mations (i.e., Xg: Xg + X3 Xg + X + X923 Xo + X + ¥ +x3: ... ) are computed. The prefix cal-
culation can also be defined with associative operations other than addition; for example,
multiplication, maximum, minimum, string concatenation, and logical (Boolean) opera-
tions (AND. OR. exclusive OR, etc.). It is widely studied in connection with various com-
putational models. It does have practical applications in areas such as processor allocation,
data compaction, sorting, and polynomial evaluation (Wagner and Han, 1986).

The sequential code for the prefix sum problem could be

sum[0] = x[0];
for (1 = 17 i < n; L++)

sum[i]) = sum[i-1] + %[i];

This is an O(n) algonthm.

Figure 6.8 shows a data parallel method of adding all the partial sums of 16
numbers described by Hillis and Steele (1986). This method has a multiple treelike con-
struction and computes the partial sums in the locations x[i] (0 £ i < 16). The original
numbers are lost. (A separate array could be used to save the numbers.) A different
number of computations occurs in each step. First, 15 (16 = 1) additions occur in which
x[i — 1] is added to x[i] for 1 i< 16. Then 14 (16 — 2) additions occur in which x[i — 2]
is added to x[i] for 2 < i < 16. Then 12 (16 — 4) additions occur in which x[i — 4] is added
to x[i] for4 i< 16.

In general, the method requires logn steps, where there are n numbers (and 2 is a
power of 2). Instep j (0 < j <logn). n— 2 additions occur in which x[i — 2] is added to x[7)
for 2/ € i < n. Hence, sequential code might be written as

Eor (4 = 0; j < log(n); J++) /* at each step */
for (i = 24; 1 < n; i++) /* add to accumilating sum */
®[i] = x[i] + x[i - 29);

Because SIMD computers must send the same instruction to all processors. a
mechanism is provided to inhibit certain processors from executing the instruction. To
indicate this, parallel code might be written as

for (§ = 0; i < logim); J++) /* at each step */
forall (1 = 0; i < n; di++) /* add to accumulating sum */

if (1 >= 21} x[i] = »[1i] + =[i - gi}:
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Figure 6.8 Data parallel prefix sum operation.

which uses a maximum of n — 1 processors and requires logn steps. The time complexity
of this parallel algorithm is O(logn) in terms of both computations and communications.
The efficiency is less than 1 because fewer processors are used at each step.

There is a prefix sum algorithm using a balanced tree that is also an O(logn)
algorithm but requires O(n) operations in total, instead of O(n logn) operations in total. See
JaJa (1992) for a description of the balanced tree prefix sum algorithm.

6.2.2 Synchronous lteration

Iteration whereby an operation is performed repeatedly is a key technique in sequential pro-
gramming. Constructs are provided in all programming languages for iteration (e.g., for,
while, OF do-while). Iteration is a powerful tool for solving numerical problems, especially
those which are not amenable to closed numeric solutions. Generally a result obtained on
one iteration is used in the next iteration to get closer to the actual solution. The process 1s
repeated until a sufficiently close solution is obtained. The basic idea of the iterative method
is sequential in nature and appears not suited to parallel implementation. However, parallel
implementation can be successfully employed to iterative methods when there are multiple
independent instances of the iteration. Sometimes this is part of the problem specification.
Sometimes we must rearrange the problem to obtain multiple independent instances.

The term synchronous iteration or synchronous parallelism is used to describe
solving a problem by iteration where each iteration is composed of several processes that
start together at the beginning of each iteration and the next iteration cannot begin until all
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the processes have finished the preceding iteration. The £orall construct could be used 10
specify the parallel bodies of the synchronous iteration:

for [ =0; <=n; ++)
forall (1 = 0; 4 < p; d+e) [ /* p processes each executing *f
body (i) /* body using specific valus of 1 */

/* for each synchronous iteration */

1
In our case for an SPMD program, we will need a specific barrier:
for [ = 0; J <« ni J++4) [ /* for each synchronous iteration */
i = myrank; f* find value of i to be used */
body (i): /* body using specific value of £ */
barrier (mygroup) ;
}

Let us look at some specific synchronous iteration examples.

6.3 SYNCHRONOUS ITERATION PROGRAM EXAMPLES

6.3.1 Solving a System of Linear Equations by lteration

We saw in Chapter 3, Section 5.3.4, how 1o solve a system of linear equations if it was of a
special trangular form, Suppose the equations were not specifically of that form, but of a
general form with # equations and # unknowns

Wy V0 F tpoy 1 X el g 285 . +"n-l..u-lxn-lzb - |
d@a p¥y + @3,1X) + a2k e H R =h
ay o + )X + a2 e Fl gt =8
i oy + €1 X + dg axa e Hlg gty =y

where the unknowns are xp, Xy, Xz, ... ¥,_;. One way (o solve these equations for the
unknowns is by iteration. By rearranging the ith equation jg< <

aj ¥y + @ Xy +a; 2% o i Xy =B
(o
X = tIfﬂ,‘J]Ib"‘_ [ﬂ4:1[}fu+ﬂ".11| + L1 PR R G TN ¢ I | + 0] g o 1‘{-'1.'_'"_4.'["._”'
or
oLl
5j= b= 305
if ITY
(0 <i=<n, 0<j<n). This equation gives x; in terms of the other unknowns and can be used

as an iteration formula for each of the unknowns to obtain better approximations.

174 Synchronous Computations Chap. 6

The iter
the values of 4
described in O
diagonal values
the other a's o8
is guaranteed if

This condition |
if the array 15 o
of the diagonal

An itera
tialization wos
iteration equath
is repeated. T
unknowns are.
“direct” metho
methods are o
also have the 2
may not alway

Terminz
We look at thi
commonly use
obtained from
iteration when

for all i, where
the (¢ — 1)th &
Suppose the @
computed vald
is converging.
different from
value, The ne
compound ant
exact value, TH
of one comput
calculations.
Pacheco

Synchron




The iterative method described here is called a Jacobi iteration. In this method, all
the values of x are updated together. (Alternative methods, such as Gauss-Seidel, are
described in Chapter 11.) It can be proven that the Jacobi method will converge if the
diagonal values of a have an absolute value greater than the sum of the absolute values of
the other a's on the row (the array of a’s is diagonally dominant). Therefore, convergence

is guaranteed if
Z!“Lﬂ <|a;

J=i

This condition is a sufficient but not a necessary condition. The method may converge even
if the array is not diagonally dominant. However, the iteration formula will not work if any
of the diagonal elements are zero because it would require dividing by zero.

An iterative method begins with an initial guess for all the unknowns. A possible ini-
tialization would be to set x; = b;, Then calculate new values for the unknowns using the
iteration equation. These values are substituted into the iteration formulas; then the action
is repeated. The iterations are continued until sufficiently accurate values for all the
unknowns are obtained (assuming that the iteration formula converges). There are also
“direct” methods for solving linear equations, which we discuss in Chapter 11. Iterative
methods are applicable when such direct methods require excessive computations. They
also have the advantage of small memory requirements, but the disadvantage is that they
may not always converge.

Termination. Termination can be especially problematic in parallel formulations.
We look at this topic in detail in Chapter 7 in the context of load balancing. A simple,
commonly used approach is to compare the values computed in each iteration to the values
obtained from the preceding iteration, and then to terminate the computation in the rth
iteration when all values are within a given tolerance: that is, when

|_,;:r ~xi=1 | < error tolerance

for all i, where ,rf is the value of x; after the tth iteration, and x/~ I is the value of x; after
the (r — 1)th iteration. However, this does not guarantee the solution to that accuracy.
Suppose the error tolerance is 1 percent and a value is computed to I percent of its last
computed value. This is not 1 percent of the exact value of the solution. If the calculation
is converging, we would expect the next computation of x; to be less than 1 percent
different from the present value. but it could be 0.9999 percent different from the present
value. The next value could be 0.9998 percent ditferent. We can see that errors might
compound and the computed value could be very significantly different from the final
exact value. This is illustrated in Figure 6.9 for a hypothetical problem. In addition, errors
of one computed value will affect the accuracy of other computed values that use it in their
calculations,
Pacheco (1997) suggests a more complex vector termination condition:

|
Z(If -x!- 12 « error tolerance
i=0
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Bertsekas and Tsitsiklis (1989) suggest the termination condition
n-1

[ _
E a; X b < error tolerance
j=0

for all . This method only uses the currently computed values and not values from the
preceding iteration. For all equations, it essentially computes the left side of the equation
and compares the result with the constant right side. This is not computationally intensive.
since the summation without a; ;x; has already been computed during the iteration. A full
treatment of convergence and the effectiveness of different termination formulas can be
found in texts on numerical methods.

Whatever method, since the iteration may not terminate, iterations should be stopped
when a maximum number of iterations has been reached. There is a trade-off between using
a complex termination calculation with potentially fewer iterations and using a less
complex termination calculation with more iterations. It may be a good strategy to allow a
number of iterations between checking for termination. Since the parallel formulation
requires each iteration to use all the values of the preceding iteration, the calculations have
to be synchronized globally. Jacobi iterations can be slow to converge. Problem 6-12
explores the convergence characteristics of Jacobi iterations empirically. Faster methods

are considered in Chapter 10.

Sequential Code. Given the arrays ar11) and b1) holding the constants in the
equations, =[] holding the unknowns, and a fixed number of iterations. the code might look

like the following:

for (1 = 0; i < n; i++4)

x[i] = b[i]; /*initialize unknowns®*/
for (iteration = 0; iteration < limit: iceration++) {
for (1 = 0; 1 < mn; i++) { /* for esach unknown */
sum = 0;
for (j = 0; j < n; j++) /* compute summation of a[] [Ix([] */
if (i != j) sum = sum + a[il[f] * =x[jl:
new x[1] = (bli] - sum} / alillil; /* compute unknown */
1
for (1 = 0; 1 < n; i++)
x[i] = new x[il; /* update valuess */
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It is important to have efficient sequential code. There are other ways the sequential
algorithm could be coded that may be preferred for efficiency. We have used an i £ statement
so as not to use afi] (i) = x[41 in the summation of afi] (41 * x(i]. Another solution to
avoid the overhead of repeated if statements would be to include afil (31 = =[] in the
loop and subtract it afterwards (or before):

for (i = 0; 1 < n; i++)

®x[i] = bli]; /*initialize unknowns*/
for (iteration = 0; iteration < limit; iteration++) {

for (L = 0;: i =m; i++) | /* for each unknown */
sum = -ali] [i] * x[i];
for (1 =0; j < nj j++) /* compute summation */

sum = sum + a[i] [§] * =[3];:

new x[1] = (bli] - sum) / a[il[il: /* compute unknown */

)

for (1 = 0: 4 < n; i++) x[i] = new x[i]; /* update values */

]

Yet another solution is to have two loops for computing the summation, the first from 0 to
i — 1 and the second from i + 1 to n — 1. We prefer our second version as a reasonably
readable solution.

Parallel Code. Suppose that one process is allocated for each unknown (p = n)
and each process will iterate the same number of times. On each iteration, the newly
computed values of the unknowns need to be broadcast to all the other processes. In sequen-
tial code, the iteration for loop is a natural barrier between iterations. In parallel code, we
need to insert a specific barrier. Process P; could be of the form

x[i] = blil; /*initialize unknown®*/
for (iteratien = 0; iteration < limit; iteration++) ({
sum = -afi] [i] * x[i]l;

for (3 = 07 3 < n; j++) /* compute summation */

sum = sum + afil [3] * =x[]j):
new x[1i] = (bli]l - sum} / al[ill(i]; {* compute unknown */
broadcast_receive (knew_x([il}; /* broadcast value */
global_barrier!(); /* wait for all processes */

}

The broadcast routine, broadcast_receive (], sends the newly computed value of x(i] from
process i to every other process and collects data broadcast from the other processes. A
single broadcast will not work here since there must be matching “broadcast receives™ in
each process for each newly computed value. Hence, broadeast_receive() would have to
consist of n broadcasts, each with specific parameters.

An alternative simple solution is to return to basic senda()s and recv()s, for
broadcast_receive(); that is, process i might have

for (§ = 0; j < n; j++) if (i != j) sendlax[i]. Ps);
for (§ = 0; j <n; j++) if (i != j) recvisx[j]l. B4}y
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In MPI, it is allowable to send a message to yourself so that the if construct could be
removed. A separate barrier may not be necessary since the process would not continue
until it has received all the newly computed values.

Earlier, we saw how a butterfly barrier would naturally broadcast and gather values in
one composite construction. The butterfly could be coded for our problem. However, since
its efficiency depends upon the underlying architecture, a predefined routine would be
helpful. MPI has such a routine, called 11e1_s11gather. Allgatheris illustrated in Figure 6.10.
The same number of items are gathered from each process. The number is defined in the
parameter list. A variation of MPI_allgacher called mMpI_allgatherv allows a different
number of items to be gathered from each process.

Typically, we want o iterate until the approximations are sufficiently close, rather
than for a fixed number of times (which may not provide a sufficiently accurate solution).
Each process could check its own computed value with, say,

®[i] = bli]: /*initialize unknown*/

iteration = 0;

de |
iteration++;
sum = -ali] [i] * x[i]:
for (i = 0:; 4 < n; j++) /* compute summation */
sum = sum + afil[§] * =[§];
new x[i] = (b[i] - sum} / ali]li]: /* compute unknown */
broadcast_receive (&new_x[i]}; /* broadcast value and wait »/

} while (tolerance() && (iteration < limit));

where tolerance() returns Facse if ready to terminate; otherwise it returns TRUE.

