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Note: This study guide was prepared to be a companion to most books on the subject of High
School Algebra. In particular, | used the following texts to determine which subjects to include
in this guide.
e Algebra 1, by James Schultz, Paul Kennedy, Wade Ellis Jr, and Kathleen Hollowelly.
e Algebra 2, by James Schultz, Wade Ellis Jr, Kathleen Hollowelly, and Paul Kennedy.
Although a significant effort was made to make the material in this study guide original, some
material from these texts was used in the preparation of the study guide.
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Chapter 1 Basics
Algebra
Order of Operations

To the non-mathematician, there may appear to be multiple ways to evaluate an algebraic
expression. For example, how would one evaluate the following?

3:4:7 4652

You could work from left to right, or you could work from right to left, or you could do any
number of other things to evaluate this expression. As you might expect, mathematicians do
not like this ambiguity, so they developed a set of rules to make sure that any two people
evaluating an expression would get the same answer.

PEMDAS

In order to evaluate expressions like the one above, mathematicians have defined an order of
operations that must be followed to get the correct value for the expression. The acronym that
can be used to remember this order is PEMDAS. Alternatively, you could use the mnemonic
phrase “Please Excuse My Dear Aunt Sally” or make up your own way to memorize the order of
operations. The components of PEMDAS are:

» P Anything in Parentheses is evaluated first.
> E

Items with Exponents are evaluated next. Note: When there are multiple

o operations in the same category,
» M Multiplication and ...

D Division are performed next.

for example, a division and two
multiplications, the operations

» A Addition and ... are performed from left to right.

S Subtraction are performed last.

Parenthetical Device. A useful device is to use apply parentheses to help you remember
the order of operations when you evaluate an expression. Parentheses are placed around the
items highest in the order of operations; then solving the problem becomes more natural.
Using PEMDAS and this parenthetical device, we solve the expression above as follows:

Initial Expression: 3-4-74+6-52 Note: Any expression which is

ambiguous, like the one above, is

Add parentheses/brackets:
Solve using PEMDAS:

Final Answer

Version 3.2

=(3-4-7)+[6-(5%)]
= (84) + (6 25)

= (84) + (150)

= 234

Page 9 of 187

poorly written. Students should strive
to ensure that any expressions they
write are easily understood by others
and by themselves. Use of parentheses
and brackets is a good way to make
your work more understandable.
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Chapter 1 Basics

Algebra
Graphing with Coordinates

Graphs in two dimensions are very common in algebra and are one of the most common
algebra applications in real life.

y
Coordinates
) . . . . Quadrant2 | Quadrantl
The plane of points that can be graphed in 2 dimensions is
called the Rectangular Coordinate Plane or the Cartesian e e
Coordinate Plane (named after the French mathematician ’ | 5
and philosopher René Descartes). Quadrant3 °| Quadrant4

e Two axes are defined (usually called the x- and y-axes).
e Each point on the plane has an x value and a y value, written as: (x-value, y-value)
e The point (0, 0) is called the origin, and is usually denoted with the letter “O”.

e The axes break the plane into 4 quadrants, as shown above. They begin with Quadrant 1
where x and y are both positive and increase numerically in a counter-clockwise fashion.

Plotting Points on the Plane
When plotting points,

e the x-value determines how far right (positive) or left (negative) of the origin the point is
plotted.

e The y-value determines how far up (positive) or down (negative) from the origin the point is

plotted.
Examples: T
The following points are plotted in the figure to B (-3.2) I "a (2,3)
the right: I i
A=(2,3) in Quadrant 1 Y A N I
B=(-3,2) in Quadrant 2 7 s 1
C=(-2,-2) in Quadrant 3 D (4,-1)
D=(4,-1) in Quadrant 4 c[(-2,-2)
0=(0,0) is not in any quadrant
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Chapter 1

Recognizing Linear Patterns

Algebra

Linear Patterns

Basics

The first step to recognizing a pattern is to arrange a set of numbers in a table. The table can

be either horizontal or vertical. Here, we consider the pattern in a horizontal format. More

advanced analysis generally uses the vertical format.

Consider this pattern:

x-value

0

2

3

4 5

y-value

6

12

15

18 21

To analyze the pattern, we calculate differences of successive values in the table. These are

called first differences. If the first differences are constant, we can proceed to converting the

pattern into an equation. If not, we do not have a linear pattern. In this case, we may choose

to continue by calculating differences of the first differences, which are called second

differences, and so on until we get a pattern we can work with.

In the example above, we get a constant set of first differences, which tells us that the pattern

is indeed linear.

x-value

0

1

2

3

4 5

y-value

6

9

12

15

First Differences

~_
3

~_
3

~_
3

18 21
\/ \/
3 3

Converting a Linear Pattern to an Equation

Creating an equation from the pattern is easy if you have

constant differences and a y-value for x = 0. In this case,

e The equation takes the form y = mx + b, where

e “m”is the constant difference from the table, and

e “b”is the y-value when x = 0.

In the example above, this gives us the equation: y = 3x + 6.

Note: If the table does not have a
value for x=0, you can still obtain
the value of “b”. Simply extend the
table left or right until you have an
x-value of 0; then use the first
differences to calculate what the
corresponding y-value would be.
This becomes your value of “b”.

Finally, it is a good idea to test your equation. For example, if x = 4, the above equation gives

v = (3-4) + 6 = 18, which is the value in the table. So we can be pretty sure our equation is

correct.

Version 3.2
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Basics

Chapter 1 ADVANCED

Algebra
Identifying Number Patterns

When looking at patterns in numbers, is is often useful to take differences of the numbers you
are provided. If the first differences are not constant, take differences again.

-3

1 2 When first differences are constant, the pattern represents a

1 ; linear equation. In this case, the equationis: y=2x-5. The

3 5 constant difference is the coefficient of x in the equation.

5
2

7

Lnla]a]

2 3 When second differences are constant, the pattern represents a

150 5 ; quadratic equation. In this case, the equation is: y=x~ + 1. The

17 7 5 constant difference, divided by 2, gives the coefficient of X’ in the
9 ion.

26 0 ) equation

37

When taking successive differences yields patterns that do not seem to level out, the pattern
may be either exponential or recursive.

[ n|a]a]
5 2 In the pattern to the left, notice that the first and second
7 4 2 differences are the same. You might also notice that these
1 8 4 differences are successive powers of 2. This is typical for an
19 8 x
35 16 16 exponential pattern. In this case, the equationis: y=2" + 3.
32
67
[ n|a]a] - -
In the pattern to the left, notice that the first and second
2 1 differences appear to be repeating the original sequence. When
3 2 1 this happens, the sequence may be recursive. This means that
5 3 1 each new term is based on the terms before it. In this case, the
183 5 § equationis: y, =y ,.; +V,-, meaning that to get each new term,
51 8 you add the two terms before it.
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Chapter 1

Algebra
Completing Number Patterns

Basics
ADVANCED

The first step in completing a number pattern is to identify it. Then, work from the right to the left, filling in
the highest order differences first and working backwards (left) to complete the table. Below are two

examples.
( Example 1 ( ( Example 2 (
III Consider in the examples the sequences of six III
-1 numbers which are provided to the student. You are 2
6 asked to find the ninth term of each sequence. 3
25 5
62 8
123 13
214 21
| n | A | A’ | A3 | Step 1: Create a table of differences. Take successive | n | A | A’ | A3 |
-1 differences until you get a column of constant 2
6 / 12 differences (Example 1) or a column that appears to 3 ! 1
25 19 18 6 repeat a previous column of differences (Example 2). 5 2 1 0
62 o 2 ° g - 2
123 o1 30 ° 13 > 3 !
91 8
214 21
| n | A | A? | Al | Step 2: In the last column of differences you created, | n | A | A’ | A® |
-1 continue the constant differences (Example 1) or the 2
6 / 12 repeated differences (Example 2) down the table. 3 ! 1
25 19 18 6 Create as many entries as you will need to solve the 5 2 1 0
62 37 24 6 problem. For example, if you are given 6 terms and 8 3 2 !
123 o1 30 5 asked to find the 9th term, you will need 3 (=9 - 6) 13 > 3 L
91 —— 6 . .. 8§ — 2
214 —— 6 additional entries in the last column. 21 —— 3
6 5

Step 3: Work backwards (from right to left), filling in

-1 ; each column by adding the differences in the column 2 .
6 12 to the right. 3 1
19 6 2 0
25 18 . 5 1
62 37 24 6 In the example to the left, the calculations are 3 3 5 1
61 6 i i : 5 1
123 30 performed in the following order 13 3
91 —— 6 , 8 — 2
214 —-- 36 Column A":30+6=36;36+6=42;42+6 =48 21 =5~ 5> 3
341 169 42 6 Column A: 91 +36=127;127 +42 =169; 169 + 48 = 217 34 21 8 5
510 217 48 55 34 13
727 Column n: 214 + 127 = 341; 341 + 169 = 510; 510 + 217 = 727 89
The final answers to the examples are the ninth items in each sequence, the items in bold red.
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Chapter 1 Basics
Algebra
Real Number Sets
Number Set Symbol Definition Examples

Natural (or, Nor | Numbersthat you would 123456
Counting) Numbers | Z+ | normally count with. T
Whole Numbers w | Addthenumber zeroto the 0,1,2,3,4,5,6, ..

set of Natural Numbers
Integers z | Whole numbers plus the set .-3,-2,-1,0,1,2,3, ...

of negative Natural Numbers

Any number that can bg All integers, plus fractions and
Rational Numbers Q expressed in the form E' mixed numbers, such as:

where a and b are integers _E‘ 2’ 3f

and b # 0. 3~ 6 5
Real Numbers R written in decimal form, and some others, such as:

even if that form is infinite. V2,312, 1, e
Real Number Set Tree

Real Numbers
Rational Irrational
Integers Fractions and
/\ Mixed Numbers
Whole Negative
Numbers Integers
Natural Zero

Numbers
Version 3.2 Page 14 of 187 July 10, 2019



Chapter 2 Operations

Algebra
Operating with Real Numbers

Absolute Value

The absolute value of something is the distance it is from zero. The easiest way to get the
absolute value of a number is to eliminate its sign. Absolute values are always positive or 0.

3 3
|-5| =5 13| = 3 0] =0 |—Z|=Z 11.5] = 1.5

Adding and Subtracting Real Numbers

Adding Numbers with the Same Sign: Adding Numbers with Different Signs:
e Add the numbers without regard e Ignore the signs and subtract the
to sign. smaller number from the larger one.
e Give the answer the same sign as e Give the answer the sign of the number
the original numbers. with the greater absolute value.
e Examples: e Examples:
(-6)+(-3)=-9 (-6)+3=-3
12+ 6 =18 (-7)+11=14

Subtracting Numbers:

e Change the sign of the number or numbers being subtracted.
e Add the resulting numbers.
e Examples:
(-6)-(-3)=(-6)+3=-3
13-4=13+(—4) =9

Multiplying and Dividing Real Numbers

Numbers with the Same Sign: Numbers with Different Signs:
e Multiply or divide the numbers e  Multiply or divide the numbers without
without regard to sign. regard to sign.
e Give the answer a “+” sign. e Give the answer a “-” sign.
e Examples: e Examples:
(-6)-(-3)=+18=18 (-6)-(3) =-18
12+-3=4+4=4 12+ (-3)=-4
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Chapter 2 Operations

Algebra
Properties of Algebra

Properties of Addition and Multiplication. For any real numbers a, b, and c:

Property Definition for Addition Definition for Multiplication

Closure Property a + b is a real number a - b is areal number
Identity Property a+0=0+4+a=a al=1-a=a

1 1
Inverse Property a+(—a)=(-a)+a=0 Fora+#0, a-—=—a=1

a a
Commutative Property a+b=b+a a-b=b-a
Associative Property (a+b)+c=a+(b+0) (ab)-c=a-(b-c)
Distributive Property a-(b+c)=(@@-b)+(a-c)

Properties of Zero. For any real number a:

Multiplication by 0 a-0=0-a=0
. . 0
0 Divided by Something Fora=+0 —=0
o a
Division by 0 — is undefined (even ifa = 0)
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Chapter 2

Version 3.2

Operations
Algebra
Properties of Algebra
Operational Properties of Equality. For any real numbers a, b, and c:
Property Definition
Addition Property If a=b,thena+c=b+c
Subtraction Property If a=b,thena—c=b—c
Multiplication Property If a=b,thena-c=b-c
Division Property Ifa=bandc #0,thena+~c=b +c
Other Properties of Equality. For any real numbers a, b, and c:
Property Definition
Reflexive Property a=a
Symmetric Property If a=b,thenb =a
Transitive Property Ifa=band b =c,thena=c
Substitution Property | If a = b, then either can be substituted for the
other in any equation (or inequality).
Page 17 of 187 July 10, 2019



Chapter 3 Solving Equations

Algebra
Solving Multi-Step Equations

Reverse PEMDAS

One systematic way to approach multi-step equations is Reverse PEMDAS. PEMDAS describes
the order of operations used to evaluate an expression. Solving an equation is the opposite of
evaluating it, so reversing the PEMDAS order of operations seems appropriate.

The guiding principles in the process are:

e Each step works toward isolating the variable for which you are trying to solve.
e Each step “un-does” an operation in Reverse PEMDAS order:

Inverses

SLI btraCtlon < > Add|t|0n Note: Logarithms are the
Lo P Inverses - Lo X inverse operator to exponents.
Division - - MUItlpllcatlon This topic is typically covered in
. the second year of Algebra.
Exponents < Inverses > Logarithms Y &
Parentheses < Inverses Remove Parentheses (and repeat process)

The list above shows inverse operation relationships. In order to undo an operation, you
perform its inverse operation. For example, to undo addition, you subtract; to undo division,
you multiply. Here are a couple of examples:

Example 1 Example 2

Solve: 3x —4 =14 Solve: 2:-(2x+5)—3=-5

Step 1: Add 4 +4 +4 Step 1: Add 3 +3 +3

Result: 3x =18 Result: 2-(2x+5) =-2

Step 2: Divide by 3 =3 =3 Step 2: Divide by 2 =2 =2

Result: x =6 Result: (2x +5) =-1

Notice that we add and subtract before we Step 3: Remove parentheses

multiply and divide. Reverse PEMDAS. Result: 2x+5 = -1

Step 4: Subtract 5 -5 -5

With this approach, you will be able to Result: 2x = =6
. . Step 5: Divide by 2 +2 +2

solve almost any multi-step equation. As

you get better at it, you will be able to use Result: x = -3

some shortcuts to solve the problem faster.
Since speed is important in mathematics, learning a few tips and tricks with regard to solving
equations is likely to be worth your time.
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Chapter 3 Solving Equations

Algebra
Tips and Tricks in Solving Multi-Step Equations

Fractional Coefficients

Fractions present a stumbling block to many students in solving multi-step equations. When
stumbling blocks occur, it is a good time to develop a trick to help with the process. The trick
shown below involves using the reciprocal of a fractional coefficient as a multiplier in the
solution process. (Remember that a coefficient is a number that is multiplied by a variable.)

Example 1
Solve: gx _8 Explanation: Since % is the reciprocal of g,
; s s when we multiply them, we get1,and 1 -
Multiply by Sy x = x. Using this approach, we can avoid
dividing by a fraction, which is more difficult.
Result: x=2.8=2=12
2 2

Example 2 Explanation: —4 is the reciprocal of —i, o)
Solve: —ix = -2 when we multiply them, we get 1. Notice

_ the use of parentheses around the negative
Multiply by —4: D (=) number to make it clear we are multiplying
Result: x=(-2)-(—4)=8 and not subtracting.

Another Approach to Parentheses

In the Reverse PEMDAS method, parentheses Example 3
are handled after all other operations. Solve: 2-(2x+5)—3=-5
Sometimes, it is easier to operate on the Step 1: Distribute the lead multiplier (2)

parentheses first. In this way, you may be able Result: 4x +10 —3 = -5

to re-state the problem in an easier form before | step 2: combine constants

solving it.

g Result: 4x + 7 =-5
Example 3, at right, is another look at the Step 3: Subtract 7 -7 -7
problem in Example 2 on the previous page. Result: 4 - _12
Use whichever approach you find most to your Step 4: Divide by 4 +4 +4
liking. They are both correct. Result: x = -3
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Chapter 4 Probability & Statistics

Algebra
Probability and Odds

Probability

Probability is a measure of the likelihood that an event will occur. It depends on the number of
outcomes that represent the event and the total number of possible outcomes. In equation terms,

number of outcomes representing the event
number of total possible outcomes

P(event) =

Example 1: The probability of a flipped coin landing as a head is 1/2. There are two equally likely events
when a coin is flipped — it will show a head or it will show a tail. So, there is one chance out of two that
the coin will show a head when it lands.

P(head) = 1 outcome of a head 1
cad) = 2 total possible outcomes 2

Example 2: In ajar, there are 15 blue marbles, 10 red marbles and 7 green marbles. What is the
probability of selecting a red marble from the jar? In this example, there are 32 total marbles, 10 of
which are red, so there is a 10/32 (or, when reduced, 5/16) probability of selecting a red marble.

P(red ble) = 10 red marbles _ 10 _ 5
reamarbte) = 32 total marbles 32 16

Odds

Odds are similar to probability, except that we measure the number of chances that an event will occur
relative to the number of chances that the event will not occur.

number of outcomes representing the event

Odds(event) =
( ) number of outcomes NOT representing the event

In the above examples,

Odds(head) = 1 outcome of a head 1 0dds(red ble) = 10 red marbles 10 5
Y= T outcome of atail 1 SAredmarbie) = oo other marbles . 22 11

e Note that the numerator and the denominator in an odds calculation add to the total number of
possible outcomes in the denominator of the corresponding probability calculation.

e To the beginning student, the concept of odds is not as intuitive as the concept of probabilities;
however, they are used extensively in some environments.
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Chapter 4 Probability & Statistics

Algebra
Probability with Dice

Single Die

Probability with a single die is based on the number of chances of an event out of 6 possible
outcomes on the die. For example:

P(2) = % P(odd number) = 2 = § P(number < 5) = % = 2

Two Dice

Probability with two dice is based on the number of chances of an event out of 36 possible
outcomes on the dice. The following table of results when rolling 2 dice is helpful in this regard:

1st Die
2nd Dije 1 2 3 4 5 6
1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12

The probability of rolling a number with two dice is the number of times that number occurs in
the table, divided by 36. Here are the probabilities for all numbers 2 to 12.

1 4 1 5 2 1
P(Z)—g P(S)—g—g P(8)—g P(11)—g—ﬁ
2 1 5 4 1 1
P(B)_E_E P(6)—£ P(9)—;—; P(lZ)—E
3 1 6 1 3 1
P(4)_£_E P(7)—£—g P(lo)_ﬁ_ﬁ
P(odd number) = Bl P(number divisible by 3) = Zsadl 21
36 2 36 36 3
P(even number) = Bl P(number divisible by 4) = Ak
36 2 36 36 4

P(number divisible by 6) = 53+—61 = % = %
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Chapter 4

Single Category Combinations

Algebra
Combinations

Probability & Statistics

The number of combinations of items selected from a set, several at a time, can be calculated

relatively easily using the following technique:

Technique: Create a ratio of two products. In the numerator, start with the number of

total items in the set, and count down so the total number of items being multiplied is

equal to the number of items being selected. In the denominator, start with the

number of items being selected and count down to 1.

Example: How many
combinations of 3 items can
be selected from a set of 8
items? Answer:

8:7-6
3:2-1

= 56

Example: How many
combinations of 4 items can
be selected from a set of 13
items? Answer:

13-12-11-10_715
4-3-2-1

Example: How many
combinations of 2 items can
be selected from a set of 30
items? Answer:

30-29
2-1

=435

Multiple Category Combinations

When calculating the number of combinations that can be created by selecting items from

several categories, the technique is simpler:

Technique: Multiply the numbers of items in each category to get the total number of

possible combinations.

Example: How many different
pizzas could be created if you

have 3 kinds of dough, 4 kinds
of cheese and 8 kinds of

Example: How many different
outfits can be created if you
have 5 pairs of pants, 8 shirts
and 4 jackets?

Example: How many designs
for a car can be created if you
can choose from 12 exterior
colors, 3 interior colors, 2

toppings? interior fabrics and 5 types of

Answer: Answer: wheels? Answer:
3:4-8=096 5:-8-4 =160 12-3-2-5=360
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Chapter 4 Probability & Statistics

Algebra
Statistical Measures

Statistical measures help describe a set of data. A definition of a number of these is provided in the table below:

Concept Description Calculation Example 1 Example 2

Data Set Numbers 35, 35, 37, 38, 45 15, 20, 20, 22, 25, 54

Add the values and
Mean Average divide the total by the
number of values

35+35+37+38+445 | 15+18+22422+25+54 _

26
5 6

Arrange the values from
Median Middle low to high and take the 37 21
middle value®

The value that appears
Mode Most most often in the data 35 20
set

The difference between
Range Size the highest and lowest 45-35=10 54-15=39
values in the data set

Values that look very
Outliers®? Oddballs different from the other none 54
values in the data set

Notes:

(1) If there are an even number of values, the median is the average of the two middle values. In Example 2, the median is 21,
which is the average of 20 and 22.

(2) The question of what constitutes an outlier is not always clear. Although statisticians seek to minimize subjectivity in the
definition of outliers, different analysts may choose different criteria for the same data set.
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Chapter 5 Functions

Algebra
Introduction to Functions

Definitions

A Relation is a relationship between variables, usually expressed as an equation.

In a typical x-y equation, the Domain of a relation is the set of x-values for which y-
values can be calculated. For example, in the relation y = +/x the domainis x = 0
because these are the values of x for which a square root can be taken.

In a typical x-y equation, the Range of a relation is the set of y-values that result for all
values of the domain. For example, in the relation y = +/x the range is y > 0 because
these are the values of y that result from all the values of x.

A Function is a relation in which each element in the domain has only one
corresponding element in the range.

A One-to-One Function is a function in which each element in the range is produced by
only one element in the domain.

Function Tests in 2-Dimensions

Vertical Line Test — If a vertical line passes through the graph of a relation in any two locations,

it is not a function. If it is not possible to construct a vertical line that passes through the graph

of a relation in two locations, it is a function.

Horizontal Line Test — If a horizontal line passes through the graph of a function in any two

locations, it is not a one-to-one function. If it is not possible to construct a horizontal line that

passes through the graph of a function in two locations, it is a one-to-one function.

Examples:
Vi=X ‘
y=x
y=x N
Figure1l: y?> =x Figure 2: y = x? Figure3: y = x3
Not a function. Is a function, but not a one- Is a one-to-one function.
Fails vertical line test. to-one function. Passes vertical line test.
Passes vertical line test. Passes horizontal line test.

Fails horizontal line test.

Version 3.2 Page 24 of 187 July 10, 2019



Chapter 5 Functions

Algebra
Special Integer Functions

Greatest Integer Function 1

Also called the Floor Function, this function gives the
greatest integer less than or equal to a number. There

are two common notations for this, as shown in the

examples below.

Notation and examples:
[3.5] =3 [—2.7]
[2.4] =2 [—7.1]

~3  [6]=6 |
—8  10]=0 L

In the graph to the right, notice the solid dots on the left of the segments (indicating the points are
included) and the open lines on the right of the segments (indicating the points are not included).

Least Integer Function -

Also called the Ceiling Function, this function gives the
least integer greater than or equal to a number. The

common notation for this is shown in the examples

below.
Notation and examples:

35]=4 [-27]=-2 [6]=6

(—r G

In the graph to the right, notice the open dots on the

left of the segments (indicating the points are not included) and the closed dots on the right of the
segments (indicating the points are included).

Nearest Integer Function

Also called the Rounding Function, this function gives A -~
the nearest integer to a number (rounding to the even .

number when a value ends in .5). There is no clean
notation for this, as shown in the examples below.

Notation and examples: N

nint(3.5) =4 nint(=2.7) = =3 nint(6) = 6 1T Ri

In the graph to the right, notice the open dots on the

left of the segments (indicating the points are not
included) and the closed dots on the right of the segments (indicating the points are included).
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Chapter 5 Functions

Algebra
Operations with Functions

Function Notation
fx) =x*+2 g(x) = e* + In(x) h(x) = —3x+ 4

Function notation replaces the variable y with a function name. The x in parentheses indicates
that x is the domain variable of the function. By convention, functions tend to use the letters f,
g, and h as names of the function.

Operations with Functions

Adding Functions (f + 9)(x) = f(x) + g(x) The domain of the combination
of functions is the intersection
Subtracting Functions (f —9)x) = f(x) — g(x) of the domains of the two
individual functions. That s,
Multiplying Functions F-9x)=fx) gk the combined function has a
value in its domain if and only if
Dividing Functions (z) (x) = f(x) , g(x) %0 the value is in the domain of
) g(x) each individual function.
Examples:
Let:  f(x)=x%2—1 Then: (f+9)(x) =x*+x
gx) =x+1 f-9)x) =x*—x—2

(90 =x*+x2—x—1
(i) (x)=x—-1, withx # -1
)

ote thatin (=) (x) there is the requirement x # —1. This is because g(—1) = 0 in the
Nh";()h'h i 1. Thisis b g(—1) = 0inth

denominator would require dividing by 0, producing an undefined result.

Other Operations

Other operations of equality also hold for functions, for example:
20 =) =f)f(x)-f(x)
) (g(x) +h(x) = f(x) - g(x) + f(x) - h(x)
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Chapter 5 Functions

Algebra
Composition of Functions

In a Composition of Functions, first one function is performed, and then the other. The
notation for composition is, for example: f(g(x)) or (fog)(x). Inboth of these notations,
the function g is performed first, and then the function fis performed on the result of g.
Always perform the function closest to the variable first.

Double Mapping

A composition can be thought of as a double mapping. First g maps from its domain to its
range. Then, f maps from the range of g to the range of f:

Range of g
Domain of f

Range of [

Domain of g

The Words Method
In the example,
Example: Let f(x) = x? e The function f says square the argument.
and g(x) =x+1 e The function g says add 1 to the argument.

Th (fog)(x) = (x + 1)? Sometimes it is easier to think of the functions in
en: 0 g X)) =(x

And:  (gof)(x) =x*+1

words rather than in terms of an argument like x.

(f 0 g) says “add 1 first, then square the result.”

(g o f) says “square first, then add 1 to the result.”

Using the words method,

Calculate: (f og)(12y2) Calculate: (gof)(—2)
g:add 1toit (12y2) +1 f: square it (—-2)2 =4
f: square it (12yz + 1)? g:add1ltoit 4+1=5
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Algebra
Inverses of Functions

In order for a function to have an inverse, it must be a one-to-one function. The requirement
for a function to be an inverse is:

FofHX)=(U"Tof)x)=x
The notation f~!(x) is used for the Inverse Function of f(x).

Another way of saying this is that if f(a) = b, then f~'(b) = a for all a in the domain of f.

Deriving an Inverse Function

The following steps can be used to derive an inverse function. This process assumes that the
original function is expressed in terms of f(x).

e Make sure the function is one-to-one. Otherwise it has no inverse. You can accomplish
this by graphing the function and applying the vertical and horizontal line tests.

e Substitute the variable y forf(x).

e Exchange variables. Thatis, change all the X’s to y’s and all the y’s to X’s.

e Solve for the new y in terms of the new x.

e (Optional) Switch the expressions on each side of the equation if you like.

e Replace the variable y with the function notation f~1(x).

e Check your work.

Examples:

Derive the inverse of: f(x) = gx +2 Derive the inverse of: f(x) = 2x — 1

Substitute y f Sy =2x—1
Substitute y for f(x): y=§x+2 ubstitute y for f(x): ¥y = 2x

) Exchange variables: x=2y—1
Exchange variables: x=-y+2
3 Add 1: x+1=2y
1
Subtract 2: xX—2= 3Y Divide by 2: %1 _
Multiply by 3: 3x—6=
PV RY Y Switch sides: y = x7+1
Switch sides: y=3x—6 .
Change Notation: “1(x) = 2=
Change Notation: flx)=3x-6 g =5

To check the result, note that:
- . f)+1 (2x—-1)+1
(f‘lof)(x)=3f(x)f6=3(§x+2>76:x (o)) = 2 - 2 -

To check the result, note that:
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Algebra
Transformation — Translation

A Translation is a movement of the graph of a relation to a different location in the plane. It
preserves the shape and orientation of the graph on the page. Alternatively, a translation can
be thought of as leaving the graph where it is and moving the axes around on the plane.

In Algebra, the translations of primary interest are the vertical and horizontal translations of a
graph.

Vertical Translation
Starting form: y=f(x)

Vertical Translation: y=f(x)+k

At each point, the graph of the translation is k units higher or
lower depending on whether k is positive or negative. The

letter k is used as a convention when moving up or down. In i
algebra, k usually represents a y-value of some importance.

