
Outline

Parallel Computation

Matt Williamson1

1Lane Department of Computer Science and Electrical Engineering
West Virginia University

Algorithms, Models, Classes NC and RNC

Williamson Parallel Computation

Outline

Outline

1 Parallel Algorithms
Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

2 Parallel Models of Computation

3 The Class NC
P-completeness
Odd Max Flow

4 RNC Algorithms
Perfect Matching

Williamson Parallel Computation

Outline

Outline

1 Parallel Algorithms
Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

2 Parallel Models of Computation

3 The Class NC
P-completeness
Odd Max Flow

4 RNC Algorithms
Perfect Matching

Williamson Parallel Computation

Outline

Outline

1 Parallel Algorithms
Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

2 Parallel Models of Computation

3 The Class NC
P-completeness
Odd Max Flow

4 RNC Algorithms
Perfect Matching

Williamson Parallel Computation

Outline

Outline

1 Parallel Algorithms
Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

2 Parallel Models of Computation

3 The Class NC
P-completeness
Odd Max Flow

4 RNC Algorithms
Perfect Matching

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

Parallel Computers

Setup

We think of a parallel computer with a large number of independent processors, where
each processor can execute its own program, and can communicate with other
processors instantaneously and synchronously through a large shared memory. In
other words, all processors execute their first instruction in unison, then they exchange
information, then they execute the second instruction, and so on. There are other kinds
of multiprocessors, but this is the easiest one to think about and for writing algorithms.

Goal

When designing algorithms for parallel computers, we want to minimize the time
between the beginning and the end of the concurrent computation. Specifically, we
want our parallel algorithms to be faster than our sequential ones. Naturally, our
algorithms should require a realistic number of processors.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

Parallel Computers

Setup

We think of a parallel computer with a large number of independent processors, where
each processor can execute its own program, and can communicate with other
processors instantaneously and synchronously through a large shared memory. In
other words, all processors execute their first instruction in unison, then they exchange
information, then they execute the second instruction, and so on. There are other kinds
of multiprocessors, but this is the easiest one to think about and for writing algorithms.

Goal

When designing algorithms for parallel computers, we want to minimize the time
between the beginning and the end of the concurrent computation. Specifically, we
want our parallel algorithms to be faster than our sequential ones. Naturally, our
algorithms should require a realistic number of processors.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

Parallel Computers

Setup

We think of a parallel computer with a large number of independent processors, where
each processor can execute its own program, and can communicate with other
processors instantaneously and synchronously through a large shared memory. In
other words, all processors execute their first instruction in unison, then they exchange
information, then they execute the second instruction, and so on. There are other kinds
of multiprocessors, but this is the easiest one to think about and for writing algorithms.

Goal

When designing algorithms for parallel computers, we want to minimize the time
between the beginning and the end of the concurrent computation. Specifically, we
want our parallel algorithms to be faster than our sequential ones. Naturally, our
algorithms should require a realistic number of processors.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

Parallel Computers

Setup

We think of a parallel computer with a large number of independent processors, where
each processor can execute its own program, and can communicate with other
processors instantaneously and synchronously through a large shared memory. In
other words, all processors execute their first instruction in unison, then they exchange
information, then they execute the second instruction, and so on. There are other kinds
of multiprocessors, but this is the easiest one to think about and for writing algorithms.

Goal

When designing algorithms for parallel computers, we want to minimize the time
between the beginning and the end of the concurrent computation. Specifically, we
want our parallel algorithms to be faster than our sequential ones. Naturally, our
algorithms should require a realistic number of processors.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

Parallel Computers

Setup

We think of a parallel computer with a large number of independent processors, where
each processor can execute its own program, and can communicate with other
processors instantaneously and synchronously through a large shared memory. In
other words, all processors execute their first instruction in unison, then they exchange
information, then they execute the second instruction, and so on. There are other kinds
of multiprocessors, but this is the easiest one to think about and for writing algorithms.

Goal

When designing algorithms for parallel computers, we want to minimize the time
between the beginning and the end of the concurrent computation. Specifically, we
want our parallel algorithms to be faster than our sequential ones. Naturally, our
algorithms should require a realistic number of processors.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

Parallel Computers

Setup

We think of a parallel computer with a large number of independent processors, where
each processor can execute its own program, and can communicate with other
processors instantaneously and synchronously through a large shared memory. In
other words, all processors execute their first instruction in unison, then they exchange
information, then they execute the second instruction, and so on. There are other kinds
of multiprocessors, but this is the easiest one to think about and for writing algorithms.

Goal

When designing algorithms for parallel computers, we want to minimize the time
between the beginning and the end of the concurrent computation. Specifically, we
want our parallel algorithms to be faster than our sequential ones. Naturally, our
algorithms should require a realistic number of processors.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

Outline

1 Parallel Algorithms
Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

2 Parallel Models of Computation

3 The Class NC
P-completeness
Odd Max Flow

4 RNC Algorithms
Perfect Matching

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

Matrix Multiplication

Problem

Suppose that we are given two n x n matrices A and B, and we wish to compute their
product C = A · B. In other words, we want to compute all n2 sums of the form

Cij =
nX

k=1

Aik · Bkj , i, j = 1, ..., n.

Example

0BB@
1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16

1CCA
0BB@

1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16

1CCA =

0BB@
90 100 110 120

202 228 254 280
314 356 398 440
426 484 542 600

1CCA

Note

The standard approach would take O(n3) arithmetic operations.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

Matrix Multiplication

Problem

Suppose that we are given two n x n matrices A and B, and we wish to compute their
product C = A · B. In other words, we want to compute all n2 sums of the form

Cij =
nX

k=1

Aik · Bkj , i, j = 1, ..., n.

Example

0BB@
1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16

1CCA
0BB@

1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16

1CCA =

0BB@
90 100 110 120

202 228 254 280
314 356 398 440
426 484 542 600

1CCA

Note

The standard approach would take O(n3) arithmetic operations.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

Matrix Multiplication

Problem

Suppose that we are given two n x n matrices A and B, and we wish to compute their
product C = A · B. In other words, we want to compute all n2 sums of the form

Cij =
nX

k=1

Aik · Bkj , i, j = 1, ..., n.

Example

0BB@
1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16

1CCA
0BB@

1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16

1CCA =

0BB@
90 100 110 120

202 228 254 280
314 356 398 440
426 484 542 600

1CCA

Note

The standard approach would take O(n3) arithmetic operations.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

Matrix Multiplication

Problem

Suppose that we are given two n x n matrices A and B, and we wish to compute their
product C = A · B. In other words, we want to compute all n2 sums of the form

Cij =
nX

k=1

Aik · Bkj , i, j = 1, ..., n.

Example

0BB@
1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16

1CCA
0BB@

1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16

1CCA =

0BB@
90 100 110 120

202 228 254 280
314 356 398 440
426 484 542 600

1CCA

Note

The standard approach would take O(n3) arithmetic operations.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

Matrix Multiplication (Contd.)

Maximize Parallelism

One way is to compute each of the n3 operations in a separate processor, requiring n3

processors. Then, for each Cij (a total of n2 processors), we can get its sum by
collecting the n products that correspond to it in n − 1 additional steps. This gives us a
total of n arithmetic operations using n3 processors. Can we do better?
Yes! We can use binary trees for our addition. With each step, we cut the number of
additions by half, giving us log n steps using n3 processors.

Example

We want to add 1, 10, 27, and 52 to get C1,1 = 90.

1 10 27 52

11 79

90

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

Matrix Multiplication (Contd.)

Maximize Parallelism

One way is to compute each of the n3 operations in a separate processor, requiring n3

processors. Then, for each Cij (a total of n2 processors), we can get its sum by
collecting the n products that correspond to it in n − 1 additional steps. This gives us a
total of n arithmetic operations using n3 processors. Can we do better?
Yes! We can use binary trees for our addition. With each step, we cut the number of
additions by half, giving us log n steps using n3 processors.

Example

We want to add 1, 10, 27, and 52 to get C1,1 = 90.

1 10 27 52

11 79

90

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

Matrix Multiplication (Contd.)

Maximize Parallelism

One way is to compute each of the n3 operations in a separate processor, requiring n3

processors. Then, for each Cij (a total of n2 processors), we can get its sum by
collecting the n products that correspond to it in n − 1 additional steps. This gives us a
total of n arithmetic operations using n3 processors. Can we do better?
Yes! We can use binary trees for our addition. With each step, we cut the number of
additions by half, giving us log n steps using n3 processors.

Example

We want to add 1, 10, 27, and 52 to get C1,1 = 90.

1 10 27 52

11 79

90

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

Matrix Multiplication (Contd.)

Maximize Parallelism

One way is to compute each of the n3 operations in a separate processor, requiring n3

processors. Then, for each Cij (a total of n2 processors), we can get its sum by
collecting the n products that correspond to it in n − 1 additional steps. This gives us a
total of n arithmetic operations using n3 processors. Can we do better?
Yes! We can use binary trees for our addition. With each step, we cut the number of
additions by half, giving us log n steps using n3 processors.

Example

We want to add 1, 10, 27, and 52 to get C1,1 = 90.

1 10 27 52

11 79

90

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

Matrix Multiplication (Contd.)

Maximize Parallelism

One way is to compute each of the n3 operations in a separate processor, requiring n3

processors. Then, for each Cij (a total of n2 processors), we can get its sum by
collecting the n products that correspond to it in n − 1 additional steps. This gives us a
total of n arithmetic operations using n3 processors. Can we do better?
Yes! We can use binary trees for our addition. With each step, we cut the number of
additions by half, giving us log n steps using n3 processors.

Example

We want to add 1, 10, 27, and 52 to get C1,1 = 90.

1 10 27 52

11 79

90

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

Matrix Multiplication (Contd.)

Maximize Parallelism

One way is to compute each of the n3 operations in a separate processor, requiring n3

processors. Then, for each Cij (a total of n2 processors), we can get its sum by
collecting the n products that correspond to it in n − 1 additional steps. This gives us a
total of n arithmetic operations using n3 processors. Can we do better?
Yes! We can use binary trees for our addition. With each step, we cut the number of
additions by half, giving us log n steps using n3 processors.

Example

We want to add 1, 10, 27, and 52 to get C1,1 = 90.

1 10 27 52

11 79

90

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

Matrix Multiplication (Contd.)

Maximize Parallelism

One way is to compute each of the n3 operations in a separate processor, requiring n3

processors. Then, for each Cij (a total of n2 processors), we can get its sum by
collecting the n products that correspond to it in n − 1 additional steps. This gives us a
total of n arithmetic operations using n3 processors. Can we do better?
Yes! We can use binary trees for our addition. With each step, we cut the number of
additions by half, giving us log n steps using n3 processors.

Example

We want to add 1, 10, 27, and 52 to get C1,1 = 90.

1 10 27 52

11 79

90

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

Matrix Multiplication (Contd.)

Key Observation

Our goal in parallel algorithms is to achieve a logarithmic, or polylogarithmic, time using
polynomial processors. This gives us an exponential drop in the complexity. The other
thing to consider is that the amount of work done by a parallel algorithm can be no
smaller than the time complexity of the best sequential algorithm.

Brent’s Principle

If the amount of work needed is c1ni and the parallel time is c2 logj n, we only require
ni

log n processors.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

Matrix Multiplication (Contd.)

Key Observation

Our goal in parallel algorithms is to achieve a logarithmic, or polylogarithmic, time using
polynomial processors. This gives us an exponential drop in the complexity. The other
thing to consider is that the amount of work done by a parallel algorithm can be no
smaller than the time complexity of the best sequential algorithm.

Brent’s Principle

If the amount of work needed is c1ni and the parallel time is c2 logj n, we only require
ni

log n processors.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

Matrix Multiplication (Contd.)

Key Observation

Our goal in parallel algorithms is to achieve a logarithmic, or polylogarithmic, time using
polynomial processors. This gives us an exponential drop in the complexity. The other
thing to consider is that the amount of work done by a parallel algorithm can be no
smaller than the time complexity of the best sequential algorithm.

Brent’s Principle

If the amount of work needed is c1ni and the parallel time is c2 logj n, we only require
ni

log n processors.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

Matrix Multiplication (Contd.)

Key Observation

Our goal in parallel algorithms is to achieve a logarithmic, or polylogarithmic, time using
polynomial processors. This gives us an exponential drop in the complexity. The other
thing to consider is that the amount of work done by a parallel algorithm can be no
smaller than the time complexity of the best sequential algorithm.

Brent’s Principle

If the amount of work needed is c1ni and the parallel time is c2 logj n, we only require
ni

log n processors.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

Outline

1 Parallel Algorithms
Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

2 Parallel Models of Computation

3 The Class NC
P-completeness
Odd Max Flow

4 RNC Algorithms
Perfect Matching

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

REACHABILITY

Problem

Given a graph G = (V ,E) and two nodes 1, n ∈ V, is there a path from 1 to n?

Example

1 4

2 3
Example: Is node 3 reachable from node 1?

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

REACHABILITY

Problem

Given a graph G = (V ,E) and two nodes 1, n ∈ V, is there a path from 1 to n?

Example

1 4

2 3
Example: Is node 3 reachable from node 1?

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

REACHABILITY (Contd.)

Approach

We cannot parallelize the sequential algorithm because the number of parallel steps
will be at least equal to the shortest path from the start node to the goal node, and this
path can be as long as n − 1. In fact, we have to forget everything we know about
sequential algorithms to make this work.
We can use Matrix multiplication for this. Let A be the adjacency matrix of the graph,
where we added the self-loops: Aii = 1 ∀i . Suppose we compute the Boolean product

of A with itself A2 = A · A, where A2
ij =

n_
k=1

Aik ∧ Akj . Note that A2
ij = 1 if and only if

there is a path of length 2 or less from node i to node j . If we apply this to Adlog ne, we
get A2dlog ne, which is the adjacency matrix of the transitive closure of A, which is
simply the answers of all possible REACHABILITY instances on the graph. This can be
computed in O(log2 n) parallel steps with O(n3 log n) total work and, by Brent’s
principle, O(n3

log n) processors.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

REACHABILITY (Contd.)

Approach

We cannot parallelize the sequential algorithm because the number of parallel steps
will be at least equal to the shortest path from the start node to the goal node, and this
path can be as long as n − 1. In fact, we have to forget everything we know about
sequential algorithms to make this work.
We can use Matrix multiplication for this. Let A be the adjacency matrix of the graph,
where we added the self-loops: Aii = 1 ∀i . Suppose we compute the Boolean product

of A with itself A2 = A · A, where A2
ij =

n_
k=1

Aik ∧ Akj . Note that A2
ij = 1 if and only if

there is a path of length 2 or less from node i to node j . If we apply this to Adlog ne, we
get A2dlog ne, which is the adjacency matrix of the transitive closure of A, which is
simply the answers of all possible REACHABILITY instances on the graph. This can be
computed in O(log2 n) parallel steps with O(n3 log n) total work and, by Brent’s
principle, O(n3

log n) processors.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

REACHABILITY (Contd.)

Approach

We cannot parallelize the sequential algorithm because the number of parallel steps
will be at least equal to the shortest path from the start node to the goal node, and this
path can be as long as n − 1. In fact, we have to forget everything we know about
sequential algorithms to make this work.
We can use Matrix multiplication for this. Let A be the adjacency matrix of the graph,
where we added the self-loops: Aii = 1 ∀i . Suppose we compute the Boolean product

of A with itself A2 = A · A, where A2
ij =

n_
k=1

Aik ∧ Akj . Note that A2
ij = 1 if and only if

there is a path of length 2 or less from node i to node j . If we apply this to Adlog ne, we
get A2dlog ne, which is the adjacency matrix of the transitive closure of A, which is
simply the answers of all possible REACHABILITY instances on the graph. This can be
computed in O(log2 n) parallel steps with O(n3 log n) total work and, by Brent’s
principle, O(n3

log n) processors.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

REACHABILITY (Contd.)

Approach

We cannot parallelize the sequential algorithm because the number of parallel steps
will be at least equal to the shortest path from the start node to the goal node, and this
path can be as long as n − 1. In fact, we have to forget everything we know about
sequential algorithms to make this work.
We can use Matrix multiplication for this. Let A be the adjacency matrix of the graph,
where we added the self-loops: Aii = 1 ∀i . Suppose we compute the Boolean product

of A with itself A2 = A · A, where A2
ij =

n_
k=1

Aik ∧ Akj . Note that A2
ij = 1 if and only if

there is a path of length 2 or less from node i to node j . If we apply this to Adlog ne, we
get A2dlog ne, which is the adjacency matrix of the transitive closure of A, which is
simply the answers of all possible REACHABILITY instances on the graph. This can be
computed in O(log2 n) parallel steps with O(n3 log n) total work and, by Brent’s
principle, O(n3

log n) processors.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

REACHABILITY (Contd.)

Approach

We cannot parallelize the sequential algorithm because the number of parallel steps
will be at least equal to the shortest path from the start node to the goal node, and this
path can be as long as n − 1. In fact, we have to forget everything we know about
sequential algorithms to make this work.
We can use Matrix multiplication for this. Let A be the adjacency matrix of the graph,
where we added the self-loops: Aii = 1 ∀i . Suppose we compute the Boolean product

of A with itself A2 = A · A, where A2
ij =

n_
k=1

Aik ∧ Akj . Note that A2
ij = 1 if and only if

there is a path of length 2 or less from node i to node j . If we apply this to Adlog ne, we
get A2dlog ne, which is the adjacency matrix of the transitive closure of A, which is
simply the answers of all possible REACHABILITY instances on the graph. This can be
computed in O(log2 n) parallel steps with O(n3 log n) total work and, by Brent’s
principle, O(n3

log n) processors.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

REACHABILITY (Contd.)