The simplest mechanism is to allow the processes to continue until they have all con-
verged. Then tolerance() is a routine returning FaLse to each process in the same iteration,
so that they all stop together. If we were to stop each process as it reaches its solution to the
stated tolerance, the processes would have different numbers of iterations. In that case,
some care would be needed here to avoid deadlock because broadcast routines broadcast to
all the processes in a group and expect all the processes to have matching routines,

Process (0 Process | Pracessp — |
Send data data data
buffer &0 JI[? B

H
S 1 H_

buffer , : e
Allgat.her{ Vi Allgar.rl':er{}l H Allgat'her{] :

! . |

Figure 6,10  Allgather operation.
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Partitioning.  As with all parallel formulations, the number of processors is usually
much smaller than the number of data items to be processed (computing unknowns in this
case). We would normally partition the problem so that the processors take on more than one
data item. In the problem at hand, each process can be responsible for computing a group of
unknowns. Typically, we would allocate unknowns to processors in simple increasing order;
that is, with p processors and n unknowns. Processor Py would be given the task of computing
the unknowns xg t0 X1, processor P unknowns X, 10 X(2,)-1» and so on, assuming that
nlp is an integer — this is the so-called block allocation used in Chapter 4 for adding
numbers. There is usually no advantage here in a cyelic allocation where processors are
allocated one unknown in order; that is, processor Py is allocated xg, X5, X250 <o o0 X((p)-1)p0
processor P is allocated X, X1, X241 +++s X((up)-1)p+1» AN s0 on. Indeed, cyclic allocation
may be disadvantageous because the indices of unknowns have to be computed in a more
complex way, and it may require more effort to group the unknowns into one message.

Analysis. The sequential execution time of this problem will be given by the lime
of one iteration multiplied by the number of iterations. Suppose there are Titerations. There
are two loops, one nested inside the other. The outer loop has n iterations, and the inner loop
has n” iterations in total. Each inner loop consists of one multiplication and one addition;
that is, two computational steps. The outer loop has a multiplication and a subtraction prior
to the inner loop, and a subtraction and division after the inner loop for a total of four com-
putational steps. Thus, the sequential time is given by

te=n(2n+4)t
which has a time complexity of O(n~) if there is a constant number of iterations.
The parallel execution time is the time of one processor when we assume that all pro-
cessors execute the same number of iterations. Suppose there are n equations and p proces-

sors. A processor operates upon n/p unknowns. One iteration has a computational phase and
a broadecast communication phase.

Computation. In the computational phase, there is an inner loop with # iterations
and an outer loop with n/p iterations, both with the same computational effort as the nested
sequential loops. Hence, the computation time is given by

feomp = (nip)(2n + 4)1

which has a time complexity of O(n*/p) if there is a constant number of iterations. As p is
increased, the computation time decreases.

Communication. Communication occurs at the end of each iteration and consists
of multiple broadcasts. In essence, all the n values computed by each processor must be
relayed to every other processor. Given p separate broadcasts, each of the size n/p data
items, and requiring 74y, units of time to send each data item, the time could be of the form

teomm = PUsarup + (WP daia) T = (Plsariup + Meiaia) T
The communication time is a linearly increasing function of p, given a fixed value for n.

Overall Execution Time. The total parallel execution time is given by

t, = ((nip)(2n + 4) + Plygep + Ml gara)T
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Figure 6.11  Effects of computation and communication in Jacobi iteration.

For non-negligible starrup times, the overall parallel execution time consists of one function
that 1s a decreasing function of p (fcomp) and one function that is an increasing function of
P Ueomm)- The resulting total execution time has a minimum value. This characteristic is
common to most partitioning situations. The minimum can be found by differentiation. To
give a concrete example, suppose foqq,p = 10,000 and 144, = 50 (representative of real
systems; see Chapter 2). Figure 6.11 shows the overall execution time, the computation,
and communication components. given that n/p must be an integer. The minimum
execution time occurs when p = 16,

Speedup Factor. The speedup factor is given by

E &
Speedup factor = £ = n(2n+4)
'rp (n/p2n+4)+pt

slartup + 1 g,

which is p if the communication is ignored. However, we have already established that there
is an optimum number of processors for this problem, dependent upon the values for Istartup
and Tdama:

Computation/communication Ratio. The computation/communication ratio is
given by

Leomp w (n/p)(2n+4)

Primnup + 'fi.lilt‘d.

Computation/communication ratio = ;
coamim

which suggests improvement with larger nn (scalable).

6.3.2 Heat-Distribution Problem
The preceding problem required global synchronization. Now let us consider a local syn-
chronization problem. Consider a square metal sheet that has known temperatures along

each of its edges. The temperature of the interior surface of the sheet will depend upon the
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temperatures around it. We can find the temperature distribution by dividing the area into a
fine mesh of points, &; ;. The temperature at an inside point can be taken to be the average
of the temperatures of the four neighboring points, as illustrated in Figure 6.1 2. For this cal-
culation. it is convenient to describe the edges by points adjacent to the interior points. The
interior points of f; ; are where 0 <i<n, 0<j<n[(n=1)x(n—1) interior points]. The
edge points are when i =0, i=n, /=0, orj = n, and have fixed values corresponding to the
fixed temperatures of the edges. Hence, the full range of h;;is 0<i<n, 0<j<n, and there
are (n + 1) % (n + 1) points. We can compute the temperature of each interior point by
iterating the equation

hi_ g ithy it h

J'il':-.j - 4 =

i j+1

(0 <i<n,0<j<n)forafixed number of iterations or until the difference between iterations
of a point is less than some very small prescribed amount.

This iteration equation occurs in several other similar problems: for example, with
pressure and voltage. More complex versions appear for solving important problems in
science and engineering. In fact, we are solving a system of linear equations. Each point is
an unknown dependent upon a few other unknowns, rather than all the other unknowns in
the general case. To clarify this relationship, consider the array of points as numbered in so-
called natural order at the top left corner and in rows of m points, as shown in Figure 6.13.
The points are numbered from | for convenience and include those representing the edges.
(Note that m = n here. However, m is used to differentiate the numbering system.) Each
point will then use the equation
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Figure 6.12 Heat distribution problem.
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This equation could be written as a linear equation containing the unknowns x_ . X;_p, T
and X,
Xim +.T;_1 - 4].": -+ X+l + X = {0

0 <i<m®, that is, m* equations. The method is known as the finite difference method. It can
be extended into three dimensions by taking the average of six neighboring points, two in
each dimension. We are also solving Laplace's equation. Chapter 11 explores further the
relationship with linear equations. (In Chapter 11, » is used for the number of equations.)

Sequential Code. Returning to the original numbering system for the points,
suppaose that the temperature of each point is held in an array hii7 (4], and the boundary
points k0] [x], hixl (6], hin] (=1, and hix) in] (0 <x < n) have been initialized to the edge
temperatures. The calculation as sequential code could be

for (iteration = 0; iteration < limit; iteration++] |
for (i =171 < ap 14+
for {3 =1; 3 <n; j++)
gii] (i) = 0.25 * [(hii-11[4] + R[i+1114] + BI1]1(3=1] + hii][j+1)):
for (i = 17 1 < np i+s) /* update points */
for (§ = 1; § < n; je=+)
hiil (3] = giL)(31:
¥

using a fixed number of iterations, We multiply by 0.25 to compute the new value of the
point rather than divide by 4 because multiplication is usually more efficient than division,
Such normal methods to improve efficiency in sequential code carry over to parallel code
and should be done where possible in all instances. (Of course, a good optimizing compiler
would make such changes.)

There are several ways the code could be written if we want to stop at some precision,
but in all cases, all points must have reached their precision. With properly initialized
arrays, the sequential code could be

do [
for (i = 1; i < n; ies)
for (§ =1; 3 < n; §+=)
glfi] [3] = 0.25*(h(i-11({3] = hii«<1]1[4] + hii]l(j-1]1 + hI1][4+11}:
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for {1 = 1; 1 < n: i++) /* update points */
for (7 = 1; j < n; j++)
hiil[j] = glill3];

continue = FALSE: /* indicates whether to continue */
for (i =1; i < n7 i++) /* check each point for convergence */
for [j = 1; j < n; J++)
if (lconverged(i,d) { /* point found not converged */
continue = TRUE;
break;

} while (continue == TRUE);

Convergence is checked after all the points have been computed, which allows several
possible convergence algorithms. The routine converged (i, ) returns TRUE if the element
gli] (1] has converged to the required precision; otherwise it returns FaLse. The Boolean
flag continue will be set to True if at least one point in an iteration has not converged.
Normally, we would want to ensure that the loop terminates even if convergence does not
occur. This can also be done by incorporating a loop counter.

Improvements. In the above code, a second array, g1 (1, is used to hold the newly
computed values of the points from the old values. The array n(] (] is updated with the new
values held in g1 (] after all the values have been computed in gi) (1. Using the values of
one iteration to compute the values for the next iteration in this fashion is known as a Jacobi
iteration. A significant improvement is to eliminate the second array:

for (iteration = 0Q; iteration < limit; iteration++) {
for (i = 1; 4 < n; i++}
far {(§j = 1; § < n; J++)
hiill3] = 0.25 * (h[i-11[3] + h{i+1] (3] + h(i][3-1] + hli)[3+11);

Given the sequential order of the computation, two of the values used to compute h(i] (3]
have already been computed in that iteration (h(i-11(3] and h(i] [j-1]) and are used, and
two values have not yet been computed in that iteration and were computed from the
preceding iteration (hfi+1] (4] and n[i][3+1]). Thus, we are using the most recent values
available. This is know as a Gauss-Seidel iteration and usually produces a faster conver-
gence. However, it relies upon the sequential order of computation.

In the Gauss-Seidel method, the unknowns (points) to be computed, say x;
(0 < i < n—1), are ordered so that those before the current unknown, x;, j < i, have already
been computed for that iteration and are used, and those after the current point, x;, k> i,
have not yet been computed in the current iteration, and therefore the values computed in
the preceding iteration are used. The basic Gauss-Seidel method is an excellent match for
a sequential program in which unknowns are computed in some sequential order, but as
described it is not a good basis for parallel program in which unknowns are computed
simultaneously. However, there are specific orderings that allow for simultaneous com-
putations. We shall explore different orderings and faster iteration methods that are
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amenable to parallelization at the end of this chapter and in more detail in Chapter 11.
For now, we shall concentrate upon the Jacobi iteration because it allows us to investigate
local synchronization, but one should be aware that it is usually neither the best sequen-
tial algorithm nor the best basis for a parallel algorithm.

Parallel Code. The sequential code is “unnatural” in that we have used for loops
to visit each point, whereas the points can be visited simultaneously without any change to
the algorithm:

for (iteration = 0; iteration < limit; iterations+) {
forall [1 = 1; 1 < n; i++)
forall (j = 1; § < n; J++)
h{i]l[3] = 0.25 * (h[i-11[3] + h{i+1]1[3] + hIi]1[3-1] + hIi][3+1]);

]

In this construction, it is understood that all the values on the right side of the computa-
tion are computed from the preceding iteration without any need of an explicit array
gl111. We would usually partition the problem so that more than one point is processed
by each process. However, in the first instance, suppose that we have one process for
each point.

Each process requires the four neighboring points, and the most convenient organi-
zation is to arrange the processes conceptually into a mesh. Let us refer to processes by sub-
scripts on the mesh by using row major order, where the first subscript is the row, and the
second, the column. For the version with a fixed number of iterations. process P; ; (except
for the boundary points) could be of the form

for (iteraticn = 0; iteration < limit; iteration++) {
g =028 (w+ X+ ¥+ 2);

send (&g,
sendl&g,
send (&g,
send (&g,
recvibw,

Py 40
Fi+l.j};
Py g-1)i
Pi qs1)i
Pi-1,30

/* non-blocking sends */

/* synchronous receives */

Local
barrier

recv(&x, Py.q 4}

recvis&y, P; 5-1):
recvi&kz, P; s.1li Y

after suitable initialization of w, x, v, and =z, Each process has its own iteration loop. The
number of iterations must be sent to each process. [t is important to use send () that do not
block while waiting for the recv () s; otherwise the processes would deadlock, each waiting
for a recv () before moving on. The recv()s must be synchronous and wait for the send()s.
Each process will be synchronized with its four neighbors by the recv()s. We are using a
local synchronization technique here. ltis unnecessary to have a separate iteranon 1o update
the array. The transfer between four processes is shown in Figure 6.14,

Implementing the version where processes stop when they reach their required
precision requires a master process 1o be notified when all the (slave) processes have
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Figure 6,14  Message-passing for heat-distribution problem,

N

il

stopped. A process could send data to the master when the precision has been reached
locally; for example,

iteration = 0;
doe [
iterations++;
g =0.25* {w+xX+¥y+ E)
send (&g, Pyj.y, )4 /* locally blocking sends */
send (&9, Py, 4}
send (&g, Pi 4 1):
send (&g, P-lel};
recv W, Pypoq 4): J* locally blecking receives v/
recv (k. Py 407
recv &y, Py q-1l:
recv(&e; Py 44107
} while||!converged(i, j}} && (iteration < limit));
send (&g, &i, ki, &iteration, Prugeep!?
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To handle the processes operating at the edges. we could use the process 1D to
determine the location of the process in the array, leading to code such as

if (last_row) w = bottom_value;
if (first_row) X = top_value;
if (first column) v = left_wvalue;
if {last_colum} z = right_wvalue;
iteration = 0;
do (
iterationt++;
g=0.25 * W+ X + v + 2):
1if ' {first_row) send(&g, PJ.-:L.:i]'-'
if !(last_row) send(&g, Piyy 4);
if !{first column) send(&g, P; j.1):
if !{last_eolumn) send(&g, Pj j.1);
if 1 (last_row) recv(&w, Pj_; 4):
if !(first_row) recv(bsx, Py, 4);
if ! (first_column) recv(&y, Py -1):
if !(last_column) reev(&z, Py q.1):
} while({!converged) L& (iteration =< limic));
send (&g, &L, &J, lteraticn, Ppasrer!:

It is a simple matter for us to convert the process indices to actual numbers. Given processes
numbered starting at the top left corner of the mesh and numbered across rows (natural
ordering), process P; communicates with P; _ | (left), P; , | (right), P; _ (up). and P; _
(down) (0 < i < k).