Note:
e A positive k shifts the graph up.
e A negative k shifts the graph down.

Horizontal Translation

Starting form: y = f(x)

Horizontal Translation: y=f(x—-h)

At each point, the graph of the translation is h units to

the left or right depending on whether h is positive or
negative. The letter h is used as a convention when
moving left or right. In algebra, h usually represents an
x-value of some importance.

Note:
e A positive h shifts the graph to the left.

e A negative h shifts the graph to the right.

For horizontal translation, the direction of movement of the graph is counter-intuitive; be
careful with these.
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Algebra

Transformation — Vertical Stretch and Compression

Functions

A Vertical Stretch or Compression is a stretch or compression in the vertical direction, relative

to the x-axis. It does not slide the graph around on the plane like a translation. An alternative

view of a vertical stretch or compression would be a change in the scale of the y-axis.

Vertical Stretch

Starting form:

y=f®

Vertical Stretch: y=a f(x), a>1

At each point, the graph is stretched vertically by a factor of
a. The result is an elongated curve, one that exaggerates all
of the features of the original.

Vertical Compression
Starting form:

y=fX)

Vertical Compression: y=a'f(x), 0<a<l1

At each point, the graph is compressed vertically by a

3(x) ]

Vertical
Stretch

factor of a. The result is a flattened-out curve, one that
mutes all of the features of the original.

Note: The forms of the equations

for vertical stretch and vertical

compression are the same. The

only difference is the value of "a".

n n

Value of "a" in .
B Resulting Curve
y=a-f(x)
a<0 reflection
Vertical a=0 Xx-axis
Compression
7 0<ax<l1 compression
N a= original curve
a>1 stretch
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Algebra

Functions

Transformation — Horizontal Stretch and Compression

A Horizontal Stretch or Compression is a stretch or compression in the horizontal direction,

relative to the y-axis. It does not slide the graph around on the plane like a translation. An

alternative view of a horizontal stretch or compression would be a change in the scale of the x-

axis.

Horizontal Stretch

Starting form:

y=f)

Horizontal Stretch: y = f(bx), 0 <b <1

At each point, the graph is stretched horizontally
by a factor of %. The result is a widened curve, one

that exaggerates all of the features of the original.

3

Horizontal
Stretch

h

1T

Horizontal Compression

y=fx)
y=f(bx), b>1

Starting form:

Horizontal Compression:
At each point, the graph is compressed horizontally by a

1 . .
factor of o The result is a skinnier curve, one that mutes

all of the features of the original.

e A
Horizontal
Compression

f(2x) | f(ax) "

Note: The forms of the equations

for the horizontal stretch and the

horizontal compression are the

same. The only difference is the

value of "b".

Value of "b" in

Resulting Curve

y = f(bx)
b<0 reflection
b=0 horizontal line
0<b<1 stretch
b = original curve
b>1 compression

Note: For horizontal stretch and compression, the change in the graph caused by the value

of “b” is counter-intuitive; be careful with these.
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Algebra

Functions

Transformation — Reflection

A Reflection is a “flip” of the graph across a mirror in the plane. It preserves the shape the

graph but can make it look “backwards.”

In Algebra, the reflections of primary interest are the reflections across an axis in the plane.

Starting form:

x-axis Reflection:

X-Axis Reflection
y=fx)
y=—-f(x)

Note the following:

At each point, the graph is
reflected across the x-axis.

The form of the transformation is
the same as a vertical stretch or
compression with a = —1.

The flip of the graph over the x-
axis is, in effect, a vertical
transformation.

Starting form:

y-axis Reflection:

Note the following:

Y-Axis Reflection
y=fx)
y=f(-x)

At each point, the graph is
reflected across the y-axis.

The form of the transformation is
the same as a horizontal stretch
or compression with b = —1.
The flip of the graph over the y-
axis is, in effect, a horizontal
transformation.

Version 3.2

fx) [

f(-x)

y-axis
reflection
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Algebra
Transformations — Summary

Starting form: y = f(x)

For purposes of the following table, the variables h and k are positive to make the forms more
like what the student will encounter when solving problems involving transformations.

Transformation Summary
Form of Transformation Result of Transformation
y=f(x)+k Vertical translation up k units.
y=f(x) -k Vertical translation down k units.
y=f(x+h) Horizontal translation left h units.
y=f(x—h) Horizontal translation right h units.
y=a f(x), a>1 Vertical stretch by a factor of a.
y=a-f(x), 0<a<1 Vertical compression by a factor of a.
y=f(bx), b>1 Horizontal compression by a factor of %.
y=f(bx), 0<b<1 Horizontal stretch by a factor of %.
y=—f(x) Reflection across the x-axis (vertical).
y = f(—x) Reflection across the y-axis (horizontal).
Transformation Based on Value of "a" Transformations based on the values
of “a” and “b” (stretches,
Value
of "a" compressions, reflections) can be

Vertical Stretch represented by these graphics.

Vertical Compression

Transformation Based on Value of "b"

Vertical Compression @ Reflection
= 5 Across Y-Axis
£
1 s
=508 : : 2 .
& b Horizontal Horizontal Horizontal Horizontal
Vertical Stretch < Compression Stretch Stretch Compression
Value
1 0 1
of "b"
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Algebra

Functions

Building a Graph with Transformations

The graph of an equation can be built with blocks made up of transformations. As an example,
we will build the graph of y = —2(x — 3)? + 4.

v =(x-3)7

y= 2(x-3]3

—
T Mayeright
ol 3 units

Vertical Stretch
by a Factor of 2

Step 1: Start with the basic

Step 2: Translate 3 units to

Step 3: Stretch vertically by

quadratic equation: y = x? the right to get equation: a factor of 2 to get equation:
y=(x—3)? y=2(x—3)"
y=-2(x3)*+4 y=-2(x-3)%+4

ER Move Up
4 Units

+
5

Reflect Over
X-Axis

Step 4: Reflect over the
x-axis to get equation:
y=-2(x—3)"

Version 3.2
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Step 5: Translate up 4
units to get equation:
y=-2(x-3)2+4
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Chapter 6

Algebra
Slope of a Line

Linear Functions

The slope of a line tells how fast it rises or falls as it moves from left to right. If the slope is
rising, the slope is positive; if it is falling, the slope is negative. The letter “m” is often used as

the symbol for slope.

The two most useful ways to calculate the slope of a line are discussed below.

Mathematical Definition of Slope Als4)
The definition is based on two points with S, 3)
coordinates (x4, y4) and (x5, y,). The definition,
then, is: i 1
m = Y2 —)1
Y2 — X1 D (4,-2)
C(-31-4)

Comments:
e You can select any 2 points on the line.
e Atable such as the one at right can be helpful for doing

your calculations. x-value | y-value
e Notethat m = 22—21 implies that m = =Yz Point 2 Y2 Y2

X2 — X1 X1 — X2 .
. . . . . Point 1 X1 Y1
So, it does not matter which point you assign as Point 1
and which you assign as Point 2. Therefore, neither does | Difference | x; —x; | ¥, — ¥4

it matter which point is first in the table.

e |tisimportant that once you assign a point as Point 1 and another as Point 2, that you use

their coordinates in the proper places in the formula.

Examples:

For the two lines in the figure above, we get the following:

Green Line x-value | y-value Red Line x-value | y-value
Point A 1 4 Point D 4 -2
Point C -3 -4 Point B -4 2
Difference 4 8 Difference 8 -4
. 8 ) - 1
Greenlinee m= —-= 2 Red Line: m = — = — =
4 8 2
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Chapter 6 Linear Functions

Algebra
Slope of a Line (cont’d)

Rise over Run
A(1,4)

An equivalent method of calculating slope that is more
visual is the “Rise over Run” method. Under this
method, it helps to draw vertical and horizontal lines

that indicate the horizontal and vertical distances

between points on the line.

D (4,-2) \

The slope can then be calculated as follows:

rise _  lengthof vertical line

run length of horizontal line

The rise of a line is how much it increases (positive) or decreases (negative) between two
points. The run is how far the line moves to the right (positive) or the left (negative) between
the same two points.

Comments:
e You can select any 2 points on the line.
e [tisimportant to start at the same point in measuring both the rise and the run.

e A good convention is to always start with the point on the left and work your way to the
right; that way, the run (i.e., the denominator in the formula) is always positive. The only
exception to this is when the run is zero, in which case the slope is undefined.

e [f the two points are clearly marked as integers on a graph, the rise and run may actually be
counted on the graph. This makes the process much simpler than using the formula for the
definition of slope. However, when counting, make sure you get the right sign for the slope
of the line, e.g., moving down as the line moves to the right is a negative slope.

Examples:

For the two lines in the figure above, we get the following:

Green Line: m = risefrom(—H)to4 _ 8 =2 Notice how similar the

run from (-3)to 1 T4

calculations in the examples

fall from2 to (-2) _4 1 are under the two methods

run from (—4) to 4 8

Red Line: m = of calculating slopes.
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P

-4

4
m = —Zg (big negative)

line is steep and going down

k.

m= —1
line goes down at a 45° angle

al

24

3
m= -5 (small negative)

line is shallow and going down

Version 3.2

Algebra
Slopes of Various Lines

m = undefined
line is vertical

When you look at a line, you
should notice the following
about its slope:

e  Whether itis O, positive,
negative or undefined.

e If positive or negative,
whether it is less than 1,
about 1, or greater than 1.

The purpose of the graphs on
this page is to help you get a feel
for these things.

This can help you check:

e Given a slope, whether you
drew the line correctly, or

e Given a line, whether you
calculated the slope
correctly.

4t

m=20
line is horizontal
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41

1
m= 35 (big positive)
line is steep and going up

a1

/

m=1

line goes up at a 45° angle

a4t

1 =T

2
m=o7 (small positive)

line is shallow and going up
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Chapter 6 Linear Functions

Algebra
Various Forms of a Line

There are three forms of a linear equation which are most useful to the Algebra student, each
of which can be converted into the other two through algebraic manipulation. The ability to

move between forms is a very useful skill in Algebra, and should be practiced by the student.

Standard Form

The Standard Form of a linear equation is: Standard Form Examples
Ax+ By =C 3x+2y=6
where A4, B, and C are real numbers and A and B are not both zero. 2x — 7y = 14

Usually in this form, the convention is for A to be positive.

Why, you might ask, is this “Standard Form?” One reason is that this form is easily extended to
additional variables, whereas other forms are not. For example, in four variables, the Standard
Form would be: Ax + By + Cz + Dw = E. Another reason is that this form easily lends itself
to analysis with matrices, which can be very useful in solving systems of equations.

Slope-Intercept Form

. . Slope-Intercept Examples
The Slope-Intercept Form of a linear equation is the one most P P P

familiar to many students. Itis: y=-3x+6

3
y=mx+b y:Zx_H

where m is the slope and b is the y-intercept of the line (i.e., the
value at which the line crosses the y-axis in a graph). m and b must also be real numbers.

Point-Slope Form

The Point-Slope Form of a linear equation is the one used least by
the student, but it can be very useful in certain circumstances. In Point-Slope Examples
particular, as you might expect, it is useful if the student is asked for (y—3)=2((x+4)
the equation of a line and is given the line’s slope and the
coordinates of a point on the line. The form of the equation is: G+7)=5 <x N §)

(¥ —y1) = m(x — xq)
where m is the slope and (x4, ;) is any point on the line. One strength of this form is that
equations formed using different points on the same line will be equivalent.
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Algebra
Slopes of Parallel and Perpendicular Lines

Parallel Lines
Two lines are parallel if their slopes are equal. ni

e Iny =mx+ b form, if the values of m are
the same.
Example: y = 2x —3 and
y=2x+1

e In Standard Form, if the coefficients of x and
y are proportional between the equations.
Example: 3x —2y =5 and
6x —4y = -7

e Also, if the lines are both vertical (i.e., their
slopes are undefined).
Example: x = -3 and
x=2

Perpendicular Lines

Two lines are perpendicular if the product of their
slopesis —1. That s, if the slopes have different
signs and are multiplicative inverses.

e Iny =mx + b form, the values of m
multiply to get —1..

Example: y =6x+5 and

y=—%x—3

e |n Standard Form, if you add the product of
the x-coefficients to the product of the y-

coefficients and get zero.
Example: 4x + 6y =4 and
3x—2y =5 because (4-3)+(6-(=2))=0
e Also, if one line is vertical (i.e., m is undefined) and one line is horizontal (i.e., m = 0).
Example: x = 6 and
y=3
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Chapter 6 Linear Functions

Algebra
Parallel, Perpendicular or Neither

The following flow chart can be used to determine whether a pair of lines are parallel,
perpendicular, or neither.

First, put both lines in:
y = mx + b form.

Are the
yes Result: The
slopes of the )
] —» lines are
two lines the
parallel.
same?

Is the

Result: The lines
yes
product of

—_— are

the two perpendicular.

slopes = -1?

Result: The
lines are

neither.
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Chapter 6 Linear Functions

Algebra
Parallel, Coincident or Intersecting

The following flow chart can be used to determine whether a pair of lines are parallel,
coincident, or intersecting. Coincident lines are lines that are the same, even though they may
be expressed differently. Technically, coincident lines are not parallel because parallel lines
never intersect and coincident lines intersect at all points on the line.

First, put both lines in:
y = mx + b form.

Are the
slopes of the
two lines the

. Are the y- yes Result: The
intercepts of lines are
the two lines coincident.

same? the same?

l no

Result: The Result: The
lines are lines are
intersecting. parallel.

The intersection of the two lines is:
e Forintersecting lines, the point of intersection.
e For parallel lines, the empty set, { }.

e For coincident lines, all points on the line.
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Chapter 7 Inequalities

Algebra
Properties of Inequalities

For any real numbers a, b, and c:

Property Definition
Addition Ifa<b,thena+c<b+c
Property

If a>b,thena+c>b+c

Subtraction If a<b,thena—c<b-—c
Property
If a>b,thena—c>b—c
Multiplication | For ¢ > 0, Forc <0,
Property
If a<b,thena-c<b-c If a<b,thena-c>b-c
If a>b,thena-c>b-c If a>b,thena-c<b-c
Division Forc > 0, Forc <0,
Property
If a<b,thena+~c<b-+c If a<b,thena+c>b~+c
If a>b,thena+~c>b+c If a>b,thena+~c<b-+c

Note: all properties which hold for “<” also hold for “<”, and all properties which hold for “>”
also hold for “>”.

There is nothing too surprising in these properties. The most important thing to be obtained
from them can be described as follows: When you multiply or divide an inequality by a
negative number, you must “flip” the sign. That is, “<” becomes “>”, “>” becomes “<”, etc.

In addition, it is useful to note that you can flip around an entire inequality as long as you keep

the “pointy” part of the sign directed at the same item. Examples:

. One way to remember this
4> x is the same as x <4 . .
is that when you flip around

3x—2<y is the same as y>3x—2 an inequality, you must also

flip around the sign.
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Chapter 7 Inequalities

Algebra
Graphs of Inequalities in One Dimension

Inequalities in one dimension are generally graphed on the number line. Alternatively, if it is
clear that the graph is one-dimensional, the graphs can be shown in relation to a number line
but not specifically on it (examples of this are on the next page).

One-Dimensional Graph Components

e The endpoint(s) — The endpoints for the ray or segment in the graph are shown as either
open or closed circles.

0 If the pointis included in the solution to the inequality (i.e., if the sign is < or 2), the
circle is closed.

0 If the point is not included in the solution to the inequality (i.e., if the sign is < or >),
the circle is open.

e The arrow — If all numbers in one direction of the number line are solutions to the
inequality, an arrow points in that direction.

0 For<or<signs, the arrow points to the left ( «&———— ).
0 For > or = signs, the arrow points to the right ( —— ).

e Theline —in a simple inequality, a line is drawn from the endpoint to the arrow. If there are
two endpoints, a line is drawn from one to the other.

Examples:
| | | | | | il )
1 1 1 —® | | > xz2
15 10 5 0 5 10 15
| | & | | | |
1 1 P | | | > X>-D
a5 10 5 0 5 10 15
| & | | | | | |
x<12 € | | | | — 1
15 10 £ 0 5 10 15
| g | | | | | |
x=-1 —€ | | @ 1 1 |
15 10 5 0 5 10 15

Version 3.2 Page 43 of 187 July 10, 2019



Chapter 7 Inequalities

Algebra
Compound Inequalities in One Dimension

Compound inequalities are a set of inequalities that must all be true at the same time. Usually,
there are two inequalities, but more than two can also form a compound set. The principles
described below easily extend to cases where there are more than two inequalities.

Compound Inequalities with the Word “AND”

An example of compound inequalities with the word “AND” would be:

x<12 and x =2 or 2<x<12 These are the same conditions,
(Simple Form) (compound Form) expressed in two different forms.

Graphically, “AND” inequalities exist at points where the graphs of the individual inequalities
overlap. This is the “intersection” of the graphs of the individual inequalities. Below are two
examples of graphs of compound inequalities using the word “AND.”

xz2 and x<12 x£2 and x>12
> x22 xi2 ¢&——m———9
x<12 0 O—> x>12
o —— 0
} } } } } } | | | | | |
5 0 5 10 15 20 i o ! A E N
%—l
Area of Overlap No Overlap
A typical “AND” example: The result is a “AND” compound inequalities sometimes result
segment that contains the points that overlap in the empty set. This happens when no
the graphs of the individual inequalities. numbers meet both conditions at the same time.

Compound Inequalities with the Word “OR”

Graphically, “OR” inequalities exist at points where any of the original graphs have points. This
is the “union” of the graphs of the individual inequalities. Below are two examples of graphs of
compound inequalities using the word “OR.”

x£2 or x>12 xz2 or x<12
x£2 €-—9 > xz2
x>12 x<12 € 0]

-

1 1 f 1 1 f I 1 1 1 1 1

-5 0 5 10 15 20 5o 0 5 10 15 20
A typical “OR” example: The result is a pair of “OR” compound inequalities sometimes result in
rays extending in opposite directions, with a the set of all numbers. This happens when every
gap in between. number meets at least one of the conditions.
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Chapter 7

Algebra
Inequalities in Two Dimensions

Inequalities

Graphing an inequality in two dimensions involves the following steps:

e Graph the underlying equation.

e Make the line solid or dotted based on whether the inequality contains an

0 For inequalities with “<” or “>" the line is dotted.
0 Forinequalities with “<” or “=" the line is solid.

“_n

=" sign.

e Determine whether the region containing the solution set is above the line or below the

line.

0 For inequalities with “>" or “2” the shaded region is above the line.

“" »

0 Forinequalities with “<” or “<” the shaded region is below the line.

e Shade in the appropriate region.

Example:

Graph the solution set of the following system of inequality:

Step 1: Graph the underlying
equation.

y>—x+1

Step 2: Determine whether the line 1
should be solid or dotted:

y>—-x+1 the>sign does not

“u_n

contain “=", so the line is dotted

Step 3: Determine the region to be
shaded based on the sign in the
equation:

y>—x+1 the>signindicates

shading above the line

The solution set is the shaded area.
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Chapter 7 Inequalities

Algebra
Graphs of Inequalities in Two Dimensions

y<2x+3 ;
= 21

y 4 yi=2x+3
!.r! =L (’! 2
Less Than (<) Greater Than (>)
Dashed Line Dashed Line
Below the Line Above the Line

y = 2x+3

Less Than or Equal (<) Greater Than or Equal (=)
Solid Line Solid Line
Below the Line Above the Line
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Chapter 7 Inequalities

Algebra
Absolute Value Functions

Equations

Graphs of equations involving absolute values generally have a “V” pattern. Whenever you see
a “V”in a graph, think “absolute value.” A general equation for an absolute value function is of
the form:

y=|m(x—-h)|+k or y=—|m(x—-h)|+k
where,
e the sign indicates whether the graph opens up (“+” sign) or down (“—* sign).
e |ml|is the absolute value of the slopes of the lines in the graph.

e (h, k) is the location of the vertex (i.e., the sharp point) in the graph.

Examples:

Equation: y = |x — 1| + 2
Vertex = (1, 2)
m = 1; |slopes| = 1

Graph opens up

\ gl Equation: y = [-2(x + 1)| — 3
‘ Vertex = (—1,—3)

m = —2; |slopes| = 2

\ AT Graph opens up

Equation: y = —|§(x—§)| +3

Y/ | \ || Vertex:(zﬁ)

/=’ 1 \5 } m=§;|slopes|=§

// Al \ Graph opens down
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Chapter 7 Inequalities

Algebra
Absolute Value Functions (cont’d)

Inequalities

Since a positive number and a negative number can have the same absolute value, inequalities
involving absolute values must be broken into two separate equations. For example:

The first new equation is simply the original
> x-3<4 a P 8

equation without the absolute value sign.

|x — 3| < 4
In the second new equation, two things

— > x—3>(-4) change: (1) the sign flips, and (2) the value on

Sign that determines

use of “AND” or “OR” the right side of the inequality changes its sign.

At this point the absolute value problem has converted into a pair of compound inequalities.

Equation 1 Equation 2

Solve: x—3 < 4 Solve: x—3> —4
Step 1: Add 3 +3 +3 Step 1: Add 3 +3 43
Result: x < 7 Result: x > -1

Next, we need to know whether to use “AND” or “OR” with the results. To decide which word
to use, look at the sign in the inequality; then ...

e Use the word “AND” with “less thand” signs. Note: the English is poor, but the math

is easier to remember with this trick!
e Use the word “OR” with “greator” signs.

The solution to the above absolute value problem, then, is the same as the solution to the
following set of compound inequalities:

x<7 and x> (-1) The solution set is all x in the range (-1, 7)

Note: the solution set to this example is given in “range” notation. When using this notation,
e use parentheses () whenever an endpoint is not included in the solution set, and
e usesquare brackets [ | whenever an endpoint is included in the solution set.
e Always use parentheses () with infinity signs (—oo or o).

Examples:
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Chapter 8 Systems of Equations

Algebra
Systems of Equations

A system of equations is a set of 2 or more equations for which we wish to determine all
solutions which satisfy each equation. Generally, there will be the same number of equations
as variables and a single solution to each variable will be sought. However, sometimes there is
either no solution or there is an infinite number of solutions.

There are many methods available to solve a system of equations. We will show three of them
below.

Graphing a Solution

In the simplest cases, a set of 2 equations in 2 unknowns can be solved using a graph. A single
equation in two unknowns is a line, so two equations give us 2 lines. The following situations
are possible with 2 lines:

e They will intersect. In this case, the point of intersection is the only solution.

e They will be the same line. In this case, all points on the line are solutions (note: this is
an infinite set).

e They will be parallel but not the same line. In this case, there are no solutions.

Examples

o 1
x2y=2 |~ y=,x+1

Solution Set: Solution Set: Solution Set:

The point of intersection The empty set; All points on the line.

can be read off the graph; these parallel lines Although the equations look

the point (2,0). will never cross. different, they actually
describe the same line.

Version 3.2 Page 49 of 187 July 10, 2019



Chapter 8 Systems of Equations

Algebra
Systems of Equations (cont’d)

Substitution Method

In the Substitution Method, we eliminate one of the variables by substituting into one of the
equations its equivalent in terms of the other variable. Then we solve for each variable in turn
and check the result. The steps in this process are illustrated in the example below.

Example: Solve forxandyif: y=—x+2
and: 2x =3y + 9.

Step 1: Review the two equations. Look for a variable that can be substituted from one

"

equation into the other. In this example, we see a single “y”in the first equation; this is a prime
candidate for substitution.

We will substitute (—x + 2) from the first equation for y in the second equation.

Step 2: Perform the substitution.

2x=3y+9 becomes: 2x=3(—x+2)+9

Step 3: Solve the resulting equation for the single variable that is left.

2x=3(—x+2)+9 —— 2x=-3x+15
2x=-3x+6+9 5x =15
2x=-3x+15 — x=3

Step 4: Substitute the known variable into one of the original equations to solve for the
remaining variable.

=—x+2
y After this step, the solution is tentatively identified as:
y=-(3)+2 x = 3,y = —1, meaning the point (3, -1).
y=-1

Step 5: Check the result by substituting the solution into the equation not used in Step 4. If the
solution is correct, the result should be a true statement. If it is not, you have made a mistake
and should check your work carefully.

2x=3y+9
2(3) =3(-1)+9 Since this is a true mathematical

statement, the solution (3, -1)

6=-3+9 <

can be accepted as correct.
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Chapter 8 Systems of Equations

Algebra
Systems of Equations (cont’d)

Elimination Method

In the Substitution Method, we manipulate one or both of the equations so that we can add
them and eliminate one of the variables. Then we solve for each variable in turn and check the
result. This is an outstanding method for systems of equations with “ugly” coefficients. The
steps in this process are illustrated in the example below. Note the flow of the solution on the

page.

Example: Solve forxandyif: y=—x+2
and: 2x =3y + 9.

Step 1: Re-write the equations in Step 2: Multiply each equation by a value
standard form. selected so that, when the equations are added,
a variable will be eliminated.

v

x+ y=2 (Multiply by 2) ———» 2x+2y= 4

2x—3y=9

v

(Multiply by -1) — —-2x+3y =-9

Step 3: Add the resulting equations.
Step 5: Substitute the result into 2x+2y= 4
one of the original equations and —2x+3y=-9
solve for the other variable. 5y = -5
y=—x+2
—1=—x+2 Step 4: Solve for the variable.
x—1= 2 5y =-5
X = 3 y=-1
Step 6: Check the result by substituting 2x=3y+9
the solution into the equation not used in
L 23)=3(—-1)+9
Step 5. If the solution is correct, the
result should be a true statement. Ifitis 6=-3+9
not, you have made a mistake and should Since this is a true mathematical statement, the
check your work. solution (3, -1) can be accepted as correct.
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Chapter 8

Classification of Systems

Algebra

Systems of Equations (cont’d)

Systems of Equations

There are two main classifications of systems of equations: Consistent vs. Inconsistent, and

Dependent vs. Independent.

Consistent vs. Inconsistent

e Consistent Systems have one or more solutions.

e Inconsistent Systems have no solutions. When you try to solve an inconsistent set of

equations, you often get to a point where you have an impossible statement, such as

“1 = 2.” This indicates that there is no solution to the system.

Dependent vs. Independent

e Linearly Dependent Systems have an infinite number of solutions. In Linear Algebra, a

system is linearly dependent if there is a set of real numbers (not all zero) that, when

they are multiplied by the equations in the system and the results are added, the final

result is zero.

e Linearly Independent Systems have at most one solution. In Linear Algebra, a system is

linearly independent if it is not linearly dependent. Note: some textbooks indicate that

an independent system must have a solution. This is not correct; they can have no

solutions (see the middle example below). For more on this, see the next page.

Examples

=X+
Y= %1

One Solution
Consistent
Independent

Version 3.2

No Solution
Inconsistent
Independent

Infinite Solutions
Consistent
Dependent
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Chapter 8 Systems of Equations

ADVANCED
Algebra
Linear Dependence

Linear dependence is a concept from Linear Algebra, and is very useful in determining if
solutions to complex systems of equations exist. Essentially, a system of functions f; is defined
to be linearly dependent if there is a set of real numbers a; (not all zero), such that:

n

a,f, +a,f, +asf; + ...+ a,f, =0 or,in summation notation, z aifi =0

i=1
If there is no set of real numbers a;, such that the above equations are true, the system is said

to be linearly independent.

The expression a, f; + a,f, + -+ a, f, is called a linear combination of the functions f;. The
importance of the concept of linear dependence lies in the recognition that a dependent
system is redundant, i.e., the system can be defined with fewer equations. It is useful to note
that a linearly dependent system of equations has a determinant of coefficients equal to 0.

Example:

Consider the following system of equations:

fi1=3x-2y+z+1 Notice that: f3 = f1 + 2f>.
fo=—x+y+2z-2 Therefore, the system is linearly
fa=x+52-3 dependent.

3 = _

Checking the determinant of the coefficient matrix:

D= —?;1 _g §=1|_i ;|—o|_31 ;|+5|_i _f|=1(—5)+0(7)+5(1)=0.

It should be noted that the fact that D = 0 is sufficient to prove linear dependence only if there
are no constant terms in the functions (e.g., if the problem involves vectors). If there are
constant terms, it is also necessary that these terms combine “properly.” There are additional
techniques to test this, such as the use of augmented matrices and Gauss-Jordan Elimination.

Much of Linear Algebra concerns itself with sets of equations that are linearly independent. If
the determinant of the coefficient matrix is non-zero, then the set of equations is linearly
independent.
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Chapter 8 Systems of Equations

Algebra
Systems of Inequalities in Two Dimensions

Systems of inequalities are sets of more than one inequality. To graph a system of inequalities,
graph each inequality separately (including shading in the appropriate region). The solution set,
then, is either the overlap of the regions of the separate inequalities (“AND” Systems) or the
union of the regions of the separate inequalities (“OR” Systems).