Approach

We cannot parallelize the sequential algorithm because the number of parallel steps
will be at least equal to the shortest path from the start node to the goal node, and this
path can be as long as n − 1. In fact, we have to forget everything we know about
sequential algorithms to make this work.
We can use Matrix multiplication for this. Let A be the adjacency matrix of the graph,
where we added the self-loops: Aii = 1 ∀i . Suppose we compute the Boolean product

of A with itself A2 = A · A, where A2
ij =

n_
k=1

Aik ∧ Akj . Note that A2
ij = 1 if and only if

there is a path of length 2 or less from node i to node j . If we apply this to Adlog ne, we
get A2dlog ne, which is the adjacency matrix of the transitive closure of A, which is
simply the answers of all possible REACHABILITY instances on the graph. This can be
computed in O(log2 n) parallel steps with O(n3 log n) total work and, by Brent’s
principle, O(n3

log n) processors.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

REACHABILITY (Contd.)

Approach

We cannot parallelize the sequential algorithm because the number of parallel steps
will be at least equal to the shortest path from the start node to the goal node, and this
path can be as long as n − 1. In fact, we have to forget everything we know about
sequential algorithms to make this work.
We can use Matrix multiplication for this. Let A be the adjacency matrix of the graph,
where we added the self-loops: Aii = 1 ∀i . Suppose we compute the Boolean product

of A with itself A2 = A · A, where A2
ij =

n_
k=1

Aik ∧ Akj . Note that A2
ij = 1 if and only if

there is a path of length 2 or less from node i to node j . If we apply this to Adlog ne, we
get A2dlog ne, which is the adjacency matrix of the transitive closure of A, which is
simply the answers of all possible REACHABILITY instances on the graph. This can be
computed in O(log2 n) parallel steps with O(n3 log n) total work and, by Brent’s
principle, O(n3

log n) processors.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

REACHABILITY (Contd.)

Approach

We cannot parallelize the sequential algorithm because the number of parallel steps
will be at least equal to the shortest path from the start node to the goal node, and this
path can be as long as n − 1. In fact, we have to forget everything we know about
sequential algorithms to make this work.
We can use Matrix multiplication for this. Let A be the adjacency matrix of the graph,
where we added the self-loops: Aii = 1 ∀i . Suppose we compute the Boolean product

of A with itself A2 = A · A, where A2
ij =

n_
k=1

Aik ∧ Akj . Note that A2
ij = 1 if and only if

there is a path of length 2 or less from node i to node j . If we apply this to Adlog ne, we
get A2dlog ne, which is the adjacency matrix of the transitive closure of A, which is
simply the answers of all possible REACHABILITY instances on the graph. This can be
computed in O(log2 n) parallel steps with O(n3 log n) total work and, by Brent’s
principle, O(n3

log n) processors.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

REACHABILITY (Contd.)

Example

0BB@
1 0 0 1
1 1 1 0
0 0 1 0
0 0 1 1

1CCA
0BB@

1 0 0 1
1 1 1 0
0 0 1 0
0 0 1 1

1CCA =

0BB@
1 0 1 1
1 1 1 1
0 0 1 0
0 0 1 1

1CCA
After applying Matrix multiplication with the adjacency matrix, we can see that node 3

is reachable from node 1 with a path of length 2.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

REACHABILITY (Contd.)

Example

0BB@
1 0 0 1
1 1 1 0
0 0 1 0
0 0 1 1

1CCA
0BB@

1 0 0 1
1 1 1 0
0 0 1 0
0 0 1 1

1CCA =

0BB@
1 0 1 1
1 1 1 1
0 0 1 0
0 0 1 1

1CCA
After applying Matrix multiplication with the adjacency matrix, we can see that node 3

is reachable from node 1 with a path of length 2.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

Outline

1 Parallel Algorithms
Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

2 Parallel Models of Computation

3 The Class NC
P-completeness
Odd Max Flow

4 RNC Algorithms
Perfect Matching

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

Prefix Sums Problem

Problem

Given n integers x1, ..., xn, compute all of the sums of the form
jX

i=2

xi , where

j = 1, ..., n.

Example

Suppose we are given the list (1, 2, 3, 4, 5, 6, 7, 8). This is trivial to solve sequentially
since we would start with 1 + 2, then 1 + 2 + 3, up until 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 to
get (1, 3, 6, 10, 15, 21, 28, 36). However, this approach it too sequential to parallelize.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

Prefix Sums Problem

Problem

Given n integers x1, ..., xn, compute all of the sums of the form
jX

i=2

xi , where

j = 1, ..., n.

Example

Suppose we are given the list (1, 2, 3, 4, 5, 6, 7, 8). This is trivial to solve sequentially
since we would start with 1 + 2, then 1 + 2 + 3, up until 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 to
get (1, 3, 6, 10, 15, 21, 28, 36). However, this approach it too sequential to parallelize.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

Prefix Sums Problem

Problem

Given n integers x1, ..., xn, compute all of the sums of the form
jX

i=2

xi , where

j = 1, ..., n.

Example

Suppose we are given the list (1, 2, 3, 4, 5, 6, 7, 8). This is trivial to solve sequentially
since we would start with 1 + 2, then 1 + 2 + 3, up until 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 to
get (1, 3, 6, 10, 15, 21, 28, 36). However, this approach it too sequential to parallelize.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

Prefix Sums Problem

Problem

Given n integers x1, ..., xn, compute all of the sums of the form
jX

i=2

xi , where

j = 1, ..., n.

Example

Suppose we are given the list (1, 2, 3, 4, 5, 6, 7, 8). This is trivial to solve sequentially
since we would start with 1 + 2, then 1 + 2 + 3, up until 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 to
get (1, 3, 6, 10, 15, 21, 28, 36). However, this approach it too sequential to parallelize.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

Prefix Sums Problem (Contd.)

Algorithm

We can use recursion for this algorithm. We assume that n is a power of 2; otherwise,
we add harmless elements (such as 0). Our first parallel step would be to get the sums
of (x1 + x2), (x3 + x4), ..., (xn−1 + xn). We then get the prefix sums of this sequence
using recursion, which gives us the even numbered items in the list.
Using our example, we would have (3, 7, 11, 15) after the first parallel step, and then
use recursion to get (3, 10, 21, 36).
We now use these numbers and our original list to get the rest of the values using one
more parallel addition step. With our example, we get the values
(1, 3 + 3 = 6, 10 + 5 = 15, 21 + 7 = 28). The total number of parallel steps is 2 log n,
and the amount of work needed is n + n

2 + n
4 + ... ≤ 2n, which, by Brent’s principle,

requires n
log n processors.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

Prefix Sums Problem (Contd.)

Algorithm

We can use recursion for this algorithm. We assume that n is a power of 2; otherwise,
we add harmless elements (such as 0). Our first parallel step would be to get the sums
of (x1 + x2), (x3 + x4), ..., (xn−1 + xn). We then get the prefix sums of this sequence
using recursion, which gives us the even numbered items in the list.
Using our example, we would have (3, 7, 11, 15) after the first parallel step, and then
use recursion to get (3, 10, 21, 36).
We now use these numbers and our original list to get the rest of the values using one
more parallel addition step. With our example, we get the values
(1, 3 + 3 = 6, 10 + 5 = 15, 21 + 7 = 28). The total number of parallel steps is 2 log n,
and the amount of work needed is n + n

2 + n
4 + ... ≤ 2n, which, by Brent’s principle,

requires n
log n processors.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

Prefix Sums Problem (Contd.)

Algorithm

We can use recursion for this algorithm. We assume that n is a power of 2; otherwise,
we add harmless elements (such as 0). Our first parallel step would be to get the sums
of (x1 + x2), (x3 + x4), ..., (xn−1 + xn). We then get the prefix sums of this sequence
using recursion, which gives us the even numbered items in the list.
Using our example, we would have (3, 7, 11, 15) after the first parallel step, and then
use recursion to get (3, 10, 21, 36).
We now use these numbers and our original list to get the rest of the values using one
more parallel addition step. With our example, we get the values
(1, 3 + 3 = 6, 10 + 5 = 15, 21 + 7 = 28). The total number of parallel steps is 2 log n,
and the amount of work needed is n + n

2 + n
4 + ... ≤ 2n, which, by Brent’s principle,

requires n
log n processors.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

Prefix Sums Problem (Contd.)

Algorithm

We can use recursion for this algorithm. We assume that n is a power of 2; otherwise,
we add harmless elements (such as 0). Our first parallel step would be to get the sums
of (x1 + x2), (x3 + x4), ..., (xn−1 + xn). We then get the prefix sums of this sequence
using recursion, which gives us the even numbered items in the list.
Using our example, we would have (3, 7, 11, 15) after the first parallel step, and then
use recursion to get (3, 10, 21, 36).
We now use these numbers and our original list to get the rest of the values using one
more parallel addition step. With our example, we get the values
(1, 3 + 3 = 6, 10 + 5 = 15, 21 + 7 = 28). The total number of parallel steps is 2 log n,
and the amount of work needed is n + n

2 + n
4 + ... ≤ 2n, which, by Brent’s principle,

requires n
log n processors.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

Prefix Sums Problem (Contd.)

Algorithm

We can use recursion for this algorithm. We assume that n is a power of 2; otherwise,
we add harmless elements (such as 0). Our first parallel step would be to get the sums
of (x1 + x2), (x3 + x4), ..., (xn−1 + xn). We then get the prefix sums of this sequence
using recursion, which gives us the even numbered items in the list.
Using our example, we would have (3, 7, 11, 15) after the first parallel step, and then
use recursion to get (3, 10, 21, 36).
We now use these numbers and our original list to get the rest of the values using one
more parallel addition step. With our example, we get the values
(1, 3 + 3 = 6, 10 + 5 = 15, 21 + 7 = 28). The total number of parallel steps is 2 log n,
and the amount of work needed is n + n

2 + n
4 + ... ≤ 2n, which, by Brent’s principle,

requires n
log n processors.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

Prefix Sums Problem (Contd.)

Algorithm

We can use recursion for this algorithm. We assume that n is a power of 2; otherwise,
we add harmless elements (such as 0). Our first parallel step would be to get the sums
of (x1 + x2), (x3 + x4), ..., (xn−1 + xn). We then get the prefix sums of this sequence
using recursion, which gives us the even numbered items in the list.
Using our example, we would have (3, 7, 11, 15) after the first parallel step, and then
use recursion to get (3, 10, 21, 36).
We now use these numbers and our original list to get the rest of the values using one
more parallel addition step. With our example, we get the values
(1, 3 + 3 = 6, 10 + 5 = 15, 21 + 7 = 28). The total number of parallel steps is 2 log n,
and the amount of work needed is n + n

2 + n
4 + ... ≤ 2n, which, by Brent’s principle,

requires n
log n processors.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

Prefix Sums Problem (Contd.)

Algorithm

We can use recursion for this algorithm. We assume that n is a power of 2; otherwise,
we add harmless elements (such as 0). Our first parallel step would be to get the sums
of (x1 + x2), (x3 + x4), ..., (xn−1 + xn). We then get the prefix sums of this sequence
using recursion, which gives us the even numbered items in the list.
Using our example, we would have (3, 7, 11, 15) after the first parallel step, and then
use recursion to get (3, 10, 21, 36).
We now use these numbers and our original list to get the rest of the values using one
more parallel addition step. With our example, we get the values
(1, 3 + 3 = 6, 10 + 5 = 15, 21 + 7 = 28). The total number of parallel steps is 2 log n,
and the amount of work needed is n + n

2 + n
4 + ... ≤ 2n, which, by Brent’s principle,

requires n
log n processors.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

Prefix Sums Problem (Contd.)

Algorithm

We can use recursion for this algorithm. We assume that n is a power of 2; otherwise,
we add harmless elements (such as 0). Our first parallel step would be to get the sums
of (x1 + x2), (x3 + x4), ..., (xn−1 + xn). We then get the prefix sums of this sequence
using recursion, which gives us the even numbered items in the list.
Using our example, we would have (3, 7, 11, 15) after the first parallel step, and then
use recursion to get (3, 10, 21, 36).
We now use these numbers and our original list to get the rest of the values using one
more parallel addition step. With our example, we get the values
(1, 3 + 3 = 6, 10 + 5 = 15, 21 + 7 = 28). The total number of parallel steps is 2 log n,
and the amount of work needed is n + n

2 + n
4 + ... ≤ 2n, which, by Brent’s principle,

requires n
log n processors.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

Outline

1 Parallel Algorithms
Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

2 Parallel Models of Computation

3 The Class NC
P-completeness
Odd Max Flow

4 RNC Algorithms
Perfect Matching

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

Determinants

Problem

Given a matrix A, find its determinant.

Matrix Inversion

We can merge this problem with matrix inversion and then solve both. Suppose we are
given a matrix A, and let A[i] be the matrix omitting the first n − i rows in columns (i.e.
A[i] is the i x i lower right-hand corner of A). Consider the inverse A[i]−1 and the first
element (A[i]−1)11. According to Cramer’s rule (which can be used to solve a system
of two equations with two variables), we get (A[i]−1)11 = det A[i−1]

det A[i] , which holds for
i = n, n − 1, ..., 2. Back-solving these equations, and since A[n] = A, we get

det A = (
nY

i=1

(A[i]−1)11)−1.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

Determinants

Problem

Given a matrix A, find its determinant.

Matrix Inversion

We can merge this problem with matrix inversion and then solve both. Suppose we are
given a matrix A, and let A[i] be the matrix omitting the first n − i rows in columns (i.e.
A[i] is the i x i lower right-hand corner of A). Consider the inverse A[i]−1 and the first
element (A[i]−1)11. According to Cramer’s rule (which can be used to solve a system
of two equations with two variables), we get (A[i]−1)11 = det A[i−1]

det A[i] , which holds for
i = n, n − 1, ..., 2. Back-solving these equations, and since A[n] = A, we get

det A = (
nY

i=1

(A[i]−1)11)−1.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

Determinants

Problem

Given a matrix A, find its determinant.

Matrix Inversion

We can merge this problem with matrix inversion and then solve both. Suppose we are
given a matrix A, and let A[i] be the matrix omitting the first n − i rows in columns (i.e.
A[i] is the i x i lower right-hand corner of A). Consider the inverse A[i]−1 and the first
element (A[i]−1)11. According to Cramer’s rule (which can be used to solve a system
of two equations with two variables), we get (A[i]−1)11 = det A[i−1]

det A[i] , which holds for
i = n, n − 1, ..., 2. Back-solving these equations, and since A[n] = A, we get

det A = (
nY

i=1

(A[i]−1)11)−1.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

Determinants

Problem

Given a matrix A, find its determinant.

Matrix Inversion

We can merge this problem with matrix inversion and then solve both. Suppose we are
given a matrix A, and let A[i] be the matrix omitting the first n − i rows in columns (i.e.
A[i] is the i x i lower right-hand corner of A). Consider the inverse A[i]−1 and the first
element (A[i]−1)11. According to Cramer’s rule (which can be used to solve a system
of two equations with two variables), we get (A[i]−1)11 = det A[i−1]

det A[i] , which holds for
i = n, n − 1, ..., 2. Back-solving these equations, and since A[n] = A, we get

det A = (
nY

i=1

(A[i]−1)11)−1.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

Determinants

Problem

Given a matrix A, find its determinant.

Matrix Inversion

We can merge this problem with matrix inversion and then solve both. Suppose we are
given a matrix A, and let A[i] be the matrix omitting the first n − i rows in columns (i.e.
A[i] is the i x i lower right-hand corner of A). Consider the inverse A[i]−1 and the first
element (A[i]−1)11. According to Cramer’s rule (which can be used to solve a system
of two equations with two variables), we get (A[i]−1)11 = det A[i−1]

det A[i] , which holds for
i = n, n − 1, ..., 2. Back-solving these equations, and since A[n] = A, we get

det A = (
nY

i=1

(A[i]−1)11)−1.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

Determinants

Problem

Given a matrix A, find its determinant.

Matrix Inversion

We can merge this problem with matrix inversion and then solve both. Suppose we are
given a matrix A, and let A[i] be the matrix omitting the first n − i rows in columns (i.e.
A[i] is the i x i lower right-hand corner of A). Consider the inverse A[i]−1 and the first
element (A[i]−1)11. According to Cramer’s rule (which can be used to solve a system
of two equations with two variables), we get (A[i]−1)11 = det A[i−1]

det A[i] , which holds for
i = n, n − 1, ..., 2. Back-solving these equations, and since A[n] = A, we get

det A = (
nY

i=1

(A[i]−1)11)−1.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

Determinants (Contd.)