Partitioning. Obviously, we would normally allocate more than one point to
each processor, because there would be many more points than processors. The mesh of
points could be partitioned into square blocks or strips (columns), as shown in Figure 6.15
(p partitions). The partitions are the same options as for the image bitmap in Chapter 3,
but now there is communication between partitions. Therefore, we would like to minimize
the communication. With n” points, p processors, and equal partitions, each partition
holds n*/p points. The communication consequences of the two arrangements are shown
in Figure 6.16,

|-Pu o

Blocks Strips (columns)

Figure 6.15 Partitioning heat-distribution problem,
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Figure 6.16 Communication consequences of partitioning.

In the block partition, there are four edges where data points are exchanged. Each
process generates four messages and receives four messages in cach iteration (assuming
that the data points along one edge are packed into one message). Thus, the communication
time is given by

n
t = E(! ; + —t
COmmse startup dulu)
I

This equation is only valid for p =9 when at least one block has four communicating edges.

In the strip partition, there are two edges where data points are exchanged. Each
process generates two messages and receives two messages in each iteration (assuming
again that all the data points along one edge are packed into one message). Thus, the com-
munication time is given by

! 4(t

commeol startup 7!  data)

Note that the communication time is independent of the number of processors p; that is, the
number of partitions.

These communication times will be heavily influenced by the startup time. For
example, SUPPOSE fiarrup = 10,000, 135, = 50 (as used for Figure 6.11), and n® = 1024, Under
these circumstances, the strip partition has a communication time of 46,400 (time units)
irrespective of the value of p. The block partition has a communication time of 80,000 +
12800/ ./p . For any number of processors, this will be greater than the strip partition. But
suppose the startup time is 100. The strip partition now has a communication time of 6800,
whereas the block partition has a communication time of 800 + 12800/ Jp . Now the strip
partition always has a greater communication time for p > 4.

In general, the strip partition is best for a large startup time, and a block partition 1s
best for a small startup time. With the previous equations, the block partition has a larger
communication time than the strip partition if

n
3(" startup T E;Idmuj =4t startup T M gara)
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or

"

f. >all—=—1|t

startup ( ) data
Jp

(p 2 9). The right side tends to nfg,,,. or 1600 with our numbers, as p increases modestly.
For example, the crossover point between block partition being best and strip partition
being best is reached with p = 64 when ., = 1200. Figure 6.17 shows the characteristics
for p=9, 16, 64, 256, and 1024.

The startup time will be large in most systems, especially in workstation clusters,
Hence. the strip partition seems the appropriate choice. It is also the easiest partition for us
to program, since messages simply pass left and right rather than left, right, up, and down.

Implementation Details. It will be necessary for us to send a complete column
of points to an adjacent process in one message. For convenience, we might divide the two-
dimensional array of points into rows rather than columns when the array is stored in row
major order (as in C). Then a row can be sent in a message simply by specifying the starting
address of the row and the number of data elements stored in it (a contiguous group of ele-
ments). If we do not want to utilize the actual storage structure, then a separate one-dimen-
sional array could be used to hold the points being transmitted to an adjacent process. We
could have started our discussion by dividing into rows rather than columns, but this imple-
mentation detail is not an algorithmic matter.

In addition to the division of points into rows, Figure 6.18 shows each process having
an additional row of points at each edge, called ghost points, that hold the values from the
adjacent edge. Each array of points is increased to accommodate the ghost rows. Ghost
points are provided for programming convenience,

The code for process P; (not including the processes at the borders) could take the
form

for (k= 1; k <= n/p; k++) /* compute points in partition */

for (j = 1; J <= n; j++)
glkl (3] = 0.25 * (h[k-1]1[3] + hlk+1]1[3] + hik][3-11 + hlk][§+1]));

2000 —
Strip partition best
Letariup 1000 =
Block partition best
F:
’
/
o/
“ T T -l' T | |
| 10 100 1000 ) .
. Figure 6.17 Startup times for block
Processors, p and strip partitions.
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Figure 6.18 Configurating array into contiguous rows for each process, with ghost points.

for (k = 1: k <= n/p: k++) /* update points */
for (3 = 1; j == n; j++)
hik]l[j] = glk])[3):

send(&g[1][1], 1, Pj.1}: /* send row to adjacent process */
send[&g;n,-“pl (1) 1, P';-'l};
recv(&h[01[1]., n, Pi_1); /* receive row from adjacent process */

recvithn/p + 1) (1], n, Pi.qi:

Safety and Deadlock. The arrangement when all the processes send their messages
first and then receive all of their messages, as in all the code so far, is described as unsafe
in the MPI literature. This is because it relies upon buffering in the send()s. The amount of
buffering is not specified in MPL If a send routine has insufficient storage available when
it is called, the implementation should be such as to delay the routine from returning until
storage becomes available or until the message can be sent without buffering. Hence, the
locally blocking send() could behave as a synchronous send (), only returning when the
matching recv() is executed. Since a matching recv() would never be executed if all the
send()s are synchronous, deadlock would occur. In our case, it is likely that sufficient
storage is available if n/p is relatively small — and you might question why an implemen-
tation would have a locally blocking send available if it cannot be used with safety!

A way of making the code safe is to alternate the order of the send()s and recv()s in
adjacent processes. This is so that only one process performs the senc()s first. Then even
synchronous send ()s would not cause deadlock. In fact, a good way you can lest for safety
is to replace message-passing routines in a program with synchronous Versions.

Safe code. by alternating the send()s and recv()s, could be of the form

if (GG®2) =0) { /* aven-numbered processes */
send(&g[1]1[1], n, Pi_4);
recv{&h[0] [1], n, Py.q);
send(&g(n/pl [1], n, Pyl
recvi&h(n/p + 1] [1], n, Pyj.q):

1 else { /* odd-numbered processes */
recv(&hin/p + 11[1], n, Pial);
send(&gn/p] (1], 0, Piyql;
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recv(&h[0] [1)., n, By_y):
sand (&g[1] [1], n, Py _5);

Alternating the send()s and recv()s can easily be done here but could be more difficult in
other circumstances.
MPI offers several alternative methods for safe communication:

* Combined send and receive routines: MPI_sendrecv() (which is guaranteed not to

deadlock)
* Buffered send()s: mp1_ssend () — here the user provides explicit storage space
* Nonblocking routines: MPT_TIsend() and MPI_Irecv() — here the routine returns

immediately, and a separate routine is used to establish whether the message has been
received (MPI_wait (), MPI_wWaitall(), MPI_Waitany(), MPI_Test(), MPI_Testall(), Or
MPI_Testany())

A pseudocode segment using the third method is

isend(&gl1][1], n, Py.q);
isend(&gn/pl [11. n. Pioq);
irecv(&h[0] [1), n, Bj_q):
irecv(&hin/p + 1]1[1], n, Pyl
waitall(4);

Essentially, the wail routine becomes a barrier, waiting for all the message-passing routines
to complete.

6.3.3 Cellular Automata

A concept that is particularly suitable for synchronous iteration is called cellular automa-
ton. In cellular automation, the problem space is first divided into cells. Each cell can be
in one of a finite number of states. Cells are affected by their neighbors according to
certain rules, and all cells are affected simultaneously in a “generation.” The rules are
reapplied in subsequent generations so that cells evolve, or change state, from generation
to generation.

The most famous cellular automaton is the “Game of Life,” devised by John Horton
Conway, a Cambridge mathematician, and published by Gardner (Gardner, 1967). Gardner
points out that the concept of cellular automata can be traced back to Von Neuman’s work
in the early 1950s. The Game of Life is a board game: the board consists of a (theoretically
infinite) two-dimensional array of cells. Each cell can hold one “organism™ and has eight
neighboring cells, including those diagonally adjacent. Initially, some of the cells are
occupied in a pattern. The following rules apply:

. Every organism with two or three neighboring organisms survives for the next
generation.

2. Every organism with four or more neighbors dies from overpopulation.
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3. Every organism with one neighbor or none dies from isolation,

4. Each empty cell adjacent to exactly three occupied neighbors will give birth to an
organism.

These rules were derived by Conway “after a long period of experimentation.”

Another simple fun example of cellular automata is “Sharks and Fishes™ in the sea,
each with different behavioral rules. A two-dimensional version of this problem is studied
in detail in Fox et al. (1988). An ocean could be modeled as a three-dimensional array of
cells. Each cell can hold one fish or one shark (but not both). Fish might move around
according to these rules:

|. If there is one empty adjacent cell, the fish moves to this cell.

2. If there is more than one empty adjacent cell, the fish moves to one cell chosen at
random.

3. If there are no empty adjacent cells, the fish stays where it is.

4. If the fish moves and has reached its breeding age, it gives birth to a baby fish, which
is left in the vacated cell.

5. Fish die after x generations.
The sharks might be governed by the following rules:

1. If one adjacent cell is occupied by a fish, the shark moves to this cell and eats the fish.

[~

[f more than one adjacent cell is occupied by a fish, the shark chooses one fish at
random, moves to the cell occupied by the fish, and eats the fish.

If there are no fish in adjacent cells, the shark chooses an unoccupied adjacent cell to
move to in the same way that fish move.

4. If the shark moves and has reached its breeding age, it gives birth to a baby shark,
which is left in the vacated cell.

tad

5. If a shark has not eaten for v generations, it dies.

Problem 6-21 describes a similar problem with foxes and rabbits. The behavior of the
rabbits is to move around happily, whereas the behavior of the foxes is to eat any rabbits
they come across.

There are serious applications for cellular automata, because they avoid the need for
differential equations. For example, given the rules of fluid/gas dynamics, the movement of
fluids and gases around objects or diffusion of gases can be modeled by this method. Bio-
logical growth can also be modeled. Examples given in the problems include airflow across
an airplane wing (Problem 6-24) and erosion/movement of sand at a beach or riverbank
(Problem 6-23). No doubt there are many other possible applications for cellular automata
(Problem 6-22).

6.4 PARTIALLY SYNCHRONOUS METHODS

It is clear that synchronization causes a significant degradation of performance. In this final
section, we will explore ways to reduce the amount of synchronization in the synchronous
iteration problems explored earlier. Let us take the heat-distribution problem as an example.
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The parallel code was written as

for (iteration = 0; iteration < limit; iteration++) {
forall (i = 1; 1 < n; i++)
forall (j = 1; j <« n; j++)
hii][i) = 0.25 * (h[i-1][3] + H[i+l] (3] + h[i])[F-1] + hi(i][j+1]);
}

with the assumption that the values on the right side of the computation are computed from
the preceding iteration. The code computes the next iteration values based on the immedi-
ately preceding iteration values. This is the traditional Jacobi iteration method, which
requires a global synchronization point (barrier) for processes to wait until all processes
have performed their calculations. It is not the calculation that causes the performance
reduction but the time it takes to perform the barrier synchronization. We have already
mentioned the possibility of using some of the present iteration values in the calculation, as
in the Gauss-Seidel iteration method. but a barrier is still present because all the processes
operate on the same iteration together. Suppose the barrier was removed altogether,
allowing processes to continue with subsequent iterations before other processes have
completed their present iteration. Then the processes moving forward would use values
computed from not only the preceding iteration but from earlier iterations and not only the
last iteration. The method is called an asynchronous iterative method. The mathematical
conditions for convergence may be more strict in asynchronous iteration; that is, the calcu-
lation may not converge unless certain mathematical conditions exist. Each process may
not be allowed to use any previous iteration values if the method is to converge. A form of
asynchronous iterative method called chaotic relaxarion was introduced by Chazan and
Miranker (1969) in which the convergence conditions are stated as:

“there must be a fixed positive integer s such that, in carrying out the
evaluation of the ith iterate, a process cannot make use of any value of the
components of the jth iterate if j < i — 57 (Baudet, 1978).

This suggests a simple alteration to the parallel code to allow processes to continue until
they try to use a value which is more than s iteration cycles previously. Each stored value
will need a “time stamp.” the iteration number associated with the stored value.

The final part of the code, checking for convergence of every iteration, can also be
reduced. It may be better to allow iterations to continue for several iterations before
checking for convergence. Combining the chaotic relaxation and delayed convergence
testing, each process is allowed to perform s iterations before being synchronized but will
also update its locally stored values as it goes. At every s iterations, the maximum diver-
gence is recorded. Convergence is checked then, The actual iteration corresponding to the
elements of the array being used at any time may be from an earlier iteration but only up to
s iterations previously. In a message-passing solution, all the data values that are obtained
from other processes will be from s iterations previously when the processes last commu-
nicated. Data values being used that are computed within the process will be from the
present iteration or the previous iteration, depending upon the sequence in which the data
values are computed sequentially.