Examples:

Graph the solution set of the following system of inequalities:

(@ y<2x—3 AND y>-x+1 (b) y<2x—-3 OR y>-x+1

Step 1: Graph the underlying equations. /

y=-x-1 \\

Step 2: Determine whether each line should be
solid or dotted:

“u_n

= y<2x—3 the<signcontains “=”, so the
line is solid

= y>-x+1 the>signdoesnotcontain“=”, =

so the line is dotted

Step 3: Determine the regions to be shaded based on the signs in the equations:
e y<2x—3 the<signindicates shading below the line

e y>—x+1 the>signindicates shading above the line

Step 4: Determine the final solution set.

(a) If the problem has an “AND” between (b) If the problem has an “OR” between
the inequalities, the solution set is the the inequalities, the solution set is the
overlap of the shaded areas (i.e., the union of all of the shaded areas (i.e.,
green part in the graph below). the blue part in the graph below).
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Chapter 8 Systems of Equations

Algebra
Parametric Equations

Parametric Equations in 2 dimensions are functions that express each of the two key variables
in terms of a one or more others. For example,

x=—-t+1
y=2t—-3

Parametric equations are sometimes the most useful way to solve a problem.

Pythagorean Triples
As an example, the following parametric equations can be used to find Pythagorean Triples:

Let s, t be relatively prime integers and let s > t. Then, the following equations produce a set
of integer values that satisfy the Pythagorean Theorem:

a=-s%—t* b=2st c¢=s?+t>

Examples:
S t a b C Pythagorean Relationship
3 2 12 13 52+ 122 =132
4 3 7 24 25 72 + 24?2 = 252
5 2 21 20 29 212 4+ 202 = 292
5 3 16 30 34 162 + 302 = 342

Creating a Standard Equation from Parametric Equations

To create a standard equation from a set of

parametrlc equatlons |n two dlmens|on5, Example: Create a Standard equation for the
parametric equations:

e Solve one parametric equation for t.
x=—-t+1 y=2t—-3

e Substitute this value of tinto the other
Solving for t in the first equation, we get:

equation.
e Clean up the remaining expression as t=—x+1

necessary. Substituting into the second equation gives:
Note: any other method of solving y=2(—x+1)-3
simultaneous equations can also be used for Cleaning this up, we get the solution we seek:

this purpose. y=-2x—1
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Chapter 9 Exponents
Algebra
Exponent Formulas
Word Description Math Description Limitations
Examples
of Property of Property on variables
4,23 — o7
Product of Powers al - a1 = a®P+9 X=X
x> -x8=x3
aP y5
Quotient of Powers — = a9 a+0 — =93
al yZ
43 _ 12
Power of a Power (aP) = a@D (%) =z
(x—B)—S = x15
. . 91°=1
Anything to the zero power is 1 a®=1 a+0
(xyz)° =1, ifx,y,z 0
1
Negative powers generate the 1 x(=3 = =3
reciprocal of what a positive al-P) = - a+0 . x
a -
power generates (1) -
x
3y)3 =27y3
Power of a product (a-b)? = aP - b? (3) Y
[(x + Dz]* = (x + 1)*z*
P f tient -] =— b+0 Z) ==
ower of a quotien ( b) b (4) o1
Converting a root to a power na = aM/n) n+0 VX = x/2
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Chapter 9 Exponents

Algebra
Scientific Notation

Format
A number in scientific notation has two parts:

e A number which is at least 1 and is less than 10 (i.e., it must have only one digit before
the decimal point). This number is called the coefficient.
e A power of 10 which is multiplied by the first number.

Here are a few examples of regular numbers expressed in scientific notation.

32 =3.2x10? 0.00034 =3.4x107* 1=1x10°
1,420,000 = 1.42 x 10° 1000 = 1 x 103 —450 = —4.5 x 102

How many digits? How many zeros?

There are a couple of simple rules for converting from scientific notation to a regular number or
for converting from a regular number to scientific notation:

e Ifaregular number is less than 1, the exponent of 10 in scientific notation is negative.
The number of leading zeros in the regular number is equal to the absolute value of this
exponent. In applying this rule, you must count the zero before the decimal point in the
regular number. Examples:

Original Number Action Conversion
0.00034 Count 4 zeros 3.4x10*
6.234 x 108 Add 8 zeros before the digits 0.000 000 062 34

e If the number is greater than 1, the number of digits after the first one in the regular
number is equal to the exponent of 10 in the scientific notation.

Original Number Action Conversion
4,800,000 Count 6 digits after the “4” 4.8 x 10°
9.6 x 10° Add 3 digits after the “9” 9,600

e Asageneral rule, multiplying by powers of 10 moves the decimal point one place for
each power of 10.
0 Multiplying by positive powers of 10 moves the decimal to the right.
0 Multiplying by negative powers of 10 moves the decimal to the left.
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Chapter 9

Exponents

Algebra
Adding and Subtracting with Scientific Notation

When adding or subtracting numbers in scientific notation:

e Adjust the numbers so they have the same power of 10. This works best if you adjust

the representation of the smaller number so that it has the same power of 10 as the

larger number. To do this:

0 Call the difference between the exponents of 10 in the two numbers “n”,

“n__

O Raise the power of 10 of the smaller number by “n”, and

“_n

0 Move the decimal point of the coefficient of the smaller number “n” places to

the left.

e Add the coefficients, keeping the power of 10 unchanged.

e [f the result is not in scientific notation, adjust it so that it is.

0 If the coefficient is at least 1 and less than 10, the answer is in the correct form.

0 If the coefficient is 10 or greater, increase the exponent of 10 by 1 and move the

decimal point of the coefficient one space to the left.

0 If the coefficient is less than 1, decrease the exponent of 10 by 1 and move the

decimal point of the coefficient one space to the right.

Examples:
0.32 x 10*
+99x10* —>  +9.90 x 10*

32x10% —»

10.22 x 10*
=1.022 x 10°

Explanation: A conversion of the smaller
number is required prior to adding because the
exponents of the two numbers are different.
After adding, the result is no longer in scientific
notation, so an extra step is needed to convert it
into the appropriate format.

6.1x1072 —> 6.1x1072
+23x1072 —> 4+23x1072
8.4x10?

Explanation: No conversion is necessary
because the exponents of the two numbers are
the same. After adding, the result is in scientific
notation, so no additional steps are required.

1.2x107% —» 1.20x1078
—45x107° — > —045x10°8
0.75x 1078

= 7.5x107°
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the exponents of the two numbers are different.
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Chapter 9 Exponents

Algebra
Multiplying and Dividing with Scientific Notation

When multiplying or dividing numbers in scientific notation:
e Multiply or divide the coefficients.

e Multiply or divide the powers of 10. Remember that this means adding or subtracting
the exponents while keeping the base of 10 unchanged.

0 If you are multiplying, add the exponents of 10.
0 Ifyou are dividing, subtract the exponents of 10.

e [f the result is not in scientific notation, adjust it so that it is.
0 If the coefficient is at least 1 and less than 10, the answer is in the correct form.
0 If the coefficient is 10 or greater, increase the exponent of 10 by 1 and move the
decimal point of the coefficient one space to the left.
0 If the coefficient is less than 1, decrease the exponent of 10 by 1 and move the
decimal point of the coefficient one space to the right.

Examples:
4 x10° Explanation: The coefficients are multiplied and
5 104 the exponents are added. After multiplying, the
_ result is no longer in scientific notation, so an
20 x 107 extra step is needed to convert it into the
=20x103 appropriate format.
1.2 x 1072 Explanation: The coefficients are multiplied and
the exponents are added. After multiplying, the
©20x107° result is in scientific notation, so no additional
2.4x 1078 steps are required.
3.3x10% Explanation: The coefficients are divided and
£ 554102 the exponents are subtracted. After dividing,
_ the result is no longer in scientific notation, so
0.6 x 10° an extra step is needed to convert it into the
— 6.0 x 105 appropriate format.
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Chapter 10 Polynomials — Basic

Algebra
Introduction to Polynomials

What is a Polynomial?

A polynomial is an expression that can be written as a term or a sum of terms, each of which is
the product of a scalar (the coefficient) and a series of variables. Each of the terms is also called

a monomial.

Examples (all of these are polynomials):

Monomial 3x —4x1%y3

Binomial 2x + 8 15xyz” — 12xyz
Trinomial x?—6x+9 x>+ 7x* — 3x3

Other x*—4x3+6x% —4x+1 —2xyz + 6xz% + 3yz — 8xz + 2z°

Definitions:

Scalar: Areal number.

Monomial: Polynomial with one term.
Binomial: Polynomial with two terms.

Trinomial: Polynomial with three terms.

Degree of a Polynomial
The degree of a monomial is the sum of the exponents on its variables.

The degree of a polynomial is the highest degree of any of its monomial terms.

Examples:
Polynomial Degree Polynomial Degree
6 0 3x3yz + 6x%yz3 6
3x 1 15xyz” — 12xyz 9
3xyz 3 x® + 7x* — 3x3 5
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Adding and Subtracting Polynomials

Problems asking the student to add or subtract polynomials are often written in linear form:
Add: (3x3+2x —4)+ (—2x?> +4x + 6)

The problem is much more easily solved if the problem is written in column form, with each

polynomial written in standard form.

Definitions

Standard Form: A polynomial in standard form has its terms written from highest degree to
lowest degree from left to right.

Example: The standard form of (x + 3x% + 4) is (3x? + x + 4)

Like Terms: Terms with the same variables raised to the same powers. Only the numerical
coefficients are different.

Example: 2xz°, —6xz°, and xz° are like terms.

Addition and Subtraction Steps

Step 1: Write each polynomial in standard form. Leave blank spaces for missing terms. For
example, if adding (3x3 + 2x — 4), leave space for the missing x2-term.

Step 2: If you are subtracting, change the sign of each term of the polynomial to be subtracted
and add instead. Adding is much easier than subtracting.

Step 3: Place the polynomials in column form, being careful to line up like terms.

Step 4: Add the polynomials.

Examples:
Add: (3x3 +2x —4) + (—2x% + 4x + 6) Subtract: (3x3 + 2x — 4) — (—2x% + 4x + 6)
Solution: Solution:
3x3 +2x—4 3x3 +2x—4
+ —2x24+4x+6 + 2x%2—4x—6
3x3 —2x% 4+ 6x + 2 3x3 + 2x% — 2x — 10
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Algebra
Multiplying Binomials

The three methods shown below are equivalent. Use whichever one you like best.

FOIL Method

FOIL stands for First, Outside, Inside, Last. To multiply using the FOIL method, you make four
separate multiplications and add the results.

Example: Multiply (2x + 3) - (3x — 4) The result is obtained by adding the results of
First: 2% 3x = 6x2 the 4 separate multiplications.

Outside: 2x - (—4) = —8x F 0 1 L
Inside: 3-(3x) =9« (2x+3)-(Bx—4) = 6x? —8x + 9x — 12
Last: 3-(—4) =-12 =6x2+x—12

Box Method

The Box Method is pretty much the same as the FOIL method, except for the presentation. In
the box method, a 2x2 array of multiplications is created, the 4 multiplications are performed,
and the results are added.

Example: Multiply (2x + 3) - (3x — 4)

The result is obtained by adding the results of
Multiply 3x —4 the 4 separate multiplications.
2% 62 _ 8y (2x+3)-(Bx—4) =6x? —8x +9x — 12
=6x%2+x—12
+3 9x —12

Stacked Polynomial Method

A third method is to multiply the binomials (2x +3)
like you would multiply 2-digit numbers. - (3x—4)
The name comes from how the two —8x — 12
polynomials are placed in a “stack” in 6x2 + 9x
preparation for multiplication. 6x2 + x — 12
Example: Multiply (2x + 3) - (3x — 4)
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Algebra
Multiplying Polynomials

If the polynomials to be multiplied contain more than two terms (i.e., they are larger than
binomials), the FOIL Method will not work. Instead, either the Box Method or the Stacked
Polynomial Method should be used. Notice that each of these methods is essentially a way to
apply the distributive property of multiplication over addition.

The methods shown below are equivalent. Use whichever one you like best.

Box Method

The Box Method is the same for larger polynomials as it is for binomials, except the box is

bigger. An array of multiplications is created; the multiplications are performed; and like terms
are added.

Example: Multiply (x3 — 2x% + 2x + 3) - (2x% — 3x — 4)

Multiply 2x2 —3x —4 Results:
3 255 3yt 43 (x3—2x2+2x+3) - (2x? —3x — 4)
_ 5
—2x% | —4x* | +6x® | +8x? 2x
3 ) - —4x* — 3x*
+2x +4x 6x 8x
+4x3+ 6x3 — 4x3
+3 +6x2 —9x —12

+6x% — 6x?% + 8x?

—9x — 8x

Stacked Polynomial Method

Results:
In the Stacked Polynomial Method, the %3 —2x2 4+ 2x +3
polynomials are multiplied using the same )
. . - - 2x*—3x —4

technique to multiply multi-digit numbers
One helpful tip is to place the smaller —4x3 +8x* — 8x — 12
polynomial below the larger one in the —3x% 4+ 6x3 — 6x2 — 9y
stack.

2x° — 4x* + 4x3 + 6x2

2x° — 7x* + 6x3 +8x%2 —17x — 12
Version 3.2
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Algebra
Dividing Polynomials

Dividing polynomials is performed much like dividing large numbers long-hand.

Long Division Method
This process is best described by example:
Example: (2x3 +5x2 +x—2) + (x +2)

Step 1: Set up the division like a typical long hand

division problem. x+2 ‘ 2x3 +5x% 4+ x—2
Step 2: Divide the leading term of the dividend by 5
. . 2x
the leading term of the divisor. Place the result
above the term of like degree of the dividend. X+ 2 ’ 2x% +5x% +x — 2
2x3) + x = 2x?

(2x°) 22
Step 3: Multiply the new term on top by the divisor x+2 | 2x3 +5x2 4+ x — 2
and subtract from the dividend. 2x3 4 4x2

(2x?)(x + 2) = 2x3 + 4x? x> +x—2
Step 4: Repeat steps 2 and 3 on the remainder of 2% +x — 1

the division until the problem is completed.
x+2|2x3+5x2+x—2

This process results in the final answer appearing 2x3 + 4x?
above the dividend, so that: x> +x—2
2
(2x3+5x24+x—-2)+(x+2)=2x*+x—-1 X ex
—x —2
Remainders —x—2
If there were a remainder, it would be appended to 0

the result of the problem in the form of a fraction, just like when dividing integers. For

example, in the problem above, if the remainder were 3, the fraction x% would be added to

the result of the division. (2x° +5x? +x+ 1)+ (x +2) =2x?+x —1+ x%

Alternatives

This process can be tedious. Fortunately, there are better methods for dividing polynomials
than long division. These include Factoring, which is discussed next and elsewhere in this
Guide, and Synthetic Division, which is discussed in the chapter on Polynomials — Intermediate.
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Factoring Polynomials

Polynomials cannot be divided in the same way numbers can. In order to divide polynomials, it

is often useful to factor them first. Factoring involves extracting simpler terms from the more

complex polynomial.

Greatest Common Factor

The Greatest Common Factor of the terms of a polynomial is determined as follows:

Step 1: Find the Greatest Common Factor of the coefficients.

Step 2: Find the Greatest Common Factor for each variable. This is simply each variable taken

to the lowest power that exists for that variable in any of the terms.

Step 3: Multiply the GCF of the coefficients by the GCF for each variable.

Example:

Find the GCF of (18x°y°®z + 42x3y7 2% + 30x%2°)

The GCF of the coefficients and each variable are shown
in the box to the right. The GCF of the polynomial is the

product of the four individual GCFs.

Factoring Steps

GCF (18,42,30) = 6
GCF (x°,x3,x8) = x3
GCF (y%,y7,1) =1
GCF (z, z3,2z%) =z
So, GCF (polynomial) = 6x3z

Step 1: Factor out of all terms the GCF of the polynomial.

Step 2: Factor out of the remaining polynomial any binomials that can be

extracted.

Step 3: Factor out of the remaining polynomial any trinomials that can

be extracted.

Note: Typically only
steps 1 and 2 are
needed in high school
algebra problems.

Step 4: Continue this process until no further simplification is possible.

Examples:

Factor: 3x*y — 18x3y + 27x%y
=3x%y (x? —6x+9)
= 3x%y (x — 3)?
The factoring of the blue trinomial (2" line) into
the square of a binomial is the result of

recognizing the special form it represents. Special
forms are shown on the next two pages.

Factor: 6x3y3 — 24xy3

= 6xy3 (x? — 4)

=6xy3 (x +2)(x — 2)
The factoring of the blue binomial (2" line) into
binomials of lower degree is the result of

recognizing the special form it represents. Special
forms are shown on the next two pages.
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Algebra
Special Forms of Quadratic Functions

It is helpful to be able to recognize a couple special forms of quadratic functions. In particular,
if you can recognize perfect squares and differences of squares, your work will become easier
and more accurate.

Perfect Squares

Perfect squares are of the form: a? + 2ab + b? = (a + b)?
a’? — 2ab + b? = (a — b)?

Identification and Solution

The following steps allow the student to identify and solve a trinomial that is a perfect square:
Step 1: Notice the first term of the trinomial is a square. Take its square root.
Step 2: Notice the last term of the trinomial is a square. Take its square root.

Step 3: Multiply the results of the first 2 steps and double that product. If the result is the
middle term of the trinomial, the expression is a perfect square.

Step 4: The binomial in the solution is the sum or difference of the square roots calculated in
steps 1 and 2. The sign between the terms of the binomial is the sign of the middle
term of the trinomial.

Example: ¢ |
4x? - 12xy + 9y2 Notice that the middle term is double the product
of the two square roots (2x and 3y). Thisisa
T T telltale sign that the expression is a perfect square.

V4xc = +2x /9y* =13y

Identify the trinomial as a perfect square:
e Take the square roots of the first and last terms. They are 2x and 3y.

e Test the middle term. Multiply the roots from the previous step, then double the result:
(2x - 3y) - 2 = 12xy. The result (with a “—" sign in front) is the middle term of the
original trinomial. Therefore, the expression is a perfect square.

To express the trinomial as the square of a binomial:
e The square roots of the first and last terms (2x and 3y) make up the binomial we seek.
e We may choose the sign of the first term, so let’s choose the “+” sign.

e Having chosen the “+” sign for the first term, the second term of the binomial takes the
sign of the middle term of the original trinomial (“—"). Therefore, the result is:

4x? — 12xy + 9y? = (2x — 3y)?
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Special Forms of Quadratic Functions

Differences of Squares
Differences of squares are of the form: a’—b*=(a+b) - (a—b)

These are much easier to recognize than the perfect squares because there is no middle term
to consider. Notice why there is no middle term:

(a+b)-(a—b) =a?+ ab— ab — b?> = a® — b?
_—

these two

. ] terms cancel
Identification

To see if an expression is a difference of squares, you must answer “yes” to four questions:
1. Are there only two terms?

o 4

Is there a sign between the two terms?

2.
3. Isthe first term a square? If so, take its square root.
4. Isthe second term a square? If so, take its square root.

The solution is the product of a) the sum of the square roots in questions 3 and 4, and b) the
difference of the square roots in steps 3 and 4.

Note: A telltale sign of when an expression might be the difference of 2 squares is when the
coefficients on the variables are squares: 1,4, 9, 16, 25, 36, 49, 64, 81, etc.

Examples:
(1)  4x*—25y%> = (2x +5y) - (2x — 5Y)

2) x*-49=(x+7)-(x-7)
(3) 81-9z2=(9+32):(9-32)

2

o -GG

ADVANCED: Over the field of complex numbers, it is also possible to factor the sum of 2 squares:

a? + b% = (a + bi) - (a — bi)

This is not possible over the field of real numbers.
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Factoring Trinomials — Simple Case Method

A common problem in Elementary Algebra is the factoring of a trinomial that is neither a
perfect square nor a difference of squares.

Consider the simple case where the coefficient of x? is 1. The general form for this case is:
(x+p)-(x+q) =x*+ (P +q)x+ (pq)
— T —

AR AN

coefficient constant
of x

In order to simplify the illustration of factoring a polynomial where the coefficient of x2 is 1, we
will use the orange descriptors above for the components of the trinomial being factored.

Simple Case Method Example: Factor x> — 3x — 28

Step 1: Set up parentheses for a pair of binomials. Put “x” in the

left hand position of each binomial. = )& )
Step 2: Put sign 1 in the middle position in the left binomial. =x- ) )
Step 3: Multiply sign 1 and sign 2 to get the sign for the right
binomial. Remember: =@x- ) (x+ )
H-H =) ==
H-==0) -H =0
Step 4: Find two numbers that: Fill in: The numbers we seek are
] ’ 4 and —7 because:
(a) Multiply to get the constant, and e = 4-(=7) = —28, and
(b) Add to get the coefficient of x o+ = 4—-7=-3

Step 5: Place the numbers in the binomials so that their signs

=(x—-7)-(x+4
match the signs from Steps 2 and 3. This is the final (x=7)(x+4)
answer.
Step 6: Check your work by multiplying the two binomials to see x—=7)-(x+4)
if you get the original trinomial. =x?+4x —7x— 28
=x?2—-3x-128

v’
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Factoring Trinomials — AC Method

There are times when the simple method of factoring a trinomial is not sufficient. Primarily this

occurs when the coefficient of xZ is not 1. In this case, you may use the AC method presented

here, or you may use either the brute force method or the quadratic formula method

(described on the next couple of pages).

AC Method

The AC Method derives its name from the first step of the

«_n

process, which is to multiply the values of “a” and “c” from the
general form of the quadratic equation: y = ax? + bx + ¢

o _n o _»n

Step 1: Multiply the values of “a” and “c”.

Step 2: Find two numbers that:

(a) Multiply to get the value of ac,
and

(b) Add to get the coefficient of x

Step 3: Split the middle term into two terms, with coefficients
equal to the values found in Step 2. (Tip: if only one of
the coefficients is negative, put that term first.)

Step 4: Group the terms into pairs.
Step 5: Factor each pair of terms.
Step 6: Use the distributive property to combine the

multipliers of the common term. This is the final
answer.

Step 7: Check your work by multiplying the two binomials to
see if you get the original trinomial.
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Example: Factor 6x% — x — 2

6i—x—2
—12

(—4)-3 = —12

(—4)+3=-1

6x% —4x +3x =2

(6x% —4x) + (3x — 2)
2x(3x —2) +1(3x — 2)

=2x+1)-3x-2)

(2x+1)-Bx—-2)
=6x%—4x+3x—2

=6x’2—x—2

v’
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Factoring Trinomials — Brute Force Method

When the coefficient of x? is not 1, the factoring process becomes more difficult. There are a
number of methods that can be used in this case.

If the question being asked is to find roots of the equation, and not to factor it, the student may
want to use the quadratic formula whenever the coefficient of x2 is not 1. Even if you are
required to factor, and not just find roots, the quadratic formula may be a viable approach.

Brute Force Method

This method is exactly what it sounds like. Multiple equations are possible and you must try
each of them until you find the one that works. Here are the steps to finding which equations

are candidate solutions:
Example: Factor 4x? +4x —3
Step 1: Find all sets of whole numbers that multiply to

get the coefficient of the first term in the Combinations that produce a product
of 4 are:

land4 or 2and?2

trinomial. If the first term is positive, you need
only consider positive factors.

Step 2: Find all sets of whole numbers that multiply to Combinations that produce a product

get the coefficient of the last term in the of —3 are:
trinomial. You must consider both positive and —1and3 or land -3

negative factors.
(x—1)(4x+3)
(x+1)(4x —3)
(x+3)(4x—1)
contain the whole numbers found in the first (x—3)(4x+1)
(2x—1)(2x + 3)
(2x+ 1)(2x —3)

Step 3: Create all possible products of binomials that
two steps.

(x—1@x+3)=4x>—x—-3
Step 4: Multiply the binomial pairs until you find one (x+1)(4x —3) =4x* +x -3
(x+3)(4x—1) =4x?> +11x — 3
(x—3)(4x +1) = 4x? —11x — 3
factor. (2x — 1)(2x + 3) = 4x? + 4x — 3
x+1)(2x—3) =4x? —4x -3

that results in the trinomial you are trying to

Step 5: Identify the correct solution. (2x —1)(2x + 3) = 4x* + 4x = 3

Notice the patterns in the candidate solutions in Step 4. Each pair of equations is identical except for
the sign of the middle term in the product. Therefore, you can cut your work in half by considering only
one of each pair until you see a middle term coefficient that has the right absolute value. If you have
everything right but the sign of the middle term, switch the signs in the binomials to obtain the correct
solution. Remember to check your work!
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Factoring Trinomials — Quadratic Formula Method

Quadratic Formula Method

The Quadratic Formula is designed specifically to find roots of a second degree equation.
However, it can also be used as a back-door method to factor equations of second degree. The
steps are:

Step 1: Apply the quadratic formula to determine the roots of the equation.
Step 2: Put each root into the form: (x — root) = 0.

Step 3: Show the two (x — root) binomials as a product. Note that these binomials may
contain fractions. We will eliminate the fractions, if possible, in the next step.

Step 4: Multiply the binomials in Step 3 by the coefficient of x? the following way:
(a) Break the coefficient of x? into its prime factors.

(b) Allocate the prime factors to the binomials in a way that eliminates the fractions.

Step 5: Check your work.

Example:

Factor: 4x% +4x—3

—-b+Vb%2—4ac  —4+,/4%2-4(4)(-3) -4+V64 -448 3 1
Stepl: X = = = = = — = 0r -
2a 2(4) 8 8 2 2

Step 2: The two equations containing roots are: (x + ;) =0 and (x - l) = 0.

2
Step 3: (x + ;) (x — %)

Step 4: The coefficient of x2 in the original equation is 4, and 4 = 2 - 2. An inspection of the
binomials in Step 3 indicates we need to multiply each binomial by 2 in order to
eliminate the fractions:

3 1
2-(x+3) = (2x +3) and  2-(x—2)=(2r-1)
So that: 4x% +4x —3 = (2x +3) - (2x — 1) in factored form

Step 5: Check (using FOIL) (2x+3)-(2x—1) =4x? —2x + 6x —3 = 4x*> + 4x — 3,
which is the equation we were trying to factor.

v
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Solving Equations by Factoring

There are a number of reasons to factor a polynomial in algebra; one of the most common
reasons is to find the zeros of the polynomial. A “zero” is a domain value (e.g., x-value) for
which the polynomial generates a value of zero. Each zero is a solution of the polynomial.

In factored form, it is much easier to find a polynomial’s zeros. Consider the following:
(x—2)(x+4)(x —8)(x —m)(x + 3) isthe factored form of a polynomial.

If a number of items are multiplied together, the result is zero whenever any of the individual

items is zero. This is true for constants and for polynomials. Therefore, if any of the factors of
the polynomial has a value of zero, then the whole polynomial must be zero. We use this fact
to find zeros of polynomials in factored form.

Example 1:

Find the zerosof y = (x — 2)(x + 4)(x — 8)(x — m)(x + 3).

Step 1: Set the equation equal to zero.
x—2)x+4)(x—-8)(x—-—mx+3)=0

Step 2: The whole equation is zero whenever any of its factors is zero. For the example, this
occurs when:

— = A
(x=2)=0,o0r The solution set, then, is:

(x+4)=0,o0r x ={2,—4,8,m,—-3}

(x—8)=0,o0r > or, more conventionally, the x-values are put

in numerical order from small lar :
(x —m) =0, or umerical order from smallest to largest

(x+3)=0 — x={—-4,-3,2,m,8}

Set Notation: We may list the set
Example 2:

of solutions to a problem by

Find the zeros of y = X2 —7x+6 placing the solutions in braces {},

separated by commas.

x>—7x+6=0
x—6)(x—1)=0

The solution set contains the two
/ \ domain values that make the original
(x—6)=0 (x—1)=0 equation zero, namely:
x=6 x=1 x={1,6} +—
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Introduction to Quadratic Functions

Standard Form of a Quadratic Function

Parabola: a>0

The Standard Form of a second degree polynomial is:

y=ax?*+bx+c witha # 0 \

An equation of this form is called a quadratic function.

The graph of this equation is called a parabola.

(hK)

Up or down?

The direction in which the parabola opens on a graph is :
based on the sign (+ or —) of a in the equation. Parabola: @ <0

e |Ifa > 0, the parabola points down and it opens up.

e |Ifa < 0,the parabola points up and it opens down.

(hK)

If you forget this rule, just remember that “up or down”

depends on the sign of a, and do a quick graph of y = x2,

where (a = +1) on your paper. /

Vertex and Axis of Symmetry
-b
In Standard Form, the vertex of the parabola has coordinates: (Z, y) where “y” is calculated

-b
by substituting (Z) for “x” in the equation. The vertex is either the highest point on the graph

(called a maximum) or the lowest point on the graph (called a minimum). It also lies on the axis
of symmetry of the graph.