Approach

We will compute the determinants by first computing the inverses of many matrices, all
in parallel, then multiplying the upper-left entries, and finally inverting the result.
However, we need to use a symbolic matrix for this to work; specifically, the matrix
I − xA. This is because we have a similar situation for 1 x 1 matrices, where we get the

formal power series (1− xA)−1 =
∞X
i=0

(xA)i . In order to get (I − xA[i])−1, we only have

to compute and add in the parallel power of xA[i] using prefix sums.
What about the infinite summation in the previous formula? Since we only need to
compute the determinant of I − xA, which is a polynomial in x of degree n, we can stop
using the summation at the nth addend. Therefore, we compute in parallel all
(I − xA)[i]−1s, each by computing by parallel prefix all matrices of the form (xA)i mod
xn+1, and then adding them together.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

Determinants (Contd.)

Approach

We will compute the determinants by first computing the inverses of many matrices, all
in parallel, then multiplying the upper-left entries, and finally inverting the result.
However, we need to use a symbolic matrix for this to work; specifically, the matrix
I − xA. This is because we have a similar situation for 1 x 1 matrices, where we get the

formal power series (1− xA)−1 =
∞X
i=0

(xA)i . In order to get (I − xA[i])−1, we only have

to compute and add in the parallel power of xA[i] using prefix sums.
What about the infinite summation in the previous formula? Since we only need to
compute the determinant of I − xA, which is a polynomial in x of degree n, we can stop
using the summation at the nth addend. Therefore, we compute in parallel all
(I − xA)[i]−1s, each by computing by parallel prefix all matrices of the form (xA)i mod
xn+1, and then adding them together.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

Determinants (Contd.)

Approach

We will compute the determinants by first computing the inverses of many matrices, all
in parallel, then multiplying the upper-left entries, and finally inverting the result.
However, we need to use a symbolic matrix for this to work; specifically, the matrix
I − xA. This is because we have a similar situation for 1 x 1 matrices, where we get the

formal power series (1− xA)−1 =
∞X
i=0

(xA)i . In order to get (I − xA[i])−1, we only have

to compute and add in the parallel power of xA[i] using prefix sums.
What about the infinite summation in the previous formula? Since we only need to
compute the determinant of I − xA, which is a polynomial in x of degree n, we can stop
using the summation at the nth addend. Therefore, we compute in parallel all
(I − xA)[i]−1s, each by computing by parallel prefix all matrices of the form (xA)i mod
xn+1, and then adding them together.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

Determinants (Contd.)

Approach

We will compute the determinants by first computing the inverses of many matrices, all
in parallel, then multiplying the upper-left entries, and finally inverting the result.
However, we need to use a symbolic matrix for this to work; specifically, the matrix
I − xA. This is because we have a similar situation for 1 x 1 matrices, where we get the

formal power series (1− xA)−1 =
∞X
i=0

(xA)i . In order to get (I − xA[i])−1, we only have

to compute and add in the parallel power of xA[i] using prefix sums.
What about the infinite summation in the previous formula? Since we only need to
compute the determinant of I − xA, which is a polynomial in x of degree n, we can stop
using the summation at the nth addend. Therefore, we compute in parallel all
(I − xA)[i]−1s, each by computing by parallel prefix all matrices of the form (xA)i mod
xn+1, and then adding them together.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

Determinants (Contd.)

Approach

We will compute the determinants by first computing the inverses of many matrices, all
in parallel, then multiplying the upper-left entries, and finally inverting the result.
However, we need to use a symbolic matrix for this to work; specifically, the matrix
I − xA. This is because we have a similar situation for 1 x 1 matrices, where we get the

formal power series (1− xA)−1 =
∞X
i=0

(xA)i . In order to get (I − xA[i])−1, we only have

to compute and add in the parallel power of xA[i] using prefix sums.
What about the infinite summation in the previous formula? Since we only need to
compute the determinant of I − xA, which is a polynomial in x of degree n, we can stop
using the summation at the nth addend. Therefore, we compute in parallel all
(I − xA)[i]−1s, each by computing by parallel prefix all matrices of the form (xA)i mod
xn+1, and then adding them together.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

Determinants (Contd.)

Approach

We will compute the determinants by first computing the inverses of many matrices, all
in parallel, then multiplying the upper-left entries, and finally inverting the result.
However, we need to use a symbolic matrix for this to work; specifically, the matrix
I − xA. This is because we have a similar situation for 1 x 1 matrices, where we get the

formal power series (1− xA)−1 =
∞X
i=0

(xA)i . In order to get (I − xA[i])−1, we only have

to compute and add in the parallel power of xA[i] using prefix sums.
What about the infinite summation in the previous formula? Since we only need to
compute the determinant of I − xA, which is a polynomial in x of degree n, we can stop
using the summation at the nth addend. Therefore, we compute in parallel all
(I − xA)[i]−1s, each by computing by parallel prefix all matrices of the form (xA)i mod
xn+1, and then adding them together.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

Determinants (Contd.)

Approach

We will compute the determinants by first computing the inverses of many matrices, all
in parallel, then multiplying the upper-left entries, and finally inverting the result.
However, we need to use a symbolic matrix for this to work; specifically, the matrix
I − xA. This is because we have a similar situation for 1 x 1 matrices, where we get the

formal power series (1− xA)−1 =
∞X
i=0

(xA)i . In order to get (I − xA[i])−1, we only have

to compute and add in the parallel power of xA[i] using prefix sums.
What about the infinite summation in the previous formula? Since we only need to
compute the determinant of I − xA, which is a polynomial in x of degree n, we can stop
using the summation at the nth addend. Therefore, we compute in parallel all
(I − xA)[i]−1s, each by computing by parallel prefix all matrices of the form (xA)i mod
xn+1, and then adding them together.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

Determinants (Contd.)

Approach (Contd.)

Once we have all (I − xA)[i]−1s, we obtain the upper-left elements and multiply them
together modulo xn+1 to obtain a polynomial of degree n in x , called c0(1 + xp(x))
where c0 6= 0. This polynomial is the inverse of det(I − xA). Therefore, we can get the
inverse of this by using the power series for inversion and truncate after the xn term to

get (c0(1 + xp(x)))−1 = 1
c0

∞X
i=1

(−xp(x))i mod xn+1.

To get det A, we simply get the coefficient of xn in det(I − xA) if n is even. If n is odd,
we multiply by −1.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

Determinants (Contd.)

Approach (Contd.)

Once we have all (I − xA)[i]−1s, we obtain the upper-left elements and multiply them
together modulo xn+1 to obtain a polynomial of degree n in x , called c0(1 + xp(x))
where c0 6= 0. This polynomial is the inverse of det(I − xA). Therefore, we can get the
inverse of this by using the power series for inversion and truncate after the xn term to

get (c0(1 + xp(x)))−1 = 1
c0

∞X
i=1

(−xp(x))i mod xn+1.

To get det A, we simply get the coefficient of xn in det(I − xA) if n is even. If n is odd,
we multiply by −1.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

Determinants (Contd.)

Approach (Contd.)

Once we have all (I − xA)[i]−1s, we obtain the upper-left elements and multiply them
together modulo xn+1 to obtain a polynomial of degree n in x , called c0(1 + xp(x))
where c0 6= 0. This polynomial is the inverse of det(I − xA). Therefore, we can get the
inverse of this by using the power series for inversion and truncate after the xn term to

get (c0(1 + xp(x)))−1 = 1
c0

∞X
i=1

(−xp(x))i mod xn+1.

To get det A, we simply get the coefficient of xn in det(I − xA) if n is even. If n is odd,
we multiply by −1.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

Determinants (Contd.)

Approach (Contd.)

Once we have all (I − xA)[i]−1s, we obtain the upper-left elements and multiply them
together modulo xn+1 to obtain a polynomial of degree n in x , called c0(1 + xp(x))
where c0 6= 0. This polynomial is the inverse of det(I − xA). Therefore, we can get the
inverse of this by using the power series for inversion and truncate after the xn term to

get (c0(1 + xp(x)))−1 = 1
c0

∞X
i=1

(−xp(x))i mod xn+1.

To get det A, we simply get the coefficient of xn in det(I − xA) if n is even. If n is odd,
we multiply by −1.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

Determinants (Contd.)

Approach (Contd.)

Once we have all (I − xA)[i]−1s, we obtain the upper-left elements and multiply them
together modulo xn+1 to obtain a polynomial of degree n in x , called c0(1 + xp(x))
where c0 6= 0. This polynomial is the inverse of det(I − xA). Therefore, we can get the
inverse of this by using the power series for inversion and truncate after the xn term to

get (c0(1 + xp(x)))−1 = 1
c0

∞X
i=1

(−xp(x))i mod xn+1.

To get det A, we simply get the coefficient of xn in det(I − xA) if n is even. If n is odd,
we multiply by −1.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

Determinants (Contd.)

Example

Suppose we want to get the determinant of

A =

„
1 2
−1 3

«
.

Using this method, we start with

I − xA =

„
1− x −2x

x 1− 3x

«
,

and we must compute the (I − xA)[i]−1
11 s for i = 1, 2.

Matrix xA[1] is just (3x), which means
∞X
i=0

(xA[1])i mod x3 = (1 + 3x + 9x2). This

means the upper-left elements of this matrix is (1 + 3x + 9x2).

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

Determinants (Contd.)

Example

Suppose we want to get the determinant of

A =

„
1 2
−1 3

«
.

Using this method, we start with

I − xA =

„
1− x −2x

x 1− 3x

«
,

and we must compute the (I − xA)[i]−1
11 s for i = 1, 2.

Matrix xA[1] is just (3x), which means
∞X
i=0

(xA[1])i mod x3 = (1 + 3x + 9x2). This

means the upper-left elements of this matrix is (1 + 3x + 9x2).

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

Determinants (Contd.)

Example

Suppose we want to get the determinant of

A =

„
1 2
−1 3

«
.

Using this method, we start with

I − xA =

„
1− x −2x

x 1− 3x

«
,

and we must compute the (I − xA)[i]−1
11 s for i = 1, 2.

Matrix xA[1] is just (3x), which means
∞X
i=0

(xA[1])i mod x3 = (1 + 3x + 9x2). This

means the upper-left elements of this matrix is (1 + 3x + 9x2).

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

Determinants (Contd.)

Example

Suppose we want to get the determinant of

A =

„
1 2
−1 3

«
.

Using this method, we start with

I − xA =

„
1− x −2x

x 1− 3x

«
,

and we must compute the (I − xA)[i]−1
11 s for i = 1, 2.

Matrix xA[1] is just (3x), which means
∞X
i=0

(xA[1])i mod x3 = (1 + 3x + 9x2). This

means the upper-left elements of this matrix is (1 + 3x + 9x2).

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

Determinants (Contd.)

Example

For (I − xA)[2]−1, we need the powers

(xA[2])0 =

„
1 0
0 1

«
, (xA[2])1 =

„
x 2x
−x 3x

«
, (xA[2])2 =

„
−x2 8x2

−4x2 7x2

«
;

all higher powers will be ignored since we are working modulo x3. Adding those
together we get that

(I − xA)[2]−1 =

„
1 + x − x2 2x + 8x2

−x − 4x2 1 + 3x + 7x2

«
mod x3, and thus

((I − xA)[2]−1)11 = 1 + x − x2. Multiplying (I − xA[1]−1)11 times ((I − xA)[2]−1)11
gives us (1 + 3x + 9x2)(1 + x − x2) = 1 + 4x + 11x2 = 1 + x(4 + 11x) mod x3.
We now invert this polynomial modulo x3, which gives us
1− (4x + 11x2) + (4x + 11x2)2 = 1− 4x + 5x2 mod x3. Since the determinant of A is
the coefficient of x2, we see that det A = 5.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

Determinants (Contd.)

Example

For (I − xA)[2]−1, we need the powers

(xA[2])0 =

„
1 0
0 1

«
, (xA[2])1 =

„
x 2x
−x 3x

«
, (xA[2])2 =

„
−x2 8x2

−4x2 7x2

«
;

all higher powers will be ignored since we are working modulo x3. Adding those
together we get that

(I − xA)[2]−1 =

„
1 + x − x2 2x + 8x2

−x − 4x2 1 + 3x + 7x2

«
mod x3, and thus

((I − xA)[2]−1)11 = 1 + x − x2. Multiplying (I − xA[1]−1)11 times ((I − xA)[2]−1)11
gives us (1 + 3x + 9x2)(1 + x − x2) = 1 + 4x + 11x2 = 1 + x(4 + 11x) mod x3.
We now invert this polynomial modulo x3, which gives us
1− (4x + 11x2) + (4x + 11x2)2 = 1− 4x + 5x2 mod x3. Since the determinant of A is
the coefficient of x2, we see that det A = 5.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

Determinants (Contd.)

Example

For (I − xA)[2]−1, we need the powers

(xA[2])0 =

„
1 0
0 1

«
, (xA[2])1 =

„
x 2x
−x 3x

«
, (xA[2])2 =

„
−x2 8x2

−4x2 7x2

«
;

all higher powers will be ignored since we are working modulo x3. Adding those
together we get that

(I − xA)[2]−1 =

„
1 + x − x2 2x + 8x2

−x − 4x2 1 + 3x + 7x2

«
mod x3, and thus

((I − xA)[2]−1)11 = 1 + x − x2. Multiplying (I − xA[1]−1)11 times ((I − xA)[2]−1)11
gives us (1 + 3x + 9x2)(1 + x − x2) = 1 + 4x + 11x2 = 1 + x(4 + 11x) mod x3.
We now invert this polynomial modulo x3, which gives us
1− (4x + 11x2) + (4x + 11x2)2 = 1− 4x + 5x2 mod x3. Since the determinant of A is
the coefficient of x2, we see that det A = 5.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

Determinants (Contd.)

Example

For (I − xA)[2]−1, we need the powers

(xA[2])0 =

„
1 0
0 1

«
, (xA[2])1 =

„
x 2x
−x 3x

«
, (xA[2])2 =

„
−x2 8x2

−4x2 7x2

«
;

all higher powers will be ignored since we are working modulo x3. Adding those
together we get that

(I − xA)[2]−1 =

„
1 + x − x2 2x + 8x2

−x − 4x2 1 + 3x + 7x2

«
mod x3, and thus

((I − xA)[2]−1)11 = 1 + x − x2. Multiplying (I − xA[1]−1)11 times ((I − xA)[2]−1)11
gives us (1 + 3x + 9x2)(1 + x − x2) = 1 + 4x + 11x2 = 1 + x(4 + 11x) mod x3.
We now invert this polynomial modulo x3, which gives us
1− (4x + 11x2) + (4x + 11x2)2 = 1− 4x + 5x2 mod x3. Since the determinant of A is
the coefficient of x2, we see that det A = 5.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

Determinants (Contd.)

Example

For (I − xA)[2]−1, we need the powers

(xA[2])0 =

„
1 0
0 1

«
, (xA[2])1 =

„
x 2x
−x 3x

«
, (xA[2])2 =

„
−x2 8x2

−4x2 7x2

«
;

all higher powers will be ignored since we are working modulo x3. Adding those
together we get that

(I − xA)[2]−1 =

„
1 + x − x2 2x + 8x2

−x − 4x2 1 + 3x + 7x2

«
mod x3, and thus

((I − xA)[2]−1)11 = 1 + x − x2. Multiplying (I − xA[1]−1)11 times ((I − xA)[2]−1)11
gives us (1 + 3x + 9x2)(1 + x − x2) = 1 + 4x + 11x2 = 1 + x(4 + 11x) mod x3.
We now invert this polynomial modulo x3, which gives us
1− (4x + 11x2) + (4x + 11x2)2 = 1− 4x + 5x2 mod x3. Since the determinant of A is
the coefficient of x2, we see that det A = 5.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

Determinants (Contd.)

Note

Each of the three stages (computing inverses, multiplying corner elements, inverting
result) can be done in O(log2 n) parallel steps. The first stage needs n parallel matrix
multiplications, or O(n4) total work. However, matrix elements are nth degree
polynomials, not bits; meaning each operation on the polynomials can be done in
O(log n) parallel arithmetic steps for O(n2) total work.
Now, if the elements of the matrix are b-bit integers, then the coefficients of the
polynomials have O(nb) bits, and each arithmetic operation takes O(log n + log b) bit
operations and O(n2b2) total work. Therefore, we can compute the determinant of an
n x n matrix with b-bit integer entries in parallel time O(log3 n(log n + log b)), and
O(n8b2) total work. This is still logarithmic time and polynomial work.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

Determinants (Contd.)

Note

Each of the three stages (computing inverses, multiplying corner elements, inverting
result) can be done in O(log2 n) parallel steps. The first stage needs n parallel matrix
multiplications, or O(n4) total work. However, matrix elements are nth degree
polynomials, not bits; meaning each operation on the polynomials can be done in
O(log n) parallel arithmetic steps for O(n2) total work.
Now, if the elements of the matrix are b-bit integers, then the coefficients of the
polynomials have O(nb) bits, and each arithmetic operation takes O(log n + log b) bit
operations and O(n2b2) total work. Therefore, we can compute the determinant of an
n x n matrix with b-bit integer entries in parallel time O(log3 n(log n + log b)), and
O(n8b2) total work. This is still logarithmic time and polynomial work.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

Determinants (Contd.)