Note that the method described cannot be applied to all synchronous problems. For
example, cellular automation does not lend itself to this approach.
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6.5 SUMMARY

Chap. 6

This chapter introduced the following:

» The concept of a barrier and its implementations (global barriers and local barriers)
* Data parallel computations

* The concept of synchronous iteration

» Examples of using global and local barriers

= The concept of safe communication

« Cellular automata

« Partially synchronous methods

FURTHER READING

The concept of a barrier is discussed in most parallel programming texts. Apart from the
software implementations of barriers described here, some multiprocessor systems (e.g.,
the CRAY T3D) have hardware support for barriers. Pacheco (1997) develops MPI code for
Jacobi iterations. MPI code for Jacobi iterations can also be found in Snir et al. (1996), with
significant discussion about safe programs and alternative coding when you use special
features of MPI, such as the up_sendrecv() routine, posting routines, and null processes.
Significant MPI details for Jacobi iterations can also be found in the other MPI “reference,”
Gropp, Lusk, and Skjellum (1999), which also includes the use of MPI features such as
topologies. A discussion of the trade-off between computation and communication can be
found in Snir et al. (1996) and Wilson (1995). In addition to the fully synchronous technique
discussed in this chapter, synchronization can be applied in a less structured or loosely syn-
chronous manner, whereby processes are synchronized occasionally. Several loosely syn-
chronous applications are discussed in detail in Fox, Williams, and Messina (1994),

Since its introduction by Chazan and Miranker (1969), chaotic relaxation has been
studied by several authors, including Baudet (1978) and Evans and Yousif (1992), although
it was ignored in textbooks on parallel programming and algorithms in the past. It offers the
potential for very significant improvement in execution speed over fully synchronous
methods, when it can be applied.
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PROBLEMS

Scientific/Numerical

6-1. Implement the counter barrier described in Figure 6.4, and test it. Is it necessary to use blocking
or synchronous routines for both send and receive? Explain.

6-2. Write a barrier, barrier (proctium), which will block until prochum processes reach the
barrier and then release the processes. Allow for the barrier to be called with different numbers
of processes and with different values for proctium.

6-3. Investigate the time that a barrier takes to operate by using code such as

tl = timel()};

Barrier (group);

t2 = time();

printf(*Elapeed time = %", difftime({t2, tl));:

(In MPI the barrier routine is MPI_Barrier (Communicator). The time routine is
MPI_Wtime().) Investigate different numbers of processes.

6-4. Write code to implement an eight-process barrier using the tree construction described in
Section 6.1.3 and compare with any available barrier calls (e.g., in MPI MPI_Barrier()).

6-5. Implement the butterfly barrier described in Section 6.1.4, and compare with any available
barrier calls.
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6-6.

6-7.
6-8.
ﬁ-gt

6-10.

6-11.

6-12.

6-13.

0-14.

Determine experimentally at what point in your system the limit to buffering is reached when
using nonblocking sends. Establish the effects of requesting more buffering than is available.
(It may be that the amount of buffering available is related to the amount of memory being used
for other purposes. )

Can noncommutative operators such as division be used in the prefix calculation of Figure 6.87
Determine the efficiency of the prefix calculation of Figure 6.8.

Given a fixed rectangular area with sides x and y and a communication that is proportional to
the perimeter, 2(x + y), show that the minimum communication is given by x =y (i.e., a square).
Write a parallel program to solve the one-dimensional problem based upon the finite difference
equation

. = X171
X =

for 0 < i < 1000, given that xy = 10 and xypp = 250.

In the text, we have assumed a square array for the heat-distribution problem of Section 6.3.2.
What are the mathematical conditions for choosing blocks or strips as the partition if the array
has a length of n points and a width of m points?

Investigate the accuracy of convergence of the heat-distribution problem using the different ter-
mination methods described in Section 6.3.1. Determine whether it is sufficient to use the dif-
ference between the present and next values of the points or whether it is necessary to use a
more complex termination calculation. The basic question being investigated here is, “If each
point is computed until each is within | percent (say) of its previous computed value, what is
the accuracy of the solution?”

Write a parallel program to simulate the Game of Life as described in Section 6.3.3 and exper-
iment with different initial populations.

Compare experimentally a fully synchronous implementation and a partially synchronous
implementation of the heat-distribution problem described in Section 6.3.1. Try different
values of s in the convergence condition specified in Section 6.4. Write a report on your
findings that includes the specific speed improvements you obtained.

Real Life

6-15.

6-16.

6-17.

Figure 6.19 shows a room that has four walls and a fireplace. The temperature of the wall is
20°C, and the temperature of the fireplace is 100°C. Write a parallel program using Jacobi
iteration to compute the temperature inside the room and plot (preferably in color) the temper-
ature contours at 10°C intervals using Xhb calls or similar graphics calls as available on your
system. Instrument the code so that the elapsed time is displayed. (This programming assign-
ment is convenient after a Mandelbrot assignment because it can use the same graphics calls.)

Repeat Problem 6-15 but with a round room of diameter 20 ft and a point heat source in the
center at 100°C; the walls are at 20°C.

Simulate a road junction controlled by traffic lights, as shown in Figure 6.20. Vehicles come
from all four directions along the roads and wish either to pass straight through the junction to
the other side, or turn left, or turn right. On average, 70 percent of the vehicles wish to pass
straight through, 10 percent wish to turn right, and 20 percent wish to turn left. Each vehicle
moves at the same speed up to the junction. Develop a set of driving rules to solve this problem
by a cellular automata approach, and implement them in a parallel program using your own test
data (vehicle numbers and positions).
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6-18.

6-19.
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Figure 6.20  Road junction for Problem 6-17.

Write a parallel program to simulate the actions of the sharks and fish as described in Section
6.3.3. The parameters that are input are size of ocean, number of fish and sharks, their initial
placement in the ocean, breeding ages. and shark starvation time. Adjacent cells do not include
diagonally adjacent cells. Therefore, there are six adjacent cells, except for the edges. For every
generation, the fishes' and sharks’ ages are incremented by 1. Modify the simulation to take
into account currents in the water.

Dr. Michaels was known across campus for being somewhat absent-minded. Thus. it was no
surprise when he went on a camping trip into the Uwharrie National Forest, but left his map
and compass behind. Luckily for him, he had packed his new portable computer that included
one of the new cellular modems. Luckier still, he left you sitting back in the computer science
building working on a research project!

You had a premonition about this wip, so you downloaded a detailed map of the forest
that showed the location of every tree, cliff, and road/path through the forest from the latest
NASA satellite pictures. The data is in the form of an array of “cells,” with rectangular areas
of 0.3 meters on an edge. Each cell contains a *T7, "C", "07, or "R, which designates what is in
that area of the foresi:

“T" The area contains an impassable tree,

*C’ The area contains an abrupt drop-off (a cliff).

‘0" The area is open and passable by the professor.

‘R’ The area is a roadway or marked path and is passable by the professor.
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Thus, you were not particularly surprised when Dr. Michaels’s e-mail message came through
asking for your help. It seems he is suffering from a medical condition that necessitates his
exiting the forest as rapidly as possible. He has asked you to write a program to do two things:

1. Identify where in the forest he happens to be.
2, Direct him out of the forest anywhere along the road that borders the southern edge.

Your program can query the professor about what is immediately ahead, behind, left, and right
of his present cell. In response 1o each query, he will send back four letters. For example, the
results of Query() might be “T", *O°, *0", *C" and indicate that he is facing a tree blocking his
movement forward. that he can move backward or to his left, and that he finds an impassable
cliff to his right. By implication, the cell he is standing in contains 0" or "R.

Your program can tell the professor to move one cell in any of the four directions by
sending him an *F* (move forward), a ‘B’ (move backward), ‘L' (move left), or R’ (move
right). The syntax is Move(*L’) for a move lell, and so on. Keep in mind that if you tell him to
move into a cell containing a tree, your grade will suffer when he finally returns. However, if
you direct him to move into a cell containing a cliff, it will not only be on your conscience but
also appear as an ‘F’ on your grade report (which will be filed by Dr. Michaels’s next of kin).

Your program is to be able to identify the professor’s location in as few query/movement
combinations as possible, and then direct lum by way of the shortest route possible from that
location to the road that runs along the forest’s southern boundary.

Prototypes of the Query() and Move() functions are as follows:

char * Query(void)
/* Query returns a pointer to a string of four characters */

int Move(char direction);

/= if the move is successful, Move returns the value 0. If it is unsuccessiul
because you directed him into a tree, Move returms a -1. If Move is
unsuccessful because you directed the professor off a cliff, Move returns a
=100 ipdicating you just failed your research project work and need to call
the coroner. */

Hint: The professor may be facing any of four directions, north, east, south, or west, and does
not have a compass. Thus, yvou will have to match the partern he returns in response to a Query()
to your map data in four possible orientations to narrow down the set of possible locations he
is in. Then you will have to Move() him and again Query() him. When you have finally deter-
mined where he is located, you have to find the shortest route out of the forest to the southern
boundary road.

6-20. Eric was fascinated by the latest episode of “Who Done 1t7”, a mystery thriller he had watched
on tape-delay last night. It seems the key to solving the mystery was the ability of Sam Shovel,
the detective, to match patterns in various handwriting samples. Eric decided to write a simple
program to mimic Sam’s pattern-matching behavior. The first thing Eric did was to create a set
of 26 “perfect” printed letters on 15 x 21 grids. These templates would then be compared to
actual printing samples, one alter the other, to deduce the actual printed characters. His first
attempt at writing this program was a total flop! He soon had discovered that none of the actual
printed characters was an exact match for his “perfect” characters; he had not recognized any
part of the suspect’s message.

He then decided to try three radically different approaches. In the first. he used a
pipelined solution: scaled the character 1o a nominal size, centered it in a grid, determined its
axes of symmelry, and rotated it to a standard orientation; then compared it to the set of
“perfect” characters. In the second, he smoothed the printed character to eliminate noise from
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the suspect’s jittery printing by blurring it slightly using a mathematics-based filter operation,
by applying still more mathematics to look at the character in a transform domain, and finally
by comparing that to the transforms of the “perfect” characters. In the third approach, Eric
decided to simplify things still further; he just counted the number of matches between cells on
the 15 % 21 grid and the grid containing the printed character. He moved the printed character
around over the “perfect” one until he got the best match, recorded the number of matches, and
then repeated with the next “perfect” character until all 26 had been compared; the best match
must be the winner, he thought.

Give a brief analysis of each of his approaches with respect to the one with the best
prospects for parallel processing.
Once upon a time there was an island populated only by rabbits, foxes, and vegetation. The
island (conveniently enough!) was the exact shape of a chessboard. Some local geographers
have even drawn gridlines that serve to divide the island into 64 squares to facilitate their demo-
graphic studies on the populations of each inhabitant,

Within each square the populations of rabbits and foxes are governed by several factors:

. the populations of rabbits and foxes in each square at the start of this “day”

. the reproduction rates of rabbits and foxes (the same over the entire island) during this day
. the vegetation growth rate

. the death rates of “old” rabbits and foxes during this day

. the eating habits of foxes (foxes live entirely on rabbits; when the vegetation is dense,

rabbits are more difficult to find)

. the eating habits of rabbits (they live on the vegetation; too many rabbits in a square
could lead to their starving and/or a lower reproduction rate and/or being easier for foxes
to find and ear)

. the migration (from day to day) of rabbits from one square o other squares that are im-
mediately adjacent
o the migration of foxes from one square to any other square within two “leaps”™

Since this is an island. there are certain boundary conditions: The 28 squares on the
water's edge have no migration possible into or out of the water for either rabbits or foxes. Sim-
ilarly, there are certain initial conditions representing the starting populations of rabbits and
foxes in the various squares at the time your program begins ils execution.

Your job is to simulate 10 years of life on the island, using time steps of a day in length,
and to determine the populations of rabbits and foxes at the end of the period in each square on
the island. For each pair of rabbits in a square at the start of a birthing day, which occurs every
nine weeks. a litter of babies is bormn. The size of the litter ranges between two and nine and
varies based on both the food supply (vegetation level) and the number of rabbits in that square
at the start of the day (population density), as given in Table 6.1. For each pair of foxes in a
square at the start of a birthing day, which occurs every six months, a litter of kits is born. The
size of the litter ranges between zero and five and varies based on both the food supply (rabbit
population) and the number of foxes in that square at the start of the day (population density),
as given in Table 6.2.

A fox can survive on as little as two rabbits per week, but will eat as many as four if they
can be found. If the vegetation level is below (.6, rabbits are more easily found. In that case,
on any given day, there is a four in seven chance that a fox will eat a rabbit if there are sufficient
rabbits available; if there are fewer rabbits than that, or if the vegetation level is at or above (1.6,
the loxes will have to make do with a two in seven chance of having a meal — provided there
are sufficient rabbits available at that consumption level. (If there are fewer rabbits than the
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TABLE 6.1 RAEEBIT BIRTHS FOR PROBLEM &-21

Vegetation Number of rabbits at start of day
il start of day =2 210200 201 to 700 70110 5000 > 5000
<0.2 0 3 3 2 2
20.2 but <0.5 0 4 4 3 3
205w <08 0 fi 5 ) 4
208 0 9 8 7 5

TABLE 6.2 RABBIT AND FOX POPULATIONS FOR PROBLEM &-21

Rabbit population Number of foxes at start of duy
at start of day
(per fox) <2 2to 10 [Htwo30 51100 > 100
< 3.0 0 2 2 1 0
23.0but < 10 0 3 3 2 1
=10 but < 40 ] 4 3 3 2
=40 ] 5 4 3 3

number needed to keep the fox population alive, foxes that didn’t get fed have a 10 percent
chance that they will die off; that is, in addition to their natural death rate.) The lifespan of a
fox is estimated to be four years. Use a random-number generator each day to determine
whether one or more foxes die a natural death.

