
Lecture 6. The Classical Linear Regression Model 
 
Simple linear regression model  
 
 XY βα +=  
 
Assumptions in previous lecture 
 
Assumption 1: is a random variable with u 0)( =uE  
 
Assumption 2: The probability distribution of the random  

u Xerror is independent of  
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This is implied by  
 
Assumption 2’: X is a deterministic, i.e. non-stochastic, variable 
 
In other words: the observed values niX i ,,1, K=  can be treated as  
constants.  

n

 
 
In practice assumption 2’ only holds in special cases, e.g. if X is 
(calendar) time.  
 
In most cases X is also the outcome of some random experiment, e.g. 
in macroeconomics an important relation is that between aggregate 
consumption Y and aggregate income X . Both variables are random 
variables associated with the random experiment that determines the 
state of the economy in a year.  
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The random experiment associated with the linear regression model 
is the determination of Y given the value of X . It is not important 
how X is determined, as long as the assumptions of the regression 
model (until now assumptions 1 and 2) are satisfied. 
 
Hence we have two random experiments: one that determines X and 
one that determines Y  given the outcome of the first experiment. 
 
We are only interested in the second random experiment. 

 3



If we have data niXY ii ,,1,, K= , i.e.  observations on a dependent 
variable 

n
Y and an independent variable X , we consider these as 

outcomes of the n  random experiments 
 
(1)  iii uXY ++= βα  
 
with .   ni ,,1K=
 
These random experiments are as follows: 
 

1. Treat  as  constants (it does not matter how they are 
determined). 

i u

niX i ,,1, K= n

2. For each , is a draw from a probability distribution that does 
not depend on  (assumption 2) and has mean 0 (assumption 1).  

i

iX
3. is determined as in (1). iY
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If we choose a particular distribution for , e.g. the normal (mean 0) 
distribution, then we can write a computer program that generates 
datasets of size n .  This will give repeated samples of size n  that are 
outcomes of random experiment (1). 

iu

The Ordinary Least Squares (OLS) solutions to fitting a straight line 
in a scatterdiagram are 
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  XY βα ˆˆ −=  
 
In the Simple Linear Regression random experiment these solutions 
are estimators of the parameters, here regression coefficients, βα , .  
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These estimators have a sampling distribution that as usual can be 
used to  
 

• Evaluate the quality of the estimators 
• Find confidence intervals  
• Perform hypothesis tests 

 
Sampling distribution: Distribution of estimators in repeated 
samples of size n .  
 
We can use the computer to find the sampling distribution (see 
above for description of the random experiment) 
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Let  
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niX i ,,1, K=  are uniform [0,1] random  

numbers  
 

   has a standard normal (mean 0, variance 1) 
u

iu
       distribution, and all ’s are  i
  independent and have the same   
     distribution 

 
This completely specifies the Linear Regression random experiment.  
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The graphs give the sampling distribution of  
ˆ 10= 100β  for n  and . 

 
A second set of graphs gives the sampling distribution if we assume 
that the u ’s are independent and have the same distribution, but 
that distribution is the uniform 

i
]3,3[−  distribution (also has mean 

0 and variance 1). 
 
Which is more relevant: the normal or uniform distribution?  
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β 10=n u
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Sampling distr. of , β̂ 100=n ,  standard normal u
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β 10=n u
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β 100=n u
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If  the sampling distribution is close to normal even if the 
u ’s have a uniform distribution. Variance is larger if 10

100,10=n
i =n . 

 
As in the coin tossing experiment, we can derive the sampling 
distribution of βα ˆ,ˆ  by using the assumptions instead of using the 
computer to generate samples. 
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Consider the linear regression model with 0=α .   
 
Then 
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From the Linear Regression model  
 
  iY = ii uX +β  
 

Substitution gives, using ∑
=
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Because the iW  can be treated as constants (assumption 2’), we have 
by assumption 1 
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Conclusion: The OLS estimator of β  
is unbiased 
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The same conclusion holds if the Linear Regression model has an 
intercept. 
 
Hence, the OLS estimators βα ˆ,ˆ of βα ,  are unbiased estimators. 
 
Compare with the sampling distribution in the computer 
experiment.  
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Next step is to derive the sampling variance of the OLS estimators. 
 
That derivation is simpler if we make two additional assumptions  
 
Assumption 3 (Homoskedasticity) 

su 'All  have the same variance i
 
  22 )()( σ== ii uEuVar
 
Assumption 4 (No serial correlation) 

u uThe random errors  and  are not correlated for all i j ji ≠  
 
  0)(),( == jiji uuEuuCov  
 
 
 

 18



 
Discussion assumptions 
 
Heteroskedasticity (Greek for equal dispersion) affects shape of 
scatterplot 
 
Example: Education and late career income. 
 
No serial correlation is important in time-series data. Most data are  
 

• Cross-section data: variables are for individuals, households, 
firms, countries etc. in a particular time period 

n

• Time-series data: variables are for one individual, firm, country 
etc. in n  subsequent time periods (weeks, months, quarters, 
years) 

• Panel data: combination of these two 
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Remember error term  captures omitted variables. Most time-
series are such that the observations in subsequent time periods are 
correlated. Same is true for omitted variables. 

u

Hence in time-series data assumption 4 need not hold.  
 
Serial correlation also affects shape of scatterplot. 
 
The linear regression model 
 
  iY ii uX ++= βα    ni ,,1K=  
where the random error term satisfies assumptions 1-4 is called the 
Classical Linear Regression (CLR) model. 
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Now we use assumptions 3 and 4 to derive the sampling variance of 
ˆ  (if we assume that 0β =α ) 

 
Remember  
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Hence,  
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The second term is 0 by assumption 4. By assumption 3 . 

Also by the definition of 

22 )( σ=iuE

iW , we have 
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Combining this we find 
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Note 
 

• Variance smaller if 2σ  smaller 

• Variance smaller if ∑
=

n

i
iX

1

2 larger 
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How does this translate in scatterplot? 
 
What happens to the variance of  is large? n
Implication for sampling distribution? 
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Definition: An estimator with a sampling distribution that becomes a 
degenerate distribution in the population value of the parameter if 
the number of observations becomes large, is called consistent. 
 
The OLS estimator  is consistent. β̂
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Using a similar argument as above we can derive 
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Moreover, the OLS estimators are consistent. 
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