Note

Each of the three stages (computing inverses, multiplying corner elements, inverting
result) can be done in O(log2 n) parallel steps. The first stage needs n parallel matrix
multiplications, or O(n4) total work. However, matrix elements are nth degree
polynomials, not bits; meaning each operation on the polynomials can be done in
O(log n) parallel arithmetic steps for O(n2) total work.
Now, if the elements of the matrix are b-bit integers, then the coefficients of the
polynomials have O(nb) bits, and each arithmetic operation takes O(log n + log b) bit
operations and O(n2b2) total work. Therefore, we can compute the determinant of an
n x n matrix with b-bit integer entries in parallel time O(log3 n(log n + log b)), and
O(n8b2) total work. This is still logarithmic time and polynomial work.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

Determinants (Contd.)

Note

Each of the three stages (computing inverses, multiplying corner elements, inverting
result) can be done in O(log2 n) parallel steps. The first stage needs n parallel matrix
multiplications, or O(n4) total work. However, matrix elements are nth degree
polynomials, not bits; meaning each operation on the polynomials can be done in
O(log n) parallel arithmetic steps for O(n2) total work.
Now, if the elements of the matrix are b-bit integers, then the coefficients of the
polynomials have O(nb) bits, and each arithmetic operation takes O(log n + log b) bit
operations and O(n2b2) total work. Therefore, we can compute the determinant of an
n x n matrix with b-bit integer entries in parallel time O(log3 n(log n + log b)), and
O(n8b2) total work. This is still logarithmic time and polynomial work.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

Determinants (Contd.)

Note

Each of the three stages (computing inverses, multiplying corner elements, inverting
result) can be done in O(log2 n) parallel steps. The first stage needs n parallel matrix
multiplications, or O(n4) total work. However, matrix elements are nth degree
polynomials, not bits; meaning each operation on the polynomials can be done in
O(log n) parallel arithmetic steps for O(n2) total work.
Now, if the elements of the matrix are b-bit integers, then the coefficients of the
polynomials have O(nb) bits, and each arithmetic operation takes O(log n + log b) bit
operations and O(n2b2) total work. Therefore, we can compute the determinant of an
n x n matrix with b-bit integer entries in parallel time O(log3 n(log n + log b)), and
O(n8b2) total work. This is still logarithmic time and polynomial work.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

Determinants (Contd.)

Note

Each of the three stages (computing inverses, multiplying corner elements, inverting
result) can be done in O(log2 n) parallel steps. The first stage needs n parallel matrix
multiplications, or O(n4) total work. However, matrix elements are nth degree
polynomials, not bits; meaning each operation on the polynomials can be done in
O(log n) parallel arithmetic steps for O(n2) total work.
Now, if the elements of the matrix are b-bit integers, then the coefficients of the
polynomials have O(nb) bits, and each arithmetic operation takes O(log n + log b) bit
operations and O(n2b2) total work. Therefore, we can compute the determinant of an
n x n matrix with b-bit integer entries in parallel time O(log3 n(log n + log b)), and
O(n8b2) total work. This is still logarithmic time and polynomial work.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Models

Note

We have already seen different models of computation such as the Turing machine, the
multistring variant, the RAM, and the nondeterministic Turing machine. For parallel
computations, we will be using the Boolean circuit. This is because it has no ”program
counter,” so its computational activity may take place at many gates concurrently.

Definition

Let C be a Boolean circuit where the size of C is the total number of gates in it, and the
depth of C is the number of nodes in the longest path in C. Let C = (C0,C1, ...) be a
uniform family of circuits, and let f (n) and g(n) be functions from the integers to the
integers. We say that the parallel time of C is at most f (n) if for all n the depth of Cn is
at most f (n). Furthermore, we say that the total work of C is at most g(n) if for all
n ≥ 0 the size of Cn is at most g(n). Finally, we let PT/WK(f (n), g(n)) be the class of
all languages L ⊆ {0, 1}∗ such that there is a uniform family of circuits C deciding L
with O(f (n)) parallel time and O(g(n)) work.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Models

Note

We have already seen different models of computation such as the Turing machine, the
multistring variant, the RAM, and the nondeterministic Turing machine. For parallel
computations, we will be using the Boolean circuit. This is because it has no ”program
counter,” so its computational activity may take place at many gates concurrently.

Definition

Let C be a Boolean circuit where the size of C is the total number of gates in it, and the
depth of C is the number of nodes in the longest path in C. Let C = (C0,C1, ...) be a
uniform family of circuits, and let f (n) and g(n) be functions from the integers to the
integers. We say that the parallel time of C is at most f (n) if for all n the depth of Cn is
at most f (n). Furthermore, we say that the total work of C is at most g(n) if for all
n ≥ 0 the size of Cn is at most g(n). Finally, we let PT/WK(f (n), g(n)) be the class of
all languages L ⊆ {0, 1}∗ such that there is a uniform family of circuits C deciding L
with O(f (n)) parallel time and O(g(n)) work.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Models

Note

We have already seen different models of computation such as the Turing machine, the
multistring variant, the RAM, and the nondeterministic Turing machine. For parallel
computations, we will be using the Boolean circuit. This is because it has no ”program
counter,” so its computational activity may take place at many gates concurrently.

Definition

Let C be a Boolean circuit where the size of C is the total number of gates in it, and the
depth of C is the number of nodes in the longest path in C. Let C = (C0,C1, ...) be a
uniform family of circuits, and let f (n) and g(n) be functions from the integers to the
integers. We say that the parallel time of C is at most f (n) if for all n the depth of Cn is
at most f (n). Furthermore, we say that the total work of C is at most g(n) if for all
n ≥ 0 the size of Cn is at most g(n). Finally, we let PT/WK(f (n), g(n)) be the class of
all languages L ⊆ {0, 1}∗ such that there is a uniform family of circuits C deciding L
with O(f (n)) parallel time and O(g(n)) work.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Models

Note

We have already seen different models of computation such as the Turing machine, the
multistring variant, the RAM, and the nondeterministic Turing machine. For parallel
computations, we will be using the Boolean circuit. This is because it has no ”program
counter,” so its computational activity may take place at many gates concurrently.

Definition

Let C be a Boolean circuit where the size of C is the total number of gates in it, and the
depth of C is the number of nodes in the longest path in C. Let C = (C0,C1, ...) be a
uniform family of circuits, and let f (n) and g(n) be functions from the integers to the
integers. We say that the parallel time of C is at most f (n) if for all n the depth of Cn is
at most f (n). Furthermore, we say that the total work of C is at most g(n) if for all
n ≥ 0 the size of Cn is at most g(n). Finally, we let PT/WK(f (n), g(n)) be the class of
all languages L ⊆ {0, 1}∗ such that there is a uniform family of circuits C deciding L
with O(f (n)) parallel time and O(g(n)) work.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Models

Note

We have already seen different models of computation such as the Turing machine, the
multistring variant, the RAM, and the nondeterministic Turing machine. For parallel
computations, we will be using the Boolean circuit. This is because it has no ”program
counter,” so its computational activity may take place at many gates concurrently.

Definition

Let C be a Boolean circuit where the size of C is the total number of gates in it, and the
depth of C is the number of nodes in the longest path in C. Let C = (C0,C1, ...) be a
uniform family of circuits, and let f (n) and g(n) be functions from the integers to the
integers. We say that the parallel time of C is at most f (n) if for all n the depth of Cn is
at most f (n). Furthermore, we say that the total work of C is at most g(n) if for all
n ≥ 0 the size of Cn is at most g(n). Finally, we let PT/WK(f (n), g(n)) be the class of
all languages L ⊆ {0, 1}∗ such that there is a uniform family of circuits C deciding L
with O(f (n)) parallel time and O(g(n)) work.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Models

Note

We have already seen different models of computation such as the Turing machine, the
multistring variant, the RAM, and the nondeterministic Turing machine. For parallel
computations, we will be using the Boolean circuit. This is because it has no ”program
counter,” so its computational activity may take place at many gates concurrently.

Definition

Let C be a Boolean circuit where the size of C is the total number of gates in it, and the
depth of C is the number of nodes in the longest path in C. Let C = (C0,C1, ...) be a
uniform family of circuits, and let f (n) and g(n) be functions from the integers to the
integers. We say that the parallel time of C is at most f (n) if for all n the depth of Cn is
at most f (n). Furthermore, we say that the total work of C is at most g(n) if for all
n ≥ 0 the size of Cn is at most g(n). Finally, we let PT/WK(f (n), g(n)) be the class of
all languages L ⊆ {0, 1}∗ such that there is a uniform family of circuits C deciding L
with O(f (n)) parallel time and O(g(n)) work.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Models

Note

We have already seen different models of computation such as the Turing machine, the
multistring variant, the RAM, and the nondeterministic Turing machine. For parallel
computations, we will be using the Boolean circuit. This is because it has no ”program
counter,” so its computational activity may take place at many gates concurrently.

Definition

Let C be a Boolean circuit where the size of C is the total number of gates in it, and the
depth of C is the number of nodes in the longest path in C. Let C = (C0,C1, ...) be a
uniform family of circuits, and let f (n) and g(n) be functions from the integers to the
integers. We say that the parallel time of C is at most f (n) if for all n the depth of Cn is
at most f (n). Furthermore, we say that the total work of C is at most g(n) if for all
n ≥ 0 the size of Cn is at most g(n). Finally, we let PT/WK(f (n), g(n)) be the class of
all languages L ⊆ {0, 1}∗ such that there is a uniform family of circuits C deciding L
with O(f (n)) parallel time and O(g(n)) work.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Models

Note

We have already seen different models of computation such as the Turing machine, the
multistring variant, the RAM, and the nondeterministic Turing machine. For parallel
computations, we will be using the Boolean circuit. This is because it has no ”program
counter,” so its computational activity may take place at many gates concurrently.

Definition

Let C be a Boolean circuit where the size of C is the total number of gates in it, and the
depth of C is the number of nodes in the longest path in C. Let C = (C0,C1, ...) be a
uniform family of circuits, and let f (n) and g(n) be functions from the integers to the
integers. We say that the parallel time of C is at most f (n) if for all n the depth of Cn is
at most f (n). Furthermore, we say that the total work of C is at most g(n) if for all
n ≥ 0 the size of Cn is at most g(n). Finally, we let PT/WK(f (n), g(n)) be the class of
all languages L ⊆ {0, 1}∗ such that there is a uniform family of circuits C deciding L
with O(f (n)) parallel time and O(g(n)) work.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Parallel Random Access Machines

Definition

Recall that a RAM program is a sequence Π = (π1, ..., πm) of instructions such as
READ, ADD, LOAD, JUMP, etc. Also recall that we have a set of input registers. A
PRAM program (parallel random access machine) is a sequence of RAM programs,
P = (Π1,Π2, ...,Πq), one for each of q RAMS. Each machine can act independently of
the others, but they all share the same input registers. q is not a constant but a function
q(m, n) where m is the number of integers in the input, and n is the total length of these
integers. In other words, for each m and n, we have a different PRAM program Pm,n.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Parallel Random Access Machines

Definition

Recall that a RAM program is a sequence Π = (π1, ..., πm) of instructions such as
READ, ADD, LOAD, JUMP, etc. Also recall that we have a set of input registers. A
PRAM program (parallel random access machine) is a sequence of RAM programs,
P = (Π1,Π2, ...,Πq), one for each of q RAMS. Each machine can act independently of
the others, but they all share the same input registers. q is not a constant but a function
q(m, n) where m is the number of integers in the input, and n is the total length of these
integers. In other words, for each m and n, we have a different PRAM program Pm,n.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Parallel Random Access Machines

Definition

Recall that a RAM program is a sequence Π = (π1, ..., πm) of instructions such as
READ, ADD, LOAD, JUMP, etc. Also recall that we have a set of input registers. A
PRAM program (parallel random access machine) is a sequence of RAM programs,
P = (Π1,Π2, ...,Πq), one for each of q RAMS. Each machine can act independently of
the others, but they all share the same input registers. q is not a constant but a function
q(m, n) where m is the number of integers in the input, and n is the total length of these
integers. In other words, for each m and n, we have a different PRAM program Pm,n.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Parallel Random Access Machines

Definition

Recall that a RAM program is a sequence Π = (π1, ..., πm) of instructions such as
READ, ADD, LOAD, JUMP, etc. Also recall that we have a set of input registers. A
PRAM program (parallel random access machine) is a sequence of RAM programs,
P = (Π1,Π2, ...,Πq), one for each of q RAMS. Each machine can act independently of
the others, but they all share the same input registers. q is not a constant but a function
q(m, n) where m is the number of integers in the input, and n is the total length of these
integers. In other words, for each m and n, we have a different PRAM program Pm,n.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Parallel Random Access Machines

Definition

Recall that a RAM program is a sequence Π = (π1, ..., πm) of instructions such as
READ, ADD, LOAD, JUMP, etc. Also recall that we have a set of input registers. A
PRAM program (parallel random access machine) is a sequence of RAM programs,
P = (Π1,Π2, ...,Πq), one for each of q RAMS. Each machine can act independently of
the others, but they all share the same input registers. q is not a constant but a function
q(m, n) where m is the number of integers in the input, and n is the total length of these
integers. In other words, for each m and n, we have a different PRAM program Pm,n.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Parallel Random Access Machines

Definition

Recall that a RAM program is a sequence Π = (π1, ..., πm) of instructions such as
READ, ADD, LOAD, JUMP, etc. Also recall that we have a set of input registers. A
PRAM program (parallel random access machine) is a sequence of RAM programs,
P = (Π1,Π2, ...,Πq), one for each of q RAMS. Each machine can act independently of
the others, but they all share the same input registers. q is not a constant but a function
q(m, n) where m is the number of integers in the input, and n is the total length of these
integers. In other words, for each m and n, we have a different PRAM program Pm,n.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Optimal and Efficient Work

Note

We have previously mentioned how some algorithms require a specific amount of work.
For example, we know that Matrix multiplication takes log n parallel time and n3 work.
Although the work done is efficient with respect to our O(n3) sequential algorithm, is
the amount of work done optimal?

Definition

A parallel algorithm is said to be optimal if it involves the same amount of work as
performed by the best sequential algorithm.

Note

Our parallel algorithm is not optimal! There are other known algorithms such as
Strassen’s algorithm that has a better running time (approximately O(n2.807)), which
means parallelizing these algorithms would be more better.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Optimal and Efficient Work

Note

We have previously mentioned how some algorithms require a specific amount of work.
For example, we know that Matrix multiplication takes log n parallel time and n3 work.
Although the work done is efficient with respect to our O(n3) sequential algorithm, is
the amount of work done optimal?

Definition

A parallel algorithm is said to be optimal if it involves the same amount of work as
performed by the best sequential algorithm.

Note

Our parallel algorithm is not optimal! There are other known algorithms such as
Strassen’s algorithm that has a better running time (approximately O(n2.807)), which
means parallelizing these algorithms would be more better.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Optimal and Efficient Work

Note

We have previously mentioned how some algorithms require a specific amount of work.
For example, we know that Matrix multiplication takes log n parallel time and n3 work.
Although the work done is efficient with respect to our O(n3) sequential algorithm, is
the amount of work done optimal?

Definition

A parallel algorithm is said to be optimal if it involves the same amount of work as
performed by the best sequential algorithm.

Note

Our parallel algorithm is not optimal! There are other known algorithms such as
Strassen’s algorithm that has a better running time (approximately O(n2.807)), which
means parallelizing these algorithms would be more better.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Optimal and Efficient Work

Note

We have previously mentioned how some algorithms require a specific amount of work.
For example, we know that Matrix multiplication takes log n parallel time and n3 work.
Although the work done is efficient with respect to our O(n3) sequential algorithm, is
the amount of work done optimal?

Definition

A parallel algorithm is said to be optimal if it involves the same amount of work as
performed by the best sequential algorithm.

Note

Our parallel algorithm is not optimal! There are other known algorithms such as
Strassen’s algorithm that has a better running time (approximately O(n2.807)), which
means parallelizing these algorithms would be more better.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Optimal and Efficient Work

Note

We have previously mentioned how some algorithms require a specific amount of work.
For example, we know that Matrix multiplication takes log n parallel time and n3 work.
Although the work done is efficient with respect to our O(n3) sequential algorithm, is
the amount of work done optimal?

Definition

A parallel algorithm is said to be optimal if it involves the same amount of work as
performed by the best sequential algorithm.

Note

Our parallel algorithm is not optimal! There are other known algorithms such as
Strassen’s algorithm that has a better running time (approximately O(n2.807)), which
means parallelizing these algorithms would be more better.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Optimal and Efficient Work

Note

We have previously mentioned how some algorithms require a specific amount of work.
For example, we know that Matrix multiplication takes log n parallel time and n3 work.
Although the work done is efficient with respect to our O(n3) sequential algorithm, is
the amount of work done optimal?

Definition

A parallel algorithm is said to be optimal if it involves the same amount of work as
performed by the best sequential algorithm.

Note

Our parallel algorithm is not optimal! There are other known algorithms such as
Strassen’s algorithm that has a better running time (approximately O(n2.807)), which
means parallelizing these algorithms would be more better.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

P-completeness
Odd Max Flow

Class NC

Definition

We let NC = PT/WK(logk n, nk) be the class of all problems solvable in polylogarithmic
parallel time with polynomial amount of total work.