The equation x = (;—2) is called the axis of symmetry of the parabola.

Vertex Form of a Quadratic Function
A second useful form of a quadratic function is based on the vertex, and is called Vertex Form:

y=a(x—h)?+k where (h, k) is the vertex of the parabola

It is possible to convert from Standard Form to Vertex Form and from Vertex Form to Standard
Form. Both are equally correct.
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Completing the Square

A very useful method for solving quadratic equations is Completing the Square. In fact, this is
the method used to derive the quadratic formula from the general quadratic equation in
Standard Form. The steps involved in Completing the Square and an example are provided
below:

Consider the starting equation: ax’*+bx+c=0

Step 1: Modify the equation so that the coefficient of x? is 1. To do this, simply divide the
whole equation by the value of “a”.

Example: Consider the equation: 3x2+18x—21=0
Divide by 3 to get: x2+ 6x— 7=0

Step 2: Get rid of the pesky constant. We will generate our own.

Example: Add 7 to both sides : x2+6x=7

Step 3: Calculate a new constant. The required constant is the square of one half of the
coefficient of x. Add it to both sides of the equation.

Example: x2+6x=7
¢— Half it, then square the result: gz 3, 32=0.
Result: x>+6x+9=7+9

Step 4: Recognize the left hand side of the equation as a perfect square. After all, that was the
reason we selected the new constant the way we did.

Example: (x+3)2=16

Step 5: Take the square root of both sides. Remember the “+” sign on the constant term.

Example: J(x+3)2=+/16

x+3=+4

Step 6: Break the resulting equation into two separate equations, and solve.

Example: x+3=4 x+3=-4
x=1 x =-7
Solution: x={-7,1}
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Table of Powers and Roots

Quadratic Functions

Square Root Number Square Cube 4th Power
V1 =1.000 1 12=1 13=1 1*=1
V2 =1414 2 22 =4 28=8 2% =16
V3 =1.732 3 32=9 33 =27 3* =81
V4 = 2.000 4 42 =16 43 = 64 4* = 256
V5 = 2.236 5 52 =25 53 =125 5% = 625
V6 = 2.449 6 6% = 36 63 =216 6* = 1,296
V7 = 2.646 7 72 = 49 73 =343 7% = 2,401
V8 = 2.828 8 8% = 64 8% =512 8* = 4,096
V9 = 3.000 9 92 = 81 93 =729 9* = 6,561
V10 = 3.162 10 102 = 100 103 = 1,000 10* = 10,000
Vil =3.317 11 112 =121 113 = 1,331 11* = 14,641
V12 = 3.464 12 122 = 144 123 = 1,728 12% = 20,736
V13 = 3.606 13 132 = 169 133 = 2,197 13* = 28,561
Vi4 = 3.742 14 142 = 196 143 = 2,744 14* = 38,416
V15 = 3.873 15 152 = 225 153 = 3,375 15% = 50,625
V16 = 4.000 16 162 = 256 163 = 4,096 16* = 65,536
V17 = 4123 17 172 = 289 173 = 4,913 17% = 83,521
Vi8 = 4.243 18 182 = 324 183 = 5,832 18* = 104,976
V19 = 4.359 19 192 = 361 193 = 6,859 19% = 130,321
V20 = 4472 20 202 = 400 203 = 8,000 20* = 160,000
V21 = 4.583 21 212 = 441 213 = 9,261 21* = 194,481
V22 = 4.690 22 222 = 484 223 = 10,648 22% = 234,256
V23 = 4.796 23 232 =529 233 = 12,167 23* = 279841
V24 = 4.899 24 24% =576 243 = 13,824 24* = 331,776
V25 = 5.000 25 252 = 625 253 = 15,625 25% = 390,625
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Chapter 11 Quadratic Functions

Algebra
The Quadratic Formula

The Quadratic Formula is one of the first difficult math formulas that students are asked to
memorize. Mastering the formula, though difficult, is full of rewards. By knowing why it works
and what the various parts of the formula are, a student can generate a lot of knowledge in a
short period of time.

For a quadratic function of the form: y= ax? + bx + ¢
—b +/b%-4ac Quadratic
The formula for the roots (i.e., where y = 0) is: X = <+
2a Formula

How Many Real Roots?
The discriminant is the part under the radical: b? — 4ac

e [f the discriminant is negative, the quadratic function has 0 real roots. This is because a
negative number under the radical results in imaginary roots instead of real roots. In
this case the graph the graph will not cross the x-axis. It will be either entirely above the
x-axis or entirely below the x-axis, depending on the value of “a”.

e If the discriminant is zero, the quadratic function has 1 real root. The square root of

zero is zero, so the radical disappears and the only rootis x = (%) In this case, the

graph will appear to bounce off the x-axis; it touches the x-axis at only one spot —the
value of the root.

e If the discriminant is positive, the quadratic function has 2 real roots. This is because a
real square root exists, and it must be added in the formula to get one root and
subtracted to get the other root. In this case, the graph will cross the x-axis in two
places, the values of the roots.

Where are the Vertex and Axis of Symmetry?

The x-coordinate of the vertex is also easily calculated from the quadratic formula because the
vertex is halfway between the two roots. If we average the two roots, the & portion of the

formula disappears and the resulting x-value is x = (%) The y-value of the vertex must still

be calculated, but the x-value can be read directly out of the quadratic formula.

Also, once the x-value of the vertex is known, the equation for the axis of symmetry is also
—b

known. It is the vertical line containing the vertex: x = (E)
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Chapter 11 Quadratic Functions

Algebra
Quadratic Inequalities in One Variable

. . 2 Note: The same process works for
Solve the inequality of the form: ax“+bx+c >0

inequalities with <, <, or > signs.

Step 1: If "a" is negative, multiply the whole inequality by "= 1". This will make the problem
easier to work with. Don’t forget to change the sign of the inequality.

Example: convert [—3x%2+4+9x—6>0] to [3x2—9x+6 < 0]

Step 2: Factor out any scalars that divide into all of the terms of the inequality. This will also
make the problem easier to work with.

Example: factor [3x2 —9x +6 < 0] to [3(x?—3x+2) <0]

then divide by 3toget:  [(x? —3x + 2) < 0]

Step 3: Solve the equation that corresponds to the inequality. The solutions of the equation

are the critical values in the solution of the inequality.
Example: solve [(x%? —3x + 2) = 0], whichgives: x =1, x =2
The solution to the inequality, when shown on a number line, must be either outside
the solutions or between the solutions. That is, either:

e (x<lorx=2)

e (x=1andx <2) < i 5
But, which one? 1 2

v

Step 4: “Or” vs. “And”. Look at the inequality you are working with (at the end of Step 2). Asin
solving inequalities with absolute values, use the following trick to remember if the
answer uses “Or” vs. “And”.

e If the inequality contains a < sign, use “and.” Think: less thand
e [f the inequality contains a > sign, use “or.” Think: greator

e Don't forget touse <, > instead of <,> if they are in the original inequality.

Example: Using this method, we start with [x? — 3x + 2 < 0] and note the < part of
the inequality. This means the result in the example would be (x = 1 and x < 2).

In interval notation this solution set is shown as: x € [1, 2]

In set notation, this solution is shown as: {x |1 <x < 2}
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Algebra

Quadratic Functions

Quadratic Inequalities in One Variable (cont’d)

Step 5: Checking your “Or” vs. “And” decision. The solutions to the equation in Step 3 break

the number line into 3 distinct pieces; in the example:

e lessthanl a

A

e Betweenland?2
e Morethan2

v

Test to see if the original inequality is correct for a number in each of these segments of

the number line. Although you could test a derivation of the original inequality (e.g.,

after Steps 1 or 2), it is best to work with the original when checking your work.

So, you might test values like the following:

a. Lessthan 1: try the value O
b. Between 1and 2: try the vaIue%

c. More than 2: try the value 3

In the example, you find that % works, but 0 and 3 do not work. The answer must then

be in the middle interval. This matches the answer obtained in Step 4.

Step 5 Alternative: Another way to check your work.

An alternative way to check your work is to graph the

equation corresponding to the inequality.

Use the equation (x% — 3x +2) < 0 from Step 2
only if you are sure you performed Steps 1 and 2
correctly.

The graph of the corresponding equation is at right.
Notice that the portion of the graph that is below

Parabola: ¥ =(x*—3x+2)

\. /
\ /

zero is the portion between 1 and 2. x
Because the “<” sign includes the equals sign, the - - \ -
endpoints of the intervals are included in the solution set. \

Therefore, the solution of the inequality is:
{x|1<x<2}

This matches the answer obtained in Step 4.
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Chapter 11 Quadratic Functions

ADVANCED
Algebra
Fitting a Quadratic Equation through Three Points

It takes three points to define a quadratic equation, just like it takes 2 points to define a line. In
general, it takes (n+1) points to define a polynomial of degree “n”.

Starting with:
e the basic quadratic equation: y = ax? + bx + ¢, and
e threepoints:  (xy,v,), (x5, v5), (x3,V3),

it is possible to calculate the coefficients of the quadratic equation by substituting in the x and
y values of the 3 points to create a system of 3 equations in 3 unknowns:

y. =ax;? +bx, +c
y, = ax,* + bx, + ¢

ys = axz® + bx; + ¢

Now, that’s a lot of symbols, so let’s look at an example.

Example:
Find the quadratic equation that passes through the three points:

(—-1,-8),(1, 4),(2, 13)

Using the basic quadratic equation, and substituting in x-values and y-values, we get 3
equations in 3 unknowns:

—-8=a—-b+c
4=a+b+c
13 =4a+2b+c

These 3 equations can be solved by eliminating variables or by using Cramer’s Rule, whichever
the student finds more comfortable. Solving by either method gives:

So that: y=x%>+6x—3

The odd thing about this process is that in most algebra problems the student is asked to solve
for x or y, but that is not the case in curve fitting. Instead, the student is asked to derive a
quadratic equation given 3 sets of x’s and y’s, which requires solving for a, b, and c instead.
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Chapter 12 Complex Numbers

Algebra
Complex Numbers — Introduction

Definitions

i=v-1.

Imaginary Number — Any number that can be expressed in the form a - i where a is real.
Examples: V=7, 6i,V=23,V3"i

Complex Number — Any number that can be expressed in the form a + bi where a, b are real.
Examples: 6 +v2 i, V6 + 3i

Note: all real numbers and all imaginary numbers are also complex numbers.

In the form a + bi,
e ais called the real part of the complex number, and

e biis called the imaginary part of the complex number.

Absolute Value of a Complex Number

The absolute value of a complex number is also called its magnitude. Algebraically, it is:

|la + bi| =+ a? + b?

Conjugate of a Complex Number

The conjugate of a complex number (a + bi) is denoted (a + bt) ; (a + bt) = (a — bi).

Examples:
Complex Number | Conjugate Complex Number Conjugate
2+ 3i 2—-3i -6+ —-6—1i
6i —6i 2 +/2i 2 —2i
2 2 V7 +/3i V7 —V3i

Comments about conjugates:
1. The conjugate of a conjugate is the number you stated with.
(a+b)=(a—bi), (a—b)=(a+b),
2. The product of conjugates is a real number.
(a + bi) - (a — bi) = (a? + b?)
3. Conjugate numbers have the same absolute value.

|a + bi| = |a — bi| = Va? + b?
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Algebra
Operations with Complex Numbers

Adding and Subtracting

Add or subtract both the Real and Imaginary parts:

(a+bi))+(c+di)y=(@+c)+ (b +d)i
(a+bi))—(c+di)=(a—c)+ (b —d)i

Example: (1-3))+(=3+6i)=(—2+30)

Multiplying
Step 1: Multiply like you multiply binomials.
Step 2: Substitute —1 for i? and simplify.

(a + bi) - (c +di) = (ac — bd) + (ad + bc)i

Example: (1-3i)-(-3+6i) =—-3+6i +9i —18i
=-34+6i+9i+18
=15+ 15i

Dividing

Step 1: Multiply by a fraction whose numerator and denominator are the conjugate of the
original expression’s denominator.

Step 2: Substitute —1 for i? and simplify.

The resulting complex number will have a denominator that is free of imaginary numbers.

Remember the method, not the formula!

(a+bi)_(a+bi).(c—di)_ (ac + bd) (bc —ad)| .
(c+d) (c+db) (c—di)_[(c2+d2)l+[(c2+d2) '

Example:
(1-30)  (1-3i) (=3-6i) —3—6i+9i+18i*
(=3+4+6i) (=3+6i) (-3—-6i) 9 — 36i2

_T3-6i49i-18_ -2143i -7 1
- 9+ 36 T 45 15 ' 15'
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ADVANCED

Algebra
The Square Root of i

If i = V—1, what is V/i?

This is an interesting question and solving it will illustrate a very useful method in working with
complex numbers. You can use this method to calculate the square root of any complex

number.

e Recall that each complex number is of the form a + bi, where a and b are real.

e We want a complex number that, when squared, generates i.

So, we want to calculate @ and b such that (a + bi)? = i

Let’s solve that equation: (a+bi)?> =i
(a+bi)-(a+bi)=1i
a’ + abi + abi + b%i? =i
(a®> — b?) + 2abi =i

Now, break this into 2 equations, one for the real part, and one for the imaginary part.

Here are the 2 equations: (a2 —bh?)=0 and 2ab=1

1
a®? = b? and b=—
2a
_— 2 1\2
Substituting for b, a‘c = (Z)
2 -1
4q?
. . 1 yields 1
Sincea # 0,andaisreal, a*= : —  a’= 5
yields V2 NP
— a= 7 or a= —7

Since a® = b? b=a or

b =

So, our candidates for Vi are: (£ \/_) (£—72i) or (—\/Z—E+§i) or (—g—gi)
\/_
2

Let’s try them: (\/— 2, ) = ( ——£l) =
2
Results
V2 VZN (V2 VI N

(7—7) =(-7+%1) =i ﬁ=i<7+7i>

So, we have found not only the two square roots of i, but . (x/i N V2 >
—i=x—=+—=1i

also the two square roots of - i. 2
Version 3.2 Page 82 of 187 July 10, 2019




Chapter 12 Complex Numbers

Algebra
Complex Numbers — Graphical Representation

Complex numbers of the form a + bi can be represented on a set of axes that represent Real
and Imaginary numbers instead of x and y. Consider the complex number 3 + 4i. It would
look like this on a set of Real (R) and Imaginary (I) axes:

1
4j
. Graphical
R representation of 3 +
3 4i

Polar Coordinates

Represented in this manner, complex numbers have interesting properties (see the next page
for some of these). Each complex number can be thought of as not only a pair of rectangular
coordinates, e.g., (3,4), but also as a set of polar coordinates with magnitude (i.e., length) p and
angle 8. Then, to multiply complex numbers, you multiply their magnitudes and add their
angles.

Powers of i

This is a useful bit of information for seeing the value of i" in graphical terms. Since i =+/—1,
algebraically, we have:

i =+—1 i2=-1 i3 =—i ‘=1
i>=+/-1 i®=-1 i7=—i =1 etc

Since i has magnitude 1, all powers i" also have magnitude 1. Each succeeding power of i,
then, results only in a change of the angle 6, and can be considered a 90°rotation in the
coordinate plane containing the Real and Imaginary axes, like so:

T\ R _.'/‘ R ‘ R R
| | Sy W

i iZ=-1 it=1

This shows the rotating pattern in the values of the powers of i every 4 increments. After 4
rotations you return to where you started.
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ADVANCED
Algebra
Complex Number Operations in Polar Coordinates

Polar Coordinates

If a complex number is expressed in terms of its polar coordinates, many calculations are made
much easier. First, let’s investigate the relationship between a point’s rectangular coordinates
(x,y) and its polar coordinates (p, 8).

4.4
The magnitude, p, is the distance of the point from the h e ok
origin: p =+/x%+ y?
Magnitude JPSiA SR P Y- a2
Laft 1’ .
The angle, 6, is the angle the line from the point to the e T
origin makes with the positive portion of the x-axis. B R R T e ]
Generally, this angle is expressed in radians, not degrees.
tand =2 or 6 =tan! (X) o
X X

Conversion from polar coordinates to rectangular coordinates is straightforward:

x=p-cos@ and y=p-sinb

Example: In the illustration above, the point shown has:
e Rectangular coordinates: (—4,4)

e Polar Coordinates: (42, 3771)

Complex Number Formulas:

To see how useful this can be, consider the following formulas for complex numbers:

Multiplication: (p1,61) - (p2,02) = ((p1 - p2), (61 + 603))
So, to multiply complex numbers, you multiply their magnitudes and add their angles.

Division: (p1,01) + (p2,02) = ((p1 + p2), (01 — 63))
So, to divide complex numbers, you divide their magnitudes and subtract their angles.

Powers: (p,0)" = (Pn, (n- 9)) Note on V/i:

This results directly from the multiplication rule. Since i in polar coordinates is (1, E)'
2

Roots: “(p,0) = (ri/—’ 0+ n)) Using the root formula, Vi = (il, 9

In rectangular coordinates, then,

This results directly from the power rule if the Vi=+ (@ n @i)
—\2 2

exponent is a fraction.
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Algebra
Complex Solutions to Quadratic Equations

Over the field of real numbers there are no roots to a quadratic function if the discriminant is
less than zero. Over the field of complex numbers, however, such a quadratic function has two
roots.

Quadratic Refresher

For a quadratic function of the form: y= ax? + bx + ¢

—b ++/b%-4ac Quadratic
‘_
2a Formula

The formula for the roots (i.e., where y = 0) is: X =

The discriminant is the part under the radical: b? — 4ac

How Many Roots?

The following table tells us how many real or complex roots exist for a function, based on its
discriminant:

Value of Discriminant Number of Roots
b? —4ac <0 2 complex
b? —4ac=0 1 real
b? —4ac >0 2 real

Note: because of the “+” sign in the quadratic formula, when there are 2 complex roots they
are conjugates.

Example 1: Solve x2 —2x+10=0
_—b+Vb*—4ac 2+./(-2)2-4(1)(10) 2+V-36 2*6i

=1+3
* 2a 2(D) 2 2 -t
Example 2: Solve 2x2 +4x+7 =0
_ b Vb —dac  —4+V(4)’ - 4Q)(7) _ -4+ V40 —4+2VT0i VIO
x= 2a - 2(2) T4 - a2 T gt
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Algebra
Radical Rules

Simple Rules Involving Radicals

General Radical Rule Rule for Square Roots Example

Vab=%a-Vb | Vab=va-vb | VIZ=Vi-Vi=2V3

"\[E _Na a_va 5 V5 5
b b b b 4~z 2
Note also that: 3@ = a(*/n)

e.g., Va = a(l/Z), so the rules for exponents also apply for roots.

Rationalizing the Denominator

Mathematicians prefer to keep radicals out of the denominator. Here are two
methods to accomplish this, depending on what’s in the denominator.

Case 1: Simple radical in the denominator. Solution: multiply the beginning
expression by a fraction which is the offending radical divided by itself.

o 2+V3 _ 2+V3 V5 _ 2V5+V/15
Xampie: 4\/5 — 4\/5 \/g— 20

Case 2: Number and radical in the denominator. Solution: multiply by the
beginning expression by a fraction which is designed to eliminate the radical from
the denominator. The numerator and denominator of the fraction are created by
changing the sign between the number and the radical in the denominator.

o V7 _ N7 3+V5 _ 3V7+V35 _ 3V7+V35
PSS 35T 3—v5 3+V5  9-5 4

Version 3.2 Page 86 of 187 July 10, 2019



Chapter 13 Radicals

Algebra
Simplifying Square Roots — Two Methods

Method 1: Extracting Squares
In this method, you pull squares out from under the radical. This is the quickest

method if you are comfortable with what the squares are and with dividing them
out of larger numbers.

12=1 112 =121

Examples: (1) /98 =49 -2 I P
=2 32=9 132 =169
(2) V9600 = V100 - V96 42 =16 | 14* =196
=100 V16 -6 52 =25 | 152 = 225
=10-4-76 62 =36 | 16% =256
= 40V6

72 =49 172 =289

82 = 64 182 = 324
Method 2: Extracting Prime Numbers

92 =81 192 = 361
If you are not comfortable with Method 1, you can pull

/ : _ 102 = 100 | 20% = 400
prime numbers out from under the radical and pair them

up to simplify the square root.

Example: V54 = \/_ V2 Method 2 may take a lot longer than

— \/E \/§ \/6 Method 1, but it works. A good use for
Method 2 is when you try using the

= \/E \/§ \/§ \/§ quicker Method 1 but get stuck — then
= \/E (\/§ \/§) \/§ working with primes can get you back
— \/E (3) \/§ on track toward solving the problem.
=3-v2-3
=3-6 Note that the last step is to re-combine roots

that do not come in pairs.
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Algebra
Solving Radical Equations

When an equation involves radicals, the radicals must be eliminated in order to obtain a
solution. The one special thing about these equations is that, in the process of eliminating the
radical, it is possible to add another solution that is not a solution to the original problem.

Solutions that are added by the process used to solve the problem are called Extraneous
Solutions. At the end of the problem, we must check for extraneous solutions and eliminate
them.

Solving a Radical Equation
The steps to solving an equation involving radicals are:

e |solate the radical on one side of the equation. To do this, add or subtract any variables
or constants that are on the same side of the equation as the radical.

e Ifthe radical is a square root, square both sides of the equation. If the radical is a cube
root, cube both sides, etc. This should get rid of the radical.

e [f there are any radicals remaining in the problem, repeat the first two steps until they
are gone.

e Solve the equation that remains.

e Check all solutions to the problem using the equation in the original statement of the
problem.

e Discard extraneous roots.

Example: Solve V2x+6+1=x

Starting Problem: V2x+6+1=x
Subtract 1 from both sides: V2x+6=x—-1 If we allowed \/2(—1) + 6 to
Square both sides: 2x+6=x2-2x+1 be -2, the equation would

e 2 _ e
Subtract 2x + 6 from both sides: X 4x —5=0 solution. However, the

work and -1 would work as a

Factor: (x=5x+1)=0 square root of a number is
. . . . defined to be the positive

Obtain Preliminary Solutions: x =1{-1,5} / root only. So, -1 fails as a

Test —1 as a solution: 2-D)+6+1=-17? solution to the problem.

Test 5 as a solution: J4(B)+5=57?7 vV

Identify the final Solution Set: x=5
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Algebra
Solving Radical Equations (cont’d)

Why Only Positive Square Roots?

It is generally taught in high school algebra that square roots have both positive and negative
roots. So why are we now saying that the square root of a number is defined to be a positive
number only?

The answer lies in the missing step, which is often not taught to high school students. What
you learn is this:

If x% = 4, then x = +2. And, that is correct, but not because Vx2 = x which it does not!

The Missing Step

In the box to the right is the development with the
missing step included. Notice that:

o Vx%=|x|

e When we take square roots, we have positive
numbers on each side of the resulting equation.
Both |x| and 2 are positive.

Starting Problem: x? =4
Take square roots: |x| = 2

Solve for x: x =12

e The two possible values for x come from solving the middle equation |x| = 2.

This solves the apparent arbitrariness of when a root is only positive and when it is both
positive and negative.

Inequalities

The “missing step” also provides an explanation for the method used to solve inequalities.
Consider the inequality: x> < 9. The process for solving this with the missing step included is:

Starting Problem:  x% <9

Take square roots:  |x| < 3 Notice that |x| converts to x in Case | and to
- x in Case ii. By the end of the problem, you
Case i Case ii see that the sign in Case ii has been flipped
around from the original problem. This is not
x<3 and —x<3 magic; it is the result of “The Missing Step”
x <3 and x> -3

being applied in all its mathematical glory!

Solution: { x | — 3 < x < 3}
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Algebra
Matrix Addition and Scalar Multiplication
What is a Matrix?

A matrix is an ordered set of objects (typically real or complex numbers) set up in a two-
dimensional array. Matrices are very useful in algebra, statistics and other applications because
they provide a concise way to carry out complex mathematical processes and methods.

Matrices have dimensions, expressed as the number of rows x the number of columns. For
example, a 2x3 matrix (read “2 by 3 matrix”) has 2 rows and 3 columns. Knowing the
dimensions of a matrix is important because many matrix operations can only occur on
matrices with certain dimensions.

Adding Matrices

Each object in a matrix is called an element. Matrices are added by adding the corresponding
elements in the matrices. Matrices must have the same dimensions if they are to be added.

Example:
[E _13 —12]+[:é i g]z[i _21 —52]

1*trow, 1%t column: 2 + (-1) =1
1%t row, 2" column: (-3) + 2 = -1

Scalar Multiplication

Multiplying a matrix by a scalar (i.e., a number) is accomplished by multiplying each element in
the matrix by the scalar. The term scalar simply refers to “scaling” the matrix by making its
values larger or smaller. Scalar multiplication can be performed on matrices of any dimensions.

Example:
-1 2 47 _[1—-3 6 12
3|5 1 ol=l6 3 ol
1%t row, 1%t column: 3 - (-1) = -3

1%t row, 2™ column: 3:2=6
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Algebra
Matrix Multiplication

Multiplying Matrices

Multiplication of matrices is a more complex process. Although the student may find it difficult
at first, it is a powerful tool that is useful in many fields of mathematics and science.

Matrix multiplication can be performed only on matrices that are conformable (i.e., compatible
in size). In order for two matrices to be multiplied together, the number of columns in the first
matrix must equal the number of rows in the second matrix. If an m x n matrix is multiplied by
an n X p matrix, the result is an m x p matrix. This is illustrated as follows:

must match

[mxn] - [nxp] = [mxp]

size of resulting matrix

To multiply matrices, multiply the elements in a row of the first matrix, element by element, by
the corresponding elements in a column of the second matrix and add the results. If row i in
the first matrix is multiplied by row j in the second matrix, the result is placed in row i, column j
of the resulting matrix. The element in position i, j of a matrix 4 is often denoted a; ;.

Example 1:
1 —2 Notice that multiplyinga 2 x 3
[2 -3 1 ] o 1| = [—1 0 ] matrix by a 3 x 2 matrix results
5 1 -2 3 _1 11 —13 in a 2 x 2 matrix.
Ltrow, 1%t column: [2- 1] +[(-3) - 2] +[1-3]=-1
1%t row, 2™ column: [2-(-2) ]+ [(-3) - (-1)]+[1-1]=0
2" row, 1t column: [5-1]+[1-2]+[(-2)-3]=1
2" row, 2" column: [5-(-2) ]+ [1-(-1)]+[(-2)-1]=-13
Example 2:

1 =2 -8 -5 § Notice that multiplyinga 3 x 2

_ . 2 -3 1 —|_ _ matrix by a 2 x 3 matrix results

2 1 1 7 4
3 1 5 1 -2 11 -8 1 in a 3 x 3 matrix.

From these examples, it is clear that matrix multiplication is not commutative. That is, if we
name two matrices A and B, it is generally not true that A- B = B - A. Further, if matrices
are not square (i.e., having the same number of rows and columns), matrix multiplication is
never commutative; thatis A-B # B - A.
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Algebra
Identity Matrices and Inverse Matrices

Identity Matrices

For real numbers, the multiplicative identity is 1 because for any real number x:

x-1=1x=x

That is, when a number is multiplied by 1, the result is the original number. It does not matter
whether we multiply by 1 on the left or the right; in either case, the result is the original
number.

The same is true for square matrices. If we multiply a square matrix by the identity matrix with
the same dimensions, the result will be the original matrix. It does not matter whether we
multiply by the identity matrix on the left or right; the result is the same.

Identity matrices exist for each square dimension. Identity matrices have 1’s along the diagonal
and 0’s in every other position. For example, the following are identity matrices of rank 2, 3
and 4. Identity matrices are generally denoted by the letter "I":

100
_Mn1 o _ _
1_[01 1_[010 =

0 0 1

0
0
1
0

S O O
= oo O

1
0
0
0
Example: If we define square matrix A,then A-I =1-4A = A as follows:

EREE H I T e I P

31 21 10 0 1 o 0 14 L3 1 2 3 1 2

—_

Inverse Matrices

For real numbers, multiplying a number by its inverse results in the identity, 1. For example,
3 é = § 3 = 1. Similarly, multiplying a matrix by its inverse results in the identity matrix with

the same dimensions as the original matrix.
Example: Using the same square matrix A as above, A- A~ = A™1- A = I as follows:

2 -1 3120 -1 2.0 -20 -1 20112 -1 3 1 0 0
[1 4 —2][ 1.6 1 —1.4] = [ 1.6 1 —1.4] 1 4 —2] = [0 1 O}

3 1 2 2.2 1 -18 2.2 1 —-18113 1 2 0 0 1
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Inverse of a 2x2 Matrix

Using matrix notation:
e Let the identity matrix of size n x n be called I
e Letann xn matrix be called A
e Let the determinant of matrix 4 be denoted |A|
e Let the inverse of matrix A be denoted A
e Then, A1-A=A-A"=1

Not all square matrices have inverses. In order for a matrix to have an inverse, its determinant
must be non-zero. That is, matrix 4 has an inverse if and only if: |A| # 0.