A rabbil consumes vegetation; each rabbit consumes (.1 percent of the vegetation in a
square per day, under non-food-constrained situations. The normal lifespan of a rabbit is
estimated to be 18 months. If the vegetation level is less than 0.35. the death rate due to star-
vation rises dramatically, as given in Table 6.3.

TABLE 6.3 RABBIT LIFESPAN

Vegetation Level |  Rabbit Lifespan
0.1 to015 3 months
L1510 0.25 6 months
02510 0.3 12 months
over (135 18 months

Use a random-number generator each day to determine the number of rabbits that die
from a combination of starvation and natural causes. The vegetation level rises quite rapidly
when not being eaten by rabbits; growing conditions are ideal on the semitropical island. The
vegetation level follows the growth/consumption formula:

Vegetation at end of day =
(110% of vegetation at start of day) — (0.001 * number of rabbits at start of day)

within the limits that the vegetation level will not drop below (0.1 or grow to be more than 1.0,
Al the end of each day. 20 percent of the rabbit population randomly emigrates to adjoining
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squares. Use a random-number generator to determine the number that actwally emigrate o
each of the possible adjoining squares. Similarly, since foxes range more widely, at the end of
each day, every fox randomly emigrates zero, one, or two squares distant from its location al
the start of that day. Note: All possible migrations are to be considered uniformly likely among
the choices available.

Case 1= Uniformly, there are two foxes and 100 rabbits per square initially; the vegetation
level is 1.0 everywhere.

Case 2:  There are 20 foxes in one corner square and none elsewhere; there are 10 rabbits in
every square except in the corner square diagonally opposite the foxes, and it
contains 800 rabbits; the vegetation level is (L3 everywhere.

Case 3:  There are no foxes on the island, but there are two rabbits in each square; the initial
vegetation level is (1.3 everywhere.

6-22. Develop o cellular sutomaton solution 1o a real problem and implement it.

6-23. (A research assignment) Develop the rules necessary to model the movement (erosion) of sand
dunes at a beach when affected by the waves. (A similar problem is modeling the erosion of
the banks of a river due to the water.)

6-24. (A rescarch assignment) Develop the rules necessary 1o madel the airflow across a wing as
shown in Figure 6,21 (two dimensions). Select your own dimensions for the solution space and
object. Select the number of grid points and write code to solve the problem.

Adrflow

REREER

Actual dimensions
selected at will

Figure 621 Figure for Problem 6-24,
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Chapter 7

Load Balancing and Termination
Detection

In this chapter, we introduce the concept of load balancing, which is used to distribute
computations fairly across processors in order to obtain the highest-possible execution
speed. A related issue is detecting when a computation has been completed, so-called
termination detection. Termination detection becomes a significant issue when the
computation is distributed, and it is considered here with load balancing. After developing
the various load-balancing termination and detection techniques, an application example
1s described in detail.

7.1 LOAD BALANCING

So far, we have divided a problem into a fixed number of processes that are to be executed
in parallel. Each process performs a known amount of work. In addition, it was assumed
that the processes were simply distributed among the available processors without any
discussion of the effects of the types of processors and their speeds. However, it may be
that some processors will complete their tasks before others and become idle because the
work is unevenly divided, or perhaps some processors will operate faster than others (or
both situations). ldeally, we want all the processors to be operating continuously on tasks
that would lead to the minimum execution time. Achieving this goal by spreading the
tasks evenly across the processors is called load balancing. Load balancing was
mentioned in Chapter 3 for the Mandelbrot calculation, in which there was no interprocess
communication. Now we will develop load balancing further to include the case in which
there is communication between processors, Load balancing is particularly useful when
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the amount of work is not known prior to execution. It also helps mitigate the effects of
differences in processor speeds even when the amount of work is known in advance.

Figure 7.1 illustrates how load balancing will produce the minimum execution time
(the true goal). In Figure 7.1(a), one processor, Py, is operating for a longer period, and one
processor, P4, completes its work early. The total execution time is longer. Ideally, part of
P,’s work should be given to Py to equalize the workload. In Figure 7.1 (b), all the proces-
sors are executing for the duration of the execution,  seconds, and perfect load balancing
exists. Another way of viewing this problem is that the total computation using a single
processor may require k clock cycles. With p processors and no additional overhead for 2
parallel implementation, the execution time should be reduced to k/p clock cycles.

Load balancing can be attempted statically before the execution of any process or
dynamically during the execution of the processes. Static load balancing is usually referred
to as the mapping problem (Bokhari, 1981) or scheduling problem. Substantial literature
exists on the problem, mostly using optimization techniques, starting from estimated
execution times of parts of the program and their interdependencies. The following are
some potential static load-balancing techniques:

* Round robin algorithm — passes out tasks in sequential order of processes, coming
back to the first when all the processes have been given a task

 Randomized algorithms — selects processes at random to take tasks

« Recursive bisection — recursively divides the problem into subproblems of equal
computational effort while minimizing message-passing

» Simulated annealing — an optimization technique
e Genetic algorithm — another optimization technique, described in Chapter 12

Figure 7.1 could also be viewed as a form of bin packing (i.e., placing objects into boxes
to reduce the number of boxes), and scheduling can be approached with bin-packing

s P4 |
2 P, —T}
2 P —]
o Py =l
Fy =
_—
Time

{a) Imperfect load balancing leading
1o increased execution time

Ps I
Py |
P_\ |
|
|
|

P
P
Py

Processars

N r

< =

(b) Perfect load balancing Figure 7.1 Load balancing.
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algorithms (Coffman, Garey, and Johnson, 1978). In our case, there would be a fixed
number of equal-sized boxes (processes) and the object is to minimize the size of the boxes.

For processors/computers interconnected by a static-link interconnection network,
communicating processes should be executed on processors with direct communication
paths to reduce the communication delays, This is an essential part of the “mapping”
problem for such systems. The solution may require different mappings for different
networks. In general. there is probably no polynomial-time algorithm for solving the
problem, and therefore it is regarded as a computationally intractable problem. Hence, heu-
ristics are often used to select processors for processes,

There are several fundamental flaws with static load balancing even it a mathematical
solution exists. First and foremost, it is very difficult to estimate accurately the execution
times of various parts of a program without actually executing the parts. Therefore, sched-
uling these parts without using actual execution times is innately inaccurate. In addition,
some systems may also have communication delays that vary under different circum-
stances, and it could be difficult to incorporate variable communication delays in static load
balancing. Some problems have an indeterminate number of steps to reach their solution.
For example, search algorithms commonly traverse a graph looking for the solution, and it
is unknown how many paths must be searched beforehand, whether done in parallel or
sequentially. Since static load balancing would not work well under these circumstances,
we need to turn to dynamic load balancing,

In dynamic load balancing, all these factors are taken into account by making the
division of load dependent upon the execution of the parts as they are being executed. This
incurs an additional overhead during execution but is much more effective than static load
balancing. In this chapter, we will concentrate upon dynamic load balancing and describe
different ways that it can be achieved. We will also discuss in detail how a computation
finally comes to an end, which can be a significant problem in dynamic loading balancing.
This aspect is called terminarion detection.

The computation will be divided into work or rasks to be performed, and processes
perform these tasks. As usual, the processes are mapped onto processors. Since our
objective is to keep the processors busy, we are interested in the activity of the processors.
However, we often map a single process onto each processor, so we will use the terms
process and processor somewhat interchangeably.

7.2 DYNAMIC LOAD BALANCING

In dynamic load balancing, tasks are allocated to processors during the execution of the
program. Dynamic load balancing can be classified as one of the following:

» Centralized
* Decentralized

In centralized dynamic load balancing, tasks are handed out from a centralized location. A
clear master-slave structure exists in which a master process controls each of a set of slave
processes directly. In decentralized dynamic load balancing, tasks are passed between
arbitrary processes. A collection of worker processes operate upon the problem and interact
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among themselves, finally reporting to a single process. A worker process may receive tasks
from other worker processes and may send tasks to other worker processes to complete or
pass on at their discretion.

7.2.1 Centralized Dynamic Load Balancing

In centralized dynamic load balancing, the master process holds the collection of tasks to
be performed. Tasks are sent to the slave processes. When a slave process completes one
task, it requests another task from the master process. This mechanism is the essential part
of the so-called work-pool approach first introduced in Chapter 3 to generate the Mandel-
brot image. In that case, the work pool held the tasks as specified by the coordinates of the
pixels. The term replicated worker is sometimes used to describe the methodology, because
all the slaves are the same. (This idea can be developed into having specialized slaves
capable of performing certain tasks.) Another term used for the same methodology is
processor farm.

The work-pool technique can be readily applied to simple divide-and-conquer
problems. It can also be applied to problems in which the tasks are quite different and of
different sizes. Generally, it is best to hand out the larger or most complex tasks first. If a
larger task were handed out later in the computation, the slaves that completed the smaller
tasks would then sit idly by waiting for the larger task to be completed.

The work-pool technique can also be readily applied when the number of tasks may
change during execution. In some applications, especially search algorithms, the execution
of one task may generate new tasks, though finally the number of tasks must reduce to zero,
signaling that the computation is completing. A queue can be used to hold the currently
waiting tasks, as shown in Figure 7.2. 1f all the tasks are of equal size and importance, a
simple first-in-first-out queue may be acceptable. If some tasks are more important than
others (e.g., are expected to lead to a solution more quickly), they would be passed to the
slave processes first. Other information, such as the current best solution, may be kept by
the master process.

Termination. Stopping the computation when the solution has been reached is
called termination. A great advantage of centralized dynamic load balancing is that it is a
simple matter for the master process to recognize when to terminate. For a computation in

Work pool

Queue
I I-——===

Tasks [

Master
process

Send task —___

Request task
{and possibly
submil new tasks)

Slave “worker” processes

Figure 7.2 Centralized work pool.
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which tasks are taken from a task queue, the computation terminates when both of the
following are satisfied:

¢ The task queue is empty
= Every slave process is idle and has made a request for another task without any new
tasks being generated

Note that it is necessary (o establish that no new tasks have been generated. (Problems that
do not generate new tasks during the execution, such as the Mandelbrot calculation, would
terminate when the task queue is empty and all slaves have finished.)

In some applications, a slave may detect the program termination condition by some
local termination condition, such as finding the item in a search algorithm, In that case, the
slave process would send a termination message to the master. Then the master would close
down all the other slave processes. In some applications, each slave process must reach a
specific local termination condition, such as convergence on its local solutions, as in the
synchronous iteration problems of Chapter 6.

7.2.2 Decentralized Dynamic Load Balancing

Although widely used, a significant disadvantage of the centralized work pool is that the
master process can only issue one task at a time, and atter the initial tasks have been sent,
it can only respond to requests for new tasks one at a time. Thus the potential exists for a
bottleneck when there are many slave processes making simultaneous requests. The cen-
tralized work pool will be satisfactory if there are few slaves and the tasks are computation-
ally intensive. For finer-grained tasks and many slaves, it may be more appropriate to
distribute the work pool into more than one site.

One approach is to distribute the work pool as shown in Figure 7.3. Here, the master
has divided its initial work pool into parts and sent one part to each of a set of “mini-
masters” processes (M to M,,_{). Each mini-master controls one group of slaves. For an
optimization problem, the mini-masters might find a local optimum that they would pass
back the master. The master would select the best solution. It is clear that this approach

Initial tasks
Master, Poer—1 I 1]

Process My Process M,

------- Slaves ——————e

Figure 7.3 A distributed work pool.
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could be developed by having several levels of decomposition; a tree could be formed with
the slave processes at the leaves and internal nodes dividing up the work. This is the basic
method of decomposing a task into equal subtasks. At each level in the tree, the process
passes on half of the tasks to one subtree and the other half to the other subtree, assuming
a binary tree. Another distributed approach would be to have the slaves actually hold a
portion of the work pool and solve for this portion.

Fully Distributed Work Pool. Once the workload is distributed with processes
having and generating their own tasks, the possibility exists for processes to execute tasks
from each other, as illustrated in Figure 7.4. The tasks could be transferred by

I. The receiver-initiated method
2. The sender-initiated method

In the receiver-initiated method, a process requests tasks from other processes it selects.
Typically, a process would request tasks from other processes when it has few or no tasks
to perform. The method has been shown to work well at high system load. In the sender-
initiated method, a process sends tasks to other processes it selects. Typically, in this
method, a process with a heavy load passes out some of its tasks to others that are willing
to accept them. This method has been shown to work well for light overall system loads.
Another option is to have a mixture of both methods. Unfortunately. it can be expensive to
determine process loads. In very heavy system loads, load balancing can also be difficult to
achieve because of the lack of available processes.

Let us discuss load balancing in the context of the receiver-initiated method, though
it can also apply to the sender-initiated method. Several strategies are feasible. Processes
could be organized as a ring with a process requesting tasks from its nearest neighbors. A
ring organization would suit a multiprocessor system using a ring interconnection network.
Similarly, in a hypercube, processes could request tasks from those processes directly inter-
connected, one in each dimension. Of course, as with any strategy. one would need to be
careful not to keep passing on the same task that is received.