Note

Although it is argued that NC captures the notion of ”problems satisfactorily solved by
parallel computers” much like P captures the notion of efficient computability in the
sequential context, the argument is not as convincing. This is because in sequential
computation, the difference between polynomial and exponential (such as 2n and n3) is
real and dramatic for when n is small. Although log3 n is smaller than

√
n, we do not

see the difference until n = 1012, and the notion of ”polynomial number of processors”
is absurd.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

P-completeness
Odd Max Flow

Class NC

Definition

We let NC = PT/WK(logk n, nk) be the class of all problems solvable in polylogarithmic
parallel time with polynomial amount of total work.

Note

Although it is argued that NC captures the notion of ”problems satisfactorily solved by
parallel computers” much like P captures the notion of efficient computability in the
sequential context, the argument is not as convincing. This is because in sequential
computation, the difference between polynomial and exponential (such as 2n and n3) is
real and dramatic for when n is small. Although log3 n is smaller than

√
n, we do not

see the difference until n = 1012, and the notion of ”polynomial number of processors”
is absurd.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

P-completeness
Odd Max Flow

Class NC

Definition

We let NC = PT/WK(logk n, nk) be the class of all problems solvable in polylogarithmic
parallel time with polynomial amount of total work.

Note

Although it is argued that NC captures the notion of ”problems satisfactorily solved by
parallel computers” much like P captures the notion of efficient computability in the
sequential context, the argument is not as convincing. This is because in sequential
computation, the difference between polynomial and exponential (such as 2n and n3) is
real and dramatic for when n is small. Although log3 n is smaller than

√
n, we do not

see the difference until n = 1012, and the notion of ”polynomial number of processors”
is absurd.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

P-completeness
Odd Max Flow

Class NC

Definition

We let NC = PT/WK(logk n, nk) be the class of all problems solvable in polylogarithmic
parallel time with polynomial amount of total work.

Note

Although it is argued that NC captures the notion of ”problems satisfactorily solved by
parallel computers” much like P captures the notion of efficient computability in the
sequential context, the argument is not as convincing. This is because in sequential
computation, the difference between polynomial and exponential (such as 2n and n3) is
real and dramatic for when n is small. Although log3 n is smaller than

√
n, we do not

see the difference until n = 1012, and the notion of ”polynomial number of processors”
is absurd.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

P-completeness
Odd Max Flow

NC Refined

Definition

We let NCj = PT/WK(logj n, nk) be the subset of NC in which the parallel time is
O(logj n); the free parameter k means that we allow any degree in the polynomial
accounting for the total work.

Example

REACHABILITY would be NC2 since it can be computed in O(log2 n) parallel time.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

P-completeness
Odd Max Flow

NC Refined

Definition

We let NCj = PT/WK(logj n, nk) be the subset of NC in which the parallel time is
O(logj n); the free parameter k means that we allow any degree in the polynomial
accounting for the total work.

Example

REACHABILITY would be NC2 since it can be computed in O(log2 n) parallel time.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

P-completeness
Odd Max Flow

NC and P

Note

Since the amount of work involved in solving any problem in NC is bounded by a
polynomial, we can see that NC ⊆ P. But is NC = P? This open problem is the
counterpart of the P = NP for parallel computations. This is most likely not true since if
NC = P, then we are saying that any polynomial-time solvable problem could be
parallelized.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

P-completeness
Odd Max Flow

NC and P

Note

Since the amount of work involved in solving any problem in NC is bounded by a
polynomial, we can see that NC ⊆ P. But is NC = P? This open problem is the
counterpart of the P = NP for parallel computations. This is most likely not true since if
NC = P, then we are saying that any polynomial-time solvable problem could be
parallelized.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

P-completeness
Odd Max Flow

NC and P

Note

Since the amount of work involved in solving any problem in NC is bounded by a
polynomial, we can see that NC ⊆ P. But is NC = P? This open problem is the
counterpart of the P = NP for parallel computations. This is most likely not true since if
NC = P, then we are saying that any polynomial-time solvable problem could be
parallelized.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

P-completeness
Odd Max Flow

NC and P

Note

Since the amount of work involved in solving any problem in NC is bounded by a
polynomial, we can see that NC ⊆ P. But is NC = P? This open problem is the
counterpart of the P = NP for parallel computations. This is most likely not true since if
NC = P, then we are saying that any polynomial-time solvable problem could be
parallelized.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

P-completeness
Odd Max Flow

Outline

1 Parallel Algorithms
Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

2 Parallel Models of Computation

3 The Class NC
P-completeness
Odd Max Flow

4 RNC Algorithms
Perfect Matching

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

P-completeness
Odd Max Flow

P-completeness

Definition

A decision problem is P-complete if it is in P and that every problem in P can be
reduced to it by using an appropriate reduction.

Note

P-complete problems are the least likely to be in NC. However, we must first show that
our logarithmic-space reductions preserve parallel complexity.

Theorem

If L ∈ NC reduces to L′, then L′ ∈ NC.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

P-completeness
Odd Max Flow

P-completeness

Definition

A decision problem is P-complete if it is in P and that every problem in P can be
reduced to it by using an appropriate reduction.

Note

P-complete problems are the least likely to be in NC. However, we must first show that
our logarithmic-space reductions preserve parallel complexity.

Theorem

If L ∈ NC reduces to L′, then L′ ∈ NC.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

P-completeness
Odd Max Flow

P-completeness

Definition

A decision problem is P-complete if it is in P and that every problem in P can be
reduced to it by using an appropriate reduction.

Note

P-complete problems are the least likely to be in NC. However, we must first show that
our logarithmic-space reductions preserve parallel complexity.

Theorem

If L ∈ NC reduces to L′, then L′ ∈ NC.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

P-completeness
Odd Max Flow

P-completeness

Definition

A decision problem is P-complete if it is in P and that every problem in P can be
reduced to it by using an appropriate reduction.

Note

P-complete problems are the least likely to be in NC. However, we must first show that
our logarithmic-space reductions preserve parallel complexity.

Theorem

If L ∈ NC reduces to L′, then L′ ∈ NC.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

P-completeness
Odd Max Flow

P-completeness (Contd.)

Proof.

Let R be the logarithmic-space reduction from L to L′. There does exist a logarithmic
space-bounded Turing machine, which we will call R′, that accepts the input (x , i)
(where x is the input string and i is the binary representation of an integer no larger
than |R(x)|) if and only if the i th bit of R(x) is one. We use this setup so we can solve
the REACHABILITY problem for R′ on input (x , i) to compute the i th bit of R(x).
Therefore, if we solve these problems in parallel by NC2 circuits, we can compute all
bits of R(x). Once we have R(x) we can use the NC circuit for L′ to tell whether x ∈ L,
all in NC.

Corollary

If L ∈ NCj reduces to L′, where j ≥ 2, then L′ ∈ NCj .

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

P-completeness
Odd Max Flow

P-completeness (Contd.)

Proof.

Let R be the logarithmic-space reduction from L to L′. There does exist a logarithmic
space-bounded Turing machine, which we will call R′, that accepts the input (x , i)
(where x is the input string and i is the binary representation of an integer no larger
than |R(x)|) if and only if the i th bit of R(x) is one. We use this setup so we can solve
the REACHABILITY problem for R′ on input (x , i) to compute the i th bit of R(x).
Therefore, if we solve these problems in parallel by NC2 circuits, we can compute all
bits of R(x). Once we have R(x) we can use the NC circuit for L′ to tell whether x ∈ L,
all in NC.

Corollary

If L ∈ NCj reduces to L′, where j ≥ 2, then L′ ∈ NCj .

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

P-completeness
Odd Max Flow

P-completeness (Contd.)

Proof.

Let R be the logarithmic-space reduction from L to L′. There does exist a logarithmic
space-bounded Turing machine, which we will call R′, that accepts the input (x , i)
(where x is the input string and i is the binary representation of an integer no larger
than |R(x)|) if and only if the i th bit of R(x) is one. We use this setup so we can solve
the REACHABILITY problem for R′ on input (x , i) to compute the i th bit of R(x).
Therefore, if we solve these problems in parallel by NC2 circuits, we can compute all
bits of R(x). Once we have R(x) we can use the NC circuit for L′ to tell whether x ∈ L,
all in NC.

Corollary

If L ∈ NCj reduces to L′, where j ≥ 2, then L′ ∈ NCj .

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

P-completeness
Odd Max Flow

P-completeness (Contd.)

Proof.

Let R be the logarithmic-space reduction from L to L′. There does exist a logarithmic
space-bounded Turing machine, which we will call R′, that accepts the input (x , i)
(where x is the input string and i is the binary representation of an integer no larger
than |R(x)|) if and only if the i th bit of R(x) is one. We use this setup so we can solve
the REACHABILITY problem for R′ on input (x , i) to compute the i th bit of R(x).
Therefore, if we solve these problems in parallel by NC2 circuits, we can compute all
bits of R(x). Once we have R(x) we can use the NC circuit for L′ to tell whether x ∈ L,
all in NC.

Corollary

If L ∈ NCj reduces to L′, where j ≥ 2, then L′ ∈ NCj .

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

P-completeness
Odd Max Flow

P-completeness (Contd.)

Proof.

Let R be the logarithmic-space reduction from L to L′. There does exist a logarithmic
space-bounded Turing machine, which we will call R′, that accepts the input (x , i)
(where x is the input string and i is the binary representation of an integer no larger
than |R(x)|) if and only if the i th bit of R(x) is one. We use this setup so we can solve
the REACHABILITY problem for R′ on input (x , i) to compute the i th bit of R(x).
Therefore, if we solve these problems in parallel by NC2 circuits, we can compute all
bits of R(x). Once we have R(x) we can use the NC circuit for L′ to tell whether x ∈ L,
all in NC.

Corollary

If L ∈ NCj reduces to L′, where j ≥ 2, then L′ ∈ NCj .

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

P-completeness
Odd Max Flow

P-completeness (Contd.)

Proof.

Let R be the logarithmic-space reduction from L to L′. There does exist a logarithmic
space-bounded Turing machine, which we will call R′, that accepts the input (x , i)
(where x is the input string and i is the binary representation of an integer no larger
than |R(x)|) if and only if the i th bit of R(x) is one. We use this setup so we can solve
the REACHABILITY problem for R′ on input (x , i) to compute the i th bit of R(x).
Therefore, if we solve these problems in parallel by NC2 circuits, we can compute all
bits of R(x). Once we have R(x) we can use the NC circuit for L′ to tell whether x ∈ L,
all in NC.

Corollary

If L ∈ NCj reduces to L′, where j ≥ 2, then L′ ∈ NCj .

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

P-completeness
Odd Max Flow

Outline

1 Parallel Algorithms
Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

2 Parallel Models of Computation

3 The Class NC
P-completeness
Odd Max Flow

4 RNC Algorithms
Perfect Matching

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

P-completeness
Odd Max Flow

ODD MAX FLOW

Problem

Given an network N = (V ,E , s, t , c), is the value of the maximum flow odd?

Theorem

ODD MAX FLOW is P-complete.

Proof

We already know that this problem is in P since we have an O(n5) algorithm by getting
the maximum flow of the shortest path from s to t . To show completeness, we will
reduce MONOTONE CIRCUIT VALUE to the ODD MAX FLOW problem. Recall that the
MONOTONE CIRCUIT VALUE problem states that given a set of gates g1, ..., gn where
each gate is either an AND gate, an OR gate, or a constant value that is true or false,
we wish to compute the value of gn.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

P-completeness
Odd Max Flow

ODD MAX FLOW

Problem

Given an network N = (V ,E , s, t , c), is the value of the maximum flow odd?

Theorem

ODD MAX FLOW is P-complete.

Proof

We already know that this problem is in P since we have an O(n5) algorithm by getting
the maximum flow of the shortest path from s to t . To show completeness, we will
reduce MONOTONE CIRCUIT VALUE to the ODD MAX FLOW problem. Recall that the
MONOTONE CIRCUIT VALUE problem states that given a set of gates g1, ..., gn where
each gate is either an AND gate, an OR gate, or a constant value that is true or false,
we wish to compute the value of gn.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

P-completeness
Odd Max Flow

ODD MAX FLOW

Problem

Given an network N = (V ,E , s, t , c), is the value of the maximum flow odd?

Theorem

ODD MAX FLOW is P-complete.

Proof

We already know that this problem is in P since we have an O(n5) algorithm by getting
the maximum flow of the shortest path from s to t . To show completeness, we will
reduce MONOTONE CIRCUIT VALUE to the ODD MAX FLOW problem. Recall that the
MONOTONE CIRCUIT VALUE problem states that given a set of gates g1, ..., gn where
each gate is either an AND gate, an OR gate, or a constant value that is true or false,
we wish to compute the value of gn.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

P-completeness
Odd Max Flow

ODD MAX FLOW

Problem

Given an network N = (V ,E , s, t , c), is the value of the maximum flow odd?

Theorem

ODD MAX FLOW is P-complete.

Proof

We already know that this problem is in P since we have an O(n5) algorithm by getting
the maximum flow of the shortest path from s to t . To show completeness, we will
reduce MONOTONE CIRCUIT VALUE to the ODD MAX FLOW problem. Recall that the
MONOTONE CIRCUIT VALUE problem states that given a set of gates g1, ..., gn where
each gate is either an AND gate, an OR gate, or a constant value that is true or false,
we wish to compute the value of gn.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

P-completeness
Odd Max Flow

ODD MAX FLOW

Problem

Given an network N = (V ,E , s, t , c), is the value of the maximum flow odd?

Theorem

ODD MAX FLOW is P-complete.

Proof

We already know that this problem is in P since we have an O(n5) algorithm by getting
the maximum flow of the shortest path from s to t . To show completeness, we will
reduce MONOTONE CIRCUIT VALUE to the ODD MAX FLOW problem. Recall that the
MONOTONE CIRCUIT VALUE problem states that given a set of gates g1, ..., gn where
each gate is either an AND gate, an OR gate, or a constant value that is true or false,
we wish to compute the value of gn.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

P-completeness
Odd Max Flow

ODD MAX FLOW (Contd.)

Proof

Given a monotone circuit C, assume that the output gate of C is an OR gate, and no
gate of C has outdegree more than two. We can modify C for this restriction by adding
additional OR gates to any gate whose outdegree is more than two where the inputs of
these gates are false.

∨

∨

∨

∨ false

false

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

P-completeness
Odd Max Flow

ODD MAX FLOW (Contd.)

Proof

Given a monotone circuit C, assume that the output gate of C is an OR gate, and no
gate of C has outdegree more than two. We can modify C for this restriction by adding
additional OR gates to any gate whose outdegree is more than two where the inputs of
these gates are false.

∨

∨

∨

∨ false

false

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

P-completeness
Odd Max Flow

ODD MAX FLOW (Contd.)

Proof

Given a monotone circuit C, assume that the output gate of C is an OR gate, and no
gate of C has outdegree more than two. We can modify C for this restriction by adding
additional OR gates to any gate whose outdegree is more than two where the inputs of
these gates are false.

∨

∨

∨

∨ false

false

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

P-completeness
Odd Max Flow

ODD MAX FLOW (Contd.)

Labeling

We also assume that the gates have been assigned consecutive numbers such that
each gate has smaller label than is predecessor. This will mean that the output gate
will have the label 0.

Construction

The construction is as follows: let each node in the network N produced from C be a
gate plus the nodes s and t (the source and sink). For each edge outgoing from s that
connects to a true gate i , let the capacity of the edge be d2i , where i is the label and d
is the outdegree of gate i . If we connect to a false gate, we let the capacity be 0. From
a true or false gate i to another gate, the capacity of the edge is 2i . From an OR or
AND gate i to another gate, the capacity of the edge is also 2i . From the output gate to
edge t , there is an edge of capacity one.
We now consider any AND or OR gate i . We know that it has several incoming and at
most two outgoing edges. Since the capacity of the outgoing edges is 2i and the
capacities of the incoming edges are at least twice that, we have a surplus of incoming
capacity, denoted at S(i). If i is an AND gate, we make an edge from i to t with
capacity S(i). If i is an OR gate, we make an edge from i to s with capacity S(i).

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

P-completeness
Odd Max Flow

ODD MAX FLOW (Contd.)

Labeling

We also assume that the gates have been assigned consecutive numbers such that
each gate has smaller label than is predecessor. This will mean that the output gate
will have the label 0.

Construction

The construction is as follows: let each node in the network N produced from C be a
gate plus the nodes s and t (the source and sink). For each edge outgoing from s that
connects to a true gate i , let the capacity of the edge be d2i , where i is the label and d
is the outdegree of gate i . If we connect to a false gate, we let the capacity be 0. From
a true or false gate i to another gate, the capacity of the edge is 2i . From an OR or
AND gate i to another gate, the capacity of the edge is also 2i . From the output gate to
edge t , there is an edge of capacity one.
We now consider any AND or OR gate i . We know that it has several incoming and at
most two outgoing edges. Since the capacity of the outgoing edges is 2i and the
capacities of the incoming edges are at least twice that, we have a surplus of incoming
capacity, denoted at S(i). If i is an AND gate, we make an edge from i to t with
capacity S(i). If i is an OR gate, we make an edge from i to s with capacity S(i).

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

P-completeness
Odd Max Flow

ODD MAX FLOW (Contd.)

Labeling

We also assume that the gates have been assigned consecutive numbers such that
each gate has smaller label than is predecessor. This will mean that the output gate
will have the label 0.