Formula for the Inverse of a 2x2 Matrix 4 b
If a 2x2 matrix has elements a, b, ¢ and d, such that 4 = [‘z Z], then: Al= %

c d
In words, the inverse is calculated as follows:

e From the original matrix, switch elements a and d, and change the signs of b and c.
e Divide the resulting matrix by the determinant of the original matrix. (Note: the
determinant of a matrix is a scalar).

The determinant of matrix 4 = [Z Z], is calculated as |A4| = |6Cl Z| = ad — bc.
Example: 2x2 Matrix Inverse Calculation
let: A= [_42 _11]
Then: |A| = | ‘; _11| = 4-1)-(-1)-(-2) = 2
[1 1] 1 1] 05 0.5
i e el B 5]
-2 1

Finally, check to make sure: A*-A=A-A'=1

R N O I S B UA S N P
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Matrix Division and Inverses

Multiplication and division are inverse processes with which the student is familiar when
working with real numbers. Multiplication of matrices, as described above is much more
complex than multiplication of real numbers. So, how do you divide matrices?

Division of real numbers can be considered to be the process of multiplying a number by the
inverse of the number by which you want to divide. For example:
o 12+3=12 § =4 (i.e., 12 divided by 3 is the same as 12 times é; the result is 4 either
way).
e Dividing by 3 is the same a multiplying by the inverse of 3, which is %
e 3and % are “multiplicative inverses” because when multiplied, they result in 1, which is

the “multiplicative identity”.

Matrix division works in a similar fashion. It is typically handled by multiplying the dividend
(top) matrix by the inverse of the divisor (bottom) matrix. For matrices 4 and B, if we want to
divide B by A, we would instead multiply B by A~ ".

Some methods for calculating inverses of a square matrices are shown in the following pages.
Only square matrices have inverses. ldentity matrices must also, by definition, be square.

Example:
2 -1 3 1 3 -3
let: A=(1 4 -2 B=|5 2 -1
3 1 2 -2 3 4
Then: A-1 — _fg _i _ii (see the following pages for
. 2'2 1 —1.8 methods to calculate this inverse)

B 1 3 -3 —-2.0 -1 2.0 -38 -1 3.2
And: Z:B-A‘l = 5 2 —-1|:-| 16 1 —-14| = |-9.0 -4 9.0
-2 3 4 22 1 -1.38 17.6 9 —154

Note that because matrix multiplication is not commutative, you are very likely to get a
different result if you multiply B by A~! on the left instead of the right. That is, in general,

B-A1 + A 1.B,
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Determinants — The General Case

Determinants are very useful in matrix operations. The determinant of a 2 x 2 matrix is defined to be:

b
d

In words, the diagonals are multiplied and the product of second diagonal is subtracted from the

|A|::|? |::cui——bc

product of the first diagonal. This process is generalized in determinants of larger matrices using what
are referred to as minors. A minor is what is left of a matrix when the row and column of the element
are eliminated.

The determinant of a matrix can be calculated by selecting a row or column and multiplying each
element of that row or column by the determinant of its corresponding minor. The results are
alternately added and subtracted to get the value of the determinant. The + sign of each term is
determined by the row and column in which it resides. The sign for the element in row m and column n

is (—1)™+) - The following matrices of signs show how they are applied to each row element:

+ - o0 M
2 [ +] 3x3: [— + — ma |7 T 7
L TR
Using minors of the first row to evaluate a 3 x 3 matrix,
a; by c
a1 b1 c1 —a, P2 C|_p |% C2| ¢, |2 b2
2 2 2 1 b3 C3 1 a3 c3 1 a3 b3

a3 bz c3

Or, using minors of the second column to evaluate the same 3 x 3 matrix,

@ by ¢ a; ¢C; a € a ¢
a, b, c,|=- | | — |
2 Dz € b, a; c; + b, a; c; 3la, ¢,
a3 bs c3

The results of the calculation will be the same, regardless of which row or column is selected, because of
the power of matrices and determinants.

Example for a 3 x 3 matrix using minors of the first row:

3 1 1 Note: this is the matrix that forms
1 —2 —1|l=3 |_2 _1| -1 | 1 _1| +1 | 1 _2| the denominator in the solution of
-2 2 3 2 3 —2 3 —2 2 the system of equations in the

Cramer’s Rule example.

=3(-4) -1 +1(-2) = -15

The same process is followed for larger determinants. For example, a 5 x 5 determinant is first reduced
to a sum of five elements each multiplied by their 4 x 4 minors. Each of the 4 x 4 minors is reduced to a
sum of four elements each multiplied by their 3 x 3 minors, etc. The process is calculation intensive;
today it would typically be performed using a computer.
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Calculating Inverses — The General Case

The calculation of the inverse of a matrix of size greater than 2 x 2 can be performed by a
process called Gauss-Jordan Elimination. The process is also called, more generically, Row
Reduction. In this process, you begin with two side-by-side matrices, the one you want to
invert (the subject matrix) and the identity matrix of the same size. Operations are performed
on both matrices, gradually converting the original matrix to the Identity Matrix.

Allowable operations are:
e Multiplying or dividing a row by a scalar (i.e., a number).
e Switching rows.

e Adding or subtracting a multiple of one row to or from another.

When this process is complete, the original identity matrix has been converted to the inverse
matrix. Below is an example of the development of an inverse of a 3 x 3 matrix using this
process:

Development of a Matrix Inverse - 3x3 Matrix
Using Gauss-Jordan Elimination

Action Taken Criginal Matrix Inverse Matrix
original matrices [ 4 1 1] [ 0 0]
original matrices 2 -1 1 0 1 0 Start with the identit
b : Y
original matrices . - 21 L0 0 1] \ matrix to the right of the
———— o " i = B 0 07 \ original subject matrix.
subtract: 2 x (1st row) 0 -3 -1 -2 1 0
subtract: 1 x (1st row) | 0 1 11 L -1 0 1]
no change B 1 1] [ 1 0 0]
switch rows 2 and 3 0 1 1 -1 0 1 Each operation
switch rows 2 and 3 | 0 -3 1] [ -2 1 0 performed on the original
> subject matrix is also
no change [ 1 1 1] [ 1 i 0] performed on the original
no change 0 1 1 -1 0 1 identity matrix.
add: 3 x (2nd row) | 0 0 21 [ -5 1 3 |
no change [ 1 1 11 [ 1 0 0]
no change 0 1 1 -1 0 1
divide row by 2 | 0 0 11 | -3 05 1.5 ] j End with the inverse
- o _ matrix to the right of the
subtract: 1 x (2nd row) 1 0 0 2 0 -1 / new identity matrix.
subtract: 1 x (3rd row) 0 1 0 2 05 -05
no change | 0 0 11 | -3 05 145 |
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Calculating Inverses Using Adjoint Matrices

Definitions and Notation

e Minor: A minor M;; is what is left of a matrix when the i-th row and j-th column (i.e.,
the row and cqumn containing element a;;) of the original matrix A are eliminated.

e Cofactor: The cofactor ¢;; of a;; is (—1)"*/ multiplied by the determinant of the minor
M;j. Thatis, ¢;; = (—1)" - |M;;|.

e Cofactor Matrix: The cofactor matrix is the matrix of cofactors of each element of the
original matrix. It is often denoted C.

e Adjoint Matrix: The adjoint matrix is the transpose of the cofactor matrix. That s,
adj A = C". The adjoint matrix is also called the adjugate matrix or adjunct matrix.

e Recall that the original matrix A must be square and not singular (i.e., |[A| # 0) in order
to have an inverse. A singular matrix has a determinant of zero.

The inverse of a matrix is equal to its corresponding adjoint matrix divided by the determinant
of the original matrix. That is:

2-1 = cT Note: the transpose of a matrix interchanges
|A] rows and columns of the original matrix. For
example:
Example: 2x2 Matrix Inverse Calculation 1 21" _ [1

let: A= [_42 _11]

Then: ¢, =(-1)?-1=1 Therefore:
¢ =(-1)3-(-2) =2
1 2 . 1
61 = (-1% (-1 =1 c=y 3 ava=cr=|;
Cap = (—1)4'4’:4
4
And: Al =| D T = @D (D (-2) =
- [1 1] 1 1
o at C__24_24_[0505]
4] |A] 2

Finally, check to make sure: A*-A=A-A'=1

R B Iy I P R I N Y I PR A
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Calculating Inverses Using Adjoint Matrices (cont’d)

Example: 3x3 Matrix Inverse Calculation

] 2 i —1 3 Example: How to Eliminate: Row 1
et: = — . 4
3 1 2 adjust A toget M,;: 1 2 and column 1
Cofactors: ¢, = (1) - M,, = (—1)?- | ‘1} _g =10
— (—_1)3. 1 -2 _ — (_1)5. 2 -1 ——
c1, = (—1) 3 2| = 8 C23 = (—1) | 3 1|— 5
— (_1\4. 1 4| _ _ — (—1)4. -1 3| _ —
as=(D*| 5 J]=-11 e = (0|7, 5| =-10
_ 13, |1 3| IPEPTY: 2 3|
C21 - ( 1) 1 2 - 5 C32 - 1) | 1 _2| -
o al| 2 3| _ 16 2 -1 _
c22 = (=1) 3 2| = 5 c33 = (=1) | 1 4l =
Adjoint:
10 -8 -11 10 5 —-10
C= 5 -5 —-5|, adjA=Cc"=]| -8 -5 7
-10 7 9 -11 -5 9
Determinant of A:
2 -1 3
4 -2 1 -2 1 4
|AI=‘1 4 2| =2-| |- -1 |+3- | |
3 1 9 1 2 3 2 3 1
= 2-10 + 1-8 + 3:-(-11) = -5
10 5 -10 10 5 -10
o |52 7Sy 2 i 2o —to 20
Inverse: A~' = T a = . = 16 1.0 -1.4
4] | B 2.2 1.0 -1.8

Finally, check to make sure: A*-A =1

2 -1 3 1 0 0
1 4 —2l=]0 1 oV
3

1 2 o 0 1

1.6 1.0 -1.4

[—2.0 -1.0 2.0
2.2 1.0 -1.8

Note: If a square matrix has an inverse from either the left or the right, then that matrix is an
inverse from both the left and the right, and is, therefore, the inverse of the original matrix.
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Cramer’s Rule — 2 Equations

Cramer’s Rule provides a powerful and simple way to solve systems of two or three linear
equations. In larger systems of equations, it is a useful way to solve for just one of the
variables, without having to solve the entire system of equations. To solve an entire system of
four or more equations, a better technique would be Gauss-Jordan Elimination, especially if the
student is aided by a computer and spreadsheet software such as Microsoft Excel.

Cramer’s Rule works as long as the determinant of variable coefficients (i.e., the determinant in
the denominator) is non-zero. If this determinant is zero, then there is no unique solution to
the system of equations.

General Case for 2 Equations in 2 Unknowns

The standard form of the equations is: a;x + by =k
azx + be == k2

Using determinant notation, Cramer’s Rule states that the solutions for x and y are:

ki bq |a1 k1
_|ky by _ laz ky
X = |a1 b1| y= |a1 b1|
a by a by

Notice that the determinants in the denominators are the same; the columns in these
determinants are the coefficients of the variables in the equations. The determinants in the
numerators are almost the same as the ones in the denominators; the only difference is that
the column of coefficients associated with the variable being evaluated is replaced by the
equations’ constant terms.

Example: Consider these equations: 3x —6y =18
x—3y= 7
Then,
- LY
x=|3 —6:_3:4' y=ﬁ=_—3=—1
1 -3 1 -3
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Cramer’s Rule — 3 Equations

General Case for 3 Equations in 3 Unknowns

The standard form of the equations is: ax+byy+cz=kK
azx + bzy + sz == k2
a3x + b3y + C3Z = k3

Using determinant notation, Cramer’s Rule states that the solutions for x, y and z are:

ki by ¢ a; ki cq a; by kq

ko by c; a; kz c a; by k;

_ k3 b3 c3 _laz ks c3 _laz bz k3
X = a; by ¢ y = a; b1 ¢ z= a; by ¢
a; by c a; by ¢ a by ¢

az bz c3 az bz c3 az bz c3

As in the case with two equations, the determinants in the denominators are all the same; the
columns in these determinants are the coefficients of the variables in the equations. The
determinants in the numerators are almost the same as the ones in the denominators; the only
difference is that the column of coefficients associated with the variable being evaluated is
replaced by the equations’ constant terms.

I . h . Note that the determinant of
Example: Consider these equations: 3x+ y + z= 7 variable coefficients must be non-
X — Zy - z=-2 zero in order to use Cramer’s
—2x + 2}7 + 3z = —4 Rule. If this determinant is zero,
there is no unique solution to the
Using determinant notation: system of equations.
7 1 1 3 7 1 3 1 7
-2 =2 -1 1 -2 -1 1 -2 =2
— 1=4 2 3 —_1=2 -4 3 —1=2 2 —4
X=13 1 1 Y=13 1 1 Z=13 1 1
1 -2 -1 1 -2 -1 1 -2 -1
-2 2 3 -2 2 3 -2 2 3
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Augmented Matrices

Solving Simultaneous Equations

One relatively advanced method of solving simultaneous equations is through the use of an
Augmented Matrix. A matrix is considered augmented if it consists of the matrix of the
coefficients of the variables, augmented by the constant terms. In order for a system of
equations to be solved in this form, they must be written in standard form.

Example:
Tosolvethe —x+ 3y =13 The augmented [ -1 3 ‘ 13 ]
system: 2x—y=4 matrix would be: 2 -1 4

Gauss-Jordan Elimination

A process called Gauss-Jordan Elimination (GJE) is used to manipulate the augmented matrix to
obtain a solution to the equations. GJE is also called Row Reduction because each step adjusts
the values in one row of the augmented matrix. At the end of the process, the rows of the
coefficient matrix are “reduced” to the Identity Matrix.

The following manipulations of the rows are allowed:
e Multiplying or dividing a row by a scalar (i.e., a number).
e Switching rows.

e Adding or subtracting a multiple of one row to or from another.

When this process is complete, the constant column of the augmented matrix has been
converted to the solution of the system of equations. Why does this work? The process used is
essentially the same as solving a system of equations by the elimination method. In GJE, you
ignore the variable names by using matrices, but the manipulations are the same.

Inverse Matrix

This process can also be used to develop an Inverse Matrix. To do this,
e Place an identity matrix to the right of the augmented matrix at the start.
e Perform all row operations on this matrix as you progress.
e At the end, the original identity matrix will have been converted to the inverse matrix.

In the following examples, augmented matrices are manipulated to develop solutions to
systems of equations and identity matrices are converted to inverse matrices.
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2x2 Augmented Matrix Examples

Problem: solve the following set of simultaneous equations using row reduction
(formally called Gauss-Jordan Elimination)

2x + 8y =36
x+5y=10

Matrices

Action Taken [ why? | | | | | Augmented Matrix
Start X y =
Starting Augmented Matrix 2 8 36 1 0

1 5 10 1
Adjust Top Row
(Row 1) + (a;1) --> Row 1 Togeta"1"incolumn 1 4 18 0.5 0
Row2 (no change) 5 10 1
Adjust 2nd Row
Row1 (no change) 1 4 18 0.5
(Row 2) - (a1 * Row 1) --> Row 2 Togeta"0"incolumn1 0 1 -8 -0.5
Adjust 2nd Row
Row1 (no change) 1 18 0.5
(Row 2) + (ay,) --> Row 2 Togeta"1" in column 2 0 -8 -0.5
Adjust Top Row
(Row 1) - (a;, * Row 2) --> Row 1 To geta "0" in column 2 1 0 50( = 2.5 -4
Row2 (no change) 0 1 -8| = -0.5 1

Inverse Matrix
Matrix Inverse Test | Original Matrix | | Inverse Matrix | | Product Matrix
2 8 2.5 -4 1 0
1 5 -0.5 1 0 1
Problem: solve the following set of simultaneous equations using row reduction -x+3y=13
(formally called Gauss-Jordan Elimination) 2x-y=4

Action Taken

Augmented Matrix

Start
Starting Augmented Matrix

Adjust Top Row
(Row 1) + (a;1) --> Row 1

Row2 (no change)
Adjust 2nd Row

Row1 (no change)
(Row 2) - (a1 * Row 1) --> Row 2

Adjust 2nd Row

Row1 (no change)
(Row 2) + (ay,) --> Row 2

Adjust Top Row
(Row 1) - (a;, * Row 2) --> Row 1

Row?2 (no change)

Matrix Inverse Test

Version 3.2

[ why? | | I | I
X
-1
2
Togeta"1"incolumn 1 1
2
1
Togeta"0"incolumn 1 0
1
Togeta"1"in column 2 0
Togeta "0" in column 2 1
0

Original Matrix Inverse Matrix

-1 3 0.2 0.6
2 -1 0.4 0.2
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y
3

13

-13

-13
30

-13

Inverse Matrix

0
0
-1 0
0 1
-1
2
-1
0.4 0.2
0.2 0.6
0.4 0.2

Inverse Matrix

Product Matrix

1 0
0 1
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3x3 Augmented Matrix Example
Problem: solve the following set of simultaneous 2x-y+3z=-7
equations using row reduction (formally called X+4y-2z=17
Gauss-Jordan Elimination) 3x+y+2z=2
Action Taken | Why? Augmented Matrix | | Inverse Matrix
Starting Augmented Matrix X y z =
Starting Augmented Matrix 2 -1 3 -7 1 0 0
1 4 -2 17 0 1 0
3 1 2 2 0 0 1
Work Down
Rowl * 1/2 --> Row1 Togeta"1"in column 1 1 -0.5 1.5 -3.5 0.5 0 0
Row?2 - (new Row1) --> Row2 Togeta"0"in column 1 0 4.5 -3.5 20.5 -0.5 1 0
Rows3 - (3 * new Row1) --> Row 3 To geta "0" in column 1 0 2.5 -2.5 12.5 -1.5 0 1
Work Down
Row1 (no change) 1 -0.5 1.5 -3.5 0.5 0
Switch Rows 2 and 3 New Row?2 looks easier to work with 0 2.5 -2.5 125 -1.5 0 1
Switch Rows 2 and 3 New Row?2 looks easier to work with 0 45 -3.5 20.5 -0.5 1 0
Work Down
Row1 (no change) 1 -0.5 1.5 -3.5 0.5 0 0
Row?2 / 2.5 --> Row2 Togeta"1"in column 2 0 1 -1 5 -0.6 0 0.4
Row3 * 2 --> Row3 To get rid of the fractions 0 9 -7 41 -1 2 0
Work Down
Row1 (no change) 1 -0.5 1.5 -3.5 0.5 0 0
Row2 (no change) 0 1 -1 5 -0.6 0 0.4
Rows3 - (9 * Row2) --> Row 3 To geta "0" in column 2 0 0 2 -4 44 2 -3.6
Work Down
Row1 (no change) 1 -0.5 1.5 -3.5 0.5 0 0
Row2 (no change) 0 1 -1 5 -0.6 0 0.4
Row3 * .5 --> Row3 Togeta"1"in column 3 0 0 1 -2 2.2 1 -1.8
Work Up
Row1l - (Row3 * 1.5) --> Row1 To geta "0" in column 3 1 -0.5 0 -0.5 -2.8 -1.5 2.7
Row2 + Row3 --> Row2 To geta "0" in column 3 0 1 0 3 1.6 1 -1.4
Row3 (no change) 0 0 1 -2 2.2 1 -1.8
Work Up
Rowl + (Row2 * .5) --> Row1l To geta "0" in column 2 1 0 0 1l=x -2 -1 2
Row2 (no change) 0 1 0 3=y 1.6 1 -1.4
Row3 (no change) 0 0 1 2=z 2.2 1 -1.8
Inverse Matrix
Matrix Inverse Test Original Matrix | | Inverse Matrix | | Product Matrix
2 -1 3 -2 -1 2 1 0 0
1 4 -2 1.6 1 -1.4 0 1 0
3 1 2 2.2 1 -1.8 0 0 1
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Characteristic Equation and Eigenvalues

Characteristic Equation

The characteristic polynomial or characteristic function of a square matrix 4 is defined as:
P(A) =|A— Al

4 —1)

As a simple example, let’s find the characteristic polynomial of matrix 4 = ( 9 1)

(el At B PR e AP
=(@A-DA-D-(DR)=22-51+4+2
=212-51+6

The characteristic equation of a square matrix is determined by setting its characteristic
polynomial equal to zero. The characteristic equation of matrix A4, above, is:
A2—514+6=0

Note that:
e Aisann xnsquare matrix.
e The characteristic polynomial is of degree n.
e There are n roots of the characteristic equation, potentially not all of which are real.

Eigenvalues and Trace

The n roots of the characteristic equation, i.e., the n values of A, are called the eigenvalues of
the matrix. The prefix “eigen” comes from the Old Dutch meaning “to own,” referring to the
essence of something. So, the matrix owns its eigenvalues and they are key to its existence.

For matrix A in the example above, the eigenvalues are 2 and 3 because:

22—51+46 =(1A-2)(A1-3) =0 = A={23}

The trace of a square matrix, tr(4), is the sum of its diagonal values (from upper left to lower
right). An interesting theorem relates the trace of a matrix to its eigenvalues.

Theorem: The trace of a square matrix is equal to the sum of its eigenvalues.

In the example above, the trace of Ais: tr(A) = 4 + 1 = 5. The sum of the eigenvalues of 4
is: 34+2=5.

Version 3.2 Page 104 of 187 July 10, 2019



Chapter 14 Matrices

Algebra
Eigenvectors

Eigenvectors
Associated with each eigenvalue of a matrix A is a corresponding eigenvector of A. The
X
eigenvectors of A, v = (y)’ are obtained by solving the equation: (4 — AI)v = 0 for each

value of 4. Note that 0 is the zero vector, which is size: n x 1.

Example: For matrix 4, defined in the example above, let us find the eigenvectors associated
with the eigenvalues 4 = 2 and 1 = 3.

Consider 1 = 2:

(A—Dv = (4;2 1—_12)(;) —

2 =1\ /% _
(5 ZDG)=o0
2x =Y\ _ (0
<2x —y) - (O)
Let x be any arbitrary value except zero and we can solve for y. Letting x = 1 gives:
2x—y =21)—-y=2-y =0 = y =2
So, an eigenvector associated with the eigenvalue 4 = 2 of Ais v = (%) Note that any

t - . L .
vector of the form (Zt) satisfies the above equation and so it is also an eigenvector of A

associated with the eigenvalue 1 = 2.

Consider 1 = 3:

a-wv= ("0 )0 = 6)=0

Again, let x = 1. Then,

x—y=01)-y=1-y =0 = y=1
So, an eigenvector associated with the eigenvalue 1 = 3 of Ais v = (i) Note that any

t . L . I .
vector of the form (t) satisfies the above equation and so it is also an eigenvector of 4

associated with the eigenvalue 1 = 3.

Conclude: One set of eigenvectorsof Ais: v = { (;), G) }
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2x2 Eigenvalues and Eigenvectors — General Case

Characteristic Equation

Let: Az(‘C‘ Z)

b

d—,1| =0

A—2I| = |“;’1

(a=ADAd—-A)—bc =0

A —(a+d)A+(ad —bc) = 0

Eigenvalues

1 - (a+d) ++/(a+d)?—4ad + 4bc _ (a+d)£+Va? +2ad +d? — 4ad + 4bc
B 2 B 2

_ (a+d)tVa?—2ad +d?+4bc _ (a+d)++/(a—d)?+4bc
B 2 B 2

Let: A= \/(a —d)? + 4bc

a+d+t A
2

Eigenvectors

(A-2ADHv =0, V= (;)

(a;/l diz)(;) =0

Working with the toprow: (a —A)x + by = 0
(A—a)x = by

For each A,then, v = (;) = (/1 E a)

Finally, you may wish to simplify v by reducing its elements to lowest terms, if possible.
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Calculating Inverses Using Characteristic Equations

Hamilton-Cayley Theorem: Every square matrix satisfies its own characteristic equation.

That is, if a matrix 4 is substituted for A in matrix A’s characteristic equation, the result is a true
statement, i.e., P(A) = 0, where P(A4) is the characteristic polynomial of A.

4
2
A? — 51+ 6 =0, it must be true that A> — 54 + 61 = 0, where 0 is the appropriate zero

matrix. Let’s demonstrate that this is true.

A —satel = (4 —;)Z_s(g Hae(l

;G DG DG Do D)
= (0 235G Deele D)
(

14—-5A)+6 —-5-5(-1)+0) _ /0 0
10-5(12)+0 —-1-5¢( 1)+6) B (0 0) -

Example: In the case of matrix A = ( _}), defined above, with characteristic equation

Using Hamilton-Cayley to Calculate Inverses

By setting P(A4) = 0, we can develop another method for calculating inverse matrices.
Consider the case of a 3 x 3 matrix A. The characteristic equation of A must be of the form:

al® +bA>+cA+d =0, forsomevaluesa,b,c,d, witha # 0.
Then, by the Hamilton-Cayley Theorem, it must be true that:
aA®>+bA*+cA+dl=0
Multiply both sides by A~ on the right (or the left) to get:
aA*A™ + bA*AT + cAAT +dIATT =0
aA*+bA+cl+dA™ =0
dA™1 = —(aA? + bA + cI)

aA? + bA + cI

Al = -
d
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Chapter 14 Matrices

Algebra
Calculating Inverses Using Characteristic Equations (cont’d)

2 -1 3
Example: Find the inverse of the 3 x 3 matrix A = (1 4 —2>
3 1 2
2—4 -1 3
|A—AIl = 1 4—-4 =2
3 1 2-2

=0

4—2 =2 1 -2 1 4-2 _
e-n["1" -0l el T =0
2-2DA?*-61+10)+(—-1+8)+3(3B1-11) =0
A3 —81%2+141+5 = 0 isthe characteristic equation of A.

By the Hamilton-Cayley Theorem, then,

A3 —8A%2+ 14A+51 = 0

Multiply both sides by A~ on the right (or the left) to get:
A3A71-84%4"1 4+ 144471 +51471 = 0

A2 —8A+14I1+54 1 =0 (next, solve for A1)
9 A% — 8A + 141 1
Al = — = = —E(A — 84 + 14D

172 -1 3\ /2 -1 3 2 -1 3 1 0 O
=~z 1 4 -2({1 4 -2)—-8{(1 4 -2|+1410 1 O
L \3 1 2/ \3 1 2 3 1 2 0 0 1

1712 -3 14 2 -1 3 1 0 0
=% 0 13 -9])—-8(1 4 -2)+14{0 1 O
L \13 3 11 3 1 2 0 0 1

[[12-8@)+14  —3-8(-1) 14 — 8(3)
= -2 0-8(1) 13-8(4)+14 —9—8(=2)
13— 8(3) 3 —8(1) 11— 8(2) + 14

1/ 10 5 -10 -2 -1 2
=-<| -8 -5 7)=[16 1 -14
~11 -5 9 22 1 -18

This result matches the inverse developed using the augmented matrix method that was
illustrated earlier in this chapter.
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Chapter 15

Algebra

Exponent Formulas

Exponents and Logarithms

Word Description Math Description Limitations
Examples
of Property of Property on variables
4.3 _ ,7
Product of Powers al - a1 = a®P+9 X=X
x> -x8=x3
aP y5
Quotient of Powers — = a9 a+0 — =93
al yZ
4\3 _ ,12
Power of a Power (aP) = a@D (%) =z
(x—S)—S = x15
. . 91° =1
Anything to the zero power is 1 a®=1 a+0
(xyz)° =1, ifx,y,z #0
1
Negative powers generate the 1 x(=3 = =3
reciprocal of what a positive al-P) = - a+0 . x
a -
power generates (1) -
x
3y)3 =27y3
Power of a product (a-b)? = aP - b? (3) Y
[(x + 1)z]* = (x + 1)*2*
a\? aP 3 K3
P f tient —) =— b+0 Z) =2
ower of a quotien ( b) = (4) o1
Converting a root to a power na = a(Mn) n+0 VX = x/2
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Chapter 15 Exponents and Logarithms
Algebra
Logarithm Formulas
Word Description Math Description Limitations
Examples
of Property of Property on variables
b, x>0 = 4 implies 3* =
Definition of logarithm (logp, x = a) implies (b* = x) * log; x = 4 implies 37 = x
b+1 log;(—49) is undefined
b>0 1 1=0
Log (base anything) of 1 is log,1=0 0832
Zero b * 1 ln 1=0
Exponents and logs are b,x>0 3(0g392) — 92
: . plogs®) —
inverse operators, leaving b=1 (nx) _
what you started with € =X
Logs and exponents are . b,x>0 loge(6™%) = xyz
inverse operators, leaving log,(b%) = x bh=1 l 4y — 4
what you started with n (e?) =4y
The log of a product is the log ( ) =1 11 m,n,b >0 log,(32x) =5 + log, x
og,(m-n) =log, m+log,n
sum of the logs b+1 In (8¢) =In(8) + 1
I (3) 1-1
0g3|—)=1-1logzx
The log of a quotient is the lo (ﬁ) —1og. m —logs 11 mn,b >0 83 \x Bs
difference of the logs 8p\ 0y Sb Bb 12
b1 In (?> —In(12) -1
The log of something to a log, (m?) | m,b >0 log,(x23) =23 -log, x
power is the power times the ogpim=) =p l0g,m N
log b+1 In (3%) =z-1In(3)
Change the bate,e‘ to whatever : _ log, m m,a,b >0 _loggpx
you want by dividing by the 08p ™M =10 g b ab+1 log100x =
log of the old base “ 2
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Chapter 15 Exponents and Logarithms

ADVANCED
Algebra
e

What is “e”?

e eisatranscendental number, meaning that it is not the root of any polynomial with
integer coefficients.
e ¢is the base of the natural logarithms.