Process Selection. Without the constraints (and advantages) of a specific
interconnection network, all processes are equal candidates, and any process could select
any other process. For distributed operation, each process would have its own selection
algorithm, as shown in Figure 7.5. When implemented locally, this algorithm could be

Figure 7.4  Decentralized work poal,
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Requests  Requests

Local Local
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algorithm algorithm

Figure 7.5 Decentralized selection algorithm requesting tasks between slaves,

applied 1o all the processes working on the problem or to different subsets, if the problem
or network makes it desirable. Algorithms for selecting a process include the round robin
algorithm. In the round robin algorithm, process P; requests tasks from process P, where
x is given by a counter that is incremented after each request, using modulo p arithmetic
(p processes). If p = 8, x takes on the values 0, 1,2, 3,4,5,6,7,0,1,2,3,4,5,6, 7, ...
The process does not select itself (x = i) and would cause the counter to be incremented
once more when x = i. In the random polling algorithm, process P; requests tasks from
process P,., where x is a number that is selected randomly between 0 and p— 1 (excluding 7).

When a process receives a request for tasks, it will send a portion of the tasks it has
yet 10 undertake to the requesting process. For example, suppose the problem is one of tra-
versing a search tree using a depth first search. Nodes will be visited in a downward fashion
from the root. A list of unvisited nodes leading from the edges of a node a process visits
will be maintained. The process will select from this list a suitable set of unvisited nodes to
return to the requesting process. Various strategies can be used to determine how many
nodes and which nodes to return.

7.2.3 Load Balancing Using a Line Structure

Wilson (1995) describes a load-balancing technique that is particularly applicable to pro-
cessors connected in a line structure (or pipeline), but the technique could be extended to
other interconnection structures. He describes the technique in connection with transputers,
which are often connected as a line. We consider the technique here to show the possibilities
of a specific interconnection network. The basic idea is to create a queue of tasks with indi-
vidual processors accessing locations in the queue, as shown in Figure 7.6. The master
process (P in Figure 7.6) leeds the queue with tasks at one end, and the tasks are shifted
down the queue. When a worker process, P; (1 i< p), detects a task at its input from the
queue and the process is idle, it takes the task from the queue. Then the tasks to the left
shuffle down the queue so that the space held by the task is filled. A new task is inserted
into the left-side end of the queue. Eventually, all the processes will have a task and the
queue is filled with new tasks. This mechanism will clearly keep worker processes busy.
High-priority or larger tasks could be placed in the queue first.
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Figure 7.6 Load balancing using a pipeline structure.

The shifting actions could be orchestrated by using messages between adjacent
processes. Perhaps the most elegant method is to have two processes running on cach
processor:

* For left and right communication
+ For the current task

as shown in Figure 7.7. Three processes could also be constructed

* For left communication
s  For right communication
* For the current task

These constructions are typical of transputer programs where concurrent processes are
supported within the hardware of the transputer and are expected. There is no difficulty in
applying the idea to some implementations of MPI that allow multiple processes on a single
processor. However, some implementations of MPI do not allow multiple processes on a
single processor, and in any event it might incur a very significant and possibly unaccept-
able overhead. (A more attractive alternative is to use threads, as described in Chapter 8.)

Il bulfer empty, //_ L \

make request ~

Request for task

—— IT buffler full,
send task

Receive task  ——

from request Receive

lask from
requast

- J

Figure 7.7 Using a communicalion process in line load balancing.

If free,
request
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We could hand-code the time sharing between communication and task computation
as follows:

Master process (Pg)

for (i = 0; 1 < num _tasks; i++) {

recv(Py, reguest tag): f* request for cask */

send (&task, Py, task_tag); /* send tasks into queue */
H
recv(Py, request_tag); /* request for task */
send (kempty, Py, task_tag); /* end of tasks */

Process P; (1 <i<p)

if (buffer == empty) {

send (P;_;, Trequest_tag); {/* request new task */
recy (&buffer, P;_;. task_tag); /* task from left proc */
)
if {(buffar == full) && ('busy)) { /* get next task */
task = buffer; /* get task*/
buffer = empty; /* set buffer empty */
busy = TRUE; /* set process busy */
}
nrecviP;.;. request_tag, request); /* check message from right */
if {(recuest && (buffer == full)) {
send (&buffer, Pyl /% shift task forward */
buffer = empty;
1
1f (busy) { /* continue on current task */

Do some work on task.
If task finished, set busy to false.

A combined sendrecv() might be applied if available rather than a send()/recv() pair.

Nonblocking Receive Routines. In the previous code, a nonblocking nrecv() is
necessary to check for a request being received from the right. In our pseudocode, we have
simply added the parameter request, which is set to TruE if a message has been received.
In actual programming systems, specific mechanisms are present. In MPI. the nonblocking
receive, MPI_Trecv(), returns (in a parameter) a request “handle,” which is used in subse-
quent completion routines to wait for the message or to establish whether the message has
actually been received at that point (mpr_wait () and Mp1_Test (), respectively). In effect, the
nonblocking receive, MPI_trecv (), posts a request for message and returns immediately.

Other Structures. Though not mentioned in Wilson (1995), it is clearly possible
to extend the approach to a tree, as shown in Figure 7.8. Tasks are passed from a node into
one of the two nodes below it when a node buffer becomes empty.
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Figure 7.8 Load balancing using a tree.

7.3 DISTRIBUTED TERMINATION DETECTION ALGORITHMS
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So far, we have considered distributing the tasks. Now let us look at how to terminate these
distributed tasks. Various distributed termination algorithms have been proposed. but first
let us examine the termination conditions.

7.3.1 Termination Conditions

When a computation is distributed, recognizing that the computation has come to an end
may be difficult unless the problem is such that one process reaches a solution. In general.
distributed termination at time ¢ requires the following conditions to be satisfied (Bertsekas
and Tsitsiklis, 1989):

» Application-specific local termination conditions exist throughout the collection of
processes. at time f.

« There are no messages in transit between processes at time f.

The subtle difference between these termination conditions and those given for a central-
ized load-balancing system is the need to take into account messages in transit. The second
condition is necessary for the distributed termination system because a message in transit
might restart a terminated process. One could imagine a process reaching its local termina-
tion condition and terminating while a message is being sent to it from another process. The
first condition is usually relatively easy to recognize. Each process can send a message to
the master when its local termination conditions are satisfied. However, the second
condition is more difficult to recognize. The time that it takes for messages to travel
between processes will not be known in advance. One could conceivably wait a long
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enough period to allow any message in transit 1o arrive. This approach would not be favored
and would not permit portable code on different architectures.

7.3.2 Using Acknowledgment Messages

Bertsekas and Tsitsiklis (1989) describe a distributed termination method using request and
acknowledgment messages. The method is very general, mathematically sound, and copes
with messages being in transit when a process is about to terminate locally. Bertsekas and
Tsitsiklis give formal mathematical arguments in detail.

The method is illustrated in Figure 7.9. Each process is in one of two states:

1. Inactive
2. Active

Initially, without any task to perform, the process is in the inactive state. Upon receiving a
task from a process, it changes to the active state. The process that sent the task to make it
enter the active state becomes its “parent.” If the process passes on a task to an inactive
process, it similarly becomes the parent of this process, thus creating a tree of processes,
each with a unique parent. An active process could potentially receive more tasks from
other active processes while it is in the active state, but these other processes are not parents
of the process. Hence, the computation itself need not be a tree structure. On every occasion
when a process sends a task to another process, it expects an acknowledgment message
from that process. On every occasion when it receives a task from a process, it immediately
sends an acknowledgment message, except if the process it receives the task from is its
parent process. It only sends an acknowledgment message o its parent when it is ready to
become inactive. It becomes inactive when

* [ts local termination condition exists (all tasks are completed).
» It has transmitted all its acknowledgments for tasks it has received.
= [t has received all its acknowledgments for tasks it has sent out.

The last condition means that a process must become inactive before its parent process.
When the first process becomes idle, the computation can terminate.

Parent

Process Final
acknowledgmen

First task

Acknowledgment
Task

Other processes . o _
P Figure 7.9  Termination using message

acknowledgments.
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This algorithm is perhaps the best 1o use because of its generality and its proves
soundness. However, a particular application may lend itself to another solution, and certain
interconnection structures may suggest alternative termination mechanisms,

7.3.3 Ring Termination Algorithms

For termination purposes, the processes are organized in a ring structure, as shown =
Figure 7.10. The single-pass ring termination algorithm is as follows:

I. When Py has terminated, it generates a token that is passed to P}.

2. When P; (1 <i < p) receives the token and has already terminated, it passes the tokes
onward to P, . Otherwise, it waits for its local termination condition and then passes
the token onward. P,_; passes the token to P,

3. When Py receives a token. it knows that all the processes in the ring have terminatec.
A message can then be sent to all the processes informing them of the global term:-
nation, if necessary.

Each process, except the first process. implements a function, as illustrated =
Figure 7.11. The algorithm assumes that a process cannot be reactivated after reaching s
local termination condition. This does not apply to work-pool problems in which =
process can pass a new task to an idle process.

The dual-pass ring termination algorithm (Dijkstra, Feijen, and Gasteren, 1983) cas
handle processes being reactivated but requires two passes around the ring. The reason fos
reactivation is for process P; to pass a task to P; where j </ and after a token has passed 7
as shown in Figure 7.12. If this occurs, the token must recirculate through the ring a secons
time. To differentiate these circumstances, tokens are colored white or black. Processes arz
also colored white or black, Receiving a black token means that global termination may nes

Token passed 1o next processor
after reaching local termination condition

/

Figure 7.10 Ring termination detection algorithm,

Figure 7.11  Process algorithm for local
lermination.

Terminated
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Figure 7.12  Passing task to previous processes,

have occurred and the token must be recirculated around the ring again, The algorithm is as
follows, again starting at Py

l. Pybecomes white when it has terminated and generates a white token to £,

2. The token is passed through the ring from one process to the next when each process
has terminated, but the color of the token may be changed. If P; passes a task to P;
where j < (i.e.. before this process in the ring), it becomes a black process: otherwise
it is a white process. A black process will color a token black and pass it on. A white
process will pass on the token in its original color (either black or white). After P; has
passed on a token, it becomes a white process. P,,_; passes the token to P

3. When Py receives a black token, it passes on a white token: if it receives a white
token, all processes have terminated.

Note that in both ring algorithms, Py becomes the central point for global termination. Also,
it 1s assumed that an acknowledge signal is generated to each request.

Tree Algorithm. The local actions described in Figure 7.11 can be applied to
various interconnection structures, notably a tree structure, to indicate that processes up
to that point have terminated. Two branches of a tree using this mechanism are shown in
Figure 7.13. Now a token is passed forward when the tokens are received from each
branch of the tree and the local termination condition exists. When the root receives its

Figure 7.13  Tree termination.
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full complement of tokens and has terminated. global termination has occurred. Again all
other processes must then be informed, perhaps by a tree broadcast algorithm.

7.3.4 Fixed Energy Distributed Termination Algorithm

Another termination algorithm uses the notation of a fixed quantity within the system, col-
orfully termed “energy.” This energy is similar to a token but has a numeric value. The
system starts with all the energy being held by one process, the master process. The master
process passes oul portions of the energy with the tasks to processes making requests for
tasks, Similarly, if these processes receive requests for tasks, the energy is divided further
and passed to them. When a process becomes idle, it passes the energy it holds back before
requesting a new task. This energy could be passed directly back to the master process or
to the process giving it the original task. In the latter case, the algorithm will create a
treelike structure, and a process will not hand back its energy until all the enerey it has
handed out is returned and combined to the total energy held. When all the energy is
returned to the root and the root becomes idle, all the processes must be idle and the com-
putation can terminate.

A significant disadvantage of the fixed energy method is that dividing the energy
will be of finite precision and adding the partial energies may not equate to the original
energy if floating-point arithmetic is used. In addition, one can only divide the energy so
far before it becomes essentially zero. Integer arithmetic with verification can generally
overcome the first problem if the original integer energy is large enough to cope with the
number of divisions.

7.4 PROGRAM EXAMPLE
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In this section, we will discuss how the various load-balancing strategies can be applied to a
representative problem. There are several application areas, including the obvious search and
optimization areas. Other areas include image processing, ray tracing, and volume render-
ing. Tn fact, any problem that can be divided and conquered is a candidate for a work-pool
approach. For the most part, problems that can take greatest advantage of dynamic load
balancing are those in which the number of tasks is variable and unknown. Of course,
dynamic load balancing is also very advantageous to a heterogeneous network of computers.

7.4.1 Shortest-Path Problem

We will investigate the problem of finding the shortest distance between two points on a
graph. This is a very well known problem appearing in some form in most sequential pro-
gramming classes. It can be stated as follows:

Given a set of interconnected nodes where the links between the nodes are marked
with “weights,” find the path from one specific node to another specific node that has
the smallest accumulated weights.

The interconnected nodes can be described by a graph. In graph terminology, the nodes are
called vertices, and the links are called edges. If the edges have implied directions, that is,
if an edge can only be traversed in one direction, the graph is a directed graph. The problem
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is one of searching for the best path through the graph. The graph itself could be used to
find the solution to many different problems; for example,

l.

13

6.

