
Future Technology Devices International Limited (FTDI)

373 Scotland Street, Glasgow G5 8QB United Kingdom
Tel.: +44 (0) 141 429 2777 Fax: + 44 (0) 141 429 2758

E-Mail (Support): vinculum.support@ftdichip.com Web: http://www.ftdichip.com

Copyright © 2008 Future Technology Devices International Limited

Future Technology Devices International Ltd.

Application Note AN_105

FTDI Device EEPROM Programming

Using a Vinculum VNC1L

Document Reference No.: FT_000078

Version 1.00

Issue Date: 2008-09-23

This document describes a C application that uses the VNC1L to program the EEPROM of an

FTDI peripheral device.

 Copyright © 2008 Future Technology Devices International Limited 1

Document Reference No.: FT_000078
FTDI Device EEPROM Programming Using a Vinculum VNC1L Application Note AN_105

Version 1.00
Clearance No.: FTDI# 59

Table of Contents

1 Introduction.. 2

1.1 Conventions ... 2

1.2 Acronyms and Abbreviations ... 3

2 Project Setup ... 4

2.1 Hardware Setup ... 4

2.2 Software Setup .. 5

2.2.1 TTL-232R-3V3 Drivers .. 5

2.2.2 VNC1L Firmware ... 5

2.2.3 Alternative Application Code ... 5

3 EEPROM Firmware Commands .. 6

3.1 FTDI Erase EEPROM (FEE) ... 6

3.2 Write EEPROM (FEW) .. 6

3.3 Read EEPROM (FER) ... 6

4 Application Code ... 7

4.1 Subroutines for Setting up and Connecting to the TTL-232R-3V3 7

4.2 Subroutines for Setting up the VNC1L .. 7

4.2.1 Queue Status ... 8

4.2.2 Read Responses from VNC1L .. 8

4.2.3 Write Firmware commands to VNC1L ... 9

4.2.4 Shortened Command Set command (SCS) .. 10

4.2.5 Firmware Version command (FWV) .. 10

4.2.6 Query Port command (QP) .. 10

4.2.7 Select Interface command (SC) .. 11

4.2.8 Query Device command (QD) ... 11

4.3 Subroutines for Reading and Writing to the EEPROM 13

4.3.1 Reading from an EEPROM (FER) ... 13

4.3.2 Writing to an EEPROM (FEW) .. 14

4.3.3 Writing to the EEPROM of an FTxxxR chip ... 15

4.3.4 Checksum .. 17

5 Contact Information... 18

Appendix A - References .. 19

Appendix B - Revision History .. 20

 Copyright © 2008 Future Technology Devices International Limited 2

Document Reference No.: FT_000078
FTDI Device EEPROM Programming Using a Vinculum VNC1L Application Note AN_105

Version 1.00
Clearance No.: FTDI# 59

1 Introduction

The VNC1L is a USB host controller IC which allows data to be transferred via USB to an FTDI peripheral
device (FTxxx). The FTDI devices may use an EEPROM to store USB device descriptors that can be

programmed over the USB. Programming is commonly done by connecting the FTDI device to a PC,

installing the required FTDI drivers and using the driver API functions to program the EEPROM of the

device. This application note describes how to configure the VNC1L to program the EEPROM of an FTDI
device.

Firmware available for the VNC1L allows the user to read, write and erase the EEPROM of an FTDI device.
These firmware commands can be used to reprogram the VID, PID, serial number, manufacturer string

and description string within the EEPROM of all existing FTDI peripheral devices connected to the VNC1L.

This can be achieved using a C application on a PC. The example code for Microsoft® Visual Studio® 2008

is available by request under NDA. Contact support1@ftdichip.com .

Any software code examples given in this document are for information only. The examples are not

guaranteed and are not supported by FTDI.

1.1 Conventions

The following conventions are used in this document:

Convention Description

Monospaced type Indicates input or output from the monitor.

Boldface monospaced type Indicates input supplied by the user.

Italic monospaced type Indicates binary characters (ASCII values of
characters).

Important Signals that the information supplied is

important.

Note Provide additional information about a topic.

Warning Indicate potential damage to equipment or

loss of data.

: Is used to show a range. For instance, a

range of bits 15:9 is bits 15 to 9 (inclusive)

of a binary value.

VNC1L Indicated information specific to the VNC1L.

� carriage return (0x0D).

� space (0x20).

d Represents a single decimal character (0 to
9).

x Represents a single hexadecimal character

(0 to 9 and A to F).

c Represents a binary character (0x00 to

0xFF).