Construction

The construction is as follows: let each node in the network N produced from C be a
gate plus the nodes s and t (the source and sink). For each edge outgoing from s that
connects to a true gate i , let the capacity of the edge be d2i , where i is the label and d
is the outdegree of gate i . If we connect to a false gate, we let the capacity be 0. From
a true or false gate i to another gate, the capacity of the edge is 2i . From an OR or
AND gate i to another gate, the capacity of the edge is also 2i . From the output gate to
edge t , there is an edge of capacity one.
We now consider any AND or OR gate i . We know that it has several incoming and at
most two outgoing edges. Since the capacity of the outgoing edges is 2i and the
capacities of the incoming edges are at least twice that, we have a surplus of incoming
capacity, denoted at S(i). If i is an AND gate, we make an edge from i to t with
capacity S(i). If i is an OR gate, we make an edge from i to s with capacity S(i).

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

P-completeness
Odd Max Flow

ODD MAX FLOW (Contd.)

Labeling

We also assume that the gates have been assigned consecutive numbers such that
each gate has smaller label than is predecessor. This will mean that the output gate
will have the label 0.

Construction

The construction is as follows: let each node in the network N produced from C be a
gate plus the nodes s and t (the source and sink). For each edge outgoing from s that
connects to a true gate i , let the capacity of the edge be d2i , where i is the label and d
is the outdegree of gate i . If we connect to a false gate, we let the capacity be 0. From
a true or false gate i to another gate, the capacity of the edge is 2i . From an OR or
AND gate i to another gate, the capacity of the edge is also 2i . From the output gate to
edge t , there is an edge of capacity one.
We now consider any AND or OR gate i . We know that it has several incoming and at
most two outgoing edges. Since the capacity of the outgoing edges is 2i and the
capacities of the incoming edges are at least twice that, we have a surplus of incoming
capacity, denoted at S(i). If i is an AND gate, we make an edge from i to t with
capacity S(i). If i is an OR gate, we make an edge from i to s with capacity S(i).

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

P-completeness
Odd Max Flow

ODD MAX FLOW (Contd.)

Labeling

We also assume that the gates have been assigned consecutive numbers such that
each gate has smaller label than is predecessor. This will mean that the output gate
will have the label 0.

Construction

The construction is as follows: let each node in the network N produced from C be a
gate plus the nodes s and t (the source and sink). For each edge outgoing from s that
connects to a true gate i , let the capacity of the edge be d2i , where i is the label and d
is the outdegree of gate i . If we connect to a false gate, we let the capacity be 0. From
a true or false gate i to another gate, the capacity of the edge is 2i . From an OR or
AND gate i to another gate, the capacity of the edge is also 2i . From the output gate to
edge t , there is an edge of capacity one.
We now consider any AND or OR gate i . We know that it has several incoming and at
most two outgoing edges. Since the capacity of the outgoing edges is 2i and the
capacities of the incoming edges are at least twice that, we have a surplus of incoming
capacity, denoted at S(i). If i is an AND gate, we make an edge from i to t with
capacity S(i). If i is an OR gate, we make an edge from i to s with capacity S(i).

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

P-completeness
Odd Max Flow

ODD MAX FLOW (Contd.)

Labeling

We also assume that the gates have been assigned consecutive numbers such that
each gate has smaller label than is predecessor. This will mean that the output gate
will have the label 0.

Construction

The construction is as follows: let each node in the network N produced from C be a
gate plus the nodes s and t (the source and sink). For each edge outgoing from s that
connects to a true gate i , let the capacity of the edge be d2i , where i is the label and d
is the outdegree of gate i . If we connect to a false gate, we let the capacity be 0. From
a true or false gate i to another gate, the capacity of the edge is 2i . From an OR or
AND gate i to another gate, the capacity of the edge is also 2i . From the output gate to
edge t , there is an edge of capacity one.
We now consider any AND or OR gate i . We know that it has several incoming and at
most two outgoing edges. Since the capacity of the outgoing edges is 2i and the
capacities of the incoming edges are at least twice that, we have a surplus of incoming
capacity, denoted at S(i). If i is an AND gate, we make an edge from i to t with
capacity S(i). If i is an OR gate, we make an edge from i to s with capacity S(i).

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

P-completeness
Odd Max Flow

ODD MAX FLOW (Contd.)

Labeling

We also assume that the gates have been assigned consecutive numbers such that
each gate has smaller label than is predecessor. This will mean that the output gate
will have the label 0.

Construction

The construction is as follows: let each node in the network N produced from C be a
gate plus the nodes s and t (the source and sink). For each edge outgoing from s that
connects to a true gate i , let the capacity of the edge be d2i , where i is the label and d
is the outdegree of gate i . If we connect to a false gate, we let the capacity be 0. From
a true or false gate i to another gate, the capacity of the edge is 2i . From an OR or
AND gate i to another gate, the capacity of the edge is also 2i . From the output gate to
edge t , there is an edge of capacity one.
We now consider any AND or OR gate i . We know that it has several incoming and at
most two outgoing edges. Since the capacity of the outgoing edges is 2i and the
capacities of the incoming edges are at least twice that, we have a surplus of incoming
capacity, denoted at S(i). If i is an AND gate, we make an edge from i to t with
capacity S(i). If i is an OR gate, we make an edge from i to s with capacity S(i).

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

P-completeness
Odd Max Flow

ODD MAX FLOW (Contd.)

Labeling

We also assume that the gates have been assigned consecutive numbers such that
each gate has smaller label than is predecessor. This will mean that the output gate
will have the label 0.

Construction

The construction is as follows: let each node in the network N produced from C be a
gate plus the nodes s and t (the source and sink). For each edge outgoing from s that
connects to a true gate i , let the capacity of the edge be d2i , where i is the label and d
is the outdegree of gate i . If we connect to a false gate, we let the capacity be 0. From
a true or false gate i to another gate, the capacity of the edge is 2i . From an OR or
AND gate i to another gate, the capacity of the edge is also 2i . From the output gate to
edge t , there is an edge of capacity one.
We now consider any AND or OR gate i . We know that it has several incoming and at
most two outgoing edges. Since the capacity of the outgoing edges is 2i and the
capacities of the incoming edges are at least twice that, we have a surplus of incoming
capacity, denoted at S(i). If i is an AND gate, we make an edge from i to t with
capacity S(i). If i is an OR gate, we make an edge from i to s with capacity S(i).

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

P-completeness
Odd Max Flow

ODD MAX FLOW (Contd.)

Labeling

We also assume that the gates have been assigned consecutive numbers such that
each gate has smaller label than is predecessor. This will mean that the output gate
will have the label 0.

Construction

The construction is as follows: let each node in the network N produced from C be a
gate plus the nodes s and t (the source and sink). For each edge outgoing from s that
connects to a true gate i , let the capacity of the edge be d2i , where i is the label and d
is the outdegree of gate i . If we connect to a false gate, we let the capacity be 0. From
a true or false gate i to another gate, the capacity of the edge is 2i . From an OR or
AND gate i to another gate, the capacity of the edge is also 2i . From the output gate to
edge t , there is an edge of capacity one.
We now consider any AND or OR gate i . We know that it has several incoming and at
most two outgoing edges. Since the capacity of the outgoing edges is 2i and the
capacities of the incoming edges are at least twice that, we have a surplus of incoming
capacity, denoted at S(i). If i is an AND gate, we make an edge from i to t with
capacity S(i). If i is an OR gate, we make an edge from i to s with capacity S(i).

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

P-completeness
Odd Max Flow

ODD MAX FLOW (Contd.)

Labeling

We also assume that the gates have been assigned consecutive numbers such that
each gate has smaller label than is predecessor. This will mean that the output gate
will have the label 0.

Construction

The construction is as follows: let each node in the network N produced from C be a
gate plus the nodes s and t (the source and sink). For each edge outgoing from s that
connects to a true gate i , let the capacity of the edge be d2i , where i is the label and d
is the outdegree of gate i . If we connect to a false gate, we let the capacity be 0. From
a true or false gate i to another gate, the capacity of the edge is 2i . From an OR or
AND gate i to another gate, the capacity of the edge is also 2i . From the output gate to
edge t , there is an edge of capacity one.
We now consider any AND or OR gate i . We know that it has several incoming and at
most two outgoing edges. Since the capacity of the outgoing edges is 2i and the
capacities of the incoming edges are at least twice that, we have a surplus of incoming
capacity, denoted at S(i). If i is an AND gate, we make an edge from i to t with
capacity S(i). If i is an OR gate, we make an edge from i to s with capacity S(i).

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

P-completeness
Odd Max Flow

ODD MAX FLOW (Contd.)

Labeling

We also assume that the gates have been assigned consecutive numbers such that
each gate has smaller label than is predecessor. This will mean that the output gate
will have the label 0.

Construction

The construction is as follows: let each node in the network N produced from C be a
gate plus the nodes s and t (the source and sink). For each edge outgoing from s that
connects to a true gate i , let the capacity of the edge be d2i , where i is the label and d
is the outdegree of gate i . If we connect to a false gate, we let the capacity be 0. From
a true or false gate i to another gate, the capacity of the edge is 2i . From an OR or
AND gate i to another gate, the capacity of the edge is also 2i . From the output gate to
edge t , there is an edge of capacity one.
We now consider any AND or OR gate i . We know that it has several incoming and at
most two outgoing edges. Since the capacity of the outgoing edges is 2i and the
capacities of the incoming edges are at least twice that, we have a surplus of incoming
capacity, denoted at S(i). If i is an AND gate, we make an edge from i to t with
capacity S(i). If i is an OR gate, we make an edge from i to s with capacity S(i).

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

P-completeness
Odd Max Flow

ODD MAX FLOW (Contd.)

Labeling

We also assume that the gates have been assigned consecutive numbers such that
each gate has smaller label than is predecessor. This will mean that the output gate
will have the label 0.

Construction

The construction is as follows: let each node in the network N produced from C be a
gate plus the nodes s and t (the source and sink). For each edge outgoing from s that
connects to a true gate i , let the capacity of the edge be d2i , where i is the label and d
is the outdegree of gate i . If we connect to a false gate, we let the capacity be 0. From
a true or false gate i to another gate, the capacity of the edge is 2i . From an OR or
AND gate i to another gate, the capacity of the edge is also 2i . From the output gate to
edge t , there is an edge of capacity one.
We now consider any AND or OR gate i . We know that it has several incoming and at
most two outgoing edges. Since the capacity of the outgoing edges is 2i and the
capacities of the incoming edges are at least twice that, we have a surplus of incoming
capacity, denoted at S(i). If i is an AND gate, we make an edge from i to t with
capacity S(i). If i is an OR gate, we make an edge from i to s with capacity S(i).

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

P-completeness
Odd Max Flow

ODD MAX FLOW (Contd.)

Labeling

We also assume that the gates have been assigned consecutive numbers such that
each gate has smaller label than is predecessor. This will mean that the output gate
will have the label 0.

Construction

The construction is as follows: let each node in the network N produced from C be a
gate plus the nodes s and t (the source and sink). For each edge outgoing from s that
connects to a true gate i , let the capacity of the edge be d2i , where i is the label and d
is the outdegree of gate i . If we connect to a false gate, we let the capacity be 0. From
a true or false gate i to another gate, the capacity of the edge is 2i . From an OR or
AND gate i to another gate, the capacity of the edge is also 2i . From the output gate to
edge t , there is an edge of capacity one.
We now consider any AND or OR gate i . We know that it has several incoming and at
most two outgoing edges. Since the capacity of the outgoing edges is 2i and the
capacities of the incoming edges are at least twice that, we have a surplus of incoming
capacity, denoted at S(i). If i is an AND gate, we make an edge from i to t with
capacity S(i). If i is an OR gate, we make an edge from i to s with capacity S(i).

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

P-completeness
Odd Max Flow

ODD MAX FLOW (Contd.)

Labeling

We also assume that the gates have been assigned consecutive numbers such that
each gate has smaller label than is predecessor. This will mean that the output gate
will have the label 0.

Construction

The construction is as follows: let each node in the network N produced from C be a
gate plus the nodes s and t (the source and sink). For each edge outgoing from s that
connects to a true gate i , let the capacity of the edge be d2i , where i is the label and d
is the outdegree of gate i . If we connect to a false gate, we let the capacity be 0. From
a true or false gate i to another gate, the capacity of the edge is 2i . From an OR or
AND gate i to another gate, the capacity of the edge is also 2i . From the output gate to
edge t , there is an edge of capacity one.
We now consider any AND or OR gate i . We know that it has several incoming and at
most two outgoing edges. Since the capacity of the outgoing edges is 2i and the
capacities of the incoming edges are at least twice that, we have a surplus of incoming
capacity, denoted at S(i). If i is an AND gate, we make an edge from i to t with
capacity S(i). If i is an OR gate, we make an edge from i to s with capacity S(i).

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

P-completeness
Odd Max Flow

ODD MAX FLOW (Contd.)

Proof

true false true

∧ ∨

∨

3 4 5

1 2

0

3 4 5

1 2

0

s

t

8

8 16 16

32
0

2 422

5
44

1

32

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

P-completeness
Odd Max Flow

ODD MAX FLOW (Contd.)

Proof

Given a flow f , we say that a gate is full if all of its outgoing edges are filled to capacity.
A gate is empty if its outgoing edges have zero flow. We say that f is standard if all true
gates are full and all false gates are empty.

3 4 5

1 2

0

s

t

8

8

32

48

3

28

1

32

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

P-completeness
Odd Max Flow

ODD MAX FLOW (Contd.)

Proof

Given a flow f , we say that a gate is full if all of its outgoing edges are filled to capacity.
A gate is empty if its outgoing edges have zero flow. We say that f is standard if all true
gates are full and all false gates are empty.

3 4 5

1 2

0

s

t

8

8

32

48

3

28

1

32

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

P-completeness
Odd Max Flow

ODD MAX FLOW (Contd.)

Proof

Given a flow f , we say that a gate is full if all of its outgoing edges are filled to capacity.
A gate is empty if its outgoing edges have zero flow. We say that f is standard if all true
gates are full and all false gates are empty.

3 4 5

1 2

0

s

t

8

8

32

48

3

28

1

32

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

P-completeness
Odd Max Flow

ODD MAX FLOW (Contd.)

Proof

Given a flow f , we say that a gate is full if all of its outgoing edges are filled to capacity.
A gate is empty if its outgoing edges have zero flow. We say that f is standard if all true
gates are full and all false gates are empty.

3 4 5

1 2

0

s

t

8

8

32

48

3

28

1

32

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

P-completeness
Odd Max Flow

ODD MAX FLOW (Contd.)

Proof

We will show that a standard flow always exists and that it is the maximum flow. We
start by pushing the maximum flow to each input gate outgoing from s that is true. This
means that each true input gate will be full, and each false input gate will be empty. By
induction, all OR gates that are true will have at least one incoming edge with the flow
at maximum capacity, so there will be enough to go out and possibly have a surplus. If
the OR gate if false, then there is no incoming flow. If an AND gate is true, then both
incoming edges are at maximum capacity, so there will be enough outgoing flow and
possibly a surplus. If an AND gate is false, then there is at most one incoming edge
with the flow at capacity, which can be directed to the surplus edge.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

P-completeness
Odd Max Flow

ODD MAX FLOW (Contd.)

Proof

We will show that a standard flow always exists and that it is the maximum flow. We
start by pushing the maximum flow to each input gate outgoing from s that is true. This
means that each true input gate will be full, and each false input gate will be empty. By
induction, all OR gates that are true will have at least one incoming edge with the flow
at maximum capacity, so there will be enough to go out and possibly have a surplus. If
the OR gate if false, then there is no incoming flow. If an AND gate is true, then both
incoming edges are at maximum capacity, so there will be enough outgoing flow and
possibly a surplus. If an AND gate is false, then there is at most one incoming edge
with the flow at capacity, which can be directed to the surplus edge.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

P-completeness
Odd Max Flow

ODD MAX FLOW (Contd.)

Proof

We will show that a standard flow always exists and that it is the maximum flow. We
start by pushing the maximum flow to each input gate outgoing from s that is true. This
means that each true input gate will be full, and each false input gate will be empty. By
induction, all OR gates that are true will have at least one incoming edge with the flow
at maximum capacity, so there will be enough to go out and possibly have a surplus. If
the OR gate if false, then there is no incoming flow. If an AND gate is true, then both
incoming edges are at maximum capacity, so there will be enough outgoing flow and
possibly a surplus. If an AND gate is false, then there is at most one incoming edge
with the flow at capacity, which can be directed to the surplus edge.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

P-completeness
Odd Max Flow

ODD MAX FLOW (Contd.)

Proof

We will show that a standard flow always exists and that it is the maximum flow. We
start by pushing the maximum flow to each input gate outgoing from s that is true. This
means that each true input gate will be full, and each false input gate will be empty. By
induction, all OR gates that are true will have at least one incoming edge with the flow
at maximum capacity, so there will be enough to go out and possibly have a surplus. If
the OR gate if false, then there is no incoming flow. If an AND gate is true, then both
incoming edges are at maximum capacity, so there will be enough outgoing flow and
possibly a surplus. If an AND gate is false, then there is at most one incoming edge
with the flow at capacity, which can be directed to the surplus edge.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

P-completeness
Odd Max Flow

ODD MAX FLOW (Contd.)