What Makes “e” so Special?

e shows up over and over in mathematics, especially in regard to limits, derivatives, and
integrals. In particular, it is noteworthy that:

_ 1\" _ n d ¢dx
e=11m(1+—) e=hm(n ) —(e*) =e* —=1
n—oo n n—oo Tl! dx 1 X

Perhaps, most interestingly, the following equation, called Euler’s Equation, relates five
seemingly unrelated mathematical constants to each other.

e™+1=0
Some Series Representations of e
_ i 1 1414 1 4 1 4 1 4 1 + There are many more series involving e.
€= F N E E ﬁ 120 A sampling of these is provided at:
k=0
http://mathworld.wolfram.com/e.html.

Decimal Expansion

e =2.7 1828 1828 4590 4523 5360 2874 7135 2662 4977 5724 7093 6999 5957 4966 ...

The web site http://antwrp.gsfc.nasa.gov/htmltest/gifcitv/e.2mil shows the decimal
expansion of e to over 2 million digits.
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Chapter 15

Table of Exponents and Logarithms

Algebra

Exponents and Logarithms

Definition: b* =c ifandonlyif log,c=a
20=1 log,1=0 6°=1 logg1 =10
21=2 log,2=1 61=6 loge6 =1
22 =4 log,4 =2 6> =36 loge 36 = 2
23=8 log,8=3 63 =216 logs216 = 3
2% =16 log, 16 = 4
25 =132 log,32 =75 7°=1 log,1=0
20 =64 log, 64 = 6 71=7 log,7 =1
27 =128 log, 128 =7 7% =49 log; 49 = 2
28 =256 log, 256 = 8 73 =343 log,343 =3
29 =512 log,512 =9
210 = 1024 log, 1024 = 10 8% = logg1 =10
8l=8 logg8=1
30=1 log;1=0 82 = 64 logg 64 = 2
31=3 log;3=1 83 =512 logg 512 = 3
32=9 log;9 =2
33 =27 log;27 =3 90 =1 logo1 =0
3t =81 log; 81 =4 9l=9 logo9 =1
35 =243 log;243 =75 92 = 81 logy 81 =2
93 =729 logy 729 = 3
40 = log,1=10
41 =4 log,4=1 10°=1 logip1=0
4% =16 log, 16 = 2 101 =10 log,10 =1
43 = 64 log, 64 = 3 102 =100 log,100 = 2
4* = 256 log, 256 = 4 103 = 1000 log, 1000 = 3
50 = logs1=0 11°=1 log;;1=0
51=5 logs5=1 111 =11 log;11=1
52 =125 logs 25 = 2 112 =121 log,; 121 =2
53 =125 logs 125 = 3 113 = 1331 log,,; 1331 =3
5% = 625 logs 625 = 4
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Chapter 15 Exponents and Logarithms
Algebra
Converting Between Exponential and Logarithmic Forms

To convert between an exponential expression and a logarithmic expression, it is often helpful
to use the “first-last-middle” rule to perform the conversion. If necessasy, set the expression
equal to x before applying the rule.

Note: the “first-last-middle” rule requires that the logarithmic or exponential portion of the
expression be on the left-hand side of the equation.

Converting from Logarithmic Form
to Exponential Form

log,a = x

/

b* = a
using “first-last-middle”

Examples:

1) Solve for x: log,64 = x.

Converting from Exponential Form
to Logarithmic Form

b* = a

logya = x

using “first-last-middle”

Examples:

1) Convert the expression, 25 =32to

“w,.n

First is “4”, last is “x” and middle is
“64.” So, 4* = 64.

logarithmic form.

Firstis “2”, last is “32” and middle is
Then, 41 = 4; 42 = 16; 43 = 64 v >

So, we have: log,32 =5
So, we have: x =3

2) Solve forx: Ine = x 2) Convert the expression, 73 = 343 to

(remember [n is shorthand for [og,. ) logarithmic form.

Using first-last-middle, Using first-last-middle,

X

log.e =x convertsto: e* =e 73 =343 convertsto: log,343 =3

So, we have: x =1 So, we have: log;343 =3

Version 3.2
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Chapter 15 Exponents and Logarithms

Algebra
Expanding Logarithmic Expressions

Expanding a logarithmic expression is a process best described by example. Each step of the
process is described and illustrated in the example below.

6a3bzc3)

Expand: lng( 507

When expanded:
» Each item in the numerator will become a term preceded by a “+” sign

» Each item in the denominator will become a term preceded by a “~” sign.

» All exponents become term coefficients in expanded form.

Step 1: Simplify terms in the original expression, if possible:

log: (*567-) = Log2 (%)

Step 2: Write the log of all of the items in parentheses in the simplified expression:

log,2 log,a log,b log,3 log,c

Step 3: Write the exponents from the simplified expression as coefficients of each log:

log,2 3log,a 2log,b log,3 4log,c

Step 4: Write the signs (“+” for items in the numerator; “—* for items in the denominator):

log,2 + 3log,a + 2log,b — log,3 — 4log,c

Step 5: Simplify terms in the solution, if possible:

1+ 3log,a + 2log,b — log,3 — 4log,c

6a3bzc3)

oc7 = 1+ 3log,a + 2log,b — log,3 — 4log,c

Result: log, (
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Chapter 15 Exponents and Logarithms

Algebra
Condensing Logarithmic Expressions

Condensing a logarithmic expression is a process best described by example. Each step of the
process is described and illustrated in the example below.

Condense: 1+ 2log,(2x) —log,3y + 4 log,z

Step 1: Review the expression and identify each element.
e The argument of each log will become the base of an exponential term.
e The coefficient of each log will become an exponent on that term
e Thessign of each term determines whether the exponential term goes in the
numerator (+) or denominator of the condensed expression.

exponents When condensed, each term will

A// \ become exponential in form. All

] ] ] terms in the numerator will be
L+ 2log;(2x) —log;3y + 4 log;z multiplied together. All terms in

the denominator will be multiplied
together.

“~“indicates that a term “+” indicates that a term

goes in the denominator goes in the numerator

Step 2: Set up the log expression with the proper base and parentheses to contain the various
terms. If there is at least one negative sign, set up a fraction inside the parentheses:

o8, )

Step 3: Convert any constants to powers of the base of the log:

log, ( 71... )

Step 4: Bring in each term containing a variable as an exponential expression with the proper
exponent and base:

log, ( T (2:3),2 - )

Step 5: Simplify to the extent possible:

log7(7(2§—fz4) = 1097(%524) = log, (*3%)
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Chapter 15
Algebra
Condensing Logarithmic Expressions — More Examples

Suggestions for doing problems:

e Use parentheses liberally to help yourself see what is going on in the problem.
e Do the problems one step at a time, working carefully down the page.
e Leave yourself a lot of room to do the work; there may be a lot of steps.

Some additional examples to help see how the various rules fit together:

e

1
(8logy, x) + (Zlogb y) — (2logy z) = log,, 7
6+ 1n(3e®) =6+ (In3) +In(e®) =11 +1n3
2+ 3-log,(x?) +log;, 1 =log,(16) + log,(x°) + 0 = log, (16x°)

logo(x)

| | =
08100 X 1+ 10810 X log1(100)

3
+ logiox = Eloglo X

1
1 (—)—6®%®=—2—4=—6
084 16

Version 3.2 Page 116 of 187

Exponents and Logarithms

July 10, 2019



Chapter 15

Algebra

Exponents and Logarithms

Graphing an Exponential Function

Graphing an exponential or logarithmic function is a process best described by example. Each

step of the process is described and illustrated in the examples over the next few pages.

Graph the function: y=3*1-2

Step 1: The horizontal asymptote occurs at the
value of the constant term. This is because the

exponential term approaches zero as the

exponent becomes more and more negative.

y = —2 s the asymptote.

Step 2: Select points for the graph:

In selecting points for an
exponential curve, good
choices often relate to the
value of the exponent.
Choose values that make
the exponent -1, 0and 1; or
-1,0and 2.

In this example, select x so that:
x—1=-1 so, x=0
x—1=0 so, x=1

x—1=1 so, x=2

Step 3: Graph the exponential function:

3A: Graph the
asymptote y = -2

Version 3.2

3B: Graph the points

Page 117 of 187

0ly=3"1-2=-167

3C: Sketch in the curve
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Chapter 15 Exponents and Logarithms

Four Exponential Function Graphs Note: exponential and logarithmic
functions that are inverses of
Impact of varying base (above 1 and below 1) each other (on this page and the

one following) are the same color.

Version 3.2 Page 118 of 187 July 10, 2019



Chapter 15 Exponents and Logarithms

Algebra
Graphing a Logarithmic Function

Method 1: Direct Method

Graph the sample Function: y = log,(x — 1) + 3

Step 1: Find the vertical asymptote at the value of y=1logs (x—1)+3
x that makes the argument of the log zero.

x—1=0 so, x=1 Iistheasymptote. q\

Step 2: Select points for the graph:

In selecting points for a logarithmic curve, good choices often relate to the value of the argument.
Choose values that make the argument 1 and the base of the logarithm (1 and 4 in this example).

In this example, select x so that:

x—1=1 so, Xx=2

x—1=4 so, x=5

See what happens when we do this By selecting x’s so that the values in parentheses are 1 and
in the table to the right: the base of the log, the calculation of y’s becomes easy.

Note that two points may be sufficient to graph the curve if we have also drawn the asymptote.

Step 3: Graph the logarithmic function:

3A: Graph the
asymptote x =1 3B: Graph the points 3C: Sketch in the curve

I

|

|

|
2 | 2
+ 4

|

|

|

1
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Algebra
Graphing a Logarithmic Function (cont’d)

Natural Logarithm Notation: In ( ...)

"In" stands for “logarithmus naturalis” (Latin for “natural logarithm”) and is the logarithm with base "e".
The “In” notation was invented in the late 1800’s, when a lot of work was done by hand (there were no
electronic calculators or computers). Those who worked with logarithms often used natural logarithms
extensively, so this shorthand notation became quite popular, and has survived to this day.

So, when yousee: In (...) think log, (...).

Method 1: Direct Method when the base of the logarithm is “e”

Step 1: Find the vertical asymptote at the value of y =1In gx -1)+3
x that makes the argument of the log zero.

x—1=0 so, x=1 Iistheasymptote. q\

Step 2: Select points for the graph:

In selecting points for a logarithmic curve, good choices often relate to the value of the argument.
Choose values that make the argument 1 and the base of the logarithm (1 and e in this example).

In this example, select x so that: x |y
x—1=1 so, x=2 2 ly=In@-1)+3 = 3=3
x—1=e so, x=e+1 37l y=In(e+1-1)+3 3=4

You need to know that e ~ 2.7. By selecting x’s so that the values in parentheses are 1 and

So, e+1~37. the base of the log, the calculation of y’s becomes easy.

Note that two points may be sufficient to graph the curve if we have also drawn the asymptote.

Step 3: Graph the logarithmic function:

3A: Graph the
asymptote x =1 3B: Graph the points 3C: Sketch in the curve

|

|

|

|
—
.
|

|

|

1
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Algebra
Graphing a Logarithmic Function (cont’d)

Method 2: Double-Inverse Method

! |
—t—
Step 1: Find the inverse function: y=1log,(x—1)+3 Step 2: Find the vertical
Switch variables: x=log,(y—1) +3 asymptote at the value of x
Subtract the constant: -3 -3 that makes the argument of
the log zero.
Result: x—3=log.,(y—1)
x—1=0
Take powers of the log base: 4x=3 = 4logs(y-1) so, x = 1 is the asymptote.
Simplify: 4*3 =y —1
Subtract the constant: +1 +1
Resulting INVERSE Function: 4* 34 1=y or y=4"3+1
Step 3: Select points for the graph:
In seIectirTngoints for a(;] In this example, select x so that: XY
exponential curve, goo a3 _
_ _ 2 =4 1=1.25
choices often relate to the x=3=-1 so, x=2 y +
value of the exponent. x—3=0 so, x=3 3ly=433+1=2
Choose values that make 3=1 _ 4 a3 _c
the exponent -1, 0 and 1; or r=e= 50, X = dly=4""4+1=
-1,0and 2.
Step 4: Switch the x and y values to get points for the logarithmic function: X y
1.25 2
2 3
Step 5: Graph the logarithmic function: 5 4
5A: Graph the
asymptote x =1 5B: Graph the points 5C: Sketch in the curve

I ]
! I
| |
I |
2 | 2+ 1® T
| |
| l
! I
| |
1 1
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Chapter 15 Exponents and Logarithms

Four Logarithmic Graphs Note: exponential and logarithmic functions that
are inverses of each other (on the earlier page and
Impact of varying base (above 1 and below 1) on this one) are the same color.
&
4
f(x) =|logz(—x) f(x) =logz x

f(x) =logq/3(=x) f(x) =logy/3x
= —log;(—x) ! = —logz(x)
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Chapter 15 Exponents and Logarithms
Algebra
Graphs of Various Functions
- X - X
y=2 y= (")

/M oo \
10.0 -5.0 : 0jo 10.0 -10.1 .0 : (0] 5/0 10.0

y =log, x y = log,, x
10.0 5.0 n-nO({ 10.0 1 .0 o 0 \0 10.0

y=x* y =x? y=x°
e

10.0 * 5,0 0 * 0{0 5, 10. 10.0 5.0 y 0{0 5,0 10.0
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Algebra
Applications of Exponential Functions

Exponential Growth and Decay

end start n Note: if you let the end value be
( ) = ( ) (1 + growth)
value value represented by A(t) and the

start value by P, you get similar

end start n formulas to the interest
= - (1 — decay)
value value formulas below.

Interest Formulas

Let: A(t) = Amount of money at time (t)
P = Principal (starting amount of money); note that P = A(0)
r = the annual rate of interest (e.g., 4% or .04)
n = the number of times per year that interest is credited

Compound interest pays interest a number of times during the year; that is, in

periods after the first, interest is paid on the original amount invested plus
interest earned in prior periods.

nt
Compound interest paid n times a year: A(t)=P- (1 + i)

Simple case. If interest is compounded on an annual basis, we get the simplest
formula:

Annual interest paid once a year: At)=P-(1+1r)t
Continuous compounding. The more frequent the compounding of interest, the

more money you get. The best return on your money occurs if interest is
compounded continuously. Because of the definition of the mathematical

constant "e", we get the following formula (known as the “Pert” formula).

Interest compounded continuously: Alt) =P (e)"
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Algebra

Exponents and Logarithms

Solving Exponential and Logarithmic Equations

Logarithms and exponents are inverse operations in the same way addition and subtraction are,
and in the same way multiplication and division are. So, to undo an exponent, you take a

logarithm, and to undo a logarithm, you take an exponent.

Solving an Exponential Equation

Sometimes an equation has a variable in an exponent. To solve this kind of equation, follow

these steps:

Isolate the term with the exponent on one side
of the equation. That is, undo any additions,
subtractions, multiplications, and divisions in
the equation.

Take a logarithm of both sides of the equation.
Use the base that exists in the exponential
term.

Solve the equation that remains.

Note: in the example at right, the base of 3 is selected

for the logarithms because it is the base of the exponent in the problem.

Solving a Logarithmic Equation

Example:
Start:
Subtract 2:
Divide by 4:
Take logs:
Simplify:
Add 2:

2+4-30"2 =110

4-306-2 =108
3(:-2) = 27
logs(3%*2) = log;27
(x—2)=3

XxX=5

To solve an equation with a logarithm in it, follow these steps:

Isolate the logarithm on one side of the
equation. That is, undo any additions,
subtractions, multiplications, and divisions in
the equation.

Take the base of the logarithm to the power of
both sides of the equation. Use the same base
that exists in the logarithmic term.

Solve the equation that remains.

Note: in the example at right, the base of 2 is selected

for use in exponentiation because it is the base of the

logarithm in the problem.
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Example:

Start:

Add 1:

Multiply by ;:

Exponentiate:

-1 +§log2(x+1) =1
glogz(x +1)=2

log,(x +1) =3

zlogz(x+1) =23

Simplify: (x+1)=38
Subtract 1: x=17
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Chapter 16

Algebra
Polynomial Function Graphs

Definitions

Polynomials — Intermediate

e Local Maximum — The largest value that a function takes in a neighborhood around the

point. There must be smaller values on both sides of the local maximum.

e Local Minimum — The smallest value that a function takes in a neighborhood around the

point. There must be larger values on both sides of the local minimum.

e A function is Increasing over an interval if it
generates larger values as x increases over the
same interval.

e A function is Decreasing over an interval if it
generates smaller values as x increases over the

f(x) = x>-5x3+4x
ol

same interval.

The graph at the right has two local maxima and two local
minima. It also has three intervals where it is increasing

and two intervals where it is decreasing.

Characteristics of the Graph of a Polynomial

If P(x) is a polynomial of degree n, then ...

e P(x) is continuous over all values of x.

e Roots (i.e., zeros) of P(x) exist wherever the graph intersects the x-axis. There are at

most n of them.

e The y-intercept of the graph occurs at P(0), which is the constant term of the

polynomial.

e P(x) will have at most n — 1 local extrema (either maxima or minima). For example, a
5th degree polynomial will have at most 4 extrema; the example above has 4 extrema.

e At each extreme, the slope of a line tangent to the curve will be zero. However, if the

slope of the tangent line to the curve at a point is zero, the point is not necessarily an

extreme.

e Atalocal maximum, the polynomial must be increasing on the left and decreasing on

the right.

e At alocal minimum, the polynomial must be decreasing on the left and increasing on

the right.
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Chapter 16 Polynomials — Intermediate

ADVANCED

Algebra
Finding Extrema with Derivatives

Derivatives

d -
The derivative of a monomialis: ~ —— (x") = na™ !

. d “ o . . ”
The notation -, Means take a derivative with respect to the variable x.” We need to know two

other things about derivatives in order to find extrema with them.

e The derivative of a sum is the sum of the derivatives. That is:

d d d
i (f) +9() = i (f() + 2 9®)

e Derivatives provide information about the slopes of lines tangent to the curve at each
point. Since the slope of a tangent line at a minimum or maximum is zero, we can
calculate the derivative of a polynomial and set it equal to zero to find the x-values of its
extrema.

Finding Extrema with Derivatives
If P(x) is a polynomial, any extrema lie at points where % (P(x)) =0.

Example 1: Take the general quadratic equation: y = ax? + bx + ¢

We know that the graph of this equation has a single maximum or minimum which is the vertex
of the parabola. Taking a derivative of this formula and setting it equal to zero, we get:

d
a(axz—l—bx#—c):Zax—l—b:O

. b . .
Solving for x, we get : x = — o which we already know is the x-value of the vertex.

Example 2:

Find local maxima and minima for the cubic equation: y = x* + 3x% — 9x + 5

d
a(xi"*+3x2—9x+5):3x2+6x—9:0

Solving this for x, we find local maxima or minima may exist at x = {—3, 1}.

One caution: When a derivative is equal to zero, it only provides the possibility of an extreme;
it does not guarantee an extreme. It is possible for the slope of a curve to be zero and not have
either a local maximum or minimum. For an example of this, look at y = x3 where x = 0.
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Sum and Difference of Cubes

The sum of cubes is of the form: a® + b3 = (a+b)-(a* — ab + b?)

The difference of cubes is of the form: a® — b3 = (a—b) - (a*+ ab + b?)

Notice the following about these two formulas:

e Each formula factors into a binomial and a trinomial.
e Each term in the binomial is of degree 1.
e Each term in the trinomial is of degree 2.
e Each formula has one minus sign in its factorization.

e In each formula, the second term of the binomial factor takes the sign of the second

term of the original expression.

Identification

To see if an expression is a sum or difference of cubes, you must answer “yes”
to three questions:

1. Are there only two terms?
2. Isthe first term a cube? If so, take its cube root to get the value of a.
3. Isthe second term a cube? If so, take its cube root to get the value of b.

The solution is based on the appropriate formula above, substituting the cube
roots of the two terms for a and b. Be careful!

Note: A telltale sign of when an expression might be the sum or difference of 2
cubes is when the coefficients on the variables are cubes and the exponents on
the variables are multiples of 3.

Examples:
(1)  8x3+125y°% = (2x + 5y%) - (4x? — 10xy? + 25y*)
2) x-8=((x-2)-(x*+2x+4)

(3) 27-64z3=3-42)-(9+12z+ 162?)

x3 y3 _(x .Y\, x2  xy yz)
@ 216+27_ (6+3) (36 18+ 9
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Table of
Cubes
13 =1
23 =8
33 =27
43 = 64
53 =125
63 =216
73 = 343
83 =512
93 =729
103 = 1,000
113 = 1,331
123 =1,728
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Factoring Higher Degree Polynomials

Variable Substitution

On occasion you will encounter a polynomial that looks familiar except that the exponents on
the variables are higher than usual. In this case, a technique called Variable Substitution may
be useful.

The steps for variable substitution are:

e Identify which kind of equation the problem resembles.

e |dentify what terms are likely to require substitution. Often there are only one or two
terms that need to be substituted.

e Create new variables for purposes of substitution.

e Re-write the problem in terms of the new variables.

e Solve the problem in terms of the new variables.

e Substitute the original variables into the solution.

e Perform any additional work that is needed based on the original variables.

e Check your work.

Example 1:
Factor: x* + 3x%y? — 4y*

This looks like a typical trinomial factoring problem except for the large exponents.

Create two new variables: u=x* and v=y?
Re-write the expression: u? + 3uv — 4v?

Factor the expression: =(u+4v)(u—vo)
Substitute original variables: = (x% + 4y*)(x* — y?)
Perform additional work: =2 +4y)(x+y)(x—y)

Check your work by multiplying the factored form to see if you get the original polynomial.

Example 2:
Factor: 8x3 + 125y°

This looks like a sum of cubes.

Create two new variables: u=2x and v=>5y?
Use the sum of cubes formula: w+vdi= (u+v) - W - uw + v?
Substitute original variables: = (2x + 5y%)(4x? — 10xy? + 25y%)

Check your work by multiplying the factored form to see if you get the original polynomial.
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Synthetic Division

Synthetic Division is a short-cut to dividing polynomials by a linear factor. Here’s how it works.
We will use an example to illustrate the process.

Example 1: (2x3 +5x2+x—2) + (x + 2)

Step 1: In the linear term (x — r) take the value r as the divisor. In the example, the divisor
will be —2. We use the letter r to indicate that the value is actually a root of the equation. So,
in synthetic division, the root is used as the divisor.

Step 2: Line up the coefficients of the terms from highest
degree to lowest degree in a row to the right of the divisor. If 212 5 1 2
a term is missing, use a zero for the coefficient of that term.
We will call this array of coefficients the dividend. 2
Step 3: Bring the leading coefficient down below the line.
Step 4: Multiply the divisor by the number just placed below 212 5 1 -2
the line and put the result above the line and one column to 4
the right. Add the two numbers in that column to get a
number below the line for that column. 2 1
Step 5: Repeat Step 4 until all of the columns have been 212 5 1 2
completed.

-4 -2 2
The final result is a set of coefficients of the polynomial that
results from the division. The exponents of the terms of the 2110
resulting polynomial begin one lower than the degree of the x* x 1 rem
original polynomial.

In the example, the result is 2x* + x — 1, with a remainder of 0. The remainder of 0 is a good
indication that the division was performed properly.

Example 2: (x°> 4+ 3x3 —4x) = (x — 1)

From the synthetic division to the right, we get: 111 0 3 0 -4 0
(x5 +3x% —4x) + (x — 1) = x* + x° + 4x? + 4x 1 1 4 4 0
1 1 4 4 0 0

There is no constant term and no remainder in the
solution to this example. x* x

Version 3.2 Page 130 of 187 July 10, 2019



Chapter 16

Algebra

Polynomials — Intermediate

Comparing Synthetic Division to Long Division

Advantages of Synthetic Division

Synthetic division has the following advantages over long division:

e The divisor is a possible root of the polynomial; it is a root if the remainder is zero.

e ltisshorter.
e Itis much quicker.

e It works by addition and multiplication instead of by subtraction and division. Because

of this, it is much less prone to error.

Comparison of Methods

It is instructive to compare synthetic division and long division to get a better idea of why
synthetic division works. Consider the division: (2x3 + 5x% + x — 2) = (x + 2)

The two methods of performing this division are laid out below. Notice the following

correspondences between the examples:

Root vs. Factor. Synthetic division uses the root of the
polynomial as the divisor. Long division uses the whole factor.
The signs on the root are opposite in the two methods.

Synthetic Division

212 5 1 -2

Dividend. The dividends in the two methods are the same 4 2 2

(except that synthetic division leaves out the variables).

Second Row. The second row in synthetic division
corresponds to the “secondary” coefficients of
each division in long division (but with opposite
signs).

Answer Row. In synthetic division the answer row
(of coefficients) is calculated directly by adding the
values in the rows above it. In long division, it is
necessary to subtract expressions to determine
another expression that must be divided by the
divisor to get the next term of the answer.

Adding Variables. In synthetic division, it is
necessary to add the variables after the answer is
determined. In long division, the answer is
provided directly.
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2 1 -1 0

Long Division

2x% +1x—1
x+2|2x3 4+5x%+1x—2
2x3 + 4x?
x? +1x -2
x? + 2x
—1x -2
—1x -2
0
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Developing Possible Roots

If a polynomial has the form:

Then,

P(x)=a,x"+a, x* 1+ +ax+a,

P (x) will have exactly n complex roots. For example, a 5" degree polynomial will have
exactly 5 complex roots. Note: some of these roots may be the same, and some of
them may be real.

P(x) will have exactly (n — 2k) real roots, where k is a whole number. For example, a
5t degree polynomial will have either 5 real roots, 3 real roots, or 1 real root.

Descartes’ Rule of Signs. (Note how this ties into the bullet above.)

0 The number of positive real roots of a polynomial P(x) is equal to the number of
sign changes in P(x), or is less than this by a multiple of 2.

0 The number of negative real roots of a polynomial P(x) is equal to the number
of sign changes in P(—x), or is less than this by a multiple of 2. Note: to
generate P(—x) quickly, just change the signs of the terms with odd exponents.

P (x) will have an even number of non-real roots. For example, a 5" degree polynomial
will have either 0 non-real roots, 2 non-real roots, or 4 non-real roots. Further, the
non-real roots exist in conjugate pairs; so if (a + bi) is a root of P(x), then sois (a —
bi).

. . .. factor of a .
Rational Root Theorem. Any rational roots have the characteristic r = W This
n

fact is especially useful if the lead coefficient of the polynomial is 1; in this case, any real
roots are factors of the constant term. This fact, in combination with the ease of
synthetic division, makes finding integer roots a quick process.

Example:

What can we say about the roots of P(x) = x* — 2x% + x? — 4x + 4? (note: 4 sign changes)

First, note that P(—x) = x* + 2x% + x% + 4x + 4 (note: zero sign changes)
So, P(x) has 4 complex roots. 0, 2, or 4 of them are real; all real roots are positive.
The real roots must be 1, 2, or 4 (the positive factors of the constant term 4).

To find out more, we have to test the possible real root values.
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Testing Possible Roots

The following two theorems are very useful in testing possible roots (zeros) of Polynomials.

Factor Theorem: (x — r) is a factor of a polynomial P(x) if and only if P(r) = 0.

Remainder Theorem: If P(x) is divided by (x — a), then the remainder is P(a).

Methods of Testing Possible Roots

If a polynomial can be factored, then first, factor the polynomial; the problem will be easier to
solve after factoring. In addition, if you are able to produce linear or quadratic factors, the
roots of those factors will be roots of the polynomial.

After factoring, the following methods can be used to test possible roots of a polynomial.

e Use synthetic division to test possible roots. Because synthetic division is quick, several
potential roots can be tested in a short period of time.

e Substitute possible roots into the polynomial to see if the remainder is zero.
If P(a) = 0, then a is a root of P(x).

e Graph the polynomial. Real roots exist wherever the graph crosses the x-axis. Although
this method may help find the approximate location of roots, it is not a reliable method
for determining exact values of roots.