<sp> space

 Copyright © 2008 Future Technology Devices International Limited 3

Document Reference No.: FT_000078
FTDI Device EEPROM Programming Using a Vinculum VNC1L Application Note AN_105

Version 1.00
Clearance No.: FTDI# 59

1.2 Acronyms and Abbreviations

Terms Description

VID USB Vendor ID

PID USB Product ID

EEPROM Electrically Erasable Programmable Read-Only Memory

UART Universal Asynchronous Receiver/Transmitter

TTL Voltage levels between 0V and 5V

<-> Connection between two pins

ROM Read Only Memory

FTD Re-flash file extension

Monitor
Command line interface which allows instructions to be given to the VNC1L and

responses to be returned.

LSB

Least Significant Byte is shown first when representing a multi-byte number as a

sequence of bytes. For example, the number 0x55AAFF00 is stored or specified

as 4 bytes 0x00, 0xFF, 0xAA, and 0x55.

MSB

Most Significant Byte is shown first when representing a multi-byte number as a

sequence of bytes. For example, the number 0x55AAFF00 is stored or specified

as 4 bytes 0x55, 0xAA, 0xFF, and 0x00.

FTxxx Refers to the FT232R, FT245R, FT232B, FT245B and FT2232D/L/C chips.

DLL Dynamically Linked Library

NDA Non-disclosure Agreement

Table 1.1 Acronyms and Abbreviations

 Copyright © 2008 Future Technology Devices International Limited 4

Document Reference No.: FT_000078
FTDI Device EEPROM Programming Using a Vinculum VNC1L Application Note AN_105

Version 1.00
Clearance No.: FTDI# 59

2 Project Setup

2.1 Hardware Setup

The hardware required in this application is an FTDI VDIP1 development module and an FTDI TTL-232R-

3V3 cable. The VDIP1 module contains a VNC1L. A PC is used to communicate with the VNC1L on the

VDIP1 via the TTL-232-3V3 cable. The cable connects to the USB port of a PC and converts USB
signalling to a serial UART interface (at TTL levels). The serial UART signals connect to the VDIP1 module

via a six way header. The pin out for the six way header is described in Table 2.1 and Figure 2.1. The
monitor port of the VDIP1 must be configured in UART mode by setting the jumper links J3 and J4 on the

VDIP1 module as shown in Figure 2.1.

Figure 2.1 Jumper Configuration and TTL-232R-3V3 Connection on VDIP1

TTL Cable Header

Pin Number

TTL Cable

Header Pin Name

 VDIP1 Pin Name VDIP1 Pin Number

Pin 1 (Black) GND <-> GND Pin 7

Pin 2 (Brown) CTS# <-> ADBUS2 (RTS#) Pin 9

Pin 3 (Red) VCC <-> 5V Pin 1

Pin 4 (Orange) TXD <-> ADBUS1 (RXD) Pin 8

Pin 5 (Yellow) RXD <-> ADBUS0 (TXD) Pin 6

Pin 6 (Green) RTS# <-> ADBUS3 (CTS#) Pin 10

Table 2.1 Pin Connections Between VDIP1 and TTL-232R-3V3

An alternative setup would be to attach a MCU or FPGA to the monitor port of the VDIP1 instead of the PC

and TTL-232R-3V3 cable.

To program the EEPROM of an FTxxx peripheral device, connect the USB socket of the FTxxx device into
the USB host port on the VDIP1 and then run the C application on the PC.

 Copyright © 2008 Future Technology Devices International Limited 5

Document Reference No.: FT_000078
FTDI Device EEPROM Programming Using a Vinculum VNC1L Application Note AN_105

Version 1.00
Clearance No.: FTDI# 59

Note: An FTxxxB and FT2232D/C/L device must have an EEPROM connected to the IC. Ensure that when

using an FTxxxB or FT2232D/C/L device that there is an EEPROM connected to the device before
attempting to program the EEPROM using the VNC1L.

2.2 Software Setup

2.2.1 TTL-232R-3V3 Drivers

The TTL-232R-3V3 cable requires its own drivers. These drivers need to be installed on the PC. The

drivers for the cable are available from the Drivers section of the FTDI website. Ensure that the drivers
for the correct PC operating system are used.

Sending firmware commands to the VNC1L requires an application that transmits data down the TTL-

232R-3V3 cable. The FTDI D2XX Direct Driver allows the application software to interface with the

FT232R IC which is integrated within the TTL-232R-3V3 cable. The FTD2XX.DLL provides functions which
allow the firmware commands to communicate with the VNC1L from the PC. An explanation of the

application code that sends the firmware commands to the VNC1L is given in section 4.

2.2.2 VNC1L Firmware

There are a number of VNC1L firmware options. The VDIP1 module uses the VDAP firmware. The
firmware required for the EEPROM commands must be at least VDAP version 3.56 as the EEPROM

commands needed for this application were not available in earlier VDAP revisions.

If it is necessary to upgrade the VDAP software, please refer to the Vinculum Data Sheet for details of

how to do this.