The shortest distance between two towns or other points on a map, where the weights
represent distance

The quickest route to travel, where the weights represent time (the quickest route may
not be the shortest route if different modes of travel are available; for example, flying
to certain towns)

. The least expensive way to travel by air, where the weights represent the cost of the

flights between cities (the vertices)
The best way to climb a mountain given a terrain map with contours

. The best route through a computer network for minimum message delay (the vertices

represent computers, and the weights represent the delay between two computers)
The most efficient manufacturing system, where the weights represent hours of work

“The best way to climb a mountain™ will be used as an example, as illustrated in Figure 7.14,
The corresponding graph is shown in Figure 7.15, where the weights indicate the amount of
effort that would be expended in traversing the route between two connected camp siles.
Note in this example that the graph is a directed graph and the weights are associated with
traversing the path in a particular direction. Theoretically, we should make paths between
all the camps in both directions, an exhaustively connected graph. though it would still be a
directed graph since the weights would be different in each direction. The effort in one
direction may be different from the effort in the opposite direction (downhill instead of
uphill!). In some problems, the weights would be the same in both directions. For example,
in finding the shortest route to drive, the distance is the same in both directions. The weights
would be the same, an undirected graph.

Summil
F

A Possible intermediate camps
Base camp

Figure 7.14  Climbing a mountain.

7.4.2 Graph Representation

We first need to establish the way that the graph is to be represented in the program. As
will be familiar from sequential programming, there are two basic ways that a graph can
be represented in a program:
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Figure 7.15  Graph of mountain climb.

I. Adjacency matrix — a two-dimensional array, a, in which a(i] (i1 holds the weight
associated with the edge between vertex i and vertex j if one exists

2. Adjacency list — for each vertex, a list of vertices directly connected to the vertex by
an edge and the corresponding weights associated with the edges

Both methods are shown in Figure 7.16 for our mountain-climbing problem. The adjacency
list is implemented as a linked list. The order of the edges in the adjacency list is arbitrary.

Destination
A B C D E

Al == 10 | = = oG -

B| = = b 13| 24 | 51
E O] % ™ * 14 | = o
=
L?} D] = > o o q o

Elw | o] | =] w]l7

Fl| = %% » e - o

(a) Adjacency matrix

1-D index array ~ Weight NULL

iEX]

}(ER] +{FBIX

Em:wr{ﬂs] 1+ D]13]
R
o{EBIY
| e{FTTIX
'F

Source

ing N

{(b) Adjacency list

Figure 7.16 Representing a graph.
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The method chosen will depend upon characteristics of the graph and the structure of the
program. For sequential programs, the adjacency matrix is normally used for dense
sraphs—graphs where there are many edges from each veriex. The adjacency list is used
for sparse eraphs—graphs where there are few edges from each vertex. The difference is
based upon space (storage) requirements. An adjacency matrix has an O(v ?) space require-
ment, and an adjacency list has an O(ve) space requirement, where there are e edges from
each vertex and v vertices in all, In general. e will be different for each vertex, and therefore
the upper bound on the space requirement of an adjacency list is given by O(ve,,).
Accessing the adjacency list is regarded as slower than accessing the adjacency matrix, as
it requires the linked list to be traversed sequentially, which potentially requires v steps. For
parallel programs, an adjacency list could be accessed in parallel to speed up the process.
In addition to space and time characteristics, for parallel programs we need to consider the
partitioning of tasks and its effect on accessing the information. For now, let us assume an
adjacency matrix representation (even though our graph is sparse).

7.4.3 Searching a Graph

In our example, the search to the summil is quite simple because there are only a few ways
to the summit. But in more complex problems, the search is not so manageable, and an
algorithmic approach is necessary. Single-source shortest-path graph algorithms find the
minimum accumulation of weights from a source vertex to a destination vertex. Two well-
known single-source shortest-path algorithms are candidates for identifying the best way to
the summit:

» Moore’s single-source shortest-path algorithm (Moore, 1957)
s+ Dijkstra’s single-source shortest-path algorithm (Dijkstra, 1959)

The two algorithms are similar. Moore's is chosen because it is more amenable to parallel
implementation, although it may do more work (Adamson and Tick, 1992). The weights
must all be positive values for the algorithm to work. (Other algorithms exist that will work
with both positive and negative weights.)

Moore’s Algorithm. Starting with the source vertex, the basic algorithm imple-
mented when vertex i is being considered is as follows: Find the distance to vertex j through
vertex i and compare with the current minimum distance to vertex j. Change the minimum
distance if the distance through vertex i is shorter. In mathematical notation, if d; is the
current minimum distance from the source vertex to vertex i, and w; ; is the weight of the
edge from vertex i to vertex j, we have

ﬂri. = mln‘:dj. {-",' + 'W‘;J:I

The algorithm is illustrated in Figure 7.17. Interestingly, the problem could be solved by
simply applying the preceding formula repeatedly (an iterative solution). See Bertsekas and
Tsitsiklis (1989) for further details.

The formula here is implemented using a directed search. A first-in-first-out vertex
queue is created and holds a list of vertices to examine. Vertices are considered only when
they are in the vertex queue. Initially. only the source vertex is in the queue. Another
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Vertex |

Vertex i W

Figure 7.17 Moore's shortest-path
algorithm.

structure is needed to hold the current shortest distance from the source vertex to each of
the other vertices. Suppose there are n vertices, and vertex 0 is the source vertex. The
current shortest distance from the source vertex to vertex i will be stored in the array
dist[i] (1 =i < n). At first, none of these distances will be known and the array elements
are initialized to infinity. Suppose wii][4] holds the weight of the edge from vertex ¢ and
vertex j (infinity if no edge). The code could be of the form

newdist_j = dist[i] + wlil[3j]:
if (newdist_j < dist(jl) dist[j] = newdist_j:

When a shorter distance is found to vertex j, vertex j is added to the queue (if not already
in the queue), which will cause vertex j to be examined again. This is an important aspect
of this algorithm, which is not present in Dijkstra’s algorithm.

Stages in Searching a Graph. To see how this algorithm proceeds from the
source vertex, let us follow the steps using our mountain-climbing graph as the example.
The initial values of the two key data structures are

Vertices to consider Current minimum distances
A 0 % 0 o o w
vertex A B C D E F

vertex_dqueue dist[]

The element dist(a] will always be zero when A is the source, but the structure provides
for complete generality should a vertex other than A be selected as the source vertex.

First, each of the edges emanating from vertex A is examined. In our graph, that will
be vertex B. The weight to vertex B is 10, which will provide the first (and actually the only
distance) to vertex B. Both data structures, vertex cueue and dist[), are updated as
follows:

Vertices to consider Current minimum distances

B 0 10 | = w | o | ®

- vertex A i cC D E F
vertex_gueusa dist[]

Once a new vertex, B, is placed in the vertex queue, the task of searching around
vertex B begins. Now we have four edges to examine: to C, to D, to E, and to F. In this
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algorithm, it is not necessary to examine these edges in any specific order. Dijkstra’s
algorithm requires the nearest vertex to be examined first, which imposes sequential pro-
cessing. However, Moore’s algorithm may require vertices to be reexamined. To demon-
strate, let us examine the edges in the order F., E. D, and C.

The distances through vertex B to the vertices are aist(F] = 104 51 =61, dist(E] =
10+ 24 =34, dist(p] = 10+ 13 =23, and d@ist (c] = 10+ 8 = 18. Since all were new dis-
tances, all the vertices are added to the queue (except F), as follows:

Vertices to consider Current minimum distances

E x| iE 0D |10]18 )23 |34 61

- verlex 4 B € D E F
vertex gueue dist[]

Vertex F need not be added because it is the destination with no outgoing edges and requires
no processing. (If F were added, it would be discovered that there were no outgoing edges.)

Starting with vertex E, which has one edge to vertex F with a weight of 17, the
distance to vertex F through vertex E is dist (] + 17 =34 + 17 =51, which is less than the
current distance to vertex F and replaces this distance, leading to

Vertices to consider Current minimum distances
D e FJ 10118 | 23| 34 | 51
-~ vertex A B C D E F

vertex_gqueue dist[]

Next is vertex D. There is one edge to vertex £ with the weight of 9, giving the
distance to vertex £ through vertex D of aist (p] + 9 = 23 + 9 = 32, which is less than the
current distance to vertex E and replaces this distance. Vertex E is added to the queue, as
follows:

Vertices to consider Current minimum distances
Cl|E 0 |10]|]18 12332 |51
- vertex A B C D E F

vertex gueue dist[]

Next is vertex C. We have one edge to vertex D with a weight of 14. Hence, the
(current) distance through vertex C to vertex D is dist(c] + 14 = I8 + 14 = 32. This 1s
greater than the current distance to vertex D of 23, so this distance is left stored.

Next is vertex E (again). There is one edge to vertex F with the weight of 17, giving
the distance to vertex F through vertex E of dist[g] + 17 =32 + 17 =49, which is less than
the current distance to vertex F and replaces this distance, as follows:

Vertices to consider Current minimum distances

0 1018|2332 |49

vertex A B C D E F
vertex_gueue dist[]
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There are no more vertices to consider. We have the minimum distance from vertex
A to each of the other vertices, including the destination vertex, F. Usually, the actual path
i1s also required in addition to the distance. Then the path needs to be stored as the distances
are recorded. The path in our caseisA - B —>D - E —> F.

Sequential Code. The specific details of maintaining the vertex queue are
omitted. Let next_wvertex() return the next vertex from the vertex queue, or num_vertex if
none. We will assume that an adjacency matrix is used, named w[][], which is accessed
sequentially to find the next edge. The sequential code could then be of the form

while ((i = next_vertex()] != num_vertex) /* while a vertex */
for {(j =0; J <« n; J++) {* get next edge */
if (wlill[3] !'= infinity) { f* if an edge */

newdist_j = disc[i] + w[il[]]1;
if (newdist § < dist[3j]) {
dist[j] = newdist_j:
append_aueus(j); /* wertex to queue if not there */

] /* no more vertices to consider */

Parallel Implementations. We will look at both the centralized work pool and
decentralized work pool solutions.

Centralized Work Pool.  The first parallel implementation to consider uses a cen-
tralized work pool holding the vertex queue, vertex_queue[], as tasks. Each slave takes
vertices from the vertex queue and returns new vertices in the manner illustrated previously
in Figure 7.2. For the slaves to identify edges and compute distances, they need access to
both the structure holding the graph weights (adjacency matrix or adjacency list) and the
array holding the current minimum distances, dist (). If this information is held by the
master process, messages will need to be sent to the master to access the information. This
could lead to a very significant communication overhead. Since the structure holding the
graph weights is fixed, this structure could be copied into each slave. We will assume a
copied adjacency matrix. For now, let us assume that the distance array, disc(], is held
centrally and simply copied with the vertex in its entirety. Instead. individual requests for
distances could also be made. The code could be of the form

Master

while (vertex_cueue() != empty) |
vecv Py, Source = Py); /* reguest task from slave */
v = get_vertex_gueue();
send(&v, Py); f* send next vertex and */
send(&dist, &n, B;); /* current dist array v/
recv(&j, &dist(jl. Ppyy. source = Py): /* new distance received */
append_queue (j, dist(j]); /* append vertex to queus #/

/* and update distance array */
¥i
recv{Pyy, source = Pj); /* request task from slave */
send(Py, termination_tag); /* termination message*/
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Slave (process i)

send{Poter! ? /* send request for task *=/
recv &V, Puaster: £8T): /* get vertex number */
if (tag != termination_tag) {
recv(kdist, &n, Pmpgrar)i /* and dist array */
for (§ = 0; 3 < n; j++) /* get next adge =/
if (wlv][d] !'= infinity) { /* if an edge */

newdist_§ = dist[v] + wv][il;
if (newdist j < dist[j]) {
dist[j] = newdist_j;
send (&3, &dist[i], Praigrar!: /* add vertex to gqueue */
} /* send updated distance */

Clearly, the vertex number and distance array could be sent in one message. Note too that
individual slaves may have distances that are not exactly the same because they are being
updated continually by different slaves.

The master waits for requests from any slave but must respond to the specific slave
that makes a request. In our pseudocode notation, source = p; is used to indicate the source
of the message. In an actual programming system, the source could be identified by making
each slave send its identification (possibly as a unique tag). In the case of MPI, the actual
source of the message can be found by reading the status word returned by the MPT_recv ()
routine.

Decentralized Work Pool. One of the distributed work-pool approaches can be
applied to our problem. The task queue, in our case vertex_queue(], could also be distrib-
uted. A convenient approach is to assign slave process i to search around vertex 7 only and
for it to have the vertex queue entry for vertex i if this exists in the queue. In other words,
one element of the queue is reserved specifically to hold vertex i, and this entry s in process
i. The array dist [] will also be distributed among the processes so that process i maintains
the current minimum distance to vertex i. Process i also stores an adjacency matrix/list for
vertex i, for the purpose of identifying the edges from vertex i.

With our arrangements, the algorithm can proceed as follows: The search will be
activated by a coordinating process loading the source vertex into the appropriate process.
In our case, vertex A is the first vertex to search. The process assigned to vertex A is acli-
vated. This process will immediately begin searching around its vertex to find distances to
connected vertices. The distances will then be sent to the appropriate processes. The
distance to vertex j will be sent to process j to be compared with its currently stored value
and replaced if the currently stored value is larger. In our case, the process responsible for
vertex B will be contacted with the distance to vertex B. In this fashion, all minimum
distances will be updated during the search. If the contents of a[i] changes, process i will
be reactivated to search again. Figure 7.18 shows the message-passing. Message-passing
will distribute across many of the slave processes, rather than be focused on the master
process.
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Figure 7.18  Distributed graph search.