Example: Factor and find the roots of P(x) = x* — 2x% + x* — 4x + 4

Using synthetic division:

Trying first the possible root x = 1, then the possible root
11 -2 1 4 4 x = 2, we find that they both work. So,

1 -1 0 -4
Px)=x*—-2x3+x*>—4x+4

1 -1 0 4 0
=(x-Dxx-2)x2+x+2)

Using the quadratic formula on the quadratic factor in this
2y 104 expression we find two non-real roots. So the four roots are:
2 2 4
-1+iv7 -1-iv7
11 2 0 X = {1, 2, ;M, ZHF}
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General Case (Bezout’s Theorem)

Bezout’s Theorem states that the maximum number of intersections of two distinct curves in
the complex field is the product of the degrees of the curves. (Note: for these purposes, a line
is considered a curve of degree 1.) For graphs in two dimensions, if the degrees of two distinct
curves are rand s, then:

e There are at most (7 - s) intersections of the two curves.

e There are also cases where fewer than (7 - s) intersections exist.

e To solve for the points of intersection, either set the two equations equal to each other
or use variable substitution; then solve.

To apply this theorem, it is useful to set up each curve as an equation equal to zero. Examples
are provided below and on the pages that follow.

Two Lines

Two distinct lines may have either zero or one point of intersection, as shown in the following
illustrations:

/

Parallel Lines: Intersecting Lines:

0 points of intersection 1 point of intersection

Lines have the form: y = mx + b, so the equations of any two lines can be written as:

y—mx—>b =0 and y—myx—b, =0

Notice that both lines are of degree 1;i.e.,7 = 1 and s = 1. Using Bezout’s Theorem:

e The maximum number of intersectionsis: 11 = 1.

e There may be less than one intersection.
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A Line and a Parabola

The general forms for a line and a parabola are: Note: we use the letter “t” instead of
e Line: y=mx+t b” in the equation of a line in order to
avoid confusion with the coefficient
e Parabola: y=ax*+bx+c

“b” in the equation of a parabola.

For purposes of Bezout’s Theorem, these convert to:

e Line: y—-mx—t=0 Degree = 1
e Parabola: y—ax*—bx—c=0 Degree = 2

Using Bezout’s Theorem, the maximum number of intersectionsis: 1-2 = 2. Casesfor 0, 1,
and 2 intersections are provided below:

A

0 points of intersection 1 point of intersection 2 points of intersection

Finding the Point(s) of Intersection

In order to find any points of intersection, set the two original equations equal to each other
and solve:

ax* +bx+c=mx+t
ax*+(b-m)x+(c—-t) =0
This equation can be solved for x by any of the methods used to find the roots of a quadratic

equation. The value of y can be calculated for each value of x by substituting x into either of
the original equations.
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A Circle and an Ellipse

The general forms for a circle and an ellipse are:

e Circle: x% +y? =r?
2 2
X Yy
e Ellipse: —+==1
P az ' p2

For purposes of Bezout’s Theorem, these convert to:
e Circle: x2+y2—1r2=0 Degree = 2

a2 2
e Ellipse: s + ol 1=0 Degree = 2

Using Bezout’s Theorem, the maximum number of intersectionsis: 2 -2 = 4. Casesfor 0, 1, 2,
3 and 4 intersections are provided below:

at 1 1 1 1 a4 | | a4

0 points of intersection 1 point of intersection 2 points of intersection

a4 41

3 points of intersection 4 points of intersection
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Domains of Rational Functions

Rational Expressions are fractions with polynomials in both the numerator and denominator. If
the rational expression is a function, it is a Rational Function.

Finding the Domain of a Rational Function

The domain (e.g., x-values) of a rational function is the set of all values that result in valid range
values (e.g., y-values). Generally, there are two situations where a value is not included in the
domain of a rational function:

e Any x that generates a zero in the denominator.
e Any x that generates a square root of a negative number.

Example 1:

2_ T
Consider the rational function: f(x) = % /

Since there are no square roots, the only value for which ——+—+—+— / 1

we cannot calculate f(x) is where x + 2 = 0 or, where o

x = —2. Sothe domainis all real x except x = —2, or: ' X'y
{x|x+# -2}

Notice the hole in the graph of the function at the point
(—2,—4). This indicates that the function does not have
avalue for x = —2.

Example 2:

Jx+3 ’
x—2

Consider the function: f(x) =

This function has no valid x-values for x < —3 because
they would generate the square root of a negative Jo3

="

number in the numerator. In addition, the denominator S N S S - Il
5 \ 5

would be zero if x = 2. So the domain is all real x
greater than -3 except x = 2, or:

{x|x>-3 and x # 2}
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Holes
A hole in a graph exists whenever a factor (x — a) occurs =T
more times in the numerator than in the denominator of a T

rational function. s T T ] '
xXt-4 1

2_
Example: In the function f(x) = % the factor (x + 2) is

in both the numerator and the denominator. In fact, the
function can be reduced to f(x) = x — 2 except at the point
x = —2 where the function is undefined.

Vertical Asymptotes

A vertical asymptote exists whenever a factor (x — a) occurs more times in the denominator
than in the numerator of a rational function.

2x2—4x+1 _ 2x%—4x+1

Example: In f(x) = = the

ple In 00 =7 3512 ~ G-Dx-2)

factors (x — 1) and (x — 2) occur in the denominator but not i T
in the numerator of the function, so they generate vertical e S M

asymptotes. The vertical asymptotes are shown as red — * —t
dotted linesat x =1 and x = 2 in the graph at right. '

Horizontal Asymptotes
P(x)

Q)

There are three separate cases for horizontal asymptotes of a rational function

1. If the degree of P(x) > the degree of Q(x), there is no horizontal asymptote.

2. If the degree of P(x) = the degree of Q(x), a horizontal asymptote exists at the line:

__ lead coefficient of P(x)
" lead coefficient of Q(x)’

3. If the degree of P(x) < the degree of Q(x), a horizontal asymptote exists at the line y = 0.

2x2—4x+1
x2-3x+2

and denominator are the same, and the ratio of their lead coefficients is 1= 2. The location

Example: In the function f(x) = the degrees of the polynomials in the numerator

of the horizontal asymptote is shown as the red dotted line y = 2 in the graph above.
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Graphing Rational Functions

Rational functions are of two types:

a
e Simple rational functions are of the form y = _h +k or an equivalent form that does

not contain a polynomial of degree higher than 1 (i.e., no x2, x3, etc. — just x’s and
constants).

P(x
e General rational functions are of the form y = ﬁ where either P(x) or Q(x) is a

polynomial of degree 2 or higher (i.e., contains an x2, x3, etc.).

In general, it is a good idea to find the asymptotes for a function first, and then find points that
help graph the curve. The domain and any holes can typically be easily identified during this
process. The range and the end behavior become identifiable once the function is graphed.

Simple Rational Functions

a
If you can put a rational function in the form y = _h +k , here’s what you get:
x_

Vertical Asymptote: Occurs at x = h. The vertical asymptote is easy to find because it occurs
at x = h. At this value of x, the denominatoris h — h = 0, and you cannot divide by zero.

a
Hence, as x approaches h, the denominator of _h becomes very small, and the graph shoots

off either up or down.

Horizontal Asymptote: Occurs at y = k. The function cannot have a value of y = k because

a
that would require the lead term, _h to be zero, which can never happen since a # 0.

Hence, the function will approach y = k, but will never reach it.
Domain: All Real x # h. No value of x exists at any vertical asymptote.

Range: All Real y # k. No value of y exists at a horizontal asymptote in simple rational
functions.

Holes: None.

End Behavior: Both ends of the function tend toward the horizontal asymptote, so:

Asx —> —0,y—>k and Asx > o0, y—>k
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Simple Rational Functions - Example

5 Recall that the simple rational
Example: vy = —— 2 a
X1 formis: y = —h+k
x_

First, note that h = 1 and k = —2

Vertical Asymptote: Occurs at x = 1 because if x = 1, the denominator, x — 1, would be

zero.

) 5
Horizontal Asymptote: Occursat y = —2 because the lead term, L_q cannever be
zero. Hence, the function can approach y = —2, but will never reach it.

Domain: All Real x # 1. No value of x exists at any vertical asymptote.

Range: All Real y # —2. No value of y exists at a horizontal asymptote in a simple rational
function.

Holes: None.

End Behavior: Both ends of the function tend toward the horizontal asymptote, so:

As x > —o0,y > =2 and As x » 00,y > =2

Graphing:

Step 1. Graph the vertical and horizontal asymptotes
(the dashed horizontal and vertical lines shown).

Step 2. Pick some x-values and calculate the
corresponding y-values. | like to pick a couple of x-
values to the left of the vertical asymptote (x = 1) and PARARS ARANS AR I

a couple of x-values to its right. So, let’s try some. T T
N I NV
Y = x—1 R
-2 —3.67 :
\
-1 —4.5 Note that the intersection of the
0 - asymptotes has coordinates (h, k).
2 3 Step 3. Draw a curve on each side of
the vertical asymptote: through the
3 0.5 points on that side and approaching
4 —0.33 both the horizontal and vertical

asymptotes.
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General Rational Functions

P(x)

Q(x)

The easiest way to graph a general rational function is to factor both the numerator and
denominator and simplifying the resulting fraction.

General rational functions are of the form: y =

Example: in y = % the (x + 2) in the numerator and denominator can be
eliminated to obtain the function to be graphed: y = giii

Vertical Asymptotes and Holes: Any root (also called a “zero”) of the denominator of a rational
function (prior to simplification) will produce either a vertical asymptote or a hole.

Vertical Asymptote: If r is a root of the denominator is also a root of the simplified
denominator, then x = r is a vertical asymptote of the function.

Hole: If r is a root of the denominator and is not a root of the simplified denominator, then
x = r defines the location of a hole in the function.

Horizontal Asymptote: One way to find the horizontal asymptotes of a general rational
function (also, see the section on “Holes and Asymptotes”, above) is to eliminate all terms of
the polynomials in both the numerator and denominator except the ones with the single
greatest exponent of all the terms. Then,

» If all terms are eliminated from the numerator, the horizontal asymptote occurs at y =

0.

x+3 nothing

Example: y = 7 5xi6 - y= Xz has a horizontal asymptote at y = 0.

Note that all terms in the numerator were eliminated because none of them had the
greatest exponent in the rational function, which in this example is 2.

» If aterm remains in both the numerator and denominator, the horizontal asymptote
occurs at the reduced form of the remaining terms.

Exampl 2043 2% _ 2\ < a horizontal tote at
Xxampie: - — ——5 — — nas a norizontal asymptote a
P y 3x2-5x+6 y 3x2 3 ymp
2
y = 3"

> If all terms are eliminated from the denominator, the function does not have a
horizontal asymptote.
Example: y = xz_s—x% - y= L does not have a horizontal asymptote.
x—-3 nothing
Note that all terms in the denominator were eliminated because none of them had the
greatest exponent in the rational function, which in this example is 2.
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General Rational Functions (cont’d)

Domain: The domain is always “all Real x” except where there is a vertical asymptote or a hole.
No function value is associated with x at either a vertical asymptote or a hole (or when an even
root of a negative number is required).

Range: The range is a bit trickier. You will need to look at the graph to determine the range.
You might think that no y-value would exist at a horizontal asymptote, like in simple rational
functions. However, it is possible for a function to cross over its horizontal asymptote and then
work its way back to the asymptote as x - —o0 or as x — c. Odd but true (see below, right).

For oddities in the range of a function, check these out these two rational functions:

__x2—5
y T x2+3

—-10x+5
x24+6x+5

y:

End Behavior: Both ends of the function tend toward the horizontal asymptote if there is one.
However, if there is not one, you can look at the graph to determine end behavior. Note that
the function below does not have a horizontal asymptote:

|
|
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In this function,
As x - —00,y > —0o,

As x > 00,y - o

Although this function does not have a
horizontal asymptote, it does have a
“slant asymptote”: the line y = x.
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General Rational Functions - Example

Example: y = 22

ple: V= x2-1
-1)(2x+3
Factor both the numerator and the denominator: y = GmDExH3)
(x+1)(x—1)

Numerator: x=-—1.5, x=1
Get the Roots:

Denominator: x=—1, x=1

Simplify: Since 1 is a root of both the numerator and the denominator, the function may be
simplified as follows:

_ (x-1)(2x+3) _ —1(2x+3) _ 2x+3

T (x+D(x-1) (x+D&x—1  x+1

Vertical Asymptotes and Holes: “—1” and “1” are roots of the original denominator, so they
must generate either vertical asymptotes or holes.

Vertical Asymptote: After simplification, this function still contains “—1” as a root in the
denominator. Therefore, x = —1 is a vertical asymptote of the function.

Hole: “1” is a root of the denominator of the original function but is not a root of the
denominator of the simplified function. Therefore, this function has a hole at x = 1.

Horizontal Asymptote: Eliminate all terms of both polynomials except any with the single
greatest exponent of all the terms. In this case:

2x2

y = 7 — y = 2 is a horizontal asymptote. Since a term remains in both the

numerator and denominator, the horizontal asymptote occurs at the reduced form of the
remaining terms.

Domain: All Real x except where there is a vertical asymptote or a hole.
So, the domain is all Real x # —1 or 1.

We must graph the function in order to get a good look at its range and end behavior. We
must plot points on both sides of the vertical asymptote.

(graph on next page)
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Graphing:
Step 1. Graph the vertical and horizontal asymptotes.

Step 2. Pick some x-values on each side of the vertical asymptote and calculate the
corresponding y-values.

Step 3. Draw a curve on each side of the vertical asymptote:

2x + 3 through the points on that side and approaching both the
X y= x+1 horizontal and vertical asymptotes.
-4 1.67 Step 4: Draw an open circle at the point of any holes.
-3 1.5
-2 1
0 3 See the hole
~ at(1,2.5)!
2 | 233 T \
»

Range: The range can be determined from the graph.
It appears that the range excludes only the horizontal asymptote and the hole.
Sotherangeis: allReal y # 1,2.5.

End Behavior: In this function,

Asx > —o0,y—>1, Asx—->o0,y—>1
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Operating with Rational Expressions

Performing operations with rational expressions is very similar to performing operations with
fractions. After all, that’s really what rational expressions are — fractions involving polynomials.
Addition and Subtraction

To add or subtract rational expressions:

e Factor both the numerator and denominator as much as possible.

e Create a common denominator.

* Addor subtract expressions. After the numerators are added, you must
* Simplify. check to see if the new numerator can be
X 1 factored. If so, further simplification may
Example: —+ — be possible. Note: no further
X+l x+2 simplification is possible in this example.
_ x+2 X + 1 . x+1
T x+2 x+1  x+42 x+1 /
(x%+2x)+(x+1) (2% +3x+1)
(x+2)(x+1) a (x+2)(x+1)

Multiplication and Division
To multiply or divide rational expressions:

e Factor both the numerator and denominator as much as possible.

e Multiply or divide expressions. (Remember, to divide, “flip that guy and multiply.”)
Cancel all factors that appear in both the numerator and denominator.

e Simplify.

. . Note that you can cross out common
X“+2x—8 X +4x+3 factors in the numerator and
x%2+2x-3  x2+6x+8 denominator across the expressions

that are being multiplied.

Example:

(x+4)(x-2) (x+1)(x+3)

- (x+3)(x—1) . (x+4)(x+2) /

GeHD(x-2) (D@3 (x-2)(x+1)
Ge+D(x—1)  Lerd(x+2) (x—1D)(x+2)
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Chapter 17

Rational Functions

Algebra

Solving Rational Equations

Solving Rational Equations

Solving rational equations involves one main rule: Get rid of the denominators!

A fuller listing of the steps involved is:

e Multiply by whatever expressions are necessary to eliminate the denominators.

e Pay careful attention to which values make the expressions you use equal to zero

(because you are not allowed to multiply both sides of an equation by zero).

e Solve the remaining problem.

e Check each answer to see if it is a solution to the original problem. Note: as long as you

do not multiply by zero, your solutions are likely to be valid.

x+1
Example 1: Solve — = —
x-3 x+1

First note that x cannot be 3 or -1 since
each of these creates an undefined
fraction in the original problem.

The easiest way to start this problem is to
cross multiply to get:

(x +1)2=(x—3)2
Then, x?+2x+1=x>—-6x+9

So, 8x =8

And finally, x=1

Check work:
x+1 ? x—3
x—3 x+1
1+1 ? -
1-3 1+1

2 o -2 ‘/
-2 2
Version 3.2

1

X
Example 2: Solve — = —
x+8 x+3

First note that x cannot be -8 or -3 since
each of these creates an undefined
fraction in the original problem.

The easiest way to start this problem is to
cross multiply to get:

x2+3x=x+8

Then, x> +2x—8=0
So, x+4)(x—-2)=0
And finally, X =—4or?2
1
Check -4: X =
x+8 x+3
) ? 1
-4+8 = —4+3
a1 v
4 -1
2
Check 2: — 7 —
2+8 2+3
21 v
10 5

Page 146 of 187

July 10, 2019



Chapter 17

Rational Functions

Algebra

Solving Rational Inequalities

Solving Rational Inequalities

Solving Rational Inequalities is a bit more involved than solving Rational Equations. The key

issue in the Inequalities is whether in the step where you eliminate the denominator, you are

multiplying by a negative number. Remember, when you multiply by a negative number, you

must flip an inequality sign.

The steps involved are similar to those for solving rational equations:

e Multiply by whatever expressions are necessary to eliminate the denominators.

e |dentify when the denominators are positive and when they are negative; set up cases

for each situation. Within each case, you will need to meet multiple conditions (i.e.,

using the word “and” between conditions within a case).

e Pay careful attention to which values make the expression you multiply equal to zero

(because you are not allowed to multiply both sides of an inequality by zero).

e Solve the remaining problems. Any of the cases produces valid results, so you must

combine the solutions for the various cases with “or’s.”

e Check sample answers in each range you develop to see if they are solutions to the

original problem. Alternatively, graph the solution to see if the results are correct.

(3x-5)
Example: Solve ——— > 2
(x—1)

We want to eliminate the denominator (x — 1) but we need to create 2 cases:

Casel: x—1>0 — x>1
Then: 3x—-5>2x—-2
So, x> 3
The solution here requires:

x>1 and x>3
Which simplifiesto: x > 3

Case2: x—1<0 — x<1
Then: 3x —-5<2x—-2
So, x <3
The solution here requires:

x<1 and x<3
Which simplifiesto: x <1

The combined result of the two cases is:
x<1 or x>3

To check the result, we graph the function and see
where it produces a y-value above 2; this is the set
of x-values where the dark green curve intersects
the light green region in the graph below.

Version 3.2
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Chapter 18

The intersection of a cone and a plane is called a conic section.
There are four types of curves that result from these intersections

Conic Sections

Introduction to Conic Sections

that are of particular interest:

Each of these has a geometric definition, from which the algebraic

Parabola
Circle
Ellipse
Hyperbola

form is derived.

Geometric Definitions

Parabola

directrix

Circle — The set of all points that are the
same distance from a point (called the
center). The distance is called the radius.

Circle

B \ r
el

— ™y

r = constant

Version 3.2
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Parabola

Circle

Ellipse

Parabola —The
set of all points
that are the
same distance
from a point
(called the
focus) and a
line (called the
Directrix).

Ellipse

(d, + d,) = constant

Hyperbola -
The set of all

difference of
the distances
to two points
(called foci) is

Ellipse — The set of all points for
which the sum of the distances to
two points (called foci) is constant.

Hyperhbola

|d; — d | = constant
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Chapter 18 Conic Sections

Algebra
Parabola with Vertex at the Origin (Standard Position)

Horizontal Directrix Vertical Directrix
' N y
i
Parabola: yEox Parabola: a4
5 T e
\ ” / 4 -
5 3 ’/
\ ¥ / i f Fl(1.0
A = 4 N
-4 3 0 1
4 Fl(e.2) iregtrix:] .
x3-1
e & ~
-1 B -1 4 4
1 - [~
dirgctrix: | y=-1 ” 1‘"“\.\
L. - -’ Y N

Characteristics of a Parabola in Standard Position
Horizontal Directrix Vertical Directrix
Equation y = ixz X = iyz
4p 4p
fp>0 opens up opens right
fp<O opens down opens left
Eccentricity (“e”) e=1 e=1
Value of p (in illustration) p=1 p=1
Vertex (0,0) - the origin (0,0) - the origin
Focus (0,p) (»,0)
Directrix y=-p X=-p
Axis of symmetry x = 0 (y-axis) y = 0 (x-axis)
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Chapter 18 Conic Sections

Algebra
Parabola with Vertex at (h, k)

Horizontal Directrix Vertical Directrix

1 1
Parabola: D’—k)=a(x—h)2 Parabola: (x—h)=4—pbr—kf

\ 7 P

{ el
\ /

Fih k+p djrectrix:

x=h1p

(k)

diren:trix: yik-p M—

Characteristics of a Parabola with Vertex at Point (h, k)
Horizontal Directrix Vertical Directrix
Equation G-R ==k | @k = k)
4p 4p

fp>0 opens up opens right

Ifp <O opens down opens left
Eccentricity (“e”) e=1 e=1
Vertex (h, k) (h, k)
Focus (h,k +p) (h+pk)
Directrix y=k—p x=h-p
Axis of symmetry x=nh y=k
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Chapter 18

Algebra

Parabola in Polar Form

Conic Sections

Horizontal Directrix Vertical Directrix
P dy P dq
. = s . = = =k
Parabola: =7 5% 4, Parabola: " =73 s
\ / _
d,
/i
\\\ 1/ Vertex /
Pole|and Pol d
P &l
dy p
Y P p
Vertex Directrix
P
Dire’(trix \

Characteristics of a Parabolas in Polar Form

Horizontal Directrix

Vertical Directrix

If " — " in denominator

Directrix below Pole

. C g p p
Equation (simplified r=— r=—-_
a (simp ) 1+sin8 1+ cos@
opens up opens right

Directrix left of Pole

If" 4+ " in denominator

opens down
Directrix above Pole

opens left
Directrix right of Pole

Eccentricity (“e”)

e=1

e=1

Focal Parameter (“p”)

",

Note: “p

p = distance between the Directrix and the Focus
in Polar Form is different from

o“,n

p” in Cartesian Form

Coordinates of Key Points:

(change all instances of “—p” below to “p” if “+” is in the denominator)

Vertex (0,—p/2) (-p/2,0)
Focus (0,0 (0,0)
Directrix y=-p X=-p
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Chapter 18 Conic Sections

Algebra
Circles
i o 2 2 = . . .
Greles aespgr=de Characteristics of a Circle
in Standard Position
/// \\
// i \\ Equation x2+y?=1r?
: 0.0) Center (0,0) - the origin
\ / Radius r
\\\ = ///
IR I Py In the example r=4
Circle: (x—-h?*+(y—k?=r1?
%J Characteristics of a Circle
T | TN Centered at Point (h, k)
)4 N
/ X Equation (x—h)?+(@y—k)?=r?
®x) \
(b k) J (b+r. ) Center (h’ k)
\ / Radius T
\\\ B //
N~ L L
(hkr)
Circle: r=4 =R
Characteristics of a Circle
—— in Polar Form
/// \\\
// \\ Equation r = constant
! pole } Pole (0,0)
\ / Radius T
\\\ B //
“\ /
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Conic Sections

Algebra
Ellipse Centered on the Origin (Standard Position)
Vertical Major Axis
Horizontal Major Axis , )
p N Ellipse: 1—; + Ey_: =4
Ellipse: i: + f—z =1 .
//f; _—‘\\
/,/ - )’ N
/ \ . = |\
/ N\ / \
[ a0 G| | *
k 4 B 1 4 J L l g i
o o \ /
"“-\ P \\ [0,-3 ;/
\\ - //
. y e e

Characteristics of an Ellipse in Standard Position
Horizontal Major Axis Vertical Major Axis
In the above example a=5 b=4 c=3 a=5 b=4 c=3
Equation z_§+3b/_z_1 2_24_31’_2:1
Values of "a" and "b" a>b
Value of "c" c? = a? — b?
Eccentricity (“e”) e=c/a 0<e<l1
Center (0,0) - the origin
Major Axis Vertices (£a,0) (0,%a)
Minor Axis Vertices (0,%+b) (£b,0)
Foci (£c,0) (0,%£c)
Directrixes (not shown) x =za/e y =+a/e
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Chapter 18 Conic Sections

Algebra
Ellipse Centered at (h, k)
Vertical Major Axis
Horizontal Major Axis , N
Ellipse: {x;:‘) + ¥ ;;‘J oy
Ellipse: x—h? -k
ipse = + T 1 l
|Ih,k—+l] /—""'_ h!_kf'-\
/ \ y, h, k=c| N

_)(Ih-B, k) (h-c, k) (h, k) (h+c, k) (h+a, kJ\L_ / \
k J i (hk) [»n,k:_r_
L S \ /
\\ /, \\ h, k- / /
|Ih, k-h) \\ //
~L_ | L
rn, k-a

Characteristics of an Ellipse Centered at Point (h, k)
Horizontal Major Axis Vertical Major Axis

Equation (x ;zh)z N (v ;zk)z _ 1 (x ;Zh)2 N (64 ;Zk)2 _q
Values of "a" and "b" a>b
Value of "c" c2 = q? — p2
Eccentricity (“e”) e=c/a 0<ex<l1
Center (h, k)
Major Axis Vertices (h+a, k) (h, kt+ta)
Minor Axis Vertices (h, k+b) (htb, k)
Foci (h+c, k) (h, k+o¢)
Directrixes (not shown) x=htxal/e y=ktale
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Conic Sections

Algebra
Ellipse in Polar Form (Pole = One Focus)
Vertical Major Axis
Horizontal Major Axis o .
Ellipse: "=1fe sind 0<e :—:< 1
Ellipse: r= ﬁe:pmse i
- dz Directrix
Directrix Directrix 1/"‘/—“*-\\
d; ,/ Focus \\
Pz L oz
el .~ N
/ a // \ Center
f il Center ‘ /12'1
( Role|and Fofus Focus ) L ;/
T \\ T f/ \‘ Polk ad £ =
p \‘_\ [2 L a e-\\\ Focis,//
I ___,/ SR
afe = d,
Dirgctrix
Characteristics of an Ellipse in Polar Form
Horizontal Major Axis Vertical Major Axis
E . ep ep
uation r=—————mm0F: r=—"—"
g 1+e-cosf 1+e-sinf

Value of “a”

a = distance from the Center to each major axis Vertex

Value of “c”

¢ = distance from the Center to each Focus

Eccentricity (“e”)

e=c/a 0<ex<l1

Focal Parameter (“p”)

p = distance from each Focus to its Directrix = a/e — ¢

Coordinates of Key Points:

If" —"in denominator all coordinate values are shown below
If" + " in denominator change all instances of "c", below, to " —c"
Center (c,0) (0,0)
Major Axis Vertices (cta0) (0,cta)
Foci (ctc0) (0,c +¢)
Directrixes x=ctale y=cztale
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Conic Sections

Algebra
Hyperbola Centered on the Origin (Standard Position)
Horizontal Transverse Axis Vertical Transverse Axis
2 2 2 2
Hyperbola: % - % = 4 Hyperbola: % = % =1
'---.f\\ ; B /
« ; e T, 6 2] @
\\ : -‘.. // \\ 5 {0' 5) //
\\ - : 4 : -
\ : q
\ =1 1
{t5, 0 : 5,0 e
8 5 2 1.-1"‘ 8 a K ,.1'". 6
/ . e
/ + 2 ".‘ 2
VAP \ A T
P : AN El ,/ Z (0, 15) \\\"-,_
& .‘/ 8 \‘.