2.2.3 Alternative Application Code

An alternative could be to attach a MCU or FPGA to control the VNC1L. This would not require the TTL-

232R-3V3 cable or PC so there would be no need to install the drivers that are mentioned in Section

2.2.1. Instead the MCU or FPGA would require firmware programmed onto them that would send the

same firmware commands to the VNC1L as explained in the application code in Section 4. The main
advantage of this is that the device would not require a PC to program the EEPROM of the FTxxx devices

making the programmer application portable.

 Copyright © 2008 Future Technology Devices International Limited 6

Document Reference No.: FT_000078
FTDI Device EEPROM Programming Using a Vinculum VNC1L Application Note AN_105

Version 1.00
Clearance No.: FTDI# 59

3 EEPROM Firmware Commands

The VNC1L commands for reading, writing, and erasing the FTxxx chips EEPROM are referenced in Table
3.1. See the Vinculum Firmware Manual for the complete command set.

Extended Command Set
Short Command Set

(Hexadecimal codes)

Function

FEE� 95 0D Erase EEPROM

FEW <sp> Address (1 byte), Data

(MSB first)(2 bytes)�

96 20 Address (1 byte),

Data (2 bytes), 0D
Write EEPROM

FER <sp> Address (1 Byte)�
97 20 Address (1 byte),

0D
Read EEPROM

Table 3.1 EEPROM access commands

3.1 FTDI Erase EEPROM (FEE)

Parameters: None.

Erase an external EEPROM (93C46, 93C56 or 93C66) attached to either an FT2xxB or FT2232D/C/L
device. This command has no effect on the inbuilt EEPROM of the FT2xxR.

Error Codes: None.

3.2 Write EEPROM (FEW)

Parameters:

Address – 1 Byte: EEPROM address to be accessed.

Data – 2 Bytes: The data to be sent to the specified address, MSB first.

This command specifies an address and writes 2 bytes of data to that address. The access is word

aligned.

Error Codes: None.

3.3 Read EEPROM (FER)

Parameters:

Address - Byte: EEPROM address to be accessed.

This command reads back two bytes from the specified address. The data is returned MSB first.

Error Codes: None.

 Copyright © 2008 Future Technology Devices International Limited 7

Document Reference No.: FT_000078
FTDI Device EEPROM Programming Using a Vinculum VNC1L Application Note AN_105

Version 1.00
Clearance No.: FTDI# 59

4 Application Code

The following example details software which sets up a user interface to modify the VID, PID, serial
number, manufacturer string and description string of the FTxxx EEPROM. The firmware commands used

throughout this application note are documented in the Vinculum Firmware User Manual. The application

software code that this application note is based on is only available by request under NDA. Contact

support1@ftdichip.com .

4.1 Subroutines for Setting up and Connecting to the TTL-232R-3V3

The code uses the D2XX DLL API functions to access the TTL-232R-3V3 cable. The full API function set is

documented in the D2XX programmer’s guide. The VNC1L UART monitor port has default interface

parameters that require to be configured in the TTL-232R-3V3 cable in order to access the VNC1L’s

monitor port. The FT_Open function opens the TTL-232R-3V3 cable for communication.

Parameters Values

Baud Rate 9600

Data Bits 8

Stop Bits 1

Parity None

Flow Control Hardware (RTS/CTS)

Monitor Mode ASCII and Extended Command Mode

Table 4.1 VNC1L’s Monitor Default Setup

To setup the parameters to match the VNC1L default parameters (see Table 4.1) the following subroutine

needs to be called.

void ConfigPort(DWORD BaudRate)

{
 //set baud rate
 Status = FT_SetBaudRate(FtHandle,BaudRate);
 //set serial parameters
 Status = FT_SetDataCharacteristics(FtHandle, FT_BITS_8, FT_STOP_BITS_1,
FT_PARITY_NONE);
 //set RTS line of TTL 232R
 Status = FT_SetRts(FtHandle);
 //set flow control to RTS/CTS
 Status = FT_SetFlowControl(FtHandle, FT_FLOW_RTS_CTS, 0, 0);
}
Figure 4.1 Configure Port Code

This will establish a connection between the TTL-232R-3V3 cable and the VDIP1 module.

4.2 Subroutines for Setting up the VNC1L

When the connection between the VDIP1 and TTL-232R-3V3 cable has been established, the VNC1L then

requires to be configured to establish a connection with the FTxxx device attached to the USB port 2 of
the VDIP1. The VNC1L operates by receiving firmware commands via the monitor port to perform a

certain function. When the VNC1L receives and processes a firmware command it returns a message to
the monitor port that lets the device connected to the monitor port know if the function was completed or

not. The subroutines described in 4.2.1 – 4.2.8 are required to make sure that the VNC1L is setup to
communicate with the FTxxx device and ready to start the EEPROM firmware commands.