A code segment for the slave processes might take the form
Slave (process i)

recvinewdist, Papyli
if (newdist < dist) {
dist = newdist;

vertex_gueue = TRUE; /* add to cueue */

} else wertex_cueue == FALSE;

if (vertex_gueua == TRUE) /% srart searching around wertex ™/
for (3 = 0; J < n; j++) /* get next edge */

if (wl[j] !'= infinity) {

d = dist + wljl;

send(&d, Pyl): /* send distance to proc j */
}

This could certainly be simplified to:

Slave (process i)

recvi(newdist, Paype):
if (newdist < dist) (
dist = newdist; /* start searching arcund vertex */
for (1 =13 3 €n; J*t) {* get next edge */
if (wlj] !'= infinity) {
d = dist + wlil;
send(&d. Ps): /* gend distance to proc 3 */
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A mechanism is necessary to repeat the actions and terminate when all the processes are
idle. The mechanism must cope with messages in transit. The simplest solution is to use
synchronous message-passing, in which a process cannot proceed until the destination has
received the message. It is left as an exercise to investigate this method and the more
powerful method of identifying the unique parent that receives an acknowledgment last, as
described in Section 7.3.

Note that a process is only active after its vertex is placed on the queue, and it is
possible for many processes to be inactive, leading to an inefficient solution. The method is
also impractical for a large graph if one vertex is allocated to each processor. In that case,
a eroup of vertices could be allocated to each processor.

7.5 SUMMARY

Chap. 7

This chapter introduced the following:

» Centralized and distributed work pools and load-balancing techniques
» Several distributed termination algorithms
» Shortest-path graph-searching application

FURTHER READING

There have been a large number of research papers on static and dynamic scheduling of
tasks over the years. Static load balancing is found in Graham (1972). Another early task-
allocation paper is Chu et al. (1980), with references to previous work. Heuristic methods
are described in Efe (1982), Lo (1988), and Shirazi and Wang (1990). Static and dynamic
methods are compared in Igbal. Salz. and Bokhari (1986). Other details and methods of
static load balancing can be found in Lewis and El-Rewini (1992) and El-Rewini (1996).
Textbooks solely on scheduling include Bharadwaj et al. (1996), which provides a detailed
mathematical treatment.

Load balancing in distributed systems is also described in many papers; for example,
Tantawi and Towsley (1985), Shivaratri, Krueger, and Singhal (1992), and El-Rewini, Ali,
and Lewis (1995). A collection of papers is published in Shirazi, Hurson, and Kavi (1995).
Jacob (1996) considers load balancing specifically in a network of workstations. The
powerful dynamic load-balancing technique using the concept of a single parent that
receives an acknowledgment last is described fully, with its mathematical underpinning, in
Bertsekas and Tsitsiklis (1989). The method is also used in parallel programs in Lester
(1993). The concept of viewing load balancing as a physical system optimizing for
minimum energy is described in Fox et al, (1988). Termination detection is treated in
Barbosa (1996).

Mateti and Deo (1982), Paige (1985), and Adamson and Tick (1992) consider parallel
algorithms for the shortest-path problem. Lester (1993) considers parallel programming
aspects of the shortest-path problem.
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PROBLEMS

Scientific/Numerical

7-1. One approach for assigning processes to processors is to make the assignment random using a
random-number generator. Investigate this technique by applying it to a parallel program that
adds together a sequence of numbers.

7-2. Write a parallel program that will implement the load-balancing technique using the pipeline
structure described in Section 7.2.3 for any arbitrary set of independent arithmetic tasks.

7-3. The waveling salesperson problem is a classical computer science problem (though it might
also be regarded as a real-life problem). Starting at one city, the objective is to visit each of n
cities exactly once and return to the first cily on a route that minimizes the distance traveled.
The n cities can be regarded as variously connected. The connections can be described by a
weighted graph. Write a parallel program to solve the traveling salesperson problem with real
data obtained from a map to include 25 major cities.

7-4. Implement Moore's algorithm using the load-balancing line structure described in Section
T2

7-5. As noted in the text, the decentralized work-pool approach described in Section 7.4 for
scarching a graph is inefficient in that processes are only active after their vertex is placed on
the queue. Develop a more efficient work-pool approach that keeps processes more active.

7-6. Write a load-balancing program using Moore's algorithm and a load-balancing program using
Dijkstra’s algorithm for searching a graph. Compare the performance of each algorithm and
make conclusions.
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7-7.

7-8.

7-9.

T" l'u;

7-11.

Life

Single-source shortest-path algorithms can be used to find the shortest route for messages
through any interconnection network one would like to devise. Write a parallel program that
will find all the shortest routes through an arbitrary interconnection network and the specific
one of your computer cluster if not fully switched.

Quality-of-service (QOS) describes how well a communication network, most notably the
Internet, can provide data transfers within constraints. There may be several parameters (initial
response time, maximum data transmission delay, etc.) that could be specified by the user and
could be modeled by separate weights on each arc. Write a parallel program that can search a
graph in which each arc has two weights and attempis to find a path which minimizes both ac-
cumulated weights. It may not be possible to obtain the absolute minimum of both accumulated
weights, and one may need to provide an acceptable maximum value for each of the accumu-
lated weights.

You have been commissioned to develop a challenging maze to be constructed at a stately
home. The maze is to be laid out on a grid such as shown in Figure 7.19. Develop a parallel
program that will find the positions of the hedges that result in the longest rime in the maze
if one uses the maze algorithm “Keep to the path where there is a hedge or wall on the left,”
as illustrated in Figure 7.19, which is guaranteed to find the exit eventually (Berman and
Paul. 1997).

Entrance

e |

Search path
/

A

!

Exit  Figure7.19 Sample maze for Problem 7-9.

A building has a number of interconnected rooms with a pot of gold in one, as illustrated in
Figure 7.20. Draw a graph describing the plan of rooms where each vertex is a room. Doors
connecting rooms are shown as edges between the rooms, as illustrated in Figure 7.21. Write
a program that will find the path from the outside door to the chamber holding the gold. Notice
that edges are bidirectional, and cycles may exist in the graph.

Historically, banks have used one or the other of two competing algorithms to handle the flow
of customers at the teller stations within a bank: multiple-queue and single-queue. In the
multiple-gqueue approach, each teller has a separate queue, similar to the lines at supermarkets.

Load Balancing and Termination Detection  Chap. 7



_ v,
Entrance / 4 J'_ L /J — —
/ 74

Figure 7.20  Plan of rooms for Problem 7-10.

Room B
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Figure 7.21  Graph representation for
Room A Problem 7-10,

In the purest form of this model, customers enter the bank. choose a queue to enter, and remain
in it until served by the teller. One variation that is popular is to permit “queue hopping™; each
person in each queue is constantly evaluating whether his or her chances of being served sooner
would be enhanced by jumping to another queue. In the single-queue approach, there is only
one queuc.

The customer at the head of the queue is selected by the first teller completing a trans-
action. Your task is to simulate the pure multiple-queune and the single-queve approaches
using a parallel program and prepare a one-page summary (management report) outlining the
perceived advantages and disadvantages of each method given the following set of assump-
tions. In addition to such items as the average customer wailing times and maximum waiting
times, gather whatever other statistics you feel are relevant in documenting your report’s
conclusions.

Assumptions:

I There are five tellers.

2 All the queues are unlimited in size; customers will snake around the parking lot if nec-
essary. However, the queues are empty at the start of business each day, and although no
new customers are allowed into a queue after closing time. those already in the queue
are permitted to complete their transactions.

Customers arrive randomly at the bank. Due to the bank’s location near a major univer-
sity, customers tend to be concentrated around the end of class times: 10 new customers
arrive per minute (on average) between 10 minutes before and 10 minutes after the hour.
Two new customers arrive per minute (on average) at all other times. The actual arrivals
are random and are distributed evenly in the range of one to 19 arrivals per minute near
the top of the hour and zero to four arrivals per minute at other times.

ey

4, Each transaction takes a random amount of time to complete. On average, transactions
take five minutes but are evenly distributed in the range from one to nine minutes. Each
customer is considered a single transaction,
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7-12.

7-13.

7-14.

5, Run the simulations between the 9:00 A.Mm. and 6:00 p.M. (bank opening and closing
times) for 100 days to generate the data from which you will draw conclusions for your
summary report.

You are the president of a very large corporation employing nearly a million people. Your firm'’s
personnel department has cleverly organized all the employees in a tree-style organization
chart in which every employee reports to a supervisor but no supervisor has more than eight or
fewer than two employees reporting to him or her. While it may be irrelevant. assume that the
average number of employees reporting to a supervisor is five. Thus the average depth of the
tree structure is roughly nine. (A little under 1,000,000 lowest-level employees report to about
200,000 first-level supervisors, who report to about 40,000 second-level supervisors, who
report to about 8,000 third-level supervisors, etc.)

You have just heard from the U.S. Attorney General that one of your employees was
indicted for something that may or may not affect your firm. You did not get the employee’s
name. Your task is to search the organmization for the employee by following the official orga-
nization-chart personnel hierarchy. You are to do a breadth-first search, starting with the
employees you directly supervise, until you identify the individual indicted. Note: You may
assume that any nonindicted employee will answer “Not me!”, while the employee who was
indicted will answer “Yep, the feds got me!™

A table defines a collection of streets in a section of a major city. Many of the streets are one-
way. In addition, there are several tunnels and bridges that allow the driver to skip over or under
cross streets. The streets are all numbered. Even numbers are oriented east-west, while add
ones are oriented north-south. Each row of the table has the form

*  street number being described
*  Cross strect
*  Cross street

= mode (one-way or bidirectional)

As an example, one row might look like 13, 4, 6, 1, indicating that it is describing street
number 13 in the block where it spans between streets 4 and 6, and is one-way in the direction
from street 4 Lo street 6. (If the line had been 13, 6, 4, 1, then the street would have been one-
way between streets 6 and 4.) Another row might look like 13, 6, 22, 2, indicating that street
13 is a two-way street and either a tunnel or a bridge in the section where it links streets 6 and
22 (with no entrances or exits {rom/to other cross streets between 6 and 22). Complete one (or
more) of the following:

L. Find the number of paths that a taxi could use to get from one intersection to another in
the city without passing through any intersection more than once.
<. Find the shortest path (fewest blocks traveled) that a taxi could use to get from one

intersection to another without passing through any intersection more than once.
Note: The only intersections that are associated with bridges or tunnels are those at
the two ends.

3. Find the longest path (most blocks traveled) that a taxi could use to get from one inter-
section to another without passing through any intersection more than once. Note: The
only intersections that are associated with bridges or tunnels are those at the two ends.

A brilliant, yet color-blind, researcher in the biology department has been growing cultured
specimens of a dreaded bacterium in Petri dishes. While the culture solution is an opaque white,
the bacteria are a pastel pink under visible light. This has hindered her greatly in the daily task
of estimating the bacteria growth because she cannot discern yellow/orange/red hues.
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7-15.

She has rigged a digitizing camera that feeds data directly into a computer, and has hired
you to write a scanning program that will caleulate the percentage of the surface of the Petri
dish covered by the bacteria. In addition, your program is to display the surface of the Petri dish
in hues of blue/green.

After some imitial experimentation, you have determined that an area of the Petri dish,
center coordinates (x, v), has an average hue in the range from white to pink that depends upon
both the (x, ) coordinates and the length of time, 1, that the experiment has been running. For
reasons that are not entirely clear, the exact relationship seems to be

o XN g

100 X + Vi
where the hue throughout a region is white if Z < (0,95 and pink otherwise. Your program is
to compute and display the bacterium distribution across the Petri dish at a particular experi-
ment time, r. Implement it so that you may zoom in on any particular point. Note: This should
be computationally similar to a time-varying fractal, although the picture will not be nearly
as jagged.
Lately, the TV, newspapers. and movies had been filled with stories about aliens, or so it
seemed to Tom. Thus. when he was approached by an odd-looking stranger who was posing a
multidimensional recursion problem to the people who lived in his apariment complex, Tom
simply took it in stride. While it was vaguely discomforting to know that his family might never
see him again if he failed 1o solve the problem, he was confident enough in his math skills to
put aside all worries.

The only concern Tom had about the problem was that the aliens seemed much more at
ease in dealing with dimensions greater than 3 than he was. But Tom was confident in his
ahilities and immediately dug into it,

Given an N-dimensional sphere of radius r, centered at the origin of an N-dimensional
coordinate system, compute the number of integer coordinate points inside the sphere. The
following are examples provided by the aliens for checking work:

i) A three-dimensional sphere of radius 1.5 has 19 integer coordinate points within the
sphere:
five points in the circle formed when the first coordinate is—1:
(-1.0,0), (-1, 0, 1), (=1, 0,=1), (=1,=1,0), (=1, 1, ),
five more in the circle when the first coordinate is 1:
(10,00 (1,00 1), (1,0, =1 (1, =1, 0), (1, 1, 03,
and nine points in the circle when the first coordinate is (;

(0. 0.00, (0, 1,0y, (0, 1, 1), €0, 1, =1), (0, =1, 0), (0, =1, 1), (0, =1, =1), (0, O, =1},
and (0, 0, 1).

(ii) A two-dimensional sphere of radius 2.05 has 13 integer coordinate points within the

sphere:

(0,0),(-1,0),(-2,0), (1,0, (2, 0), (=1, -1), (-1, 1), (1, -1), (1, 1), (O, =2), (O =1),
(0, 1), (0, 2).

(iii) A one-dimensional sphere of radius 25.5 has 51 integer coordinate points:
(£25, £24, 423, ... £1,0).
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