Proof

We will show that a standard flow always exists and that it is the maximum flow. We
start by pushing the maximum flow to each input gate outgoing from s that is true. This
means that each true input gate will be full, and each false input gate will be empty. By
induction, all OR gates that are true will have at least one incoming edge with the flow
at maximum capacity, so there will be enough to go out and possibly have a surplus. If
the OR gate if false, then there is no incoming flow. If an AND gate is true, then both
incoming edges are at maximum capacity, so there will be enough outgoing flow and
possibly a surplus. If an AND gate is false, then there is at most one incoming edge
with the flow at capacity, which can be directed to the surplus edge.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

P-completeness
Odd Max Flow

ODD MAX FLOW (Contd.)

Proof

We will show that a standard flow always exists and that it is the maximum flow. We
start by pushing the maximum flow to each input gate outgoing from s that is true. This
means that each true input gate will be full, and each false input gate will be empty. By
induction, all OR gates that are true will have at least one incoming edge with the flow
at maximum capacity, so there will be enough to go out and possibly have a surplus. If
the OR gate if false, then there is no incoming flow. If an AND gate is true, then both
incoming edges are at maximum capacity, so there will be enough outgoing flow and
possibly a surplus. If an AND gate is false, then there is at most one incoming edge
with the flow at capacity, which can be directed to the surplus edge.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

P-completeness
Odd Max Flow

ODD MAX FLOW (Contd.)

Proof

We will show that a standard flow always exists and that it is the maximum flow. We
start by pushing the maximum flow to each input gate outgoing from s that is true. This
means that each true input gate will be full, and each false input gate will be empty. By
induction, all OR gates that are true will have at least one incoming edge with the flow
at maximum capacity, so there will be enough to go out and possibly have a surplus. If
the OR gate if false, then there is no incoming flow. If an AND gate is true, then both
incoming edges are at maximum capacity, so there will be enough outgoing flow and
possibly a surplus. If an AND gate is false, then there is at most one incoming edge
with the flow at capacity, which can be directed to the surplus edge.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

P-completeness
Odd Max Flow

ODD MAX FLOW (Contd.)

Proof.

We now separate N into two groups: one group will contain s and all of the true gates,
and the other group will contain t and all of the false gates.

s 3

5 2

0

1

4

t

8

1

Note that there are two types edges going from the first group to the second: edges
from true OR gates (or true input gates) to false AND gates, or from true AND gates (or
output gate if true) to t . Both types are full and account for all flow going into t .
Therefore the capacity of this cut is the value of f and is the maximum by the max-flow
min-cut theorem. Finally, notice that all flows are even integers except possibly from
the output gate to t . This means that the value of the max flow is odd if and only if the
output gate if full, which happens if and only if the output gate is true.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

P-completeness
Odd Max Flow

ODD MAX FLOW (Contd.)

Proof.

We now separate N into two groups: one group will contain s and all of the true gates,
and the other group will contain t and all of the false gates.

s 3

5 2

0

1

4

t

8

1

Note that there are two types edges going from the first group to the second: edges
from true OR gates (or true input gates) to false AND gates, or from true AND gates (or
output gate if true) to t . Both types are full and account for all flow going into t .
Therefore the capacity of this cut is the value of f and is the maximum by the max-flow
min-cut theorem. Finally, notice that all flows are even integers except possibly from
the output gate to t . This means that the value of the max flow is odd if and only if the
output gate if full, which happens if and only if the output gate is true.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

P-completeness
Odd Max Flow

ODD MAX FLOW (Contd.)

Proof.

We now separate N into two groups: one group will contain s and all of the true gates,
and the other group will contain t and all of the false gates.

s 3

5 2

0

1

4

t

8

1

Note that there are two types edges going from the first group to the second: edges
from true OR gates (or true input gates) to false AND gates, or from true AND gates (or
output gate if true) to t . Both types are full and account for all flow going into t .
Therefore the capacity of this cut is the value of f and is the maximum by the max-flow
min-cut theorem. Finally, notice that all flows are even integers except possibly from
the output gate to t . This means that the value of the max flow is odd if and only if the
output gate if full, which happens if and only if the output gate is true.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

P-completeness
Odd Max Flow

ODD MAX FLOW (Contd.)

Proof.

We now separate N into two groups: one group will contain s and all of the true gates,
and the other group will contain t and all of the false gates.

s 3

5 2

0

1

4

t

8

1

Note that there are two types edges going from the first group to the second: edges
from true OR gates (or true input gates) to false AND gates, or from true AND gates (or
output gate if true) to t . Both types are full and account for all flow going into t .
Therefore the capacity of this cut is the value of f and is the maximum by the max-flow
min-cut theorem. Finally, notice that all flows are even integers except possibly from
the output gate to t . This means that the value of the max flow is odd if and only if the
output gate if full, which happens if and only if the output gate is true.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

P-completeness
Odd Max Flow

ODD MAX FLOW (Contd.)

Proof.

We now separate N into two groups: one group will contain s and all of the true gates,
and the other group will contain t and all of the false gates.

s 3

5 2

0

1

4

t

8

1

Note that there are two types edges going from the first group to the second: edges
from true OR gates (or true input gates) to false AND gates, or from true AND gates (or
output gate if true) to t . Both types are full and account for all flow going into t .
Therefore the capacity of this cut is the value of f and is the maximum by the max-flow
min-cut theorem. Finally, notice that all flows are even integers except possibly from
the output gate to t . This means that the value of the max flow is odd if and only if the
output gate if full, which happens if and only if the output gate is true.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

P-completeness
Odd Max Flow

ODD MAX FLOW (Contd.)

Proof.

We now separate N into two groups: one group will contain s and all of the true gates,
and the other group will contain t and all of the false gates.

s 3

5 2

0

1

4

t

8

1

Note that there are two types edges going from the first group to the second: edges
from true OR gates (or true input gates) to false AND gates, or from true AND gates (or
output gate if true) to t . Both types are full and account for all flow going into t .
Therefore the capacity of this cut is the value of f and is the maximum by the max-flow
min-cut theorem. Finally, notice that all flows are even integers except possibly from
the output gate to t . This means that the value of the max flow is odd if and only if the
output gate if full, which happens if and only if the output gate is true.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

P-completeness
Odd Max Flow

ODD MAX FLOW (Contd.)

Proof.

We now separate N into two groups: one group will contain s and all of the true gates,
and the other group will contain t and all of the false gates.

s 3

5 2

0

1

4

t

8

1

Note that there are two types edges going from the first group to the second: edges
from true OR gates (or true input gates) to false AND gates, or from true AND gates (or
output gate if true) to t . Both types are full and account for all flow going into t .
Therefore the capacity of this cut is the value of f and is the maximum by the max-flow
min-cut theorem. Finally, notice that all flows are even integers except possibly from
the output gate to t . This means that the value of the max flow is odd if and only if the
output gate if full, which happens if and only if the output gate is true.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Perfect Matching

The Class RNC

Definition

The class RNC consists of all languages L that have a randomized algorithm that is
solvable in polylogarithmic parallel time with polynomial amount of total work, and the
probability of producing a correct solution is at least 1

2 .

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Perfect Matching

Outline

1 Parallel Algorithms
Matrix Multiplication
Graph Reachability
Arithmetic Operations
Determinants and Inverses

2 Parallel Models of Computation

3 The Class NC
P-completeness
Odd Max Flow

4 RNC Algorithms
Perfect Matching

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Perfect Matching

Perfect Matching is in RNC

Problem

Given a bipartite graph, does it have a perfect matching, one where each node is
matched to exactly one other node and no two matchings share the same node?

Example

1

2

3

4

5

6

Bipartite Graph

1

2

3

4

5

6

Perfect Matching

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Perfect Matching

Perfect Matching is in RNC

Problem

Given a bipartite graph, does it have a perfect matching, one where each node is
matched to exactly one other node and no two matchings share the same node?

Example

1

2

3

4

5

6

Bipartite Graph

1

2

3

4

5

6

Perfect Matching

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Perfect Matching

Perfect Matching is in RNC (Contd.)

Note

We can use the minimum-weight perfect matching problem to show this. Suppose that
each edge (ui , uj) ∈ E has a weight wij associated with it, and we want not just any

perfect matching, but the matching π that minimizes w(π) =
nX

i=1

wi,π(i). There is an

NC algorithm for this when the weights are small and polynomial and the
minimum-weight matching is unique.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Perfect Matching

Perfect Matching is in RNC (Contd.)

Note

We can use the minimum-weight perfect matching problem to show this. Suppose that
each edge (ui , uj) ∈ E has a weight wij associated with it, and we want not just any

perfect matching, but the matching π that minimizes w(π) =
nX

i=1

wi,π(i). There is an

NC algorithm for this when the weights are small and polynomial and the
minimum-weight matching is unique.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Perfect Matching

Perfect Matching is in RNC (Contd.)

Note

We can use the minimum-weight perfect matching problem to show this. Suppose that
each edge (ui , uj) ∈ E has a weight wij associated with it, and we want not just any

perfect matching, but the matching π that minimizes w(π) =
nX

i=1

wi,π(i). There is an

NC algorithm for this when the weights are small and polynomial and the
minimum-weight matching is unique.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Perfect Matching

Perfect Matching is in RNC (Contd.)

Algorithm

We define a matrix AG,w whose i, j th elements is 2wij if (ui , vj) is an edge, and 0
otherwise. Recall that det AG,w =

X
π

σ(π)Πn
i=1AG,w

i,π(i), which is actually 2w(π) since we

are not concerned about permutations that are not perfect matchings (those terms are
zero). Since the minimum weight is unique, let this be w∗. This means all terms of
det AG,w are multiples of 2w∗ , and all of them but one will be even multiples of 2w∗ .
Therefore, 2w∗ is the highest power of two that divides det AG,w , which means we can
calculate w∗ efficiently in parallel.
We first get det AG,w using our NC algorithm for determinants. w∗ will be the number
of trailing zeros in the binary representation of the determinant. To see whether an
edge (ui , vj) is in the minimum-weight perfect matching, we set the weight of this edge
to 0. If the new minimum weight is w∗ − wij , then our edge is in this matching. Each of
these tests can be done in parallel.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Perfect Matching

Perfect Matching is in RNC (Contd.)

Algorithm

We define a matrix AG,w whose i, j th elements is 2wij if (ui , vj) is an edge, and 0
otherwise. Recall that det AG,w =

X
π

σ(π)Πn
i=1AG,w

i,π(i), which is actually 2w(π) since we

are not concerned about permutations that are not perfect matchings (those terms are
zero). Since the minimum weight is unique, let this be w∗. This means all terms of
det AG,w are multiples of 2w∗ , and all of them but one will be even multiples of 2w∗ .
Therefore, 2w∗ is the highest power of two that divides det AG,w , which means we can
calculate w∗ efficiently in parallel.
We first get det AG,w using our NC algorithm for determinants. w∗ will be the number
of trailing zeros in the binary representation of the determinant. To see whether an
edge (ui , vj) is in the minimum-weight perfect matching, we set the weight of this edge
to 0. If the new minimum weight is w∗ − wij , then our edge is in this matching. Each of
these tests can be done in parallel.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Perfect Matching

Perfect Matching is in RNC (Contd.)

Algorithm

We define a matrix AG,w whose i, j th elements is 2wij if (ui , vj) is an edge, and 0
otherwise. Recall that det AG,w =

X
π

σ(π)Πn
i=1AG,w

i,π(i), which is actually 2w(π) since we

are not concerned about permutations that are not perfect matchings (those terms are
zero). Since the minimum weight is unique, let this be w∗. This means all terms of
det AG,w are multiples of 2w∗ , and all of them but one will be even multiples of 2w∗ .
Therefore, 2w∗ is the highest power of two that divides det AG,w , which means we can
calculate w∗ efficiently in parallel.
We first get det AG,w using our NC algorithm for determinants. w∗ will be the number
of trailing zeros in the binary representation of the determinant. To see whether an
edge (ui , vj) is in the minimum-weight perfect matching, we set the weight of this edge
to 0. If the new minimum weight is w∗ − wij , then our edge is in this matching. Each of
these tests can be done in parallel.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Perfect Matching

Perfect Matching is in RNC (Contd.)

Algorithm

We define a matrix AG,w whose i, j th elements is 2wij if (ui , vj) is an edge, and 0
otherwise. Recall that det AG,w =

X
π

σ(π)Πn
i=1AG,w

i,π(i), which is actually 2w(π) since we

are not concerned about permutations that are not perfect matchings (those terms are
zero). Since the minimum weight is unique, let this be w∗. This means all terms of
det AG,w are multiples of 2w∗ , and all of them but one will be even multiples of 2w∗ .
Therefore, 2w∗ is the highest power of two that divides det AG,w , which means we can
calculate w∗ efficiently in parallel.
We first get det AG,w using our NC algorithm for determinants. w∗ will be the number
of trailing zeros in the binary representation of the determinant. To see whether an
edge (ui , vj) is in the minimum-weight perfect matching, we set the weight of this edge
to 0. If the new minimum weight is w∗ − wij , then our edge is in this matching. Each of
these tests can be done in parallel.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Perfect Matching

Perfect Matching is in RNC (Contd.)

Algorithm

We define a matrix AG,w whose i, j th elements is 2wij if (ui , vj) is an edge, and 0
otherwise. Recall that det AG,w =

X
π

σ(π)Πn
i=1AG,w

i,π(i), which is actually 2w(π) since we

are not concerned about permutations that are not perfect matchings (those terms are
zero). Since the minimum weight is unique, let this be w∗. This means all terms of
det AG,w are multiples of 2w∗ , and all of them but one will be even multiples of 2w∗ .
Therefore, 2w∗ is the highest power of two that divides det AG,w , which means we can
calculate w∗ efficiently in parallel.
We first get det AG,w using our NC algorithm for determinants. w∗ will be the number
of trailing zeros in the binary representation of the determinant. To see whether an
edge (ui , vj) is in the minimum-weight perfect matching, we set the weight of this edge
to 0. If the new minimum weight is w∗ − wij , then our edge is in this matching. Each of
these tests can be done in parallel.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Perfect Matching

Perfect Matching is in RNC (Contd.)

Algorithm

We define a matrix AG,w whose i, j th elements is 2wij if (ui , vj) is an edge, and 0
otherwise. Recall that det AG,w =

X
π

σ(π)Πn
i=1AG,w

i,π(i), which is actually 2w(π) since we

are not concerned about permutations that are not perfect matchings (those terms are
zero). Since the minimum weight is unique, let this be w∗. This means all terms of
det AG,w are multiples of 2w∗ , and all of them but one will be even multiples of 2w∗ .
Therefore, 2w∗ is the highest power of two that divides det AG,w , which means we can
calculate w∗ efficiently in parallel.
We first get det AG,w using our NC algorithm for determinants. w∗ will be the number
of trailing zeros in the binary representation of the determinant. To see whether an
edge (ui , vj) is in the minimum-weight perfect matching, we set the weight of this edge
to 0. If the new minimum weight is w∗ − wij , then our edge is in this matching. Each of
these tests can be done in parallel.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Perfect Matching

Perfect Matching is in RNC (Contd.)

Algorithm

We define a matrix AG,w whose i, j th elements is 2wij if (ui , vj) is an edge, and 0
otherwise. Recall that det AG,w =

X
π

σ(π)Πn
i=1AG,w

i,π(i), which is actually 2w(π) since we

are not concerned about permutations that are not perfect matchings (those terms are
zero). Since the minimum weight is unique, let this be w∗. This means all terms of
det AG,w are multiples of 2w∗ , and all of them but one will be even multiples of 2w∗ .
Therefore, 2w∗ is the highest power of two that divides det AG,w , which means we can
calculate w∗ efficiently in parallel.
We first get det AG,w using our NC algorithm for determinants. w∗ will be the number
of trailing zeros in the binary representation of the determinant. To see whether an
edge (ui , vj) is in the minimum-weight perfect matching, we set the weight of this edge
to 0. If the new minimum weight is w∗ − wij , then our edge is in this matching. Each of
these tests can be done in parallel.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Perfect Matching

Perfect Matching is in RNC (Contd.)

Algorithm

We define a matrix AG,w whose i, j th elements is 2wij if (ui , vj) is an edge, and 0
otherwise. Recall that det AG,w =

X
π

σ(π)Πn
i=1AG,w

i,π(i), which is actually 2w(π) since we

are not concerned about permutations that are not perfect matchings (those terms are
zero). Since the minimum weight is unique, let this be w∗. This means all terms of
det AG,w are multiples of 2w∗ , and all of them but one will be even multiples of 2w∗ .
Therefore, 2w∗ is the highest power of two that divides det AG,w , which means we can
calculate w∗ efficiently in parallel.
We first get det AG,w using our NC algorithm for determinants. w∗ will be the number
of trailing zeros in the binary representation of the determinant. To see whether an
edge (ui , vj) is in the minimum-weight perfect matching, we set the weight of this edge
to 0. If the new minimum weight is w∗ − wij , then our edge is in this matching. Each of
these tests can be done in parallel.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Perfect Matching

Perfect Matching is in RNC (Contd.)