 Copyright © 2008 Future Technology Devices International Limited 8

Document Reference No.: FT_000078
FTDI Device EEPROM Programming Using a Vinculum VNC1L Application Note AN_105

Version 1.00
Clearance No.: FTDI# 59

4.2.1 Queue Status

Before sending firmware commands to the VCN1L a procedure needs to be able to read the responses

from the VNC1L. A subroutine is required to retrieve the amount of data in the TTL-232R-3V3 cable
receive buffer. This will calculate the number of bytes (RxBytes) that the VNC1L has returned to the TTL-

232R-3V3 cable.

void QueueStatus(DWORD *RxBytes)

{
 DWORD TxBytes;
 DWORD EventDword;

 *RxBytes = 0;

 Status = FT_GetStatus(FtHandle, RxBytes, &TxBytes, &EventDword);
 if(Status != FT_OK)
 {
 printf("No Data in Buffer\n");
 ErrorStatus();
 }

}
Figure 4.2 Routine to get the Number of Bytes in the Receive Buffer

4.2.2 Read Responses from VNC1L

The ReadByte() subroutine shown in Figure 4.3 uses the number of bytes in the receive buffer obtained
by calling the QueueStatus() subroutine and transfers this data into the DataIn buffer. The application

then checks this data to ensure that it is valid.

 Copyright © 2008 Future Technology Devices International Limited 9

Document Reference No.: FT_000078
FTDI Device EEPROM Programming Using a Vinculum VNC1L Application Note AN_105

Version 1.00
Clearance No.: FTDI# 59

void ReadByte(UCHAR *DataIn, DWORD *DataRead)
{
 DWORD RxBytes;
 DWORD ReadDataLength;
 memset(DataIn,0,512);

 QueueStatus(&RxBytes);

 ReadDataLength = RxBytes;
 *DataRead = 0;

 if (RxBytes == 0x00)
 {
 return;
 }
 else
 {
 Status = FT_Read(FtHandle, DataIn, ReadDataLength, DataRead);
 if(Status != FT_OK)
 {
 printf("Read Failed\n");
 ErrorStatus();
 }
 }

}

Figure 4.3 Read a Byte Routine

4.2.3 Write Firmware commands to VNC1L

The code structure in Figure 4.4 is used to write firmware commands to the VNC1L. The variables
CmdSet and Len will change depending on the command that is sent. This fragment of code is referred to

throughout Section 4.2 using different variable values required for the appropiate firmware commands.

void WriteSubroutine(UCHAR CmdSet, DWORD Len)
{

DWORD DataWritten;
int WdataLen;

 WriteDataLength = Len;
 DataWritten = 0;

 //Send command
 Status = FT_Write(FtHandle, &CmdSet, WriteDataLength, &DataWritten);
 if(Status != FT_OK)
 {
 printf("Write Failed\n");
 ErrorStatus();
 }
 Sleep(30);
 do
 {
 ReadByte(DataIn, &DataRead); //polling for prompt
 }
 while(DataRead = 0);

}

Figure 4.4 Write Routine

To ensure that the VNC1L is responding correctly to the data sent by the PC a carriage return is
transmitted to the VNC1L. A 0x0D is inserted into a data buffer and is written to the VNC1L. The VNC1L

should then respond with a prompt that is read in the ReadByte() subroutine. The carriage return is sent

to the VNC1L by using the write routine shown in Figure 4.4 with the variables CmdSet and Len set as
follows:

 Copyright © 2008 Future Technology Devices International Limited 10

Document Reference No.: FT_000078
FTDI Device EEPROM Programming Using a Vinculum VNC1L Application Note AN_105

Version 1.00
Clearance No.: FTDI# 59

Len = 1;

 UCHAR CmdSet[Len] = {0x0D}; //these hex values ac carriage return �

4.2.4 Shortened Command Set command (SCS)

The shortened command set reduces the number of characters required to be sent to the VNC1L. A
subroutine is set up in the application to switch from the monitors default extended command set (see

Table 4.1) to the shortened command set. In extended command set mode, printable characters are used

and commands are typically longer. In short command set mode, the commands are optimised for
program control and they have binary values representing the command. The shortened command set

mode is set in the VNC1L by using the write routine shown in Figure 4.4 with the variables CmdSet and

Len set as follows:

 Len = 2;
 UCHAR CmdSet[Len] = {0x10,0x0D}; //these hex values represent the shortened

//version of SCS�

4.2.5 Firmware Version command (FWV)

Since the EEPROM fimware commands are not present in fimrware versions earlier than 3.56, a

subroutine is configured to check the current version of firmware on the VNC1L. The firmware version
FWV command returns a string that contains the firmware version that is on the VNC1L. The ReadByte()

command will read this string into a buffer and a string compare is done to make sure that the firmware

version is later that version 3.56. The FWV subroutine calls the write routine shown in Figure 4.4 with the
variables CmdSet and Len set as follows:

 Len = 2;
 UCHAR CmdSet[Len] = {0x13, 0x0D}; //these hex values represent the shortened

//version of FWV�

4.2.6 Query Port command (QP)

To check that an FTxxx device is attached to the VNC1L USB port 2 of the VDIP1 the Query Port 2 (QP2)

command is used. The QP2 command will return two bytes of information about the device that is
connected into USB port 2 of the VDIP1.