Characteristics of a Hyperbola in Standard Position

Horizontal Transverse Axis

Vertical Transverse Axis

In the above example

a=3, b=4 c=5

a=4 b=3 ¢c=5

2 2

Xy

2 2

y X

Equation ?_b_zzl ?_ﬁ=1
Value of “c” c? =a%+ b?
Eccentricity (“e”) e=c/a e>1
Center (0,0) - the origin
Vertices (£a,0) (0, %a)
Foci (£c,0) (0,%c)
Asymptotes y = iéx y= i%x
a
Directrixes (not shown) x = *ta/e y =za/e
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Algebra
Hyperbola Centered at (h, k)

Horizontal Transverse Axis Vertical Transverse Axis
. (x—h? (y-k? . y-k* (x-h?*
Hyperhola: i Hyperbola: e ]

N, 54 RN Inwa | A
N {h, kib) i O T LT
I~ 1/ h, lra) |

[T /
[he, k) (h-ak) | [ |(hta, k) [h+dk) [h-bk) | " (hh k)
i k)
T \
AN TN
b B RN (hka) "
/f \\ // i) \\
7 N 5
jrd N

Characteristics of a Hyperbola Centered at Point (h, k)

Horizontal Transverse Axis Vertical Transverse Axis
Equation (x ;zh)z O gzk)z _q 64 ;Zk)z G ;Zh)z =1
Value of “c” c?2 = a? + b2
Eccentricity (“e”) e=c/a e>1
Center (h, k)
Vertices (h+a, k) (h, k+a)
Foci (h+c k) (h, k+c)
Asymptotes Ok =42~ h) G-k =tr@—h
Directrixes (not shown) x=htale y=k+xale
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Algebra

Conic Sections

Hyperbola in Polar Form (Pole = One Focus)

Horizontal Transverse Axis

Vertical Transverse Axis

Hyperbola: r=1ie%'pmﬂ 7 =%> 1 Hyperbola: r:ﬁ e :g—i 1
\\ /’
d, \\ Pole|and d, 4(
\\ 1/ I \\ Facus ll //
By /1] I N T d;
AN yANER
\ 'I: / I - C Direqtrix
\ . I ] afe <
] Center
Fgcus ] Pole and Center
/ ; \ Fodus
/ \ Pireqtrix
/ Y (I
7 elu PN\ T L ™
/’ ‘\ _,/ Focus \\
Direqgtrix Directri ,/ \\
)y ~N
Characteristics of a Hyperbola in Polar Form
Horizontal Transverse Axis Vertical Transverse Axis
ep ep
Equation

r=—
1+e-cos@

r=1ie-sin6

Value of “a@”

a = distance from the Center to each Vertex

Value of “c”

¢ = distance from the Center to each Focus

Eccentricity (“e”)

e=c/a

e>1

Focal Parameter (“p”)

p = distance from each Focus to its Directrix = ¢ — a/e

Coordinates of Key Points:

If" — " in denominator

all coordinate values are shown below

If" 4+ " in denominator

change all instances of "-c", below, to "c"

Center (=c,0) (0,—¢)
Vertices (—=c£a0) (0,—c +a)
Foci (—c+tc0) (0,—c+0¢)
Directrixes x=-—ctale y=—-cztale
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Algebra

Conic Sections

Hyperbola in Polar Form (Pole = One Focus)
Partial Construction Over the Domain: 0 to 27

It is instructive to look at partial constructions of a hyperbola in polar form. Let’s take a look at

a curve constructed by varying 8 from 0 to 2m, quadrant by quadrant:

6
curve: r =

1—2cos0O

parameters: a =2,

c =4,

In the plots below, each quadrant in the domain is represented by a separate color. The
portion of the curve added in each illustration is presented as a thicker line than the rest of the
curve. The Foci of the curve are dark blue points and the Directrixes are light blue vertical lines.

7

Domain

0<bs2m

N

Domain
0<0<2m

/4

N

Domain

0sBsm/2

The final curve looks like this.
The curve is plotted over the
domain 0 < 6 < 2m but could
also be plotted over the domain
-nT<0<m.

The cosine function has a major

impact on how the curve graphs.

Note the two yellow points
where cos 6 = 0.5. At these
points, the curve is undefined.

QI: Domain 0 < 6 < m/2. Note
that the curve starts out on the

left and switches to the right at

6 = m/3, where the curve is

Domain

undefined.

Domain

n<0s3n/2

| 3m/2<@s2m

QIl: Domaint/2 < 6 < m.The
curve continues on the right side
of the graph and gently curves
down to the x-axis.

Version 3.2

Q III: Domainm < 6 < 3m/2.
The curve continues its gentle
swing below the x-axis. QIIlis
essentially a reflection of the
curve in Q I over the x-axis.
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QIV: Domain 3/2 < 6 < 2m.
The curve continues on the right
and switches to the leftat 8 =
5m/3, where the curve is
undefined.
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Algebra

Conic Sections

General Conic Equation — Classification

The General Case of the Conic Equation is:

Ax? + Bxy+ Cy* + Dx + Ey+ F =0

The second term may be omitted if the curve is not rotated relative to the axes in the Cartesian

Plane, giving the simpler form:

Ax?> + Cy* +Dx+Ey+F=0

Conic Classification Tree

In this form, it is relatively easy to identify which type of curve the equation represents, using

the following decision tree:

Are Ax*and Cy?
yes

both missing?
(A=C=0)

no

A 4
Is either Ax*or Cy*

yes

A 4

The equation is not
a conic. Itisaline.

missing?
(A-C =0)

no

A 4

Are the signs on

A 4

The equation is a
parabola.

Ax*and Cy? yes
different?
(A-C <0)

no

A\ 4
Are A and C the
same number?

yes

A 4

The equation is a
hyperbola.

A=0)

no

A\ 4
Are Aand C

yes

A 4

The equation is a
circle.

different numbers?
(A=+0C)

Version 3.2

A 4

The equation is an
ellipse.
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Examples:

3x—2y—4=0
—2x+7y+1=0

3y2—-2x+7y—3=0
x2+4x+2y—-1=0

4x%2 —9y2 —8x +27y+2=0
—3x2+y2+6x—12y—15=0

x2+y*+4x—10y =0
—4x% — 4y +16x —8y+5=10

5x2 +3y2+20x—12y -3 =0
—x2—2y2+8x+12y+13=0
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Chapter 18 Conic Sections

Algebra
General Conic Equation — Manipulation

After a conic equation is classified, it must be algebraically manipulated into the proper form.
The steps involved are:

1. If there are negative coefficients in front of the square terms (Ax*and/or Cy?), you may
choose to eliminate them by multiplying the entire equation by —1.

2. Group the x-terms on the left, the y-terms on the right, and move the constant to the
right side of the = sign. Set up parentheses around the x-terms and the y-terms.

3. Factor out the coefficients of the x?and y? terms.

Complete the squares for both the x-terms and the y-terms. Be careful to add the same
numbers to both the right and left sides of the equations.

Reduce the completed squares to squared-binomial form.

If necessary, divide both sides by the required scalar and rearrange terms to obtain the
proper form.

Example 1:
Solve: Equation —3x24+y2+6x—12y—15=0
Step 1: Change signs +3x%2 —y2 —6x+12y+15=0
Step 2: Group variables (Bx?2—6x+_)—(y*>*—12y+_ )=-15
Step 3: Factor coefficients 3(x2—2x+_)—-(y?*—12y+_)=-15
Step 4: Complete Squares 3(x2—2x+1)—(y?—12y +36) =—15+3 — 36
Step 5: Reduce Square Terms 3(x —1)2—(y — 6)? = —48
Step 6: Divide by (—48) BN Cnl e € ) L
16 48 The final result is a hyperbola
g it vl S e
Example 2:
Solve: Equation —4x? —4y2 +16x—8y+5=0
Step 1: Change signs +4x% + 4y —16x+8y—-5=0
Step 2: Group variables (4?2 —16x+_ )+ (4y*+8y+_)=5
Step 3: Factor Coefficients 4(x? —4x+_ ) +4(y*+2y+_)=5
Step 4: Complete Squares 4(x? —4x+4)+4(y*+2y+1)=5+16+4
Step 5: Reduce Square Terms 4(x —2)>+4(y+1)2 =125
Step 6: Divide by 4 (x — 2)2 F o+ 1)2 _25 The final resultis a circleswith
4 center (2, -1) and radius >
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Chapter 18

Conic Sections

ADVANCED
Algebra
Parametric Equations of Conic Sections
Parabola (note: 4ap = 1)
Parametric Equations Parametric Equations
Centered at the Origin Centered at (h, k)
x = 2pt x=2pt+h
y = pt* y=pt’+k
Circle
Parametric Equations Parametric Equations
Centered at the Origin Centered at (h, k)
x=1"-cos(t) x=r-cos(t)+h
y =1-sin(t) y=r-sin(t) +k
Ellipse
Parametric Equations Parametric Equations
Centered at the Origin Centered at (h, k)
x=a-cos(t) x=a-cos(t)+h
y =b-sin(t) y=>b-sin(t) +k
Hyperbola
Parametric Equations Parametric Equations
Centered at the Origin Centered at (h, k)
x=a-sec(t) x=a-sec(t)+h
y =b-tan(t) y=b-tan(t) + k
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Chapter 19 Sequences and Series

Algebra
Introduction to Sequences and Series

Definitions

e ASequence is an ordered set of numbers.

e ATermis an element in the set of ordered numbers.

e An Infinite Sequence has no end. A Finite Sequence has a final term.

e An Explicit Formula is one that specifically defines the terms of the sequence based on the
number of the term. By convention, the number of the term is usually expressed in terms
of the variables n or k. We talk of the nt" term or the kth term of the sequence or series.

e A Recursive Formula defines a term based on one or more previous terms.

e ASeriesis an ordered summation of a sequence.

Example (Sequence and Series):
Consider the sequence defined by the explicit formula: t, =3n+1.

The notation t,, refers to the nt" term of the sequence. So, we can construct both a sequence
and a series from this. Here are the first seven terms of the sequence and the series:

n 1 2 3 4 5 6 7
t, 4 7 10 13 16 19 22
Sumof t,, 4 11 21 34 50 69 91

Example (Recursive Formula):
One of the simplest and most famous recursive formulas is the Fibonacci Sequence, defined as:
th = th-1 T th2

This simply means that each term is the sum of the two terms before it. The Fibonacci
Sequence begins with a pair of ones, and uses the recursive formula to obtain all other terms:

n 1 2 3 4 5 6 7
t, 1 1 2 3 5 8 13
Sumoft, 1 2 4 7 12 20 33

This sequence has some very interesting properties, which will be discussed on another page.
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Chapter 19 Sequences and Series

ADVANCED
Algebra
The Fibonacci Sequence

The Fibonacci Sequence was first published in 1202 by Leonardo Fibonacci (of Pisa). It starts
with a pair of ones and continues with the recursive formula: ¢,, = t,,_; + t,,_,. The beginning
of the sequence looks like this:

1,1,2,3,5,8,13,21, 34,55,89, 144, 233,377,610,987, ...

Properties of the Fibonacci Sequence

It is possible to spend a long time exploring the properties of this simple sequence. Here are a
few of the more interesting properties:

lllustration 1: Add the sequence to create a series.

n 1 2 6 7 8 9 10

t, 8 13 21 34 55

Sn 2 12 20 33 54 88 143
Notice that: s,, = t,,,, — 1.

That is, the nth sum is one less than the term of the original sequence two positions further to
the right!

lllustration 2: Calculate the squares and add the resulting sequence to create a series.

n 1 2 3 6 7 8 9 10
ty 1 1 2 8 13 21 34 55
t,> 1 1 4 25 64 169 441 | 1156 | 3025
S 1 2 6 15 40 104 273 714 | 1870 | 4895

Noticethat: S, = t,, " t,,41.

That is, the nth sum of the squares is the product of the two terms from the original sequence,
one of which is in the same position and one of which is one position to the right!

The Golden Ratio ()

Ratios of successive values of the Fibonacci Sequence approach the Golden Ratio: T = 1+2\/§.

1

§= 16 2=1625

8

The approximate value of F =

Version 3.2

21

— = 1.615

13

1+/5
2

3% _ 1619

21

= 1.618034
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One way to express this result is:

lim (tn+1>" = F

n-oo tn

July 10, 2019




Chapter 19

Algebra
Summation Notation and Properties

Summation Notation

Mathematicians are fond of finding shorthand ways of expressing things, so they invented
notation for the summation of numbers. If we consider the series for t,, = 3n + 1, the
notation for the series would be:
n
s, = Z(3k _1
k=1
This simply means that the nth term of the series is defined by adding the first n term of the
sequence for t,, = 3n + 1.

Example:
n 1 2 3 4 5 6 7
t, 4 7 10 13 16 19 22
Sn 4 11 21 34 50 69 91

Although it looks complicated at first, after you write a few series longhand, you will begin to
appreciate the shorthand notation.

Summation Properties

Here are a couple of useful properties of summations, all of which are based on the algebraic
properties of addition, multiplication and equality. a; and by, are two series. ¢ and d are real.

Sequences and Series

n n
Z c-a,=c- z a; You can factor a constant out of a
k=1 k=1 summation if is a factor of all the terms.
n n n
Z(ak +by) = 2 a; + Z b, The sum of two s‘erles can be bro!<en out
= =] =] into the summations for each series.
n n n
This is basically the distributive property of
D(cratd b= c ) a+d-) by s basically the dsTibutive property
multiplication over addition.
k=1 k=1 k=1
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Algebra
Some Interesting Summation Formulas

The following are a few interesting summation series. The development of some series like this
may be possible with algebra, but others require either calculus or the calculus of finite

differences. Note: parentheses are used in the formulas to aid reading them; the parentheses

are not required.

n

Z(c) =nc

c+c+--+c=nc

k=1
nn+1 1
Z(k)_ (2 ) 1424 tn="0FD
k=1 2
Z(kz) =n(n+1)(2n+1) 12492 4 g2 =n(n+1)6(2n+1)
6
k=1
n 2 5
! +1
Z(ks):<”("_+)> 13+23+___+n3:<n(n )>
k=1 2 2
) = - 2 3 4 1
(X)—l for{-1<x<1} 1+x+x“+x°+x .|....=1_x

x? x3 x*
l+x+—~++—+=¢e*

prard 2! 31 4]
Oo_l(x—l)k Cnx forxsl it AW NG ok N SC ok AN
k\ x B —2 ( X )+§( X ) +§< X ) Toe=Inx
k=1"'
iy k
Z (—1)*-1 o =In(1 + x) x? x3 x*
=l k x—7+?—7+“'=11’1(1+X)
for{-1<x <1}
T . 5 (20 x2 x4 x6
Z (-1) ((2k)!> = CoSX 1—5+I—E+- = COSX
k=0t
- (2k-1) 3 5 7
X x° x> X
_1)k-1) g R RS-
;( 1) <(2k_1)'>l—smx X TIETIET = sinx
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Algebra
Arithmetic Sequences

An Arithmetic Sequence is one in which the terms are separated by a constant. The constant,
often indicated by the letter d, is called the Common Difference. Arithmetic sequences, then
meet the condition:

t,.1 =t,+d, wheredisthecommon difference.

Example:
n 1 2 3 4 5 6
t, 9 12 15 18 21 24

N > >~ >~ >~
3 3 3 3 3

In this sequence, the common difference is 3. If there is not a common difference, the

First Differences |

sequence is not arithmetic.

nth Term of an Arithmetic Sequence
The formula for the nt term of an arithmetic sequence is:
t,=t;1+(n—-1)-d
The problem with this formula is the (n — 1) that gets multiplied by d. Sometimes this is hard

to remember. An alternative method would be to first calculate a term zero,
tO == tl - d

Then: t, = tog +n-d, whichseems a nicer formula

The value of this alternative is that it also allows the student to establish a formulain y = mx +
b form for the sequence, where ¢ is the y-intercept, and d, the common difference, is the
slope.

Example: In the above example, the nth term of the sequence can be written:

t,=94+(n—-1)-3 <«
These two equations

Or, first calculate: ty=9-3=6 are equivalent.

Then: t,=6+3n or t,=3n+6 t——

Either method works; the student should use whichever one they find more comfortable.

Version 3.2 Page 167 of 187 July 10, 2019



Chapter 19

Algebra
Arithmetic Series

An Arithmetic Series is the sum of the elements of an arithmetic sequence.
n terms of an arithmetic sequence is:

t1+tn)
s, =n-|{—
n ( 2

In words, the sum is the product of n and the average term.

Sequences and Series

The sum of the first

Notice that the last term
is the sum of the first n
integers. That is,

- _nn+1)
;(k) -2

Since t, = t; + (n — 1) - d, we can derive the following formula:
Sp,=n- (t1 + (n—zl)-d)
Or, perhaps better: S,=n- (to n (n+21)-d) /
= (n-ty) +d(*22)

This last equation provides a method for solving many arithmetic series problems.

Example: Find the 8" sum of the sequence t,, = 6 + 3n.
8 8 8
Yt =(Ys)ra(Yr)
k=1 t=1 k=1

n (n+1)
NV

8-9
=(8-6)+3-<T)=48+108=156

A

To check this, let’s build a table:

n 1 2 3 4 5 6 7 8
t, 9 12 15 18 21 24 27 30
Sn 9 21 36 54 75 99 126 156
v
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Algebra
Pythagorean Means

Sequences and Series

Consider a set of n values. We can take a mean of these n values in several ways. The three

classical methods of calculating a mean are called Pythagorean Means.

Arithmetic Mean

The arithmetic mean is the one that students are most familiar with. It is also called the

average. ltis simply the sum of the n items, divided by n.

x1+x2+...+xn

1
arithmeticmean = A = —in =
n n

Example: Calculate the arithmetic mean of 5 test scores: 92, 94, 85, 72, 99

92 +94 +86+ 74+ 99

Trick: A shortcut to calculating an arithmetic mean:

e Estimate a value for the average by “eyeballing” the values. For
the example above, it looks like 90 would be a good estimate.

e Subtract the estimate from each value to get a set of n
differences.

e Add the n differences and divide by n.

e Add the result to the original estimate. The result is the
arithmetic mean of the original set of values. In the above
example, the resultis: 90 + (—1) = 89.

Geometric Mean

The geometric mean is the n-th root of the product of the n values.

n

1
geometicmean = G = (nxl)() = Nx; Xy .-

Example: Calculate the geometric mean of 2, 9, and 12:

G = V2-9-12 = VY216 = 6
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Trick Example:

Score | Value vs. 90
92 +2
94 +4
86 -4
74 -16
99 +9
Total -5
Average -1
xn
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Algebra
Pythagorean Means (cont’d)

Harmonic Mean

The harmonic mean is reciprocal of the arithmetic mean of the reciprocals of the n values. It
has applications in science.

(-1 1

1 1
harmonic mean = H = (—-2-) =
n Xi l(l+l++i)
n \x; X Xn
n

= 1 1 1
(—+—+---+—)
X1 X2 Xn
Example: Since the harmonic mean looks so odd, it is useful to look at a real-life example.

Consider a car that travels 15 miles at 30 miles per hour, then another 15 miles at 15 miles per
hour. The average speed of the car over this distance is generated by the harmonic mean.

First, calculate the average speed from basic principles:

e 15 miles at 30 miles per hour takes 30 minutes.

e 15 miles at 15 miles per hour takes 60 minutes.

e Total trip is 30 miles in 90 minutes, for an average speed of 20 miles per hour.

Now, calculate the harmonic mean of the two speeds:

0
H = = :?:ZOmph

Comparing Means

Compare the values of the three Pythagorean Means of 3, 6, and 12:

. . 3+6+12
A: arithmetic mean = = 7
3 In general, it is true that:
G: geometicmean = 3-6-12 = 6 H<G<A
3 1 . .
H: harmonic mean = 71— = 5 = However, if the values being
(§+g+§) averaged are all the same,
H=G=A
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Algebra
Geometric Sequences

An Geometric Sequence is one in which the ratio of successive terms is the same. The ratio,
often indicated by the letter r, is called the Common Ratio. Geometric sequences, then meet
the condition:

t,,q1 =71-t,, whereristhecommon ratio.

Example:
n 1 2 3 4 5 6
t, 6 12 24 48 96 192
N e Y
FirstRatios | 2 | 2 | 2 | 2 | 2 |

In this sequence, the common ratio is 2. If there is not a common ratio, the sequence is not
geometric.

nth Term of an Geometric Sequence

The formula for the nt term of an arithmetic sequence is:

t, =ty -r® D

The problem with this formula is the (n — 1) that is the exponent of r. Sometimes this is hard
to remember. An alternative method would be to first calculate a term zero,

Then: t, =ty 1", which seems a nicer formula

Example: In the above example, the nth term of the sequence can be written:

t,=6-20"D <
These two equations
Or, first calculate: to=-=3 are equivalent.

Then: t, =

w NI

.271 <

Either method works; the student should use whichever one they find more comfortable.
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Algebra
Geometric Series

An Geometric Series is the sum of the elements of an geometric sequence. The sum of the first
n terms of an geometric sequence is:

Infinite Geometric Series

Of particular interest are Infinite Geometric Series. These series never end; they go on forever.
An infinite geometric series may have a sum as the series goes to infinity. The sums along the
way are called Partial Sums. The formula above works for the partial sums of an infinite
geometric series.

Starting with the above formula, for a series that does not end, consider the case where |r| < 1:

5= tim [ (725
_nl—l>1010 1 1-—r

So, S=1t;- (1_:)

The r™ term shrinks as n gets larger, and in the infinite case, it disappears altogether.

Convergence

An infinite series converges if it approaches a single value as more terms are added. Otherwise
the series diverges.

Example: Show examples of where the series: (%) =1+x+x?+x3+x++ -
For x = —the seriesgives: 2 =1+~-+~-+~+—+ -  This looks good!
or x = - the series gives: = S to st is looks good!

Forx = 2 theseriesgives: —1=1+2+4+8+ 16+ - Uh oh! This looks very wrong!

Notice that in this series, the common ratio = x. The reason why the first value of x works
and the second does not is because this series converges only when |x| < 1. This is very
common for infinite series with increasing exponents.

The set of values for which a series converges is called the Interval of Convergence. For the
series in the example, the interval of convergenceis |[x| < lor{x|—-1<x <1}
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Algebra
A Few Special Series

Series Involving T

Z (i) _n 1 1 1 1 o
£:\i2) "6 ettt Ty
Z (i) _nt 1 1 1 1 ot
£ \Ie*) ~ 90 rratntat Ty
Series Involving e
i (1) - 11 1 1
ol =e 1+1+i+§+a+§+”'—e
k=0
z<1—2k>_1 L, 1. 3.5 7 9 1
VNGV TATH e B 1 e
Cubes of Natural Numbers
Consider the Series of cubes of the natural numbers:
n 1 2 3 4 5 6 7
t, =n3 1 8 27 54 125 216 343
Sn 1 9 36 100 225 441 784
S 12 32 62 107 152 212 282

So, the sums of cubes are squares. In fact successive sums are the squares of the Triangle
Numbers. The Triangle Numbers are the sums of the sequence of natural numbers:

n 1 2 3 4 5 6 7
t,=n 1 2 3 4 5 6 7
T, 1 3 6 10 15 21 28
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Algebra
Pascal’s Triangle

Pascal’s Triangle starts with the number one at the top and creates entries in successive rows
by adding the two numbers above it. For example, in the 4™ row, the number 6 is the sum of
the 3 to its upper left and the 3 to its upper right. The triangle continues forever and has some
very interesting properties.

1 < Row 0
1 1 < Row 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1

Properties of Pascal’s Triangle

The Triangle starts with Row 0. The number of a row is the value of the second number in the
row. Then, the rth number in row n is given by:

n!
nCr

a — ——
"ori(n—r1)!

The symbol ,,C,. comes from Probability Theory, and represents the number of ways r items
can be selected from a set of nitems. This value is also a Binomial Coefficient; the binomial
coefficients are the coefficients of the variables in the expansion of (a + b)™.

Here are a few other interesting properties of Pascal’s Triangle:
e [tis symmetric along a vertical line containing the top entry.
e The nth row contains (n + 1) elements.
e The sum of the entries in row n is 2™.
e It contains the natural numbers in the second diagonal.
e |t contains the triangle numbers in the third diagonal.

o ..1C. = ,C._4+ ,C,,whichis how the triangle is formed in the first place.

Two-Outcome Experiments

In a two-outcome experiment, like flipping a coin, the probability of an

event occurring exactly r times in an experiment of n trials is given by the P =

expression at right. This is because there are ,,C,. outcomes for the

event out of a total of 2™ total possible outcomes.
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Algebra
Binomial Expansion

4 Steps to a Constructing a Binomial Expansion (a + b)"
1. Start with the binomial coefficients
2. Addin the powers of the first term of the binomial
3. Addin the powers of the second term of the binomial
4. Simplify

Consider the following example: Expand and simplify (2x — 3)*

Step 1: Start with the binomial coefficients

(5 +(1) +() +()

Step 2: Add in the powers of the first term of the binomial
4 4 4 4 4
4 3 2 1 0
(0) (2x) * (1) (2x) * (2) (2x) * (3) (2x) * (4) (2x)

Step 3: Add in the powers of the second term of the binomial

+()

(;) @20+ () @t + () @222+ (3) @0t -3 + (3) oo

Step 4: Simplify:
= (DA6xH (1) + BDBx*)(=3) + (6)(4x*)(9) + @DR(=27) + (1(1)(8D)

= 16x* — 96x® + 144x* — 216x + 81

Notice the following about the expansion:

1. There are (n + 1) terms, where n is the exponent of the binomial being expanded.
n is the top number in every binomial coefficient.
The bottom numbers in the binomial coefficients count up from 0 to n.
When a term of the original binomial is negative, the signs in the solution alternate.
The exponent of the first term in the original binomial counts down from n to 0.
The exponent of the second term in the original binomial counts up from 0 to n.

N o vk wnN

The exponents of the two terms in the original binomial add to n in every term of the
expansion.

Version 3.2 Page 175 of 187 July 10, 2019



Chapter 19 Sequences and Series
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Algebra
Gamma Function and n!
Definition

The Gamma Function is defined by the following definite integral for x > 0:
[0 0]
r'(x) = j e tt*ldt
0

Initially, this integral appears daunting, but it simplifies nicely under certain conditions, and has
some very interesting properties.

Properties and Values

The following properties and values of the Gamma Function are of particular interest:

e I'(x+1)=x! forinteger values of x
Factorials
e I'(x+1)=x-T(x) forvalues of x where I'(x) exists K(1) = 0! = 1
. r(;):\/; re)=1-=1
r(a) =2'=2
e I'(x) TAl—x)=——— for {0<x<1} r4)=3=6
sin (1rx)
I(5)=4!'=24
e TI'(x)# 0 foranyvalueof x r() =5'=120

e Some other functions relate to the Gamma Function. Examples:

I'(x) Ir(x) -T'(y)

Stirling’s Formula

n

n
For large values of n, Stirling’s Formula provides the approximation: n! ~+/2nm - (;)

Example: Direct Calculation: 100! ~ 9.3326 x 10%%7
100 100
Using Stirling’s Formula: 100! ~ +200 7 - (7) ~ 93248 x 10157

This represents an error of less than 0.1%.
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ADVANCED

Graphing the Gamma Function

Gamma Function Graph

Here is a graph of the Gamma Function. For x > 0, the function is continuous and passes

through all the factorials.

e For 0 < x < 1,the graph moves
asymptotically vertical as x = 0.

e For x < 0, the function has
vertical asymptotes at each
integer value and forms a “U”

Gamma Function - I'(x)

between the integers, with
alternating positive and negative
values by interval.

e TI'(x)approachesy = 0asx

becomes increasingly negative.

Calculating I'(x)

Each value of I'(x) can be calculated using the
definition of the Gamma Function on the previous
page. Recall that a definite integral is a measure
of the area under the curve of the function being
integrated. Based on this, we have the following
examples of I'(x) values and graphs that illustrate
the curves which determine those values.

14 4

12 4

1.0 4

08 1

0.6 7

04

02 4

0.0

Base of Gamma Function

—Gamma'(0)
—Gamma'(1)
——Gamma'(2)

—— Gamma'(3)

12

rQ) = [~ (T) dt
r() =/, (eHdt
r) =/, (etvdt
r3)=J, (e t?)dt

r4) =/, (etd)dt

r(s)=J, (e'th dt

80 1

60 -

40 1

20 A

Base of Gamma Function

—Gamma'(3)
—— Gamma'la)
——Gamma'ls)

Gamma'(8)

12
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Multiplying and Dividing
Sequences
Arithmetic
Definitions
Fibonacci Sequence
Geometric
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Series
Arithmetic
Definitions
Geometric
Special (m, e, cubes)
Summation Formulas
Summation Notation and Properties
Signs
Signs of Added or Subtracted Numbers
Signs of Multiplied or Divided Numbers
Singular Matrix
Slope
Slope of a Line - 8 Variations
Slope of a Line - Mathematical Definition
Slope of a Line - Rise over Run
Slope-Intercept Form of a Line
Slopes of Parallel and Perpendicular Lines
Stacked Polynomial Method of Multiplying Binomials
Stacked Polynomial Method of Multiplying Polynomials
Standard Form of a Line
Statistical Measures
Stirling's Formula
Substitution Property
Summation (S)
Formulas
Notation and Properties
Symmetric Property
Synthetic Division
Synthetic Division - Comparison to Long Division
Synthetic Division - Process
Systems of Equations
Classification
Elimination Method
Graphing a Solution
Substitution Method
Systems of Inequalities - Two Dimensions
Trace (of a matrix)
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Transformations
Building a Graph
Horizontal Stretch and Compression
Reflection
Summary
Translation
Vertical Stretch and Compression
Transpose of a Matrix
Transitive Property
Whole Numbers
Zeros of Polynomials
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