
Illinois Python Cheat Sheet
by Elizabeth de Sa e Silva, Tamara Nelson-Fromm, Wade Fagen-Ulmschneider

Basic Data Types
Integers are whole numbers
int1 = 8 int2 = -5
int3 = 0 int4 = int(4.0)

Floats have a decimal point
float1 = 5.5 float2 = 0.0
float3 = 1e6 float4 = float(2)

Strings
A string literal has quotes: ‘CS101’, ‘CS107’, ‘5.67’
 (it’s literally the exact characters of the string)
A variable name does not: course_name, stat107, my_string
A string can be indexed the same way as a list
Example
my_string = ‘literal’ #’literal’ is the literal
print(‘my_string’) #prints “my_string”
print(my_string) #prints “literal”
print(literal) #ERROR

Slicing
Strings, lists, and other iterable data types (data with many elements) can be indexed over a
range of values, or sliced
Replace any [i] with a range to select many elements at once:
 [start:stop:step]
 Selects position start through position stop, not including stop, but only
 elements step positions apart;
 start defaults to zero, so [:10:7] starts at 0
 stop defaults to one past the last index, so [10: :2] selects through the end of the data
 step defaults to one, so [1:5] steps by 1 (a negative step will count backwards)

Examples
my_string = ‘abcdefghijk’
my_string[2:4] == ‘cd’
my_string[:5] == ‘abcde’

my_string[5:] == ‘fghijk’
my_string[:] == ‘abcdefghijk’
my_string[2:8:2] == ‘ceg’
my_string[8:2:-2] == ‘ige’

Lists
Creating a new list
empty_list = []
my_list =[1,2,3]

Adding to a list (appending)
list_name.append(v) #adds just the
 #element v to
 #list_name

list_name += [v1,v2] #adds v1 and v2
 #to the end of
 #list_name

 Indexing
list[i] is equal to the element in
list at zero-based index i
 Negative index values count from
the end of the data
list[-i] is equal to
list[len(list) - i]

Changing a list
 #changes the element
list[i] = v #in list at position
 #i to the value v

Example
my_list = [10,20,30] #my_list is declared as [10,20,30]
my_list.append(40) #my_list becomes [10,20,30,40]
my_list += [50,60] #my_list becomes [10,20,30,40,50,60]
my_list[2] == 30 # True
my_list[4] = “fifty” #my_list becomes [1,2,3,4,”fifty”,60]
my_list[-1] == “fifty” # True
my_list[60] #ERROR

Booleans
Booleans are True or False values
x == y Is True if x is equal to y x in y is True if x is an element of y
not x == y Is True is x is not equal to y

And
True and True = True
True and False = False
False and False = False

Or
True or True = True
True or False = True
False or False = False

Dictionaries
Creating a new dictionary
my_dict = {key1:value1, key2:value2, …, keyn:valuen}
empty_dict = {} #keys and values can be any data type

Adding to a dictionary (appending)
dict_name[key] = value
#adds key:value to dict_name

Indexing
dict[key] is equal to the value in
dict with key key

Changing a dictionary
dict_name[key] = value #changes key’s value to v so dict_name
 # now has the pair key:v

Getting Keys and Values
dict_name.keys() #returns a list of keys in dict_name
dict_name.values() #returns a list of values in dict_name

Example
my_dict = {‘a’:5, ‘b’:6} #my_dict is declared as {‘a’:5,’b’:6}
my_dict[‘c’] = ‘4’ #my_dict becomes {‘a’:5, 6:’b’, ‘c’:’4’}
my_dict[‘a’] == 5 # True
my_dict[‘b’] = ‘a’ #my_dict becomes {‘a’:5,‘b’:’a’,‘c’:’4’}
my_dict[5] #ERROR
my_dict.keys() #equal to [‘a’, ‘b’, ‘c’]

If Statements
if
 Indicates a block of code that only runs if its boolean condition is True
elif
 Short for “else if”, this block is associated with an if block and has a condition; it only runs
 if its condition is true and the original if block condition was false
else
 This block has no condition and runs only if the associated if statement and any of its
 elif blocks did not run

Example
if x < 5:
 #this indented code only runs if x is less than 5
elif x < 10:
 #this only runs if x is greater than 5 and less than 10
elif x == 13:
 #this only runs if x is equal to 13
else:
 #this only runs if x is greater than 10 and is not 13

For Loops
for i in iterable:
 #code block to repeat
 Repeats a block of code for every element of an iterable data type
 Does not require you to advance the variable i

Example: List
list = [‘CS101’,‘CS107’,‘ILL’]
for item in list:
 #loops over every element
 #of list
 print(item)
This code prints:
CS101
CS107
ILL

Example: Range
for i in range(2,8,2):
 #loops over every other
 #integer starting at 2
 #and less than 8
 print(i ** 2)
This code prints:
4
16
36

range(start, stop, step)
Generates a list of all integers from start to stop, jumping by step
start
 The very first integer of the sequence. This defaults to 0 if not specified
stop
 The boundary for the end of the sequence. This number is not included in the actual
 sequence of number. Has no default value and must always be specified.
step
 The spacing between numbers included in the sequence. This defaults to 1

While Loops
while this_is_true:
 #code block to repeat
 Repeats a block of code while some condition is true
 Often requires you to change the variables the condition relies on in the code block to get
the loop to ever stop

Example: Factorial
#This code calculates 5!
n = 5
result = 1
while n > 0:
 result = result * n
 n = n - 1

Example: Infinite Loop
#This code runs forever
n = 5
result = 1
while n > 0:
 result = result * n
 #leaving out n = n – 1
 #makes this loop run
 #forever

Accumulator Patterns
Example: Sum
Suppose I have a list of weights of some packages and I want to know how heavy it will be to
carry all of them at once
package_weights = [2, 6.5, 1, 10]
total = 0
for weight in package_weights:
 total += weight
print(total)
#after this code runs the total weight is printed

Example: Pandas
Suppose I want to simulate flipping a coin 50 times and put the data into a dataframe
data = []
for i in range(50):
 coin = randint(0,1) #simulate one coin flip as 0 or 1
 d = {‘coin’ : coin} #create the row of data
 data.append(d)
df = pandas.DataFrame(data) #creates a dataframe from data