Bit Device Type

7 Hub Device on Port

6 Unknown Device

5 BOMS Class Device

4 CDC Class Device

3 HID Class Device

2 Printer Class Device

1 Reserved (always 0)

0 FTDI FT232 / FT245 / FT2232 Device

Table 4.2 Device Type Bit Definition

 Copyright © 2008 Future Technology Devices International Limited 11

Document Reference No.: FT_000078
FTDI Device EEPROM Programming Using a Vinculum VNC1L Application Note AN_105

Version 1.00
Clearance No.: FTDI# 59

Two bytes are returned by the VNC1L after a QP2 command is sent. The most significant byte (MSB) will

indicate the type of device that is attached to the VDIP1 and this byte is defined in Table 4.2. The QP()
subroutine is required to check if an FTxxx device is attached by sending the QP2 command to the VNC1L

and then reading the response. A check is done on the response data returned from the VNC1L to ensure

that bit 0 of the MSB is set to ‘1’ (this indicates an FTxxx Device) before the application continues. The

QP() subroutine calls the write routine shown in Figure 4.4 with the variables CmdSet and Len set as
follows:

 Len = 2;
 UCHAR CmdSet[Len] = {0x2C, 0x0D}; //these hex values represent the shortened

 //version of QP2�

4.2.7 Select Interface command (SC)

To send data to an FTxxx device using the VNC1L it is necessary to select the correct endpoint of the
FTxxx device. The command SC 0 will select the correct endpoint for an FTxxx device. The SC()

subroutine calls the write routine shown in Figure 4.4 with the variables CmdSet and Len set as follows:

 Len = 4;
 UCHAR CmdSet[Len] = {0x86, 0x20, 0x00, 0x0D}; //these hex values represent the

//shortened version of SC 0�

4.2.8 Query Device command (QD)

Before sending the EEPROM firmware commands, the application requires to determine the type of FTxxx

device connected to the VDIP1 before it can call the EEPROM subroutine for that particular chip. There

are three different chip types (FTxxxR, FTxxxB, and the FT2232D/C/L) which all have subtle differences

in their EEPROM structures and therefore require a specific subroutine when writing data to their

EEPROMs.

To determine which type of device is connected to the VDIP1 it is necessary to send the QD 0 command

to the VNC1L. The QD() subroutine calls the write routine shown in Figure 4.4 with the variables CmdSet
and Len set as follows:

 Len = 4;
 UCHAR CmdSet[Len] = {0x85, 0x20, 0x00, 0x0D}; //these hex values represent the

//shortened version of QD 0�

The VNC1L returns 32 bytes of data after receiving a QD command. The FTxxx device type information is

indicated by the BCD bytes which are at an offset of 18, as shown in Table 4.3

 Copyright © 2008 Future Technology Devices International Limited 12

Document Reference No.: FT_000078
FTDI Device EEPROM Programming Using a Vinculum VNC1L Application Note AN_105

Version 1.00
Clearance No.: FTDI# 59

Offset Bytes Data

0 1 USB Address

1 1 Control End Point 0 Size

2 1 Pipe In End Point Number

3 1 Pipe In End Point Size

4 1 Pipe Out End Point Number

5 1 Pipe Out End Point Size

6 1 Data Toggles

7 1 Device Type: See Table 4.2

8 1 Reserved

9 1 Location: 1 – USB Port 1, 2 – USB Port 2

10 1 MI Index

11 1 Device Class

12 1 Device Sub Class

13 1 Device Protocol

14 2 VID

16 2 PID

18 2 BCD

20
1

Device Speed: 1 – Full Speed, 2 – Low Speed,

4 – Low Speed Device on Hub, 8 – Device on Low Speed Hub

21 - 31 11 Reserved

Table 4.3 USB Device Information Record

The BCD value returned from the QD command will be one of the following:

0x0600 – Represents an FTxxxR chip

0x0500 – Represents an FT2232D/C/L chip

0x0400 – Represents an FTxxxB chip

A comparison is done in the application code that determines what type of FTxxx chip is attached to the

VDIP1.