Algorithm

We define a matrix AG,w whose i, j th elements is 2wij if (ui , vj) is an edge, and 0
otherwise. Recall that det AG,w =

X
π

σ(π)Πn
i=1AG,w

i,π(i), which is actually 2w(π) since we

are not concerned about permutations that are not perfect matchings (those terms are
zero). Since the minimum weight is unique, let this be w∗. This means all terms of
det AG,w are multiples of 2w∗ , and all of them but one will be even multiples of 2w∗ .
Therefore, 2w∗ is the highest power of two that divides det AG,w , which means we can
calculate w∗ efficiently in parallel.
We first get det AG,w using our NC algorithm for determinants. w∗ will be the number
of trailing zeros in the binary representation of the determinant. To see whether an
edge (ui , vj) is in the minimum-weight perfect matching, we set the weight of this edge
to 0. If the new minimum weight is w∗ − wij , then our edge is in this matching. Each of
these tests can be done in parallel.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Perfect Matching

Perfect Matching is in RNC (Contd.)

Algorithm

We define a matrix AG,w whose i, j th elements is 2wij if (ui , vj) is an edge, and 0
otherwise. Recall that det AG,w =

X
π

σ(π)Πn
i=1AG,w

i,π(i), which is actually 2w(π) since we

are not concerned about permutations that are not perfect matchings (those terms are
zero). Since the minimum weight is unique, let this be w∗. This means all terms of
det AG,w are multiples of 2w∗ , and all of them but one will be even multiples of 2w∗ .
Therefore, 2w∗ is the highest power of two that divides det AG,w , which means we can
calculate w∗ efficiently in parallel.
We first get det AG,w using our NC algorithm for determinants. w∗ will be the number
of trailing zeros in the binary representation of the determinant. To see whether an
edge (ui , vj) is in the minimum-weight perfect matching, we set the weight of this edge
to 0. If the new minimum weight is w∗ − wij , then our edge is in this matching. Each of
these tests can be done in parallel.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Perfect Matching

Perfect Matching is in RNC (Contd.)

Random Component

If we randomly assign small weights to the edges, we get a high probability that the
minimum-weight matching is unique.

Lemma

Suppose that the edges in E are assigned independently and randomly weights
between 1 and 2|E |. If a perfect matching exists, then with probability at least 1

2 the
minimum-weight perfect matching is unique.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Perfect Matching

Perfect Matching is in RNC (Contd.)

Random Component

If we randomly assign small weights to the edges, we get a high probability that the
minimum-weight matching is unique.

Lemma

Suppose that the edges in E are assigned independently and randomly weights
between 1 and 2|E |. If a perfect matching exists, then with probability at least 1

2 the
minimum-weight perfect matching is unique.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Perfect Matching

Perfect Matching is in RNC (Contd.)

Random Component

If we randomly assign small weights to the edges, we get a high probability that the
minimum-weight matching is unique.

Lemma

Suppose that the edges in E are assigned independently and randomly weights
between 1 and 2|E |. If a perfect matching exists, then with probability at least 1

2 the
minimum-weight perfect matching is unique.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Perfect Matching

Perfect Matching is in RNC (Contd.)

Proof.

We call an edge bad if it is in one minimum-weight matching but not in the other, which
means the minimum-weight perfect matching is unique if and only if there are no bad
edges. Suppose all weights have been assigned except for edge e. Let w∗[ē] be the
smallest weight among all perfect matchings that do not contain e, and let w∗[e] be the
smallest weight among all perfect matching that do contain e, but not including the
weight of e. Let ∆ = w∗[ē]− w∗[e]
We now get the weight wij of e. e is bad if and only if wij = ∆. This is because if
wij < ∆, then e is in every minimum-weight matching, and if wij > ∆, then e is not in
any minimum-weight matching. If wij = ∆, then e is bad since both matchings are now
minima. It follows that prob[e is bad] ≤ 1

2|E| because this is the probability that a
randomly drawn integer between 1 and 2|E | will coincide with ∆. This means the
probability that there is some bad edge among the |E | ones is at most |E | times that
bound, which is no more than half.

Summary

Assign random weights to the edges, and run the algorithm that computes the
minimum-weight matching if it is unique. We have at least a probability of 1

2 that our
perfect matching is unique.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Perfect Matching

Perfect Matching is in RNC (Contd.)

Proof.

We call an edge bad if it is in one minimum-weight matching but not in the other, which
means the minimum-weight perfect matching is unique if and only if there are no bad
edges. Suppose all weights have been assigned except for edge e. Let w∗[ē] be the
smallest weight among all perfect matchings that do not contain e, and let w∗[e] be the
smallest weight among all perfect matching that do contain e, but not including the
weight of e. Let ∆ = w∗[ē]− w∗[e]
We now get the weight wij of e. e is bad if and only if wij = ∆. This is because if
wij < ∆, then e is in every minimum-weight matching, and if wij > ∆, then e is not in
any minimum-weight matching. If wij = ∆, then e is bad since both matchings are now
minima. It follows that prob[e is bad] ≤ 1

2|E| because this is the probability that a
randomly drawn integer between 1 and 2|E | will coincide with ∆. This means the
probability that there is some bad edge among the |E | ones is at most |E | times that
bound, which is no more than half.

Summary

Assign random weights to the edges, and run the algorithm that computes the
minimum-weight matching if it is unique. We have at least a probability of 1

2 that our
perfect matching is unique.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Perfect Matching

Perfect Matching is in RNC (Contd.)

Proof.

We call an edge bad if it is in one minimum-weight matching but not in the other, which
means the minimum-weight perfect matching is unique if and only if there are no bad
edges. Suppose all weights have been assigned except for edge e. Let w∗[ē] be the
smallest weight among all perfect matchings that do not contain e, and let w∗[e] be the
smallest weight among all perfect matching that do contain e, but not including the
weight of e. Let ∆ = w∗[ē]− w∗[e]
We now get the weight wij of e. e is bad if and only if wij = ∆. This is because if
wij < ∆, then e is in every minimum-weight matching, and if wij > ∆, then e is not in
any minimum-weight matching. If wij = ∆, then e is bad since both matchings are now
minima. It follows that prob[e is bad] ≤ 1

2|E| because this is the probability that a
randomly drawn integer between 1 and 2|E | will coincide with ∆. This means the
probability that there is some bad edge among the |E | ones is at most |E | times that
bound, which is no more than half.

Summary

Assign random weights to the edges, and run the algorithm that computes the
minimum-weight matching if it is unique. We have at least a probability of 1

2 that our
perfect matching is unique.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Perfect Matching

Perfect Matching is in RNC (Contd.)

Proof.

We call an edge bad if it is in one minimum-weight matching but not in the other, which
means the minimum-weight perfect matching is unique if and only if there are no bad
edges. Suppose all weights have been assigned except for edge e. Let w∗[ē] be the
smallest weight among all perfect matchings that do not contain e, and let w∗[e] be the
smallest weight among all perfect matching that do contain e, but not including the
weight of e. Let ∆ = w∗[ē]− w∗[e]
We now get the weight wij of e. e is bad if and only if wij = ∆. This is because if
wij < ∆, then e is in every minimum-weight matching, and if wij > ∆, then e is not in
any minimum-weight matching. If wij = ∆, then e is bad since both matchings are now
minima. It follows that prob[e is bad] ≤ 1

2|E| because this is the probability that a
randomly drawn integer between 1 and 2|E | will coincide with ∆. This means the
probability that there is some bad edge among the |E | ones is at most |E | times that
bound, which is no more than half.

Summary

Assign random weights to the edges, and run the algorithm that computes the
minimum-weight matching if it is unique. We have at least a probability of 1

2 that our
perfect matching is unique.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Perfect Matching

Perfect Matching is in RNC (Contd.)

Proof.

We call an edge bad if it is in one minimum-weight matching but not in the other, which
means the minimum-weight perfect matching is unique if and only if there are no bad
edges. Suppose all weights have been assigned except for edge e. Let w∗[ē] be the
smallest weight among all perfect matchings that do not contain e, and let w∗[e] be the
smallest weight among all perfect matching that do contain e, but not including the
weight of e. Let ∆ = w∗[ē]− w∗[e]
We now get the weight wij of e. e is bad if and only if wij = ∆. This is because if
wij < ∆, then e is in every minimum-weight matching, and if wij > ∆, then e is not in
any minimum-weight matching. If wij = ∆, then e is bad since both matchings are now
minima. It follows that prob[e is bad] ≤ 1

2|E| because this is the probability that a
randomly drawn integer between 1 and 2|E | will coincide with ∆. This means the
probability that there is some bad edge among the |E | ones is at most |E | times that
bound, which is no more than half.

Summary

Assign random weights to the edges, and run the algorithm that computes the
minimum-weight matching if it is unique. We have at least a probability of 1

2 that our
perfect matching is unique.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Perfect Matching

Perfect Matching is in RNC (Contd.)

Proof.

We call an edge bad if it is in one minimum-weight matching but not in the other, which
means the minimum-weight perfect matching is unique if and only if there are no bad
edges. Suppose all weights have been assigned except for edge e. Let w∗[ē] be the
smallest weight among all perfect matchings that do not contain e, and let w∗[e] be the
smallest weight among all perfect matching that do contain e, but not including the
weight of e. Let ∆ = w∗[ē]− w∗[e]
We now get the weight wij of e. e is bad if and only if wij = ∆. This is because if
wij < ∆, then e is in every minimum-weight matching, and if wij > ∆, then e is not in
any minimum-weight matching. If wij = ∆, then e is bad since both matchings are now
minima. It follows that prob[e is bad] ≤ 1

2|E| because this is the probability that a
randomly drawn integer between 1 and 2|E | will coincide with ∆. This means the
probability that there is some bad edge among the |E | ones is at most |E | times that
bound, which is no more than half.

Summary

Assign random weights to the edges, and run the algorithm that computes the
minimum-weight matching if it is unique. We have at least a probability of 1

2 that our
perfect matching is unique.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Perfect Matching

Perfect Matching is in RNC (Contd.)

Proof.

We call an edge bad if it is in one minimum-weight matching but not in the other, which
means the minimum-weight perfect matching is unique if and only if there are no bad
edges. Suppose all weights have been assigned except for edge e. Let w∗[ē] be the
smallest weight among all perfect matchings that do not contain e, and let w∗[e] be the
smallest weight among all perfect matching that do contain e, but not including the
weight of e. Let ∆ = w∗[ē]− w∗[e]
We now get the weight wij of e. e is bad if and only if wij = ∆. This is because if
wij < ∆, then e is in every minimum-weight matching, and if wij > ∆, then e is not in
any minimum-weight matching. If wij = ∆, then e is bad since both matchings are now
minima. It follows that prob[e is bad] ≤ 1

2|E| because this is the probability that a
randomly drawn integer between 1 and 2|E | will coincide with ∆. This means the
probability that there is some bad edge among the |E | ones is at most |E | times that
bound, which is no more than half.

Summary

Assign random weights to the edges, and run the algorithm that computes the
minimum-weight matching if it is unique. We have at least a probability of 1

2 that our
perfect matching is unique.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Perfect Matching

Perfect Matching is in RNC (Contd.)

Proof.

We call an edge bad if it is in one minimum-weight matching but not in the other, which
means the minimum-weight perfect matching is unique if and only if there are no bad
edges. Suppose all weights have been assigned except for edge e. Let w∗[ē] be the
smallest weight among all perfect matchings that do not contain e, and let w∗[e] be the
smallest weight among all perfect matching that do contain e, but not including the
weight of e. Let ∆ = w∗[ē]− w∗[e]
We now get the weight wij of e. e is bad if and only if wij = ∆. This is because if
wij < ∆, then e is in every minimum-weight matching, and if wij > ∆, then e is not in
any minimum-weight matching. If wij = ∆, then e is bad since both matchings are now
minima. It follows that prob[e is bad] ≤ 1

2|E| because this is the probability that a
randomly drawn integer between 1 and 2|E | will coincide with ∆. This means the
probability that there is some bad edge among the |E | ones is at most |E | times that
bound, which is no more than half.

Summary

Assign random weights to the edges, and run the algorithm that computes the
minimum-weight matching if it is unique. We have at least a probability of 1

2 that our
perfect matching is unique.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Perfect Matching

Perfect Matching is in RNC (Contd.)

Proof.

We call an edge bad if it is in one minimum-weight matching but not in the other, which
means the minimum-weight perfect matching is unique if and only if there are no bad
edges. Suppose all weights have been assigned except for edge e. Let w∗[ē] be the
smallest weight among all perfect matchings that do not contain e, and let w∗[e] be the
smallest weight among all perfect matching that do contain e, but not including the
weight of e. Let ∆ = w∗[ē]− w∗[e]
We now get the weight wij of e. e is bad if and only if wij = ∆. This is because if
wij < ∆, then e is in every minimum-weight matching, and if wij > ∆, then e is not in
any minimum-weight matching. If wij = ∆, then e is bad since both matchings are now
minima. It follows that prob[e is bad] ≤ 1

2|E| because this is the probability that a
randomly drawn integer between 1 and 2|E | will coincide with ∆. This means the
probability that there is some bad edge among the |E | ones is at most |E | times that
bound, which is no more than half.

Summary

Assign random weights to the edges, and run the algorithm that computes the
minimum-weight matching if it is unique. We have at least a probability of 1

2 that our
perfect matching is unique.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Perfect Matching

Perfect Matching is in RNC (Contd.)

Proof.

We call an edge bad if it is in one minimum-weight matching but not in the other, which
means the minimum-weight perfect matching is unique if and only if there are no bad
edges. Suppose all weights have been assigned except for edge e. Let w∗[ē] be the
smallest weight among all perfect matchings that do not contain e, and let w∗[e] be the
smallest weight among all perfect matching that do contain e, but not including the
weight of e. Let ∆ = w∗[ē]− w∗[e]
We now get the weight wij of e. e is bad if and only if wij = ∆. This is because if
wij < ∆, then e is in every minimum-weight matching, and if wij > ∆, then e is not in
any minimum-weight matching. If wij = ∆, then e is bad since both matchings are now
minima. It follows that prob[e is bad] ≤ 1

2|E| because this is the probability that a
randomly drawn integer between 1 and 2|E | will coincide with ∆. This means the
probability that there is some bad edge among the |E | ones is at most |E | times that
bound, which is no more than half.

Summary

Assign random weights to the edges, and run the algorithm that computes the
minimum-weight matching if it is unique. We have at least a probability of 1

2 that our
perfect matching is unique.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Perfect Matching

Perfect Matching is in RNC (Contd.)

Proof.

We call an edge bad if it is in one minimum-weight matching but not in the other, which
means the minimum-weight perfect matching is unique if and only if there are no bad
edges. Suppose all weights have been assigned except for edge e. Let w∗[ē] be the
smallest weight among all perfect matchings that do not contain e, and let w∗[e] be the
smallest weight among all perfect matching that do contain e, but not including the
weight of e. Let ∆ = w∗[ē]− w∗[e]
We now get the weight wij of e. e is bad if and only if wij = ∆. This is because if
wij < ∆, then e is in every minimum-weight matching, and if wij > ∆, then e is not in
any minimum-weight matching. If wij = ∆, then e is bad since both matchings are now
minima. It follows that prob[e is bad] ≤ 1

2|E| because this is the probability that a
randomly drawn integer between 1 and 2|E | will coincide with ∆. This means the
probability that there is some bad edge among the |E | ones is at most |E | times that
bound, which is no more than half.

Summary

Assign random weights to the edges, and run the algorithm that computes the
minimum-weight matching if it is unique. We have at least a probability of 1

2 that our
perfect matching is unique.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Perfect Matching

Perfect Matching is in RNC (Contd.)

Proof.

We call an edge bad if it is in one minimum-weight matching but not in the other, which
means the minimum-weight perfect matching is unique if and only if there are no bad
edges. Suppose all weights have been assigned except for edge e. Let w∗[ē] be the
smallest weight among all perfect matchings that do not contain e, and let w∗[e] be the
smallest weight among all perfect matching that do contain e, but not including the
weight of e. Let ∆ = w∗[ē]− w∗[e]
We now get the weight wij of e. e is bad if and only if wij = ∆. This is because if
wij < ∆, then e is in every minimum-weight matching, and if wij > ∆, then e is not in
any minimum-weight matching. If wij = ∆, then e is bad since both matchings are now
minima. It follows that prob[e is bad] ≤ 1

2|E| because this is the probability that a
randomly drawn integer between 1 and 2|E | will coincide with ∆. This means the
probability that there is some bad edge among the |E | ones is at most |E | times that
bound, which is no more than half.

Summary

Assign random weights to the edges, and run the algorithm that computes the
minimum-weight matching if it is unique. We have at least a probability of 1

2 that our
perfect matching is unique.

Williamson Parallel Computation

Parallel Algorithms
Parallel Models of Computation

The Class NC
RNC Algorithms

Perfect Matching

Diagram

P-complete

P

RNC

NC

NC1

NC2

.

.

.

Williamson Parallel Computation

	Outline
	Main Talk
	Parallel Algorithms
	Matrix Multiplication
	Graph Reachability
	Arithmetic Operations
	Determinants and Inverses

	Parallel Models of Computation
	The Class NC
	P-completeness
	Odd Max Flow

	RNC Algorithms
	Perfect Matching