 Copyright © 2008 Future Technology Devices International Limited 13

Document Reference No.: FT_000078
FTDI Device EEPROM Programming Using a Vinculum VNC1L Application Note AN_105

Version 1.00
Clearance No.: FTDI# 59

4.3 Subroutines for Reading and Writing to the EEPROM

When the VNC1L has been configured (see section 4.2), the application software can begin programming

the EEPROM of the attached FTxxx device. Sections 4.3.1 – 4.3.4 describe the methods used to configure

the VID, PID, serial number, manufacturer string and description string of the FTxxx device.

4.3.1 Reading from an EEPROM (FER)

There are three different EEPROM structures for the different device types. Writing data to the EEPROMs
of these three structures is very similar. Before the application overwrites any existing EEPROM

parameters it reads all the data currently in the EEPROM into a data buffer. The FER command defined in
section 3.3 can be used to returns 2 bytes of data from a location in the EEPROM. For simplicity it is

easier to read the data returned using the FER command in words rather than bytes. Figure 4.5

illustrates a subroutine for reading a word of data back from the VNC1L and Figure 4.6 shows a

subroutine for writing the FER command to the VCN1L. The FerWord() subroutine uses a variable called
AddrCount that can be changed to access the different locations in the EEPROM. To read the current

EEPROM data into the data buffer the AddrCount increments through every location in the EEPROM and

saves the data word returned into the data buffer. When complete, the data buffer will hold the values for
the entire EEPROM. The values of parameters such as the VID and PID can be replaced with new values

by editing the values in the data buffer. When the data buffer has been modified to the required custom
values, the entire data buffer is written back to the EEPROM in one routine.

void ReadWord(WORD *DataWordIn, DWORD *DataRead)

{
 DWORD RxBytes;
 DWORD ReadDataLength;
 memset(DataWordIn,0,5);

 QueueStatus(&RxBytes);

 ReadDataLength = RxBytes;
 *DataRead = 0;

 if (RxBytes == 0x00)
 {
 return;
 }
 else {
 Status = FT_Read(FtHandle, DataWordIn, ReadDataLength, DataRead);
 if(Status != FT_OK)
 {
 printf("Status not ok %d\n", Status);
 ErrorStatus();
 }
 }
}

Figure 4.5 Read a Word Routine

 Copyright © 2008 Future Technology Devices International Limited 14

Document Reference No.: FT_000078
FTDI Device EEPROM Programming Using a Vinculum VNC1L Application Note AN_105

Version 1.00
Clearance No.: FTDI# 59

void FerWord(UCHAR AddrCount, WORD *DataWordIn, DWORD *DataRead)

{
 DWORD WriteDataLength;
 DWORD DataWritten;

 UCHAR CmdSet[4] = {0x97, 0x20, 0x00, 0x0D};
 WriteDataLength = 4;
 DataWritten = 0;
 CmdSet[2] = AddrCount;

 //Send command
 Status = FT_Write(FtHandle, &CmdSet, WriteDataLength, &DataWritten);
 if(Status != FT_OK)
 {
 printf("Read Failed");
 ErrorStatus();
 }
 Sleep(30);
 do
 {
 ReadWord(DataWordIn, DataRead);
 }
 while(DataRead = 0);

}

Figure 4.6 Read a Word from an EEPROM

4.3.2 Writing to an EEPROM (FEW)

When the current data values of the EEPROM have been read into a data buffer, the next step is to create

a user interface that scans in the new parameters for the new VID, PID, serial number, manufacturer

string and description string. This would then replace the values currently in the data buffer with these

new required values. Each chip type has different locations for holding the parameters in the EEPROM.
The EEPROM structure document is only available on request under NDA. Contact support1@ftdichip.com

When the user interface has completed editing the data in the data buffer, the checksum needs to be
recalculated and updated (see Section 4.3.4) before writing all the new data into the EEPROM. Figure 4.6

shows a subroutine that sends the FEW command (see Section 3.2) to the VNC1L to write data to the
EEPROM. A prompt is returned from the VNC1L if the command was executed successfully. The

ReadByte() subroutine function checks for the correct returned prompt. The AddrCount variable is
incremented to write the data that is held in the data buffer into every location of the EEPROM.

 Copyright © 2008 Future Technology Devices International Limited 15

Document Reference No.: FT_000078
FTDI Device EEPROM Programming Using a Vinculum VNC1L Application Note AN_105

Version 1.00
Clearance No.: FTDI# 59

void FewWord(UCHAR *HexByte, UCHAR AddrCount)

{
 DWORD WriteDataLength;
 DWORD DataWritten;
 DWORD DataRead = 0;
 UCHAR DataIn[512];

 UCHAR CmdSet[6] = {0x96, 0x20, AddrCount, 0x00, 0x00, 0x0D};
 WriteDataLength = 6;
 DataWritten = 0;
 CmdSet[3] = HexByte[0];
 CmdSet[4] = HexByte[1];

 Status = FT_Write(FtHandle, &CmdSet, WriteDataLength, &DataWritten);
 if(Status != FT_OK)
 {
 printf("Status not ok %d\n", Status);
 ErrorStatus();
 }
 Sleep(30);
 do
 {
 ReadByte(DataIn, &DataRead); //polling for prompt
 }
 while(DataRead = 0);

}

Figure 4.6 Write a Word of Data into the EEPROM

4.3.3 Writing to the EEPROM of an FTxxxR chip

The FTxxxB and FT2232D/C/L chips have similar procedures for writing to their EEPROMs using the

VNC1L firmware commands. The EEPROM for the FTxxxR chip is integrated into the chip. Since the

EEPROM is internal you cannot erase the data using the FEE command (see Section 3.1). Also, the

latency time of the FTxxxR device needs to be set to 77ms (default latency time is 16ms) in order to
successfully write to the EEPROM of the device. Due to this latency, an additional subroutine is required

to set the latency time of an FTxxx device to 77ms using the VNC1L firmware command SSU. Since there
is no specific VNC1L firmware command to change the latency of an FTxxx chip the SSU command is

used to manually configure this latency in the FTxxxR device. The SSU command sends a packet of data
to a USB device control endpoint with a setup command. The subroutine for sending the SSU command is

shown in figure 4.7.

 Copyright © 2008 Future Technology Devices International Limited 16

Document Reference No.: FT_000078
FTDI Device EEPROM Programming Using a Vinculum VNC1L Application Note AN_105

Version 1.00
Clearance No.: FTDI# 59

void SSU()

{
 DWORD WriteDataLength;
 DWORD DataWritten;
 DWORD DataRead = 0;
 UCHAR DataIn[512];

 UCHAR CmdSet[11] = {0x9A, 0x20, 0x40, 0x09, 0x77, 0x00, 0x00, 0x00, 0x00, 0x00,
0x0D};
 WriteDataLength = 11;
 DataWritten = 0;

 //Send command
 Status = FT_Write(FtHandle, &CmdSet, WriteDataLength, &DataWritten);
 if(Status != FT_OK)
 {
 printf("SC Command Failed\n");
 ErrorStatus();
 }
 Sleep(30);
 do
 {
 ReadByte(DataIn, &DataRead); //polling for prompt
 }
 while(DataRead = 0);

}
Figure 4.7 SSU Command to Change the Latency to 77ms

When the latency has been configured, the internal EEPROM can be accessed using the FEW command.
When writing to the EEPROM of FTxxxR devices, it is necessary to send data 2* 16 bit words (WORD1

and WORD2).

For example, Table 4.4 shows a segment of an example EEPROM map:

EEPROM Location Word Value (Hex)

00 $0101 (WORD 1)

01 $0101 (WORD 2)

02 $0101 (WORD 1)

03 $0101 (WORD 2)

04 $0101 (WORD 1)

05 $0101 (WORD 2)

Table 4.4 Example Segment of EEPROM Map Before a Write

Writing $FFFF to location 04 would require you to do the following:

In ASCII, Extended command set mode the command is:

LOC = 04 (WORD 1)

FEW·$(LOC)FFFF����

<prompt>

 Copyright © 2008 Future Technology Devices International Limited 17

Document Reference No.: FT_000078
FTDI Device EEPROM Programming Using a Vinculum VNC1L Application Note AN_105

Version 1.00
Clearance No.: FTDI# 59

LOC = 05 (WORD 2)

FEW·$(LOC)0101���� //current data in location 05

<prompt>

Writing $FEFE to location 01 would require the following:

In ASCII, Extended command set mode the command is:

LOC = 00 (WORD 1)

FEW·$(LOC)0101���� //current data in location 06

<prompt>

LOC = 01 (WORD 2)

FEW·$(LOC)FEFE����

<prompt>

Table 4.5 shows the same EEPROM map after the FEW commands shown above are performed.

Location Word Value (Hex)

00 $0101 (WORD 1)

01 $FEFE (WORD 2) word has been changed

02 $0101 (WORD 1)

03 $0101 (WORD 2)

04 $FFFF (WORD 1) word has been changed

05 $0101 (WORD 2)

Table 4.5 Example Segment of EEPROM Map After a Write

Writing data to the EEPROM starting at the first location and finishing at the last location, the conditions

for writing two words at a time in order are met.

4.3.4 Checksum

Before all the data in the data buffer is written to the EEPROM the checksum needs to be updated and

stored in the EEPROM at the correct location. This is done by using the values in the data buffer to
calculate and then store the checksum in the data buffer after the calculation is complete. This simplifies

the code by allowing the program to write all the data in the data buffer to the EEPROM in one routine
instead of writing to the EEPROM twice (once to write the data and twice to write the checksum into the

EEPROM).

The details of how to calculate the checksum of the EEPROM are in EEPROM documents that are only

available by request under NDA. Contact support1@ftdichip.com

 Copyright © 2008 Future Technology Devices International Limited 18

Document Reference No.: FT_000078
FTDI Device EEPROM Programming Using a Vinculum VNC1L Application Note AN_105

Version 1.00
Clearance No.: FTDI# 59

5 Contact Information

Head Office – Glasgow, UK

Future Technology Devices International Limited

373 Scotland Street

Glasgow G5 8QB
United Kingdom

Tel: +44 (0) 141 429 2777
Fax: +44 (0) 141 429 2758

E-mail (Sales) sales@ftdichip.com

E-mail (Support) support@ftdichip.com
E-mail (General Enquiries) admin1@ftdichip.com

Web Site URL http://www.ftdichip.com

Web Shop URL http://www.ftdichip.com

Branch Office – Taipei, Taiwan

Future Technology Devices International Limited (Taiwan)

4F, No 18-3, Sec. 6 Mincyuan East Road
Neihu District

Taipei 114
Taiwan, R.O.C.

Tel: +886 (0) 2 8791 3570
Fax: +886 (0) 2 8791 3576

E-mail (Sales) tw.sales1@ftdichip.com

E-mail (Support) tw.support1@ftdichip.com

E-mail (General Enquiries) tw.admin1@ftdichip.com

Web Site URL http://www.ftdichip.com

Branch Office – Hillsboro, Oregon, USA

Future Technology Devices International Limited (USA)
7235 NW Evergreen Parkway, Suite 600

Hillsboro, OR 97123-5803
USA

Tel: +1 (503) 547 0988
Fax: +1 (503) 547 0987

E-Mail (Sales) us.sales@ftdichip.com

E-Mail (Support) us.admin@ftdichip.com

Web Site URL http://www.ftdichip.com

Distributor and Sales Representatives

Please visit the Sales Network page of the FTDI Web site for the contact details of our distributor(s) and
sales representative(s) in your country.

Vinculum is part of Future Technology Devices International Ltd. Neither the whole nor any part of the information contained in, or the

product described in this manual, may be adapted or reproduced in any material or electronic form without the prior written consent of
the copyright holder. This product and its documentation are supplied on an as-is basis and no warranty as to their suitability for any

particular purpose is either made or implied. Future Technology Devices International Ltd will not accept any claim for damages
howsoever arising as a result of use or failure of this product. Your statutory rights are not affected. This product or any variant of it is

not intended for use in any medical appliance, device or system in which the failure of the product might reasonably be expected to
result in personal injury. This document provides preliminary information that may be subject to change without notice. No freedom to

use patents or other intellectual property rights is implied by the publication of this document. Future Technology Devices International

Ltd, 373 Scotland Street, Glasgow G5 8QB United Kingdom. Scotland Registered Number: SC136640

 Copyright © 2008 Future Technology Devices International Limited 19

Document Reference No.: FT_000078
FTDI Device EEPROM Programming Using a Vinculum VNC1L Application Note AN_105

Version 1.00
Clearance No.: FTDI# 59

Appendix A - References

Document Reference Description

VNC1L_MPROG_Application The code that this document is based on. Only available on

request under NDA. Contact support1@ftdichip.com

DS_VNC1L-1A Vinculum Embedded USB Host Controller IC Data Sheet
http://www.ftdichip.com

Vinculum Firmware User Manual Firmware user manual
http://www.ftdichip.com

FTDI FT232 / FT245 / FT2232 FTDI FT232 / FT245 / FT2232 Data Sheet

http://www.ftdichip.com

BM_EEPROMdata_checksum-2.pdf EEPROM map for FT232 / FT245 ‘BM / ‘BL and ‘BQ devices.

Only available on request under NDA. Contact

support1@ftdichip.com

FT2232 EEPROM Data Structure and
Checksum.pdf

EEPROM map for FT2232D
Only available on request under NDA. Contact

support1@ftdichip.com

FT232REEPROM.pdf EEPROM map for FT232 / FT245 ‘RL / ‘RQ
Only available on request under NDA. Contact

support1@ftdichip.com

D2XX Programmer’s Guide D2XX Programmer’s Guide
http://www.ftdichip.com

VDIP1 Data Sheet VDIP1 Data Sheet

http://www.ftdichip.com

 Copyright © 2008 Future Technology Devices International Limited 20

Document Reference No.: FT_000078
FTDI Device EEPROM Programming Using a Vinculum VNC1L Application Note AN_105

Version 1.00
Clearance No.: FTDI# 59

Appendix B - Revision History

Revision History

Version 1.00 Initial Release September, 2